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Critical phenomena near the antiferromagnetic quantum critical point of heavy fermions
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We present a paper of the critical phenomena around the quantum critical point in heavy-fermion systems.
In the framework of theS51/2 Kondo lattice model, we introduce an extended decoupling scheme of the
Kondo interaction, which allows one to treat the spin fluctuations and the Kondo effect on an equal footing.
The calculations, developed in a self-consistent one-loop approximation, lead to the formation of a damped
collective mode with a dynamic exponentz52 in the case of an antiferromagnetic instability. The system
displays a quantum-classical crossover at finite temperature depending on how the energy of the mode, on the
scale of the magnetic correlation length, compares tokBT. The low-temperature behavior, in the different
regimes separated by the crossover temperatures, is then discussed for both two- and three-dimensional
systems.
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I. INTRODUCTION

A central issue in the thermal properties of heavy-ferm
compounds is the discovery of a non-Fermi liquid~NFL!
behavior in systems close to an antiferromagnetic quan
phase transition.1 Such a behavior has been discovered in
series of compounds containing cerium or uranium,
example, CeCu62xRx (R5Au,Ag),2 CeIn3 , CePd2Si2,3

CeNi2Ge2,4 U12xYxPd3,5 and CexLa12xRu2Si2.6 In
CeCu5.9Au0.1, the specific heatC depends onT as C/T
;2 ln(T/T0), the magnetic susceptibility asx;12aAT, and
the T-dependent part of the resistivity asDr;T ~instead of
C/T;x;const andDr;T2 in the Fermi-liquid state!. Most
interestingly, the breakdown of the Fermi-liquid behav
can be tuned by alloying~chemical pressure! or by applying
a hydrostatic pressure or a magnetic field. The origin of t
NFL behavior is a problem of current debate.

Different scenarios have been proposed in order to el
date the NFL behavior at the quantum critical point~QCP!.
On the one hand, there are scenarios involving strong di
der to account for the non-Fermi liquid properties, includi
~i! a distribution of the Kondo temperatureP(TK) ~Ref. 7!
induced by disorder following a distribution of the loc
density-of-states, and~ii ! the possibility of the formation of a
Griffiths phase at the quantum critical point.8,9 On the other
hand, starting from a clean or rather weakly disordered s
tem, there is a scenario~iii ! referring to the proximity of a
quantum critical point in a theory of itineran
antiferromagnetism,10–17 in which the Fermi surface is
coupled to critical collective antiferromagnetic excitation
An alternative possibility has been recently put forward18 on
the basis of an analysis of the neutron scattering meas
ments in CeCu5.9Au0.1. The unusual spin dynamics that h
been observed suggests~iv! the existence of critically
screened local magnetic excitations due to the formation
local moments. Finally,~v! a variant of the quadrupola
Kondo effect19 in which the interactions of the rare-ear
~actinide! internal degrees of freedom with the conducti
electrons are reduced to a single impurity multichan
PRB 620163-1829/2000/62~10!/6450~8!/$15.00
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Kondo effect has been proposed. As it stands, the situa
remains highly controversial.

In this paper, we adopt the point of view~iii ! of the prox-
imity to a quantum critical point. The effect of a nonze
temperature on quantum critical points is a long-stand
problem encountered in itinerant magnetism. We refer to
papers of Hertz20 and Millis11 using renormalization-group
techniques, and of Moriya21 introducing a self-consisten
renormalization~SCR! theory of spin fluctuations. Thes
theories yield a rich phase diagram with, in addition to t
ordering temperatureTN , a series of crossover temperatur
separating different regimes of behaviors. They are w
adapted for the treatment of spin fluctuations as presen
the single-band Hubbard model but essentially do not
count for the Kondo effect.

Indeed, the model that is believed to describe the phy
of heavy fermions is the Kondo lattice model22 derived from
the periodic Anderson model in a given limit. The largeN
expansions,23 which have been carried out for these mod
~where N represents simultaneously the degeneracy of
conduction electrons and of the spin channels! give a good
description of the Kondo effect. But, unlike the abov
mentioned spin-fluctuation theories, they fail to account
the spin fluctuations since the Ruderman-Kittel-Kasu
Yosida interactions only appear at the order 1/N2.24

Hence our motivation to set up an approach of theS
51/2 Kondo lattice model (N52) that enlarges the standar
1/N expansion theories up on the spin-fluctuation effec
Our previous paper25 presented such an approach by p
forming a generalized Hubbard-Stratonovich transformat
on the Kondo interaction term of the Hamiltonian, whic
makes three types of fields~magnetization densities an
Kondo type! appear on an equal footing. The dynamical sp
susceptibility was derived in a one-loop expansion associa
with the Gaussian fluctuations of the magnetization den
fields around their saddle-point values.

