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Randomly dilute spin models: A six-loop field-theoretic study
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We consider the Ginzburg-LandauMN model that describesM N-vector cubic models with
O(M )-symmetric couplings. We compute the renormalization-group functions to six-loop order ind53. We
focus on the limitN→0 which describes the critical behavior of anM-vector model in the presence of weak
quenched disorder. We perform a detailed analysis of the perturbative series for the random Ising model (M
51). We obtain for the critical exponents:g51.330(17), n50.678(10), h50.030(3), a5

20.034(30), b50.349(5), v50.25(10). ForM>2 we show that theO(M ) fixed point is stable, in agree-
ment with general nonperturbative arguments, and that no random fixed point exists.
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I. INTRODUCTION

The critical behavior of systems with quenched disorde
of considerable theoretical and experimental interest. A ty
cal example is obtained by mixing an~anti!-ferromagnetic
material with a nonmagnetic one, obtaining the so-called
lute magnets. These materials are usually described in te
of a lattice short-range Hamiltonian of the form

Hx52J(̂
i j &

r ir jsi•sj , ~1.1!

wheresi is an M-component spin and the sum is extend
over all nearest-neighbor sites. The quantitiesr i are uncor-
related random variables, which are equal to one with pr
ability x ~the spin concentration! and zero with probability
12x ~the impurity concentration!. The pure system corre
sponds tox51. One considers quenched disorder, since
relaxation time associated with the diffusion of the impu
ties is much larger than all other typical time scales, so t
for all practical purposes, one can consider the position
the impurities fixed. For sufficiently low spin dilution 12x,
i.e., as long as one is above the percolation threshold of
magnetic atoms, the system described by the HamiltonianHx
undergoes a second-order phase transition atTc(x),Tc(x
51) ~see, e.g., Ref. 1 for a review!.

The relevant question in the study of this class of syste
is the effect of the disorder on the critical behavior. T
Harris criterion2 states that the addition of impurities to
PRB 620163-1829/2000/62~10!/6393~17!/$15.00
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system which undergoes a second-order phase trans
does not change the critical behavior if the specific-heat c
cal exponentapure of the pure system is negative. Ifapure is
positive, the transition is altered. Indeed the specific-heat
ponent a random in a disordered system is expected to
negative.3–8 Thus if apure is positive, a random differs from
apure, so that the pure system and the dilute one hav
different critical behavior. In pureM-vector models withM
.1, the specific-heat exponentapure is negative; therefore
according to the Harris criterion, no change in the critic
asymptotic behavior is expected in the presence of w
quenched disorder. This means that in these systems diso
leads only to irrelevant scaling corrections. Thre
dimensional Ising systems are more interesting, sinceapure is
positive. In this case, the presence of quenched impur
leads to a new universality class.

Theoretical investigations, using approaches based on
renormalization group,9–39 and numerical Monte Carlo
simulations,40–54 support the existence of a new rando
Ising fixed point describing the critical behavior along t
Tc(x) line: the critical exponents are dilution independe
~for sufficiently low dilution! and different from those of the
pure Ising model.

Experiments confirm this picture. Cristalline mixtures
an Ising-like uniaxial antiferromagnet with short-range inte
actions ~e.g., FeF2 , MnF2) with a nonmagnetic materia
~e.g., ZnF2) provide a typical realization of the random Isin
model ~RIM! ~see, e.g., Refs. 55–71!. Some experimenta
results are reported in Table I. This is not a complete list,
ss.
TABLE I. Experimental estimates of the critical exponents for systems in the RIM universality cla

Ref. Material Concentration g n a b

58 FexZn12xF2 x50.46 1.33(2) 0.69(3)
60 MnxZn12xF2 x50.75 1.364(76) 0.715(35)
62 FexZn12xF2 x50.9 0.350(9)
63 MnxZn12xF2 x50.40,0.55,0.83 20.09(3)
64 MnxZn12xF2 x50.5 0.33(2)
68 FexZn12xF2 x50.5 0.36(2)
70 FexZn12xF2 x50.93 20.10(2)
71 FexZn12xF2 x50.93 1.34(6) 0.70(2)
6393 ©2000 The American Physical Society
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it gives an overview of the experimental state of the a
Other experimental results can be found in Refs. 1 and
The experimental estimates are definitely different from
values of the critical exponents for pure Ising systems, wh
are ~see Ref. 72, and references therein! g51.2371(4), n
50.63002(23),a50.1099(7), andb50.32648(18). More-
over, they appear to be independent of concentration.
mention that in the presence of an external magnetic fi
along the uniaxial direction, dilute Ising systems presen
different critical behavior, equivalent to that of the rando
field Ising model.73 This is also the object of intensive theo
retical and experimental investigations~see, e.g., Refs
74,75!.

Several experiments also tested the effect of disorde
the l transition of 4He that belongs to theXY universality
class, corresponding toM52.76–81 They studied the critica
behavior of 4He completely filling the pores of porous go
or Vycor glass. The results indicate that the transition is
the same universality class of thel transition of the pure
system in agreement with the Harris criterion.82

The starting point of the field-theoretic approach to t
study of ferromagnets in the presence of quenched diso
is the Ginzburg-Landau-Wilson Hamiltonian14

H5E ddxH 1

2
@]mf~x!#21

1

2
rf~x!21

1

2
c~x!f~x!2

1
1

4!
g0@f~x!2#2J , ~1.2!

where r}T2Tc , and c(x) is a spatially uncorrelated ran
dom field with Gaussian distribution

P~c!5
1

A4pw
expF2

c2

4wG . ~1.3!

