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Critical phenomena near the antiferromagnetic quantum critical point of heavy fermions
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We present a paper of the critical phenomena around the quantum critical point in heavy-fermion systems.
In the framework of theS=1/2 Kondo lattice model, we introduce an extended decoupling scheme of the
Kondo interaction, which allows one to treat the spin fluctuations and the Kondo effect on an equal footing.
The calculations, developed in a self-consistent one-loop approximation, lead to the formation of a damped
collective mode with a dynamic exponent2 in the case of an antiferromagnetic instability. The system
displays a quantum-classical crossover at finite temperature depending on how the energy of the mode, on the
scale of the magnetic correlation length, compare&g®. The low-temperature behavior, in the different
regimes separated by the crossover temperatures, is then discussed for both two- and three-dimensional
systems.

[. INTRODUCTION Kondo effect has been proposed. As it stands, the situation
remains highly controversial.

A central issue in the thermal properties of heavy-fermion In this paper, we adopt the point of vieliii ) of the prox-
compounds is the discovery of a non-Fermi liqyiFL) imity to a quantum critical point. The effect of a nonzero
behavior in systems close to an antiferromagnetic quanturfemperature on quantum critical points is a long-standing
phase transitioh.Such a behavior has been discovered in aroblem encountered in itinerant magnetism. We refer to the
series of compounds containing cerium or uranium, forpapers of Herf? and Millis™ using renormalization-group
example, CeCyL,R, (R=Au,Ag),? Celny, CePdSi,> techniques, and of Moriya introducing a self-consistent
CeNibGe,* U, ,Y,Pd° and Cela, ,Ru,SiL,.® In  renormalization(SCR theory of spin fluctuations. These
CeCu AUy, the specific heaC depends onT as C/T theorl_es yield a rich phase dl_agram with, in addition to the
~ —In(TIT,), the magnetic susceptibility as~1— a T, and ordering temperatur&y, a series of crossover temperatures

) S T separating different regimes of behaviors. They are well
t(?/eT-I;defigggP ;ESA” T;geinrir?:tlli\g%]a? ui-(lj— Str;;ea%g adapted for the treatment of spin fluctuations as present in
. X p quid sta . the single-band Hubbard model but essentially do not ac-
interestingly, the breakdown of the Fermi-liquid behavior

b d by allovinéchemical b Vi count for the Kondo effect.
can be tuned by alloyinghemical pressujeor by applying Indeed, the model that is believed to describe the physics

a hydrostat_ic pressure or a magnetic field. The origin of thi%f heavy fermions is the Kondo lattice motfellerived from
NFL behavior is a problem of current debate. the periodic Anderson model in a given limit. The lariye
Different scenarios have been proposed in order to elucCigypansiong? which have been carried out for these models
date the NFL behavior at the quantum critical pdiQCP.  (where N represents simultaneously the degeneracy of the
On the one hand, there are scenarios involving strong disogonduction electrons and of the spin channeise a good
der to account for the non-Fermi liquid properties, includingdescription of the Kondo effect. But, unlike the above-
(i) a distribution of the Kondo temperatufyTy) (Ref. 7 mentioned spin-fluctuation theories, they fail to account for
induced by disorder following a distribution of the local the spin fluctuations since the Ruderman-Kittel-Kasuya-
density-of-states, an(i) the possibility of the formation of a Yosida interactions only appear at the orded4#*
Griffiths phase at the quantum critical pofft On the other Hence our motivation to set up an approach of the
hand, starting from a clean or rather weakly disordered sys= 1/2 Kondo lattice modelN=2) that enlarges the standard
tem, there is a scenari@i) referring to the proximity of a 1/N expansion theories up on the spin-fluctuation effects.
quantum critical point in a theory of itinerant Our previous papé® presented such an approach by per-
antiferromagnetis®~'’ in which the Fermi surface is forming a generalized Hubbard-Stratonovich transformation
coupled to critical collective antiferromagnetic excitations.on the Kondo interaction term of the Hamiltonian, which
An alternative possibility has been recently put fortieh ~ makes three types of fieldénagnetization densities and
the basis of an analysis of the neutron scattering measuré&ondo type appear on an equal footing. The dynamical spin
ments in CeCglAug ;. The unusual spin dynamics that has susceptibility was derived in a one-loop expansion associated
been observed suggests/) the existence of critically with the Gaussian fluctuations of the magnetization density
screened local magnetic excitations due to the formation ofields around their saddle-point values.
local moments. Finally(v) a variant of the quadrupolar With the aim to describe the critical phenomena around
Kondo effect® in which the interactions of the rare-earth the quantum critical point of the heavy-fermion systems, we
(actinide internal degrees of freedom with the conductionpropose to push the treatment of tBe-1/2 Kondo lattice
electrons are reduced to a single impurity multichanneimodel in a self-consistent one-loop approximation in com-
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plete analogy with the SCR theory of spin fluctuations de-grand canonical ensemble with the introduction of a chemi-
veloped for the Hubbard mod&!:?®%’ As in itinerant mag-  cal potentialx in order to guarantee an average number of
netism, we will show how the system displays a quantum-conduction electrons per sitg<1. The spin of the impuri-
classical crossover at finite temperature depending whetheies is treated within the Abrikosov pseudofermion represen-
the temperature is lower or higher than the characteristic ertation SﬂzEw,f?arw,fig, where the local constrain®;
ergy scale of the collective mode associated with the mag=> f*f, _—1=0 is implemented in the usual way, by in-