With the aim to describe the critical phenomena arou
the quantum critical point of the heavy-fermion systems,
propose to push the treatment of theS51/2 Kondo lattice
model in a self-consistent one-loop approximation in co
6450 ©2000 The American Physical Society
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plete analogy with the SCR theory of spin fluctuations d
veloped for the Hubbard model.21,26,27As in itinerant mag-
netism, we will show how the system displays a quantu
classical crossover at finite temperature depending whe
the temperature is lower or higher than the characteristic
ergy scale of the collective mode associated with the m
netic instability. The low-temperature behavior in the diffe
ent regimes essentially depends on the value of the dyna
exponentz of the mode and on the dimensionalityd of the
problem. In the case of an antiferromagnetic instability,z is
found to be equal to 2. Heavy-fermion systems are usu
believed to be three dimensional. However, a rec
proposal28 based on the neutron-scattering data obtained
CeCu62xAux , stipulates that the critical magnetic fluctu
tions, which the quasiparticles are coupled to, are simply
dimensional. So both situationsd52 andd53 will be con-
sidered.

The rest of the paper is organized as follows. In Sec.
we introduce the self-consistent one-loop approximat
method for the Kondo lattice model using a generaliz
Hubbard-Stratonovich transformation on the Kondo inter
tion term. The approach combines both aspects of theN
expansion and of the self-consistent renormalization the
of spin fluctuations. The calculations, presented in the fu
tional integral formalism, closely follow the presentatio
made by Hertz and Klenin27 for the Hubbard model. Hence
we extract the general expression of the dynamical spin
ceptibility extending the results of the previous paper25 to a
self-consistent treatment. Section III gives a discussion
the nature of the damped collective mode associated to
proximity of the magnetic transition with a dynamic exp
nentz52 in the antiferromagnetic case. In Sec. IV, we d
rive the resulting quantum-classical crossover. This occur
a finite temperatureT, which depends on how the energy
the mode, on the scale of the magnetic correlation lengtj
compares tokBT. The low-temperature behavior of the sy
tem in the different regimes, separated by the crossover t
peratures, is then discussed in Sec. V. Concluding rem
follow in Sec. VI.

II. SELF-CONSISTENT ONE-LOOP APPROXIMATION
TO THE KONDO LATTICE MODEL

This section extends the approach introduced in our p
vious paper25 to a self-consistent one-loop approximatio
Our starting point is a path-integral treatment of the Kon
lattice model Hamiltonian

H5(
ks

«kcks
† cks1J(

i
Sf i•(

ss8
cis

† tss8cis8

2mS (
is

cis
† cis2ncNSD , ~1!

whereSf i represents the spin (S51/2) of the impurities dis-
tributed on the sites~in numberNS) of a periodic lattice;cks

†

is the creation operator of the conduction electron of mom
tum k and spin quantum numbers characterized by the en
ergy ek52(^ i , j &t i j exp(ik•Ri j ); t are the Pauli matrices
(t x,t y,t z) andt 0 the unit matrix; J is the antiferromagnet
Kondo interaction (J.0). The Hamiltonian is written in the
-
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grand canonical ensemble with the introduction of a che
cal potentialm in order to guarantee an average number
conduction electrons per sitenc,1. The spin of the impuri-
ties is treated within the Abrikosov pseudofermion repres
tation Sf i5(ss8 f is

† tss8 f is8 where the local constraintQi

5(s f is
1 f is2150 is implemented in the usual way, by in

troducing a time-independent Lagrange multiplierl i . The
local Kondo interaction is decoupled using a Hubba
Stratonovich transformation, which introduces four auxilia
fields F i(t), F i* (t), and jf i

(t), jci
(t). We are then left

with the effective action

Se f f5E
0

b

dt@L0~t!1HJ~t!#,

whereL0(t) is the Lagrangian in the absence of the intera
tion J and

HJ~t!5 (
iss8

@cis
† ~t! f is

† ~t!#

3S 2JSi jf i
~t!•tss8 JCF i* ~t!tss8

0

JCF i~t!tss8
0 2JSi jci

~t!•tss8
D

3S cis8~t!

f is8~t!
D 1JC(

i
F i* ~t!F i~t!

1JS(
i

jf i
~t!•jci

~t!, ~2!

with JS5J/4 andJC5J/3. Details on the saddle-point solu
tion and the Gaussian fluctuations can be found in our p
vious paper.25 The saddle-point solution transposes toN52
the large-N results obtained within the slave-boson mea
field theories. It gives rise to the formation of a Abrikoso
Suhl resonance pinned at the Fermi level and split by a
bridization gap defining two bandsa and b. The one-loop
approximation is then obtained by considering the Gauss
fluctuations of the bosonic fields around their mean-field v
ues. As in the conventional approaches to critical pheno
ena, the approach consists to integrate out the fermion fi
and thereby reduce the problem to the study of an effec
bosonic theory describing fluctuations of the ordering fiel
But contrary to Hertz20 and Millis,11 who considered a single
field corresponding to the magnetization density of one ty
of electron, the approach, starting from a different mic
scopic model, extends the description to the case of sev
fields, i.e., the Kondo fields on the one hand, and thef- and
c- magnetization densities on the other hand.