We consider quenched disorder. Therefore, in order to ob
the free energy of the system, we must compute the parti
function Z(c,g0) for a given distributionc(x), and then
average the corresponding free energy over all distributi
with probability P(c). By using the standard replica trick,
is possible to replace the quenched average with an anne
one. First, the system is replaced byN noninteracting copies
with annealed disorder. Then, integrating over the disord
one obtains the Hamiltonian14

HMN5E ddxH(
i ,a

1

2
@~]mfa,i !

21rfa,i
2 #

1 (
i j ,ab

1

4!
~u01v0d i j !fa,i

2 fb, j
2 J , ~1.4!

wherea,b51, . . . ,M and i , j 51, . . . ,N. The original sys-
tem, i.e., the diluteM-vector model, is recovered in the lim
N→0. Note that the couplingu0 is negative~being propor-
tional to minus the variance of the quenched disorder!, while
the couplingv0 is positive.

In this formulation, the critical properties of the dilut
M-vector model can be investigated by studying t
renormalization-group flow of the Hamiltonian~1.4! in the
limit N→0, i.e., of HM0. One can then apply convention
computational schemes, such as thee expansion, the fixed-
t.
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dimensiond53 expansion, the scaling-field method, etc.
the renormalization-group approach, if the fixed point cor
sponding to the pure model is unstable and
renormalization-group flow moves towards a new rand
fixed point, then the random system has a different criti
behavior.

It is important to note that in the renormalization-grou
approach one assumes that the replica symmetry is not
ken. In recent years, however, this picture has be
questioned83–85on the ground that the renormalization-grou
approach does not take into account other local minim
configurations of the random Hamiltonian~1.2!, which may
cause the spontaneous breaking of the replica symmetry
this paper we assume the validity of the standa
renormalization-group approach, and simply consider
Hamiltonian~1.4! for N50.

For generic values ofM and N, the HamiltonianHMN

describesM coupledN-vector models and it is usually calle
the MN model.15 HMN has four fixed points: the trivia
Gaussian one, the O(M )-symmetric fixed point describingN
decoupledM-vector models, the O(MN)-symmetric and the
mixed fixed point. The Gaussian one is never stable. T
stability of the other fixed points depends on the values oM
andN ~see, e.g., Ref. 15 for a discussion!. The stability prop-
erties of the decoupled O(M ) fixed point can be inferred by
observing that the crossover exponent associated with
O(MN)-symmetric interaction~with couplingu0) is related
to the specific-heat critical exponent of the O(M ) fixed
point.86,15 Indeed, at the O(M )-symmetric fixed point one
may interpretHMN as the Hamiltonian ofN M-vector sys-
tems coupled by the O(MN)-symmetric term. But this inter-
action is the sum of the products of the energy operator
the differentM-vector models. Therefore, at the O(M ) fixed
point, the crossover exponentf associated with the
O(MN)-symmetric quartic term should be given by th
specific-heat critical exponentaM of the M-vector model,
independently ofN. This argument implies that forM51
~Ising-like systems! the pure Ising fixed point is unstabl
since f5a I.0, while for M.1 the O(M ) fixed point is
stable given thataM,0. This is a general result that shou
hold independently ofN.

For quenched disordered systems described by the Ha
tonian HM0, the physically relevant region for th
renormalization-group flow corresponds to negative val
of the coupling u.14,13 Therefore, for M.1 the
renormalization-group flow is driven towards the pure O(M )
fixed point, and the quenched disorder yields corrections
scaling proportional to the spin dilution and toutuDr with
D r52aM . Note that for the physically interesting two- an
three-vector models the absolute value ofaM is very small:
a2.20.013~see e.g., the recent results of Refs. 87–90! and
a3.20.12 ~see, e.g., Refs. 88,91!. Thus disorder gives rise
to very slowly decaying scaling corrections. For Ising-lik
systems, the pure Ising fixed point is instead unstable,
the flow for negative values of the quartic couplingu leads to
the stable mixed or random fixed point which is located
the region of negative values ofu. The above picture
emerges clearly in the framework of thee expansion, al-
though for the Ising-like systems the RIM fixed point is
order12 Ae rather thane.
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The other fixed points of the HamiltonianHM0 are located
in the unphysical regionu.0. Thus, they are not of interes
for the critical behavior of randomly dilute spin models. F
the sake of completeness, we mention that forM.1 the
mixed fixed point is in the region of positiveu and is
unstable.15 The last fixed point is on the positivev50 axis,
is stable and corresponds to the (MN)-vector theory forN
→0. It is, therefore, in the same universality class of t
self-avoiding walk model. Figure 1 sketches the flow d
gram for Ising (M51) and multicomponent (M.1) sys-
tems.

The HamiltonianHMN has been the object of sever
field-theoretic studies, especially forM51, the case that de
scribes the RIM. Several computations have been done in
framework of thee expansion92 and of the fixed-dimension
d53 expansion.93 In these approaches, since field-theore
perturbative expansions are asymptotic, the resummatio
the series is essential to obtain accurate estimates of phy
quantities. For pure systems described by the Ginzbu
Landau-Wilson Hamiltonian one exploits the Bor
summability94 of the fixed-dimension expansion~for which
Borel summability is proved! and of thee expansion~for
which Borel summability is conjectured!, and the knowledge
of the large-order behavior of the series.95,96 Resummation
procedures using these properties lead to accurate estim
~see, e.g., Refs. 97–99,88,91!.