ollog’lo

netic instability. The low-temperature behavior in the differ- troducing a time-independent Lagrange multiplier. The
ent regimes essentially depends on the value of the dynamjgcal Kondo interaction is decoupled using a Hubbard-
exponentz of the mode and on the dimensionaldyof the  stratonovich transformation, which introduces four auxiliary

problem. In the case of an antiferromagnetic instabilitis fields ®;(7), ®*(7), and& (7), & (7). We are then left
found to be equal to 2. Heavy-fermion systems are usuall ith the effective action ' :

believed to be three dimensional. However, a recen
proposat® based on the neutron-scattering data obtained in
CeCy_,Au,, stipulates that the critical magnetic fluctua- B
tions, which the quasiparticles are coupled to, are simply two Sef= fo dr{ Lo(7)+Hy()],
dimensional. So both situatioms=2 andd=3 will be con-
sidered. ] o )

The rest of the paper is organized as follows. In Sec. ||,v.vhere£0(r) is the Lagrangian in the absence of the interac-
we introduce the self-consistent one-loop approximatiorfion J and
method for the Kondo lattice model using a generalized
Hubbard-Stratonovich transformation on the Kondo interac-
tion term. The approach combines both aspects of thie 1/ Hi(n)= E [c;rg(r)f;rg(r)]
expansion and of the self-consistent renormalization theory ioo’
of spin fluctuations. The calculations, presented in the func-
tional integral formalism, closely follow the presentation
made by Hertz and Klenff for the Hubbard model. Hence,
we extract the general expression of the dynamical spin sus-
ceptibility extending the results of the previous p&péo a Cig(T)
self-consistent treatment. Section Ill gives a discussion on X f (1)
the nature of the damped collective mode associated to the 7
proximity of the magnetic transition with a dynamic expo-
nentz=2 in the antiferromagnetic case. In Sec. IV, we de- +JSZ ffi(T)'fci(T)v )
rive the resulting quantum-classical crossover. This occurs at
a finite temperaturd, which depends on how the energy of ) )
the mode, on the scale of the magnetic correlation leggth With Js=J/4 andJc=J/3. Details on the saddle-point solu-
compares tkgT. The low-temperature behavior of the sys- ion and theSGaussnan fluctL_latlons can be found in our pre-
tem in the different regimes, separated by the crossover tenyious paper® The saddle-point solution transposesNe:2

peratures, is then discussed in Sec. V. Concluding remark§e largeN results obtained within the slave-boson mean-
follow in Sec. VI. field theories. It gives rise to the formation of a Abrikosov-

Suhl resonance pinned at the Fermi level and split by a hy-
bridization gap defining two bands and 8. The one-loop

approximation is then obtained by considering the Gaussian
fluctuations of the bosonic fields around their mean-field val-

This section extends the approach introduced in our predes. As in the conventional approaches to critical phenom-
vious papet® to a self-consistent one-loop approximation. €na, the approach consists to integrate out the fermion fields

Our starting point is a path-integral treatment of the Kondoand thereby reduce the problem to the study of an effective
lattice model Hamiltonian bosonic theory describing fluctuations of the ordering fields.