We now propose to include the self-consistent effects
the one-loop approximation. We do it in a variational w
and replace the full expressionSe f f2Se f f

(0) ~where Se f f
(0) and

F (0) are the zeroth order effective action and the related f
energy! by a trial quadratic formDS̃e f f

(2)5S̃e f f
(2)2Se f f

(0) in the
fieldsdr q,n , dlq,n , djf q,n

, anddjcq,n
working in the radial

gauge for the Kondo parameters29 using Fourier transform
notations
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DS̃e f f
(2)5

1

b (
q,ivn

F ~dr q,ndlq,n!D̃C
21~q,ivn!S dr 2q,2n

dl2q,2n
D

1~dj f q,n
z djcq,n

z !D̃S
i21~q,ivn!S d$xi f 2q,2n

z

djc2q,2n
z D

1~dj f q,n
1 djcq,n

1 !D̃S
'21~q,ivn!S dj f 2q,2n

2

djc2q,2n
2 D

1~dj f q,n
2 djcq,n

2 !D̃S
'21~q,ivn!S dj f 2q,2n

1

djc2q,2n
1 D G , ~3!

where the indicesq andn, respectively, stand for the wav
vector q and the bosonic Matsubara frequenciesivn

52n ip/b. Note that Eq.~3! is written using the radial gaug
in which the phase of the fieldsF i andF i* is incorporated
into the Lagrange multiplierl i , which turns out to be a field
The elements of the matricesD̃C

21(q,ivn), D̃S
i21(q,ivn)
pa

s
x
oc
ve
ds

u

ng
d
, t

ib
o
he
and D̃S
'21(q,ivn) are determined variationally by minimiz

ing the free energy or, more precisely, the upper bound to
free energy according to the Feynman variational princi
F<F̃e f f

(2)11/b^Se f f2S̃e f f
(2)& whereF̃e f f

(2) represents the free en

ergy related toS̃e f f
(2) and^A& means the average of the qua

tity A over the distribution of fields exp(2DS̃ef f
(2)), i.e.,

^A&5

E Dr iDl iDjf i
Djci

A exp~2DS̃e f f
(2)!

E Dr iDl iDjf i
Djci

)exp~2DS̃e f f
(2)!

. ~4!

After minimization, one can show that@DC
21(q,ivn)# rl is

equal to (1/2)]2Se f f /(]r q,n]l2q,2n) averaged over the
mentioned distribution of fields~and equivalent expression
for the other elements!. Explicitly we obtain,
D̃C
21~q,ivn!5S JC@12JC~^w̄2~q,ivn!&1^w̄m~q,ivn!&!# 2JC^w̄1~q,ivn!&

2JC^w̄1~q,ivn!& 2^w̄ f f~q,ivn!&
D , ~5!

D̃S
i21~q,ivn!5S JS

2^wcc
i ~q,ivn!& JS@11JS^w f c

i ~q,ivn!&#

JS@11JS^wc f
i ~q,ivn!&# JS

2^w f f
i ~q,ivn!&

D ,
er
nd
t us
bles
rd
out

-
ure
in
all

is
rm
ta-
and an equivalent expression for the transverse spin
D̃S

'21(q,ivn). The different bubbleŝw(q,ivn)& in the latter
expressions represent the susceptibilitiesw(q,ivn) ~cf.
appendix! averaged over the distribution of field
exp(2DS̃ef f

(2)). At that point, the problem is highly comple
and cannot be solved exactly. Therefore, we introduce a l
and instantaneous approximation that is equivalent to a
aging over Gaussian distributions of local fiel
(r i ,l i ,jf i

,jci
) with variancess r , sl , s f , andsc defined

as

s f
253 (

q,ivn

@D̃S
i ~q,ivn! f f #, ~6!

and similar expressions for the three other variances. Eq
tion ~6! is obtained from Eq.~3! by letting the summation
over (q,ivn) act on the matrix elements only, hence defini
the local and instantaneous fluctuations of the various
grees of freedom. One expects that at low temperatures
fluctuations ofr i , l i , andjci

only bring T2 corrections to
their saddle-point values. Those corrections are neglig
compared to theT dependence brought by the fluctuations
jf i

and will not be considered here. So we will neglect, in t

following, the fluctuations ofr i , l i , andjci
, and focus on

the fluctuations ofjf i
only. Then^w(q,ivn)& is simply given

by
rt

al
r-

a-

e-
he

le
f

^w~q,ivn!&5

S E Dj f i
w~q,ivn!exp@2j f i

2 /~2s f
2!# D

S E Dj f i
exp@2j f i

2 /~2s f
2!# D .