Much less is known for the quenched disordered mod
described byHM0. Indeed, the analytic structure of the co
responding field theory is much more complicated. The ze
dimensional model has been investigated in Ref. 100. T
analyze the large-order behavior of the double expansio
the quartic couplingsu and v of the free energy and show
that the expansion in powers ofv, keeping the ratiol5
2u/v fixed, is not Borel summable. In Ref. 101, it is show
that the non-Borel summability is a consequence of the
that, because of the quenched average, there are addit
singularities corresponding to the zeroes of the partit
function Z(c,g0) obtained from the Hamiltonian~1.2!. Re-
cently the problem has been reconsidered in Ref. 102. In
same context of the zero-dimensional model, it has b
shown that a more elaborate resummation gives the co
determination of the free energy from its perturbative exp
sion. The procedure is still based on a Borel summat
which is performed in two steps: first, one resums in
coupling v each coefficient of the series inu; then, one re-
sums the resulting series in the couplingu. There is no proof

FIG. 1. Renormalization-group flow in the coupling plane (u,v)
for ~a! Ising (M51) and~b! M-component (M.1) systems. Here
N50.
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that this procedure works also in higher dimensions, si
the method relies on the fact that the zeroes of the parti
function stay away from the real values ofv. This is far from
obvious in higher-dimensional systems.

At present, the most precise field-theoretic results h
been obtained using the fixed-dimension expansion ind53.
Several quantities have been computed: the crit
exponents,20,22,25–27,29,34,36,37,39the equation of state,30 and
the hyperuniversal ratioRj

1 .30,35 The most precise estimate
of the critical exponents for the RIM have been obtain
from the analysis of the five-loop fixed-dimension expa
sion, using Pade´-Borel-Leroy approximants.39 In spite of the
fact that the series considered arenot Borel summable, the
results for the critical exponents are stable: they do not
pend on the order of the series, the details of the analy
and, as we shall see, are in substantial agreement with
results obtained following the precedure proposed in R
102. This fact may be explained by the observation of R
100 that the Borel resummation applied in the standard w
~i.e., at fixed v/u) gives a reasonably accurate result f
small disorder if one truncates the expansion at an appro
ate point, i.e., for not too long a series.

The MN model has also been extensively studied in
context of thee expansion.9,11–18,21,23,24,28,32The critical ex-
ponents have been computed to three loops for generic
ues ofM , N ~Ref. 24! and to five loops forM51.103 Several
studies also considered the equation of state16,21,28 and the
two-point correlation function.16,23 In spite of these efforts,
studies based on thee expansion have been not able to g
beyond a qualitative description of the physics of thre
dimensional randomly dilute spin models. TheAe
expansion12 turns out not to be effective for a quantitativ
study of the RIM ~see, e.g., the analysis of the five-loo
series done in Ref. 32!. A strictly related scheme is the so
called minimal-subtraction renormalization scheme witho
e expansion.104 The three-loop31 and four-loop33,36,38results
are in reasonable agreement with the estimates obtaine
other methods. At five loops, however, no random fix
point can be found38 using this method. This negative resu
has been interpreted as a consequence of the non-Borel
mability of the perturbative expansion. In this case, the fo
loop series could represent the ‘‘optimal’’ truncation. W
also mention that the Hamiltonian~1.4! for M51 and N
→0 has been studied by the scaling-field method.19

The randomly dilute Ising model~1.1! has been investi-
gated by many numerical simulations~see, e.g., Refs. 40–
53!. The first simulations were apparently finding critical e
ponents depending on the spin concentration. It was l
remarked50,31that this could be simply a crossover effect: t
simulations were not probing the critical region and we
computing effective exponents strongly biased by the corr
tions to scaling. Recently, the critical exponents have b
computed53 using finite-size scaling techniques. They fou
very strong corrections to scaling, decaying with a rath
small exponent v.0.37(6),—correspondingly D5vn
50.25(4)—which is approximately a factor of two smalle
than the corresponding pure-case exponent. By taking
proper account the confluent corrections, they were able
show that the critical exponents are universal with respec



eport
e

6396 PRB 62ANDREA PELISSETTO AND ETTORE VICARI
TABLE II. Best theoretical estimates of the critical exponents for the RIM universality class. We r
results for the massive scheme in fixed dimensiond53 ~‘‘ d53 exp.’’!, the minimal subtraction schem
without e expansion~‘‘ d53 MS’’ !, and the best Monte Carlo~‘‘MC’’ ! results.

Method g n h v

This work d53 exp.O(g6) 1.330~17! 0.678~10! 0.030~3! 0.25~10!

Ref. 39, 2000 d53 exp.O(g5) 1.325~3! 0.671~5! 0.025~10! 0.32~6!

Refs. 36,38, 1999 d53 MS O(g4) 1.318 0.675 0.049 0.39~4!

Ref. 53, 1998 MC 1.342~10! 0.6837~53! 0.0374~45! 0.37~6!
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variations of the spin concentration in a wide interval abo
the percolation point. Their final estimates are reported
Table II.

In this paper we compute the renormalization-group fu
tions of the genericMN model to six loops in the framewor
of the fixed-dimensiond53 expansion. We extend the thre
loop series of Ref. 25 and the expansions for the cubic mo
(M51) reported in Ref. 39~five loops! and Ref. 91~six
loops!. We will focus here on the caseN50 corresponding
to disordered dilute systems. Higher values ofN are of inter-
est for several types of magnetic and structural phase tra
tions and will be discussed in a separate paper. ForM51
andN>2 the six-loop series have already been analyze
Ref. 91 where we investigated the stability of th
O(N)-symmetric point in the presence of cubic interactio
We should mention that two-loop and three-loop series
the MN model in the fixed dimension expansion for gene
values ofd have been reported in Refs. 29,34.