But contrary to Hert? and Millis,** who considered a single
field corresponding to the magnetization density of one type
HZE 8kClaCko+ JE Sfi'z CiT(rTmr/Cirr/ of electron, the approach, starting from a different micro-
ko ! oo’ scopic model, extends the description to the case of several

~JG (1) Tor IoDF ()T,

X .
I, I (T) Teu

+3c> OF (n)Di(7)

Il. SELF-CONSISTENT ONE-LOOP APPROXIMATION
TO THE KONDO LATTICE MODEL

fields, i.e., the Kondo fields on the one hand, andfthend
—M( > CiTg-Cio-_ncNS>v (1) ¢ magnetization densities on the other hand.
‘7 We now propose to include the self-consistent effects in

: ; o ; the one-loop approximation. We do it in a variational way
whereS;; represents the spirSE 1/2) of the impurities dis-
Sri rep pIr=1/2) P and replace the full expressid¢— S} (where S%) and

tributed on the siteén numberNg) of a periodic Iatticepl(, . €
) . A (0)
is the creation operator of the conduction electron of momen'-: are the zeroth order effective action and the related free

tumk and spin quantum number characterized by the en- €nergy by a trial quadratic formAS{H=S(—s{}} in the

ergy ex=—2 jytj explk-Ryj); 7 are the Pauli matrices fieldsorg,, ohg,, 6&, ,andég  working in the radial
(7%, 7Y,7%) and7° the unit matrix; J is the antiferromagnetic gauge for the Kondo parameté&tsising Fourier transform
Kondo interaction §>0). The Hamiltonian is written in the notations
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andDg !(q,iw,) are determined variationally by minimiz-
ing the free energy or, more precisely, the upper bound to the
free energy according to the Feynman variational principle

- 1 ~ O g —
2)_ —1/p a-v
ASGi=5 2 | (9rasdhanDe (q,lw»( -

+(8¢ 082, )DL Yq,i )((%Xi%q'”) F<F&+ 1/B(Ser— 7)) whereF &) represents the free en-
v v ywy, -
A g, ergy related t&&%; and(A) means the average of the quan-
_ St g tity A over the distribution of fields exp(AS$), i.e.,
+(8€{q,064q,)Ds HAiw,)| o,
0&c_q,—v
- —AS(?)
e il f-a-v fDr-m-DgfiDg Aexp—ATZ)
+(5§fq‘,,5§Cq,,,)D§ 1(q,lw,,)< N ) . (3 ()= PPN c N "
5§c7q,fv

DX _AQ(2) '
where the indices| and v, respectively, stand for the wave f DriDADé; Dég ) exp — ASer)

vector g and the bosonic Matsubara frequencies,,

=2vim/B. Note that Eq(3) is written using the radial gauge  After minimization, one can show thBbg(q,iw,)],y is

in which the phase of the fieldb; and®} is incorporated equal to (1/2§?Se/(rq,dN 4 _,) averaged over the
into the Lagrange multipliek; , which turns out to be a field. mentioned distribution of fieldéand equivalent expressions

The elements of the matrice|~§51(q,iwy), 5@1(q,iwv) for the other elementsExplicitly we obtain,

L Jo[1-Ic((pa(Aiw) +(em(@iw))]  —Ic(ea(dio,))
Dcl(q,uwy>=( T L (5)
_‘JC<QDl(q1IwV)> _<(Pff(q1|wv)>
SO I el(@io )] I el(aie,) )
|

and an equivalent expression for the transverse spin part _ 5 5
BL%(q,iw,). The different bubblege(q,iw,)) in the latter . U Dgfi‘P(q"“’v)exq‘ffi’(zgf)])
expressions represent the susceptibilitiegq,iw,) (cf. (e(gjiw,))=
appendix averaged over the distribution of fields (ngfiexp[—gfi/(Zaf)])
exp(—ASE). At that point, the problem is highly complex @

and cannot be solved exactly. Therefore, we introduce a local
and instantaneous approximation that is equivalent to aver-
aging over Gaussian distributions of local fields Equations(6)—(7) are the basic equations of the paper
(ri,\i &, &) with varianceso,, o), o, ando, defined  from which the dynamical spin susceptibility is extracted and
as the critical phenomena around the QCP are studied. Let us
note that, when the averages acting on the various bubbles
¢(g,iw,) In Eq. (5) are omitted, one recovers the standard
cr$=3 E [E)L(q,iwv)ff], (6) results of the random-phase approximation. As pointed out
ey by Lonzarich and Taillefe? the corresponding self-
and similar expressions for the three other variances. Equonsistent renormalized spin fluctuation SCR-SF procedure
tion (6) is obtained from Eq(3) by letting the summation can pe analyzed within the Ginzburg-Landau formalism in