~7!

Equations~6!–~7! are the basic equations of the pap
from which the dynamical spin susceptibility is extracted a
the critical phenomena around the QCP are studied. Le
note that, when the averages acting on the various bub
w(q,ivn) in Eq. ~5! are omitted, one recovers the standa
results of the random-phase approximation. As pointed

by Lonzarich and Taillefer,30 the corresponding self
consistent renormalized spin fluctuation SCR-SF proced
can be analyzed within the Ginzburg-Landau formalism
which the local free energy is expanded in terms of a sm
and slowly varying order parameterm(r ) as f (r )5 f 0

1 1
2 aum(r )u21 1

4 bum(r )u41 1
2 c( i u“mi(r )u21O(6) and

the following approximation is made um(r )u4

5^um(r )u2&um(r )u2. Hence ^um(r )u2& is evaluated via the
fluctuation-dissipation theorem.

The expression of the dynamical spin susceptibility
then derived in the usual way, by adding a source te
22Sf•B to the Hamiltonian. In the Matsubara represen
tion, one gets
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x f f~q,ivn!5
^w f f~q,ivn!&

12JS
2F ^w f f~q,ivn!&^wcc~q,ivn!&2^w f c~q,ivn!&22

2

JS
^w f c~q,ivn!&G . ~8!
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In the low-frequency limit, one can easily check that t
dynamical spin susceptibility may be written in terms
intra- and interband suceptibilities corresponding, resp
tively, to particle-hole pair excitations within the lowera
band and from the lowera to the upperb band

x f f~q,ivn!5
^x̄aa~q,ivn!&1^x̄ab~q,ivn!&

12JS
2^xaa~q,ivn!&^x̄ab~q,ivn!&

. ~9!

The expressions of the susceptibilitiesxaa(q,ivn) and
x̄ab(q,ivn), corresponding to intra- and interband partic
hole excitations are given in the Appendix. The latter expr
sion is reminiscent of the behavior proposed by Bernho
and Lonzarich31 to explain the neutron scattering observed
UPt3 with the existence of both a ‘‘slow’’ and a ‘‘fast’’
component inx9(q,v)/v due to spin-orbit coupling. Also in
a phenomenological way, the same type of feature has b
suggested in the duality model developed by Kuramoto
Miyake.32 To our knowledge, the proposed approach p
vides the first microscopic derivation from the Kondo latti
model of such a behavior. Expanding the various susce
bilities w up to the second order inj f i

, and making use of
Eq. ~7!, one can draw from Eq.~9! the following expression
of the dynamical spin susceptibility~taking the analytical
continuationivn→v1 id)

x f f~q,v!5
xaa~q,v!1x̄ab~q,v!

12JS
2xaa~q,v!x̄ab~q,v!1ls f

2
, ~10!

wherel is a constant which can be evaluated from the
pansion of̂ xaa(q,ivn)& and^x̄ab(q,ivn)& up to the second
order ins f

2 . The variances f
2 defined by Eq.~6! can as well

be expressed as a function ofx f f(q,ivn)

s f
25 (

q,ivn

x f f~q,ivn!5
3

p (
q
E

0

1`

coth
bv

2
x f f9 ~q,v!dv.

~11!

The two last equations@Eqs. ~10!–~11!# provide a self-
consistent determination ofs f

2 and hence of the spin susce
tibility. We will successively present now~i! in Sec. III, the
result for the dynamical spin susceptibility in the rando
phase approximation~RPA! giving information on the nature
of the collective mode that is involved;~ii ! then in Sec. IV,
the implications of that mode in the critical phenome
around the quantum critical point.
c-
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-
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III. RPA-DYNAMICAL SPIN SUSCEPTIBILITY NEAR
THE ANTIFERROMAGNETIC WAVE VECTOR:

DISCUSSION ON THE NATURE
OF THE COLLECTIVE MODE

As pointed out in Sec. II, the RPA corresponds to t
absence of any averaging in the different equations. Ther
the expression of the dynamical spin susceptibility at
RPA level is given by Eq.~10! taking s f

250. We now dis-
cuss theq and v dependence of the RPA dynamical sp
susceptibility around the antiferromagnetic wave vectorQ.