For M51, N50, we have performed several analyses
the perturbative series following the method proposed in R
102. The analysis of theb functions for the determinaton o
the fixed point is particularly delicate and we have not be
able to obtain a very robust estimate of the random fix
point. Nonetheless, we derive quite accurate estimates o
critical exponents. Indeed, their expansions are well beha
and largely insensitive to the exact position of the fix
point. Our final estimates are reported in Table II, toget
with estimates obtained by other approaches. The errors
quote are quite conservative and are related to the varia
of the estimates with the different analyses performed. T
overall agreement is good: the perturbative method app
to have a good predictive power, in spite of the complica
analytic structure of the Borel transform that does not all
the direct application of the resummation methods used
cessfully in pure systems. ForM>2 and N50 we have
verified that no fixed point exists in the regionu,0 and that
the O(M )-symmetric fixed point is stable, confirming th
general arguments given above.

The paper is organized as follows. In Sec. II we derive
perturbative series for the renormalization-group function
six loops and discuss the singularities of the Borel transfo
The results of the analyses are presented in Sec. III and
final numerical values are reported in Table II.

II. THE FIXED-DIMENSION PERTURBATIVE
EXPANSION OF THE THREE-DIMENSIONAL

MN MODEL

A. Renormalization of the theory

The fixed-dimensionf4 field-theoretic approach93 pro-
vides an accurate description of the critical properties
e
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O(N)-symmetric models in the high-temperature phase~see,
e.g., Ref. 99!. The method can also be extended to tw
parameterf4 models, such as theMN model. The idea is to
perform an expansion in powers of appropriately defin
zero-momentum quartic couplings. The theory is renorm
ized by introducing a set of zero-momentum conditions
the ~one-particle irreducible! two-point and four-point corre-
lation functions:

Gai,b j
(2) ~p!5dai,b jZf

21@m21p21O~p4!#, ~2.1!

wheredai,b j[dabd i j ,

Gai,b j ,ck,dl
(4) ~0!5Zf

22m~uSai,b j ,ck,dl1vCai,b j ,ck,dl!,
~2.2!

and

Sai,b j ,ck,dl5
1

3
~dai,b jdck,dl1dai,ckdb j ,dl1dai,dldb j ,ck!,

~2.3!

Cai,b j ,ck,dl5d i j d ikd i l

1

3
~dabdcd1dacdbd1daddbc!.

~2.4!

Equations~2.1! and~2.2! relate the second-moment massm,
and the zero-momentum quartic couplingsu and v to the
corresponding Hamiltonian parametersr, u0, andv0:

u05muZuZf
22 , v05mvZvZf

22 . ~2.5!

In addition we define the functionZt through the relation

Gai,b j
(1,2)~0!5dai,b jZt

21 , ~2.6!

whereG (1,2) is the ~one-particle irreducible! two-point func-
tion with an insertion of12 f2.

From the pertubative expansion of the correlation fun
tions G (2), G (4), andG (1,2) and the above relations, one d
rives the functionsZf(u,v), Zu(u,v), Zv(u,v), Zt(u,v) as a
double expansion inu andv.

The fixed points of the theory are given by the comm
zeros of theb functions

bu~u,v !5m
]u

]mU
u0 ,v0

, ~2.7!

bv~u,v !5m
]v
]mU

u0 ,v0

,

calculated keepingu0 and v0 fixed. The stability properties
of the fixed points are controlled by the matrix
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V5S ]bu~u,v !

]u

]bu~u,v !

]v

]bv~u,v !

]u

]bv~u,v !

]v

D , ~2.8!

computed at the given fixed point: a fixed point is stable
both eigenvalues are positive. The eigenvaluesv i are related
to the leading scaling corrections, which vanish asj2v i

;utuD i whereD i5nv i .
One also introduces the functions

hf~u,v !5
] ln Zf

] ln m
5bu

] ln Zf

]u
1bv

] ln Zf

]v
, ~2.9!

h t~u,v !5
] ln Zt

] ln m
5bu

] ln Zt

]u
1bv

] ln Zt

]v
. ~2.10!

Finally, the critical exponents are obtained from

h5hf~u* ,v* !, ~2.11!

n5@22hf~u* ,v* !1h t~u* ,v* !#21, ~2.12!

g5n~22h!. ~2.13!

B. The perturbative series to six loops

We have computed the perturbative expansion of the
relation functions~2.1!, ~2.2!, and ~2.6! to six loops. The
diagrams contributing to the two-point and four-point fun
tions to six-loop order are reported in Ref. 105: they a
approximately 1000, and it is therefore necessary to han
them with a symbolic manipulation program. For this pu
pose, we wrote a package inMATHEMATICA .106 It generates
the diagrams using the algorithm described in Ref. 107,
computes the symmetry and group factors of each of th
We did not calculate the integrals associated to each
gram, but we used the numerical results compiled in R
105. Summing all contributions we determined the renorm
ization constants and all renormalization-group functions

We report our results in terms of the rescaled couplin

u[
16p

3
RMNū, v[

16p

3
RM v̄, ~2.14!

whereRK59/(81K), so that theb functions associated toū
and v̄ have the form b ū(ū,0)52ū1ū21O(ū3) and
b v̄(0,v̄)52 v̄1 v̄21O( v̄3).

The resulting series are

b ū52ū1ū21
2~21M !

81M
ūv̄2

4~190141MN!

27~81MN!2 ū3

2
400~21M !

27~81MN!~81M !
ū2v̄2

92~21M !