over (q.i w,) act on the matrix elements only, hence definingyhich the local free energy is expanded in terms of a small
the local and instantaneous fluctuations of the various dejng slowly varying order parameten(r) as f(r)=f,

grees qf freedom. One expects that'at Iogv temperatures, thne%alm(r)|2+%b|m(r)|4+%c2i|Vm‘(r)|2+O(6) and
fluctuations ofr;, \;, and§Ci only bring T¢ corrections to the following approximation is made |m(r)|*
their saddle-point values. Those corrections are negligible- (|m(r)|2)|m(r)|2. Hence(|m(r)|?) is evaluated via the
compared to thd dependence brought by the fluctuations Offluctuation—dissipation theorem.

&, and will not be considered here. So we will neglect, inthe ¢ expression of the dynamical spin susceptibility is
following, the fluctuations of;, \;, and;, and focus on then derived in the usual way, by adding a source term
the fluctuations o only. Then(¢(q,iw,)) is simply given  —2S;-B to the Hamiltonian. In the Matsubara representa-
by tion, one gets
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(er1(Q)iw,))

xi(Qiw,)= 8

2 .
1_‘)% <‘Pff(qli wV))(QDCC(q!iwv)>_<()0fc(q1i wv)>2_ J_S<(Pfc(q1i wv)>

In the low-frequency limit, one can easily check that the Ill. RPA-DYNAMICAL SPIN SUSCEPTIBILITY NEAR
dynamical spin susceptibility may be written in terms of THE ANTIFERROMAGNETIC WAVE VECTOR:
intra- and interband suceptibilities corresponding, respec- DISCUSSION ON THE NATURE

tively, to particle-hole pair excitations within the lower OF THE COLLECTIVE MODE

band and from the lower to the upper band As pointed out in Sec. Il, the RPA corresponds to the

absence of any averaging in the different equations. Thereby
— ) — ) the expression of the dynamical spin susceptibility at the
ri(Qiw,)= <Xw(q"“’v)>+<xﬁ3(q"“’v)> . (9 RPAlevelis given by Eq(10) taking of=0. We now dis-
1—J§<Xaa(q,iwy)><Xa3(q,in)> cuss thegq and w dependence of the RPA dynamical spin
susceptibility around the antiferromagnetic wave ve&or
The bare intraband susceptibility,.(Q+q,w) is well
The expressions of the susceptibilitigs,(g,iw,) and  approximated afq|<|Q| by a Lorentziany,.(Q+q,»)
Xap(0.i®,), corresponding to intra- and interband particle- = Paa/(1—iw/To+b0?) where p,,=x,.(Q.0) andTq is
hole excitations are given in the Appendix. The latter expresthe relaxation rate of ordgyg|=Ty . As expected for the
sion is reminiscent of the behavior proposed by Bernhoef@ntiferromagnetic case, the relaxation rate remains finite
and Lonzaricf! to explain the neutron scattering observed inwheng goes to zero reflecting the fact that the fluctuations of
UPt; with the existence of both a “slow” and a “fast” the order parameter are not conserved. The bare interband
component iny"(qg,»)/ w due to spin-orbit coupling. Also in  susceptibilityy,,5(Q+ q,®) can be considered as purely real
a phenomenological way, the same type of feature has beemd frequency independent equal g,z in the low-
suggested in the duality model developed by Kuramoto anfrequency limit. Due to the presence of the hybridization gap
Miyake3? To our knowledge, the proposed approach pro-in the density-of-states, the continuum of the interband
vides the first microscopic derivation from the Kondo lattice particle-hole excitations displays a gap ranging froo,2
model of such a behavior. Expanding the various susceptihe value of the direct gap for the wave vec®rto 2|yg|,
bilities ¢ up to the second order ig , and making use of the value of the indirect gap &. The RPA dynamical spin
Eq. (7), one can draw from Eq9) the following expression Susceptibility is given by
of the dynamical spin susceptibilititaking the analytical

continuationi w,— w+i ) RPAY xi(Q+a)I'(q)
+qw) = 12
Xii (Q+g0)=w W2 T(Q) (12)