The bare intraband susceptibilityxaa(Q1q,v) is well
approximated atuqu!uQu by a Lorentzianxaa(Q1q,v)
5raa /(12 iv/G01bq2) where raa5xaa8 (Q,0) andG0 is
the relaxation rate of orderuyFu5TK . As expected for the
antiferromagnetic case, the relaxation rate remains fi
whenq goes to zero reflecting the fact that the fluctuations
the order parameter are not conserved. The bare interb
susceptibilityx̄ab(Q1q,v) can be considered as purely re
and frequency independent equal torab in the low-
frequency limit. Due to the presence of the hybridization g
in the density-of-states, the continuum of the interba
particle-hole excitations displays a gap ranging from 2s0,
the value of the direct gap for the wave vector0, to 2uyFu,
the value of the indirect gap atQ. The RPA dynamical spin
susceptibility is given by

x f f
RPA9~Q1q,v!5v

x f f8 ~Q1q!G~q!

v21G~q!2
~12!

with

x f f8 ~Q1q!5
raa1rab

~12I q!
,

G~q!5G0~12I q!,

where I q5I 2bq2 and I 5JS
2raarab ~of order 1 near the

antiferromagnetic instability!.
The bulk staggered susceptibilityx f f8 (Q) diverges atI

51. The frequency dependence ofx f f
RPA9(Q1q,v) is a

Lorentzian with a vanishing relaxation rateG(0) at the anti-
ferromagnetic transition. The corresponding excitation c
be analyzed as an antiferromagnetic paramagnon mode
softens at the magnetic transition. Equation~12! provides us
with the dispersion of that mode. The corresponding dyna
cal exponentz is found to be equal to 2 due to the overdam
ing of the mode when enters the continuum of thea-a
particle-hole excitations. We will show how the dynamic e
ponentz strongly affects the static critical behavior. This
due to the fact that, contrary to theT.0 phase transitions
statics and dynamics are intimately linked in quantumT
50) phase transitions. We turn now to the resulti
quantum-classical crossover occurring at finite temperatu



e
P
th

tu
m
he
ib

f t

ti
n

n
t

s

tic
n-

i-

he

the
n
nal-

is

re-
for
in

av-
re

es-
tens
on

the
of

far
out
les

tion
s,
en
ical

tic

ra-
nity

6454 PRB 62M. LAVAGNA AND C. PÉPIN
IV. CRITICAL PHENOMENA AROUND
THE ANTIFERROMAGNETIC QUANTUM

CRITICAL POINT „AF-QCP…

The parameter which controls the temperature dep
dence of the thermodynamical variables near the AF-QC
s f

2 , which expresses the thermal local fluctuations of
staggered magnetization. Using Eqs.~11! and ~12!

s f
25(

q
S~Q1q!;E S~Q1q!qd21dq, ~13!

whereS(Q1q) is the static form factor

S~Q1q!5
3

pE0

`

coth~bv/2!x f f9 ~Q1q,v!dv. ~14!

Depending on the temperature scale considered, quan
or classical behavior is observed. In general, the ther
fluctuationss f

2 of the magnetization should depend on t
total self-consistent renormalized dynamical spin suscept
ity x f f9 (Q1q,v) as defined in Eq.~9!. However, in practice,

we will be content with its truncated formx f f
RPA9(Q1q,v)

derived at the RPA level. The temperature dependence o
static form factorS(Q1q) is given by

S~Q1q!5
6T

p
x f f8 ~Q1q!tan21S T

G~q! D . ~15!

A first crossover temperatureTI52G0(12I ) appears, which
separates the quantum from the classical regime.

~i! T,TI : quantum regime. One can show that the sta
form factorS(Q1q) exhibits a quadratic temperature depe
dence

S~Q1q!5
6

p

x f f8 ~Q1q!

G0~12I q!
T2, ~16!

The thermal local fluctuationssf
2 of the magnetization are

also quadratic as a function of the temperature. They ca
easily evaluated from Eq.~15!. Taking advantage of the fac
that the integrand S(Q1q)qd21 is peaked at q1

5A(12I )/b, the temperature dependence ofsf
2 is also

found to be quadratic

sf
25

3

2p

x f f8 ~Q!

G0~12I !
T2, ~17!

The physics is quantum in the sense that the fluctuation
the scale of the magnetic correlation lengthj have energy
much greater than the temperaturekBT.

~ii ! T.TI : classical regime. In this regime, the sta
form factor S(Q1q) shows a linear temperature depe
dence. As long asq is smaller than the thermal cutoffq*
defined byvmax(q* )5T, S(Q1q) takes the following form

S~Q1q!53x f f8 ~Q1q!T. ~18!

The thermal local fluctuationss f
2 of the magnetization are

deduced from Eq.~15!. The main contribution arises from
the integration over@q1 ,q* #. The result depends on the d
mensionality d. One finds s f

2;T3/2 at d53 and s f
2

n-
is
e

m
al

il-

he

c
-

be

on

;T ln T at d52. This classical regime corresponds to t
case where the energy of the mode on the scale ofj becomes
less thankBT.