27~81M !2 ūv̄2

1ū (
i 1 j >3

bi j
(u)ūi v̄ j , ~2.15!
f

r-

e
le

-

d
.

a-
f.
l-

b v̄52 v̄1 v̄21
12

81MN
ūv̄2

4~190141M !

27~81M !2 v̄3

2
16~131125M !

27~81MN!~81M !
ūv̄22

4~370123MN!

27~81MN!2 ū2v̄

1 v̄ (
i 1 j >3

bi j
(v)ūi v̄ j , ~2.16!

hf5
8~21MN!

27~81MN!2 ū21
16~21M !

27~81MN!~81M !
ūv̄

1
8~21M !

27~81M !2 v̄21 (
i 1 j >3

ei j
(f)ūi v̄ j , ~2.17!

h t52
21MN

81MN
ū2

21M

81M
v̄1

2~21MN!

~81MN!2 ū2

1
4~21M !

~81MN!~81M !
ūv̄1

2~21M !

~81M !2 v̄2

1 (
i 1 j >3

ei j
(t)ūi v̄ j . ~2.18!

For 3< i 1 j <6, the coefficientsbi j
(u) , bi j

(v) , ei j
(f) , andei j

(t) are
reported in the Tables III, IV, V, and VI, respectively.

We have performed the following checks on our calcu
tions:

~i! b ū(ū,0), hf(ū,0) and h t(ū,0) reproduce the corre
sponding functions of the O(MN)-symmetric model;97,108

~ii ! b v̄(0,v̄), hf(0,v̄), and h t(0,v̄) reproduce the corre
sponding functions of the O(M )-symmetric model;97,108

~iii ! For M51, the functionsb ū , b v̄ , hf , andh t repro-
duce the corresponding functions of theN-component cubic
model;91

~iv! The following relations hold forN51:

b ū~u,x2u!1b v̄~u,x2u!5b v̄~0,x!, ~2.19!

hf~u,x2u!5hf~0,x!,

h t~u,x2u!5h t~0,x!.

C. Borel summability and resummation of the series

Since field-theoretic perturbative expansions a
asymptotic, the resummation of the series is essential to
tain accurate estimates of the physical quantities.

In the case of the O(N)-symmetricf4 theory the expan-
sion is performed in powers of the zero-momentum fo
point coupling g. The large-order behavior of the serie
S(g)5(skg

k of any quantity is related to the singularitygb
of the Borel transform closest to the origin. Indeed, for lar
k, the coefficientsk behaves as

sk;k! ~2a!kkb@11O~k21!# with a521/gb .
~2.20!

The value ofgb depends only on the Hamiltonian, while th
exponentb depends on which Green’s function is consi
ered. The value ofgb can be obtained from a steepes
descent calculation in which the relevant saddle point i
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TABLE III. The coefficientsbi j
(u) , cf. Eq. ~2.15!.

i , j RMN
2 i RM

2 jbi j
(u)

3 , 0 0.273 855 1710.075 364 029MN10.001 850 401 6M2N2

2 , 1 0.451 615 510.225 807 75M10.018 235 606MN10.009 117 802 9M2N
1 , 2 0.250 290 0710.151 825 96M10.013 340 463M210.001 706 143 2MN10.000 853 071 61M2N
0 , 3 0.051 324 52110.034 637 04M10.004 487 39M2

4 , 0 20.279 257 2420.091 833 749MN20.005 459 564 6M2N210.000 023 722 893M3N3

3 , 1 20.629 224 4220.314 612 21M20.055 501 872MN20.027 750 936M2N10.000 412 401 16M2N210.000 206 200 58M3N2

2 , 2 20.552 674 8320.366 981 83M20.045 322 209M220.009 254 176 8MN20.003 679 674 7M2N10.000 473 706 87M3N
1 , 3 20.233 605 2920.166 347 19M20.023 834 93M210.000 468 672 35M320.001 049 447 7MN20.000 655 904 78M2N

20.000 065 590 478M3N
0 , 4 20.040 934 99820.029 976 629M20.004 608 231 4M210.000 073 166 787M3

5 , 0 0.351 744 7710.132 425 02MN10.011 322 026M2N210.000 054 833 719M3N318.676 893 331027M4N4

4 , 1 1.013 933 810.506 966 92M10.129 670 24MN10.064 835 121M2N10.000 738 574 27M2N210.000 369 287 14M3N2

10.000 021 186 521M3N310.000 010 593 261M4N3

3 , 2 1.232 369 810.855 371 54M10.119 593 32M210.041 310 322MN10.022 902 39M2N10.001 123 614 5M3N
10.000 171 409 51M2N210.000 151 956 91M3N210.000 033 126 079M4N2

2 , 3 0.809 703 6910.613 054 31M10.107 241 29M210.001 570 028 1M310.005 859 880 8MN10.004 100 697 9M2N
10.000 672 674 59M3N10.000 043 647 916M4N

1 , 4 0.289 912 9110.225 993 17M10.043 074 45M210.001 340 300 6M310.000 031 126 65M410.000 775 205 4MN
10.000 522 962 1M2N10.000 055 080 316M3N26.299 691 931026M4N

0 , 5 0.044 655 37910.035 455 913M10.007 103 0237M210.000 275 809 42M313.176 737 131026M4

6 , 0 20.510 498 8920.214 852 52MN20.023 839 375M2N220.000 500 216 82M3N312.016 776 331026M4N414.407 673 3
31028M5N5

5 , 1 21.798 938 920.899 469 45M20.300 455 01MN20.150 227 51M2N20.007 214 312M2N220.003 607 156M3N2

10.000 038 644 454M3N310.000 019 322 227M4N311.367 697 131026M4N416.838 485 331027M5N4

4 , 2 22.802 556 822.007 758 2M20.303 239 9M220.156 735 28MN20.100 093 54M2N20.010 862 953M3N
20.000 571 734 96M2N220.000 134 915 92M3N210.000 075 475 779M4N217.511 658 831026M3N319.186 419 6
31026M4N312.715 295 131026M5N3