Xeal 0, ®) + X 050, @) with

1_JgXaa(qvw);a13(q,w)+)\O'%,

Xi:(Q, ) (10

paa+paﬁ

(1-1g) ’
where\ is a constant which can be evaluated from the ex- T(q)=Ty(1-1)
pansion of x ,,(0,iw,)) and(x,z(0,iw,)) up to the second q 0 a
order ino?. The variancer? defined by Eq(6) can as well ~ where | ;=1—bg? and | =J%p,.p,s (of order 1 near the
be expressed as a function gf;(q,i w,) antiferromagnetic instabilify
The bulk staggered susceptibility;;(Q) diverges atl
2 X 5 =1. The frequency dependence &fP*(Q+q,w) is a
2_ ; _> ” Pp® Lorentzian with a vanishing relaxation rafg€0) at the anti-
Gf_q,%v Xir(Qlw,)= T Eq: Jo coth 2 Xir(G,@)do-. ferromagnetic transition. The corresponding excitation can
(11 be analyzed as an antiferromagnetic paramagnon mode that
softens at the magnetic transition. Equat{@@) provides us
with the dispersion of that mode. The corresponding dynami-
The two last equationfEgs. (10)—(11)] provide a self- cal exponentis found to be equal to 2 due to the overdamp-
consistent determination ef? and hence of the spin suscep- ing of the mode when enters the continuum of thex
tibility. We will successively present nog) in Sec. Ill, the  particle-hole excitations. We will show how the dynamic ex-
result for the dynamical spin susceptibility in the random-ponentz strongly affects the static critical behavior. This is
phase approximatio(RPA) giving information on the nature due to the fact that, contrary to tie>0 phase transitions,
of the collective mode that is involvedii) then in Sec. IV, statics and dynamics are intimately linked in quantuim (
the implications of that mode in the critical phenomena=0) phase transitions. We turn now to the resulting
around the quantum critical point. gquantum-classical crossover occurring at finite temperature.

xi1(Q+q)=
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IV. CRITICAL PHENOMENA AROUND TABLE I. Predictions for thermal local fluctuations;? of the
THE ANTIFERROMAGNETIC QUANTUM staggered magnetization depending on the temperatarel on the
CRITICAL POINT (AF-QCP) dimensionalityd. T,~(1—1) represents the first crossover tempera-

) ture separating the quantum from the classical regime in the vicinity
The parameter which controls the temperature depery the antiferromagnetic-quantum critical poidF-QCP.
dence of the thermodynamical variables near the AF-QCP is

ofz, which expresses the thermal local fluctuations of the Quantum regimg <T, Classical regimd>T,
staggered magnetization. Using E¢El) and(12)

d=3 ot~ xt(QT/To of~T%
oi=3 sQ+a~ [ s@+aatae  as = QT sTnT
whereS(Q+q) is the static form factor ~TInT at d=2. This classical regime corresponds to the
case where the energy of the mode on the scafebafcomes
S(Q+a)= %Jo coth Bwl2)xi1(Q+q,w)dw.  (14) IeS‘T';E%nTBrLcapitulates the expressions that we get for the

thermal local ﬂuctuations-? of the staggered magnetization
Depending on the temperature scale considered, quantudepending on the temperature scale and on the dimensional-
or classical behavior is observed. In general, the thermaty. Following Eg. (10), the staggered spin susceptibility is
fluctuationS(r? of the magnetization should depend on thegiven by
total self-consistent renormalized dynamical spin susceptibil-

ity xf;(Q+q,w) as defined in Eq(9). However, in practice, , X?f/(Q)
we will be content with its truncated forpR"*' (Q+q,w) X o2’ (19
derived at the RPA level. The temperature dependence of the f
static form factorS(Q+q) is given by where % (Q)=paa+pas. Incorporating the values of the
6T T thermal_loca_l fluctuationsr;? reported in Table I, we are
S(Q+q)= —Xf’f(Q+q)tan‘1 _) (15) able to identify a second crossover temperailije Aboye
w I'(q) T,, of* becomes larger than () and all the physical

A first crossover temperatui® = 2T o(1— 1) appears, which quantities are controlled by the temperature oflly.~(1