Table I recapitulates the expressions that we get for
thermal local fluctuationss f

2 of the staggered magnetizatio
depending on the temperature scale and on the dimensio
ity. Following Eq. ~10!, the staggered spin susceptibility
given by

xQ8 5
x f f

08~Q!

12I 1ls f
2

, ~19!

wherex f f
08(Q)5raa1rab . Incorporating the values of the

thermal local fluctuationssf
2 reported in Table I, we are

able to identify a second crossover temperatureTII . Above
TII , sf

2 becomes larger than (12I ) and all the physical
quantities are controlled by the temperature only.TII ;(1
2I )2/3 at d53 andTII ;(12I ) at d52. As expected in the
two-dimensional case, theT50 transition is at its upper
critical dimension sincez1d54 in the antiferromagnetic
case characterized by a dynamic exponentz52. That corre-
sponds to the marginal case for which the intermediate
gimeTI,T,TII is squeezed out of existence. The results
the d53 and d52 cases are, respectively, summarized
Figs. 1 and 2, which picture the different regimes of beh
iors reached depending on the values of the temperatuT
and of the control parameterI 5J2raarab . When I .1,
long-range antiferromagnetic order occurs whenT is smaller
than the Ne´el temperatureTN . TN;(I 21)2/3 at d53 and
TN;(I 21) at d52.

V. DISCUSSION

The low-temperature physics is dominated by the pr
ence of an antiferromagnetic paramagnon mode that sof
at the magnetic transition. The results depend crucially
the value ofd1z, whered is the spatial dimension andz is
the dynamic exponent associated to that mode. Due to
overdamping of the mode when it enters the continuum
intraband particle-hole excitations, the dynamic exponentz is
found to be equal to 2 in the antiferromagnetic case. As
as the dimensionality is concerned, there is no doubt ab
the dimensionality associated with the heavy quasipartic
in those systems that are clearly of 3. However the ques
about the dimensionality of the critical magnetic fluctuation
which the quasiparticles are coupled to, is still an op
problem. Up to now, it has been assumed that the crit
fluctuations of the quantum phase transition~QPT! are
dominated by the three-dimensional antiferromagne

TABLE I. Predictions for thermal local fluctuationssf
2 of the

staggered magnetization depending on the temperatureT and on the
dimensionalityd. TI;(12I ) represents the first crossover tempe
ture separating the quantum from the classical regime in the vici
of the antiferromagnetic-quantum critical point~AF-QCP!.

Quantum regimeT,TI Classical regimeT.TI

d53 s f
2;x f f8 (Q)T2/G0 s f

2;T3/2

d52 s f
2;x f f8 (Q)T2/G0 s f

2;T ln T
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correlations. This would impose a description by a quant
critical theory withd53, z52. Recently Roschet al.28 pro-
posed, on the basis of the neutron-scattering data
CeCu62xAux , that the critical magnetic fluctuations are tw
dimensional, which leads to a QCP withd52 andz52. Let
us summarize the different regimes of behaviors that we
in each of those two cases (z52, d53 or 2! depending on
the values of the temperatureT and of the control paramete
I 5J2raarab . As one can see, the results that we obtain
very similar to those established by Hertz20 and Millis11 us-

FIG. 1. Phase diagram in the plane (T,I ) for dimension equal to
3. The shaded region represents the long-range antiferromag
phase bordered by the Ne´el temperatureTN . The unshaded region
marks the magnetically-disordered regimesI , II , and III , associ-
ated to different behaviors of the system. RegimeI is the quantum
regime in which the energy of the relevant mode on the scalej
is much greater thankBT. The magnetic correlation length isj
;1/A(12I ) and the staggered spin susceptibility isxQ8

5x f f
08(Q)/(12I 1aT2). RegimesII and III are both classical re

gimes in which the thermal effects are important since the fluc
tions on the scale ofj have energy much smaller thankBT. In
RegimeII , j;1/A(12I ) is still controlled by (12I ) but the stag-
gered spin susceptibility is sensitive to the thermal fluctuatio

xQ8 5x f f
08(Q)/(12I 1aT3/2). In RegimeIII , bothj andxQ8 are con-

trolled by the temperature:j;1/T3/4 andxQ8 5x f f
08(Q)/T3/2.

FIG. 2. Phase diagram in the plane (T,I ) for dimension equal to
2. The shaded region represents the long-range antiferromag
phase bordered by the Ne´el temperatureTN . The unshaded region
marks the magnetically-disordered regimesI and III . In that d52
case, the equivalent of regimeII in Fig. 1 is squeezed out of exis
tence sinceTI5TII . RegimeI is the quantum regime in which th
thermal fluctuations are negligible:j;1/A(12I ) and xQ8

5x f f
08(Q)/(12I 1aT2). RegimeIII is the unique classical regim

in which both the magnetic correlation length and the stagge
spin susceptibility are controlled by the temperature:j;1/AT ln T

andxQ8 5x f f
08(Q)/(T ln T).
in

et

e

ing renormalization-group approaches in the spin-fluctuat
theory.