3 , 3 22.511 055 522.002 622 2M20.403 218 04M220.014 835 404M320.038 290 982MN20.026 220 763M2N
20.003 221 189 7M3N10.000 158 223 2M4N20.000 012 833 973M2N2

10.000 015 558 757M3N210.000 020 698 159M4N214.855 143 731026M5N2

2 , 4 21.367 179 221.128 773 8M20.246 967 93M220.011 904 064M310.000 141 928 29M420.005 372 355 1MN
20.003 788 503 5M2N20.000 474 386 77M3N10.000 047 179 342M4N14.395 619 531026M5N

1 , 5 20.423 888 4820.354 539 26M20.079 847 022M220.004 109 703M310.000 087 399 99M412.436 887 831026M5

20.000 969 206 12MN20.000 742 465 14M2N20.000 138 284 82M3N25.809 583 831026M4N25.663 468 631027M5N
0 , 6 20.057 509 87720.048 617 439M20.011 215 648M220.000 619 663 88M310.000 011 640 607M411.865 875 831027M5
-
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finite-energy solution~instanton! of the classical field equa
tions with negative coupling.95,96 Since the Borel transform
is singular forg5gb , its expansion in powers ofg converges
only for ugu,ugbu. An analytic extension can be obtained b
a conformal mapping,98 such as

y~g!5
A12g/gb21

A12g/gb11
. ~2.21!

In this way the Borel transform becomes a series in pow
of y(g) that converges for all positive values ofg provided
that all singularities of the Borel transform are on the r
negative axis.98 In this case one obtains a convergent
quence of approximations for the original quantity. For t
O(N)-symmetric theory accurate estimates~see, e.g., Ref.
88! have been obtained resumming the available series: thb
function97 is known up to six loops, while the functionshf
andh t are known to seven loops.109

The large-order behavior of the perturbative expansion
the MN model can be studied by employing the same me
rs

l
-

in
-

ods used in the standardf4 theory.110 We may consider the
series inū and v̄ at fixed ratioz[ v̄/ū. The large-order be-
havior of the resulting expansion in powers ofū is deter-
mined by the singularity of the Borel transform that is clos
to the origin,ūb(z), given by

1

ūb~z!
52a~RMN1RMz! for z.0

and z,2
2N

N11

RMN

RM
,

1

ūb~z!
52aS RMN1

1

N
RMzD for 2

2N

N11

RMN

RM
,z,0,

~2.22!

where



PRB 62 6399RANDOMLY DILUTE SPIN MODELS: A SIX-LOOP . . .
TABLE IV. The coefficientsbi j
(v) , cf. Eq. ~2.16!.

i , j RMN
2 i RM

2 jbi j
(v)

3 , 0 0.643 805 1710.057 412 76MN20.001 716 196 6M2N2

2 , 1 1.392 840 910.292 489 53M10.006 162 536 6MN20.003 091 125 2M2N
1 , 2 1.044 096 110.266 819 08M10.002 914 216 4M2

0 , 3 0.273 855 1710.075 364 029M10.001 850 401 6M2

4 , 0 20.767 061 7720.089 054 667MN10.000 040 711 369M2N220.000 087 586 118M3N3

3 , 1 22.239 897 520.498 686 61M20.043 414 868MN20.005 804 006 4M2N10.000 210 243 26M2N220.000 236 477 95M3N2

2 , 2 22.558 967 120.756 803 82M20.031 949 535M210.005 862 969 7MN10.001 844 722 7M2N20.000 165 852 94M3N
1 , 3 21.355 351 220.429 192 12M20.022 689 592M210.000 045 447 676M3

0 , 4 20.279 257 2420.091 833 749M20.005 459 564 6M210.000 023 722 893M3

5 , 0 1.096 534 810.157 912 93MN10.002 358 463 1M2N220.000 061 471 346M3N325.387 124 731026M4N4

4 , 1 4.043 801 710.942 746 78M10.146 946 6MN10.028 781 322M2N20.001 618 0434M2N220.000 453 793 5M3N2

17.278 269 131027M3N320.000 020 110 739M4N3

3 , 2 6.225 191 712.021 627 5M10.117 709 13M210.007 958 597 4MN20.002 803 581M2N20.001 192 960 2M3N
10.000 192 993 42M2N210.000 046 931 931M3N220.000 026 294 129M4N2

2 , 3 4.986 258 611.777 248 6M10.131 447 24M220.000 353 239 31M320.017 641 691MN20.005 214 260 7M2N
20.000 219 635 86M3N20.000 011 811 618M4N

1 , 4 2.065 813 210.759 094 18M10.060 829 135M210.000 053 192 889M312.029 398 931026M4

0 , 5 0.351 744 7710.132 425 02M10.011 322 026M210.000 054 833 719M318.676 893 331027M4

6 , 0 21.774 553 320.304 043 16MN20.009 433 807 9M2N210.000 066 993 864M3N326.572 489 531026M4N423.753 114
31027M5N5

5 , 1 27.917 919 821.911 909 9M20.435 499 5MN20.098 350 05M2N10.001 628 356 2M2N210.000 574 969 01M3N2

20.000 089 164 587M3N320.000 041 503 636M4N3 28.062 592 231027M4N421.789 683 731026M5N4

4 , 2 215.356 40525.343 761 6M20.373 370 66M220.135 163 26MN20.031 925 761M2N
10.000 802 053 75M3N10.000 369 924 99M2N220.000 277 569 93M3N220.000 107 182 74M4N218.962 758 231026M3N3