_1\2/3 — ~(1 — — i
separates the quantum from the classical regime. D . atd .3 andT, ~(1-1) atd 2.‘ As e_zxpect_ed in the
(i) T<T,: quantum regime. One can show that the Statictwo-dlmenS|onaI case, th&=0 transition is at its upper

form factorS(O+ q) exhibi ratic temperatur n-critical dimension sincez+d=4 in the antiferromagnetic
orm factorS(Q+q) exhibits a quadratic temperature depe case characterized by a dynamic exporenR. That corre-

dence sponds to the marginal case for which the intermediate re-
6 x/(Q+Q) gimeT,<T<T, is squeezed out of existence. The results for

S(Q+q)=— T2, (169 thed=3 andd=2 cases are, respectively, summarized in

m Fo(1-1g) Figs. 1 and 2, which picture the different regimes of behav-

The thermal local fluctuationer;® of the magnetization are 10rS reached depending on the vgtlues of the temperdture
also quadratic as a function of the temperature. They can b@"d of the control parameter=Jp,.p.5. When1>1,
easily evaluated from Eq15). Taking advantage of the fact 10ng-range antiferromagnetic order oceurs witeis smaller
that the integrand S(Q+q)q® ! is peaked atq, than the Nel temperaturely. Ty~ (I—1) $atd=3 and
=\(1-1)/b, the temperature dependence @f> is also Ty~ (1-1) atd=2.
found to be quadratic

V. DISCUSSION

3 !
2=2—% 2 (17) The low-temperature physics is dominated by the pres-
7 Fo(1-1) ence of an antiferromagnetic paramagnon mode that softens

The physics is quantum in the sense that the fluctuations ot the magnetic transition. The results depend crucially on

the scale of the magnetic correlation lengtthave energy the value ofd+z, whered is the spatial dimension aris
much greater than the temperatugT. the dynamic exponent associated to that mode. Due to the

(i) T>T,: classical regime. In this regime, the static Overdamping of the mode when it enters the continuum of
form factor S(Q+q) shows a linear temperature depen_lntraband particle-hole excitations, the dynaml_c expoaent
dence. As long as| is smaller than the thermal cutoff* found to be equal to 2 in the antiferromagnetic case. As far

defined byw,.(G*)=T, SQ+q) takes the following form @S the dimensionality is concerned, there is no doubt about
ma the dimensionality associated with the heavy quasiparticles

S(Q+q)=3x}(Q+0q)T. (18)  inthose systems that are clearly of 3. However the question

about the dimensionality of the critical magnetic fluctuations,

The thermal local fluctuations;? of the magnetization are which the quasiparticles are coupled to, is still an open

deduced from Eq(15). The main contribution arises from problem. Up to now, it has been assumed that the critical
the integration ovefq;,q*]. The result depends on the di- fluctuations of the quantum phase transitiogQPT) are

mensionality d. One finds 0;>~T%? at d=3 and o? dominated by the three-dimensional antiferromagnetic

Ot
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€ ing renormalization-group approaches in the spin-fluctuation
theory.
(i) Cased=3. A long-range antiferromagnetic phase oc-
curs whenl >1 below the Nel temperaturely~ (1 —1)%3.
p A first crossover temperatuig~(1—1) separates the quan-
tum from the classical regime. In the regim@ <1) andT
<T,), the physics is quantum in the sense that the energy of
the relevant mode on the scale §fs greater than the tem-
peraturekgT. Sinced+z>4, the T=0 phase transition is
above its upper critical dimension and the various physical
quantities depend upon the paraméteFhe magnetic corre-
lation length diverges at the magnetic transitioh
~1/\J(1—1) and the staggered spin susceptibility behaves as

Xo=x%(Q)/(1—1+aT?). RegimesIl and Ill are both
FIG. 1. Phase diagram in the plan () for dimension equalto  classical regimes characterized by large thermal effects since
3. The shaded region represents the long-range antiferromagnetige fluctuations on the scale ¢fhave energy much smaller
phase bordered by the Bletemperaturd . The unshaded region thankgT. In regimell [T, <T<T, with T);~(1— |)2/3]7 the
marks the magnetically-disordered regimesll, andlll, associ- . . YN .
ated to different behaviors of the system. Reginig the quantum Lnya?{lfﬁlgz g\?(;;eltﬁg%gr!er?]%fesla/t t(hle slgallifzzlgv?g:grli;gs

regime in which the energy of the relevant mode on the scale of . .
is much greater thakgT. The magnetic correlation length & less tharkgT. On the contrary, the staggered spin suscepti-