~i! Cased53. A long-range antiferromagnetic phase o
curs whenI .1 below the Ne´el temperatureTN;(I 21)2/3.
A first crossover temperatureTI;(12I ) separates the quan
tum from the classical regime. In the regimeI (I ,1) andT
,TI), the physics is quantum in the sense that the energ
the relevant mode on the scale ofj is greater than the tem
peraturekBT. Sinced1z.4, the T50 phase transition is
above its upper critical dimension and the various phys
quantities depend upon the parameterI. The magnetic corre-
lation length diverges at the magnetic transitionj
;1/A(12I ) and the staggered spin susceptibility behaves

xQ8 5x f f
08(Q)/(12I 1aT2). Regimes II and III are both

classical regimes characterized by large thermal effects s
the fluctuations on the scale ofj have energy much smalle
thankBT. In regimeII @TI,T,TII with TII ;(12I )2/3#, the
magnetic correlation lengthj;1/A(12I ) is still controlled
by (12I ) even though modes at the scale ofj have energies
less thankBT. On the contrary, the staggered spin susce
bility is sensitive to the thermal fluctuationsxQ8

5x f f
08(Q)/(12I 1aT3/2). In regimeIII (T.TII ), the thermal

dependence of physical quantities becomes universal
both j and xQ8 are controlled by the temperature:j;1/T3/4

andxQ8 5x f f
08(Q)/T3/2.

~ii ! Cased52. Then, sincez52, z1d54 and theT
50 phase transition is at its upper critical dimension. T
physics is qualitatively similar to the cased53 with stronger
fluctuation effects particularly in the classical regime.
long-range antiferromagnetic phase occurs whenI .1 below
the Néel temperatureTN;(I 21). For d52, the two cross-
over temperaturesTI and TII coincide so that regimeII of
Fig. 1 is squeezed out of existence. RegimeI @T,TI with
TI;(12I )# is the quantum regime in which the therm
fluctuations are negligible : j;1/A(12I ) and xQ8

5x f f
08(Q)/(12I 1aT2). RegimeIII (T.TI) is the unique

classical regime characterized by very strong fluctuation
fects sincekBT is larger than the energy of the relevant mo
on the scale ofj. Both the magnetic correlation length an
the staggered spin susceptibility are then controlled by

temperature:j;1/AT ln T andxQ8 5x f f
08(Q)/(T ln T).

VI. CONCLUDING REMARKS

We considered theS51/2 Kondo lattice model in a self
consistent one-loop approximation starting from a gene
ized Hubbard-Stratonovich transformation of the Kondo
teraction term. The model exhibits a zero-temperat
magnetic phase transition at a critical value of the Kon
coupling. The transition is usually antiferromagnetic but
may be incommensurate depending on the band struc
considered. The low-temperature physics is controlled b
collective mode that softens at the antiferromagnetic tra
tion with a dynamic exponentz equal to 2.

A quantum-classical crossover occurs at a temperaturTI
related to the characteristic energy scale of that mo
Heavy-fermion systems are usually believed to be thr
dimensional. However, since some recent inelastic-neut
scattering experiments performed in CeCu62xAux show that
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the critical magnetic fluctuations, which the quasipartic
are coupled to, are two-dimensional, we both considered
casesd52 andd53 with z52. The low-temperature behav
ior of the system is deduced, with predictions for the te
perature dependence of the physical quantities such as
magnetic correlation lengthj and the staggered susceptibili
xQ8 . A second crossover temperatureTII appears above
which the thermal dependence ofj andxQ8 becomes univer-
sal and is uniquely controlled by the temperature. It would
very interesting now to study the temperature behavior
other physical quantities as the specific heat or the trans
properties.

A number of significant issues remain to be address
Among others, we will mention the possibility of getting
different value of the dynamic exponent for instancez51 if
nesting effects are considered corresponding to an absen
damping of the mode when located in the gap of excitati
around the antiferromagnetic vector. Disorder is expecte
play a crucial role in this problem. In that direction, som
recent works33,17 pointed out the formation of some ‘‘ho
lines,’’ i.e., points at the Fermi surface linked by the ma
netic Q vector. On the hot lines, the quasiparticle scatter
rate is linear in temperature while, away from the hot lines
acquires the standard Fermi liquid form inT2. At low tem-
perature, the ‘‘cold’’ regions are shown to short circuit t
scattering near those lines, and induce aT2 behavior of the
resistivity. The disorder is found to emphasize the contri
tion of the hot lines, eventually leading to a non-Fermi liqu
behavior. It would be worthy to study the effects of the ‘‘h
lines’’ in the presence of disorder within the critical pheno
ena description presented in this paper.
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APPENDIX EXPRESSIONS OF THE DIFFERENT
BUBBLES