21.151 447 731026M4N323.312 458 131026M5N3

3 , 3 216.500 28226.453 637 7M20.608 917 87M220.006 886 370 7M310.067 945 799MN10.025 945 701M2N
10.001 934 762 4M3N20.000 109 395 43M4N20.000 649 533 02M2N220.000 177 529 01M3N229.125 024 131026M4N2

22.852 933 831026M5N2

2 , 4 210.296 58824.192 549 7M20.431 921 46M220.006 916 124 5M320.000 022 535 528M410.036 155 315MN
10.011 884 073M2N10.000 659 559 18M3N20.000 016 702 575M4N29.449 295 631027M5N

1 , 5 23.515 982 321.455 350 2M20.155 659 98M220.002 881 853 8M312.476 827 631026M411.219 495 531027M5

0 , 6 20.510 498 8920.214 852 52M20.023 839 375M220.000 500 216 82M312.016 776 331026M414.407 673 331028M5
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a50.14777422 . . . , RK5
9

81K
. ~2.23!

Using Eq.~2.22! and the conformal mapping~2.21!, one can
resum the perturbative series inū at fixedz. This method has
been applied in Ref. 91 to the analysis of t
renormalization-group functions of the three-dimensional
bic model.

The result~2.22! has been obtained for integerM ,N>1.
For N50, one may think that the correct behavior is o
tained by analytic continuation of Eq.~2.22!, i.e.,

1

ūb~z!
52a~ 9

8 1RMz!, ~2.24!

for all z. However, this is not correct. Indeed, as explici
shown in Refs. 100,101 in the context of the ze
dimensional random Ising model, there is an additional c
tribution to the large-order behavior of the series inu at fixed
l[2u/v, which makes the series non-Borel summable, g
ing rise to singularities of the Borel transform on the posit
real axis. They are due to the zeroes of the partition func
at fixed disorder. We have no reason to believe that sim
-

-

-
-

-

n
r

non-Borel summable contributions are not present in hig
dimensions. It is likely that the same phenomenon occ
even in three dimensions. As a consequence, a summa
procedure based on Eq.~2.24! and a conformal mapping o
the type~2.21! would not lead to a sequence of approxim
tions converging to the correct result.100

Fortunately, this is not the end of the story. As show
recently in Ref. 102, at least in zero dimensions, one can
resum the perturbative series. Indeed the zero-dimensi
free energy can be obtained from its perturbative expans
if one applies a more elaborated procedure which is s
based on a Borel summation. Let us write the double exp
sion of the free energyf (u,v) in powers ofu,v as

f ~u,v !5 (
n50

`

cn~v !un, ~2.25!

cn~v ![(
k50

`

cnkv
k, ~2.26!

The main result of Ref. 102 is that the expansions of
coefficients~2.26! and the resulting series at fixedv, Eq.
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TABLE V. The coefficientsei j
(f) , cf. Eq. 2.17!.

i , j RMN
2 i RM

2 jei j
(f)

3 , 0 0.000 541 761 3410.000 338 600 84MN10.000 033 860 084M2N2

2 , 1 0.001 625 28410.000 812 642 01M10.000 203 160 5MN10.000 101 580 25M2N
1 , 2 0.001 625 28410.001 015 802 5M10.000 101 580 25M2

0 , 3 0.000 541 761 3410.000 338 600 84M10.000 033 860 084M2

4 , 0 0.000 992 548 3810.000 702 518 07MN10.000 101 811 6M2N226.551 688 631027M3N3

3 , 1 0.003 970 193 510.001 985 096 8M10.000 824 975 51MN10.000 412 487 76M2N25.241 350 931026M2N2

22.620 675 531026M3N2

2 , 2 0.005 955 290 310.003 999 468 4M10.000 510 911 64M210.000 215 639 98MN10.000 099 957 964M2N23.931 013 2
31026M3N

1 , 3 0.003 970 193 510.002 810 072 3M10.000 407 246 4M222.620 675 531026M3

0 , 4 0.000 992 548 3810.000 702 518 07M10.000 101 811 6M226.551 688 631027M3

5 , 0 20.000 366 597 3520.000 257 211 7MN20.000 032 026 611M2N212.243 070 231026M3N321.109 404 531027M4N4

4 , 1 20.001 832 986 720.000 916 493 36M20.000 369 565 13MN20.000 184 782 56M2N10.000 024 649 511M2N2

10.000 012 324 756M3N221.109 404 531026M3N325.547 022 531027M4N3

3 , 2 20.003 665 973 520.002 480 084 6M20.000 323 548 92M220.000 092 032 422MN27.909 230 531027M2N
10.000 022 612 644M3N14.073 734 531026M2N221.819 417 631027M3N221.109 404 531026M4N2

2 , 3 20.003 665 973 520.002 604 024 8M20.000 351 593 22M210.000 016 962 916M310.000 031 907 838MN
10.000 031 327 11M2N15.467 786 631026M3N21.109 404 531026M4N