~1(T-1) and the staggered spin susceptibility ig} b|||ty, is sensitive to the thermal fluctuationsyq
=x%(Q)/(1—1+aT?). Regimesl| andlll are both classical re- = x5 (Q)/(1—1+aT*?3. In regimelll (T>T), the thermal
gimes in which the thermal effects are important since the fluctuadependence of physical quantities becomes universal and
tions on the scale of have energy much smaller thagT. In both ¢ and )(('3 are controlled by the temperaturgs~ 1/T%*
Regimell, §~1/J(1—1) is still controlled by (I-1) but the stag- ¢ X(Ig:X(f)f/(Q)/TB/Z-

gered spin susceptibility is sensitive to the thermal fluctuations: (i) Cased=2. Then, sincez=2, z+d=4 and theT

Xo=X1t(Q)/(1~1+aT¥). In Regimelll, both¢ andxg are con-  —( phase transition is at its upper critical dimension. The
trolled by the temperaturg~1/T¥* and x5 = x% (Q)/T¥2. physics is qualitatively similar to the cade= 3 with stronger
fluctuation effects particularly in the classical regime. A
correlations. This would impose a description by a quantuniong-range antiferromagnetic phase occurs whed below
critical theory withd=3, z=2. Recently Rosckt al?® pro-  the Neel temperaturdy~ (1 —1). Ford=2, the two cross-
posed, on the basis of the neutron-scattering data iover temperature¥, and T, coincide so that regimél of
CeCuy_,Au,, that the critical magnetic fluctuations are two Fig. 1 is squeezed out of existence. Regih{el <T, with
dimensional, which leads to a QCP witl+=2 andz=2.Let T,~(1—1)] is the quantum regime in which the thermal
us summarize the different regimes of behaviors that we gefluctuations are negligible :¢~1/J(1-1) and xg
in each of those two caseg=£2, d=3 or 2) depending on =X?f’(Q)/(l—l +aT?). Regimelll (T>T,) is the unique

':h_eJ\éalues of t;\e temperatuTeanﬁ of thel corrw]trol parakt)mgter classical regime characterized by very strong fluctuation ef-
=JPaaPap. AS ONE can see, the reSLéfgts that we ?1 tain arge g sincekgT is larger than the energy of the relevant mode

very similar to those established by Heftand Millis™ us- on the scale of. Both the magnetic correlation length and
f e oq the staggered spin susceptibility are then controlled by the

f f i f temperaturez~1/\TInT and 5= x% (Q)/(T InT).
© + 6”, p 3 nT andxqo= X1 (Q)/(TInT)

fe ef VI. CONCLUDING REMARKS

C i . . .
f f € _f f f -0 § We considered th&=1/2 Kondo lattice model in a self-
B 6”’ -2 @ consistent one-loop approximation starting from a general-
f PP f f PR f ized Hubbard-Stratonovich transformation of the Kondo in-

fc
teraction term. The model exhibits a zero-temperature

FIG. 2. Phase diagram in the plarig () for dimension equal to magnetic phase transition at a critical value of the Kondo
2. The shaded region represents the long-range antiferromagnetoupling. The transition is usually antiferromagnetic but it
phase bordered by the Bletemperaturdy . The unshaded region may be incommensurate depending on the band structure
marks the magnetically-disordered regimeandlll . In thatd=2 considered. The low-temperature physics is controlled by a
case, the equivalent of reginie in Fig. 1 is squeezed out of exis- collective mode that softens at the antiferromagnetic transi-
tence sincel, =T, . Regimel is the quantum regime in which the tion with a dynamic exponerztequal to 2.
thermal fluctuations are negligible~1/J(1—1) and xq A quantum-classical crossover occurs at a temperature
:X?{(Q)/(1—|+aT2). Regimelll is the unique classical regime related to the characteristic energy scale of that mode.
in which both the magnetic correlation length and the staggeretHeavy-fermion systems are usually believed to be three-
spin susceptibility are controlled by the temperatye:1/yTInT  dimensional. However, since some recent inelastic-neutron-
andxé:X?f'(Q)/(Tln 7. scattering experiments performed in CgClAu, show that