The expressions of the different bubbles appearing in
expression of the boson propagators@cf. Eq. ~5!# are given
here~with i51, 2, m, or ff!

w̄ i~q,ivn!5w i~q,ivn!1w i~2q,2 ivn!, ~A1!

w1~q,ivn!52
1

b (
ks,ivn

Gc f0
s ~k1q,ivn1 ivn!Gf f 0

s ~k,ivn!,

w2~q,ivn!52
1

b (
ks,ivn

Gcc0

s ~k1q,ivn1 ivn!Gf f 0

s ~k,ivn!,

wm~q,ivn!52
1

b (
ks,ivn

Gc f0
s ~k1q,ivn1 ivn!Gc f0

s ~k,ivn!,

w f f
i ~q,ivn!52

1

b (
ks,ivn

Gf f 0

s ~k1q,ivn1 ivn!Gf f 0

s ~k,ivn!,
s
e

-
the

e
f
rt

d.

of
s
to

-
g
it

-

-

d

e

wcc
i ~q,ivn!52

1

b (
ks,ivn

Gcc0

s ~k1q,ivn1 ivn!

3Gcc0

s ~k,ivn!,

w f c
i ~q,ivn!52

1

b (
ks,ivn

Gf c0

s ~k1q,ivn1 ivn!Gf c0

s ~k,ivn!,

w f f
' ~q,ivn!52

1

b (
ks,ivn

Gf f 0

↑ ~k1q,ivn1 ivn!Gf f 0

↓ ~k,ivn!,

wcc
' ~q,ivn!52

1

b (
ks,ivn

Gcc0

↑ ~k1q,ivn1 ivn!

3Gcc0

↓ ~k,ivn!,

w f c
' ~q,ivn!52

1

b (
ks,ivn

Gf c0

↑ ~k1q,ivn1 ivn!Gf c0

↓ ~k,ivn!,

whereGcc0

s (k,ivn), Gf f 0

s (k,ivn), andGf c0

s (k,ivn) are the

Green’s functions at the saddle-point level obtained by
versing the matrixG0

s(k,t) defined in Eq.~2!.
The different bubblesw f f(q,ivn), wcc(q,ivn), and

w f c(q,ivn) can be expressed as a function of the Gree
functions associated with the eigenoperatorsaks

† andbks
†

Gf f~k,ivn!5uk
2Gaa~k,ivn!1vk

2Gbb~k,ivn!, ~A2!

Gcc~k,ivn!5vk
2Gaa~k,ivn!1uk

2Gbb~k,ivn!,

Gc f~k,ivn!5Gf c~k,ivn!

52ukvk@Gaa~k,ivn!2Gbb~k,ivn!#,

where Gaa(k,ivn) and Gbb(k,ivn) are the Green’s func-
tions associated to the eigenstatesaks

† u0& andbks
† u0&. In the

low-frequency limit, one can easily check that the dynami
spin susceptibility may be written as

x f f~q,ivn!5
xaa~q,ivn!1x̄ab~q,ivn!

12JS
2xaa~q,ivn!x̄ab~q,ivn!

, ~A3!

for both the longitudinal and the transverse parts.

xaa~q,ivn!5
1

b (
k

nF~Ek
2!2nF~Ek1q

2 !

ivn2Ek1q
2 1Ek

2

x̄ab~q,ivn!5
1

b (
k

~uk
2vk1q

2 1vk
2uk1q

2 !

3
nF~Ek

2!2nF~Ek1q
1 !

ivn2Ek1q
1 1Ek

2
.
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Condens. Matter8, 9689~1996!; O. Stockert, H. V. Lo¨hneysen,
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25C. Pépin and M. Lavagna, Phys. Rev. B59, 2591~1999!.
26P. Nozières ~unpublished!.
27J. A. Hertz and M. A. Klenin, Phys. Rev. B10, 1084~1974!; J. A.

Hertz and M. A. Klenin, Physica B91, 49 ~1977!.
28A. Rosch, A. Schro¨der, O. Stockert, and H. von Lo¨hneysen, Phys.

Rev. Lett.79, 159 ~1997!.
29N. Read and D. N. Newns, J. Phys. C16, 3273~1983!.
30G. G. Lonzarich and L. Taillefer, J. Phys. C18, 4339~1985!.
31N. R. Bernhoeft and G. G. Lonzarich, J. Phys.: Condens. Ma

7, 7325~1995!.
32Y. Kuramoto and K. Miyake, J. Phys. Soc. Jpn.59, 2831~1990!.
33R. Hlubina and T. M. Rice, Phys. Rev. B51, 9253~1995!.