0 ke k
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the critical magnetic fluctuations, which the quasiparticles 1

are coupled to, are two-dimensional, we both considered the Pliqim,)=— ] > Gee (kt+aioptiom,)

casesli=2 andd= 3 with z=2. The low-temperature behav- Kol

ior of the system is deduced, with predictions for the tem- X GY. (K,iwp),

perature dependence of the physical quantities such as the 0

magnetic correlation lengthand the staggered susceptibility

Xég. A second crossover temperatufig, appears above I . _ 1 2 ¢ (K . ) ¢ (i

which the thermal dependence §find x becomes univer- ere(Qiw,) == B ki Gioo(K+ thiwntiw,)Grey(K,iwn),

sal and is uniquely controlled by the temperature. It would be

very interesting now to study the temperature behavior of .

other physical quantities as the specific heat or the transport, , . _

properties. eri(Qiw,)=— B k;wn G
A number of significant issues remain to be addressed.

Among others, we will mention the possibility of getting a

different value of the dynamic exponent for instarzcel if

nesting effects are considered corresponding to an absence of

damping of the mode when located in the gap of excitations ]

around the antiferromagnetic vector. Disorder is expected to XGéco(kv' wn),

play a crucial role in this problem. In that direction, some

recent work3*!” pointed out the formation of some “hot .

lines,” i.e., points at the Fermi surface linked by the mag- L i  y—_ — 1 i i ! i

netic Q vector. On the hot lines, the quasiparticle scatteringcpfc(q’lw”) kz;wn GfCO(kJrq’l ] wy)cho(k'l @n):

rate is linear in temperature while, away from the hot lines, it

acquires the standard Fermi liquid form TR. At low tem- ~ WhereG¢g (K,iwy), G (k.iwn), andGf, (k,iw,) are the

perature, the “cold” regions are shown to short circuit the Green’s functions at the saddle-point level obtained by in-

scattering near those lines, and induc&’abehavior of the  versing the matrixGg(k,7) defined in Eq.(2).

resistivity. The disorder is found to emphasize the contribu- The different bubbles ¢¢(q,iw,), @c(Q,iw,), and

tion of the hot lines, eventually Ieading to a non-Fermi |IqU|d (Pfc(q!iwv) can be expressed as a function of the Green’s

behavior. It would be Worthy to Study the effects of the “hot functions associated Wlth the eigenoperaﬁmi§ and IBEU
lines” in the presence of disorder within the critical phenom-

ena description presented in this paper.

fr,(K+aion+io,)Gir (Kiwp),

_ 1 o
¢ed Qi) = =5 2 Gig(ktaiontio,)

olog

Gri(K,iwn) =UEG pa(K,iwn) +0FGgp(K iwy), (A2)
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APPENDIX EXPRESSIONS OF THE DIFFERENT =~ Ui GaalKil0n) = Gpp(kiiwn)],
BUBBLES

where G, (K,iw,) and Ggg(k,iw,) are the Green’s func-
The expressions of the different bubbles appearing in théions associated to the eigensta&d§|o> and,BlU|O). In the
expression of the boson propagatfcé Eg. (5)] are given  low-frequency limit, one can easily check that the dynamical
here(with i=1, 2, m, or ff spin susceptibility may be written as

ei(din,)=e(0in,)+e (-0 -i,), (A1) , Xaa(@i©,)+ xap(Qio,)
Xii(Qiw,)=

TXg DD (az)
1_JéXaa(q1|wV)Xaﬁ(qile)

: 1 - . . o
eu(Qio,) =~ B k,;wn Gerp(K+ahiwntiw,)Giy (Kion),  for hoth the longitudinal and the transverse parts.

. 1 . . . 1 o Ne(Ep) —ne(Big)
Jdw,)=—— GY (k+ )1 +1 VGU k,' y aa ,i v T,
()Dz(q w ) IB k;ﬂ)n CCO( q wr‘l w ) ffo( wn) X (q w ) ﬂ Ek: | wV_ EI:+q+ Ek—
o)= 2 S 68 (Kt qiont 006 (ki . 1
gDm(q'mV)__Eka,iwn ero (KT Qlontiw,)Ger(Kiwn), Xaﬁ(qiiwv):EEK (URUs g URUR, o)

(B Ne(El )

1
| i S GY% (k+0q,iw.+i GY: (k,i
er(die,) B kO',Eiwn iho(kFQlentio) Gir(kdon), iw,~EqtEx
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