1 , 4 20.001 832 986 720.001 286 058 5M20.000 160 133 05M210.000 011 215 351M325.547 022 531027M4

0 , 5 20.000 366 597 3520.000 257 211 7M20.000 032 026 611M212.243 070 231026M321.109 404 531027M4

6 , 0 0.000 695 680 3710.000 565 859 41MN10.000 120 573 02M2N215.746 6979 1026M3N323.838 518 331028M4N4

21.044 127 331028M5N5

5 , 1 0.004 174 082 210.002 087 041 1M10.001 308 115 4MN10.000 654 057 68M2N10.000 069 380 438M2N2

10.000 034 690 219M3N222.100 316 431027M3N321.050 158 231027M4N321.252 952 831027M4N426.264 764
31028M5N4

4 , 2 0.010 435 20610.007 420 482 9M10.001 101 44 0 1M210.001 067 408 3MN10.000 698 498 84M2N
10.000 082 397 35M3N18.656 394 731026M2N213.993 465 331026M3N221.673 660 331027M4N221.903 470 3
31027M3N324.084 117 131027M4N321.566 19131027M5N3

3 , 3 0.013 913 60710.010 984 227M10.002 178 550 8M210.000 082 419 651M310.000 332 961 55MN
10.000 231 392 03M2N10.000 031 719 215M3N23.682 058 931027M4N11.517 571 831026M2N217.950 922 3
31027M3N223.994 977 731027M4N222.088 254 731027M5N2

2 , 4 0.010 435 20610.008 467 404 5M10.001 790 972M210.000 082 410 852M323.123 648 331027M4

10.000 020 486 706MN10.000 017 623 286M2N13.789 616 831026M3N22.634 129 131027M4N21.566 191
31027M5N

1 , 5 0.004 174 082 210.003 395 156 5M10.000 723 438 12M210.000 034 480 187M322.303 11131027M426.264 764
31028M5

0 , 6 0.000 695 680 3710.000 565 859 41M10.000 120 573 02M215.746 697 931026M323.838 518 331028M4

21.044 127 331028M5
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~2.25!, are Borel summable. Using this result, a resummat
of the free energy is obtained in two steps. First, one res
the coefficientcn(v); then, using the computed coefficient
one resums the series inu. The resummation of Eq.~2.26!
can be performed using the Pade´-Borel-Leroy method, as
suggested in Ref. 102. However, also the conformal met
can be used, since the large-order behavior is known exa
Indeed,

cn~v !}
]nf ~u,v !

]un U
u50

. ~2.27!

Thus, cn(v) can be related to zero-momentum correlati
functions in the theory withu50, which is the standard
M-vector model. Therefore, one can use the well-known
sults for the large-order behavior of the perturbative serie
the O(M )-symmetric theory.95,96
n
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III. ANALYSIS OF THE SIX-LOOP EXPANSION
FOR NÄ0

A. The random Ising model

As we said in the Introduction, the random Ising mod
corresponds toM51 andN50. There are two relevant fixed
points, the Ising and the random point, see Fig. 1. In Ref.
we already discussed the stability of the Ising point. W
found that this fixed point is unstable since the stability m
trix has a negative eigenvaluev520.177(6), in good
agreement with the general argument predictingv5
2a I /n I520.1745(12). We will now investigate the ran
dom fixed point, which is stable and determines therefore
critical behavior of the RIM.

In order to study the critical properties of the rando
fixed point, we used several different resummation pro
dures, according to the discussion of the previous sect
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TABLE VI. The coefficientsei j
(t) , cf. Eq. ~2.18!.

i , j RMN
2 i RM

2 jei j
(t)

3 , 0 20.025 120 49920.016 979 919MN20.002 209 834 9M2N2

2 , 1 20.075 361 49720.037 680 748M20.013 259 009MN20.006 629 504 7M2N
1 , 2 20.075 361 49720.049 233 615M20.005 776 433 1M220.001 706 143 2MN20.000 853 071 61M2N
0 , 3 20.025 120 49920.016 979 919M20.002 209 834 9M2

4 , 0 0.021 460 04710.015 690 833MN10.002 405 927 3M2N220.000 037 238 563M3N3

3 , 1 0.085 840 1910.042 920 095M10.019 843 236MN10.009 921 617 8M2N20.000 297 908 5M2N220.000 148 954 25M3N2

2 , 2 0.128 760 2810.087 481 041M10.011 550 449M210.006 663 954 6MN10.002 885 114 6M2N20.000 223 431 38M3N
1 , 3 0.085 840 1910.061 713 883M10.008 967 804 5M220.000 214 544 73M310.001 049 447 7MN10.000 655 904 78M2N

10.000 065 590 478M3N
0 , 4 0.021 460 04710.015 690 833M10.002 405 927 3M220.000 037 238 563M3

5 , 0 20.022 694 28720.017 985 168MN20.003 583 538 4M2N220.000 135 661 64M3N321.699 30931026M4N4

4 , 1 20.113 471 4320.056 735 717M20.033 190 124MN20.016 595 062M2N20.001 322 630 2M2N220.000 661 315 12M3N2

20.000 016 993 09M3N328.496 54531026M4N3

3 , 2 20.226 942 8720.159 312 39M20.022 920 477M220.020 539 294MN20.012 755 939M2N20.001 243 146M3N
20.000 158 968 39M2N220.000 113 470 37M3N220.000 016 993 09M4N2

2 , 3 20.226 942 8720.174 625 5M20.032 245 328M220.000 834 147 51M320.005 226 182 2MN20.003 590 056 5M2N
20.000 522 468 91M3N20.000 016 993 09M4N

1 , 4 20.113 471 4320.089 150 636M20.017 394 73M220.000 623 227 89M320.000 014 796 237M420.000 775 205 4MN
20.000 522 962 1M2N20.000 055 080 316M3N16.299 691 931026M4N

0 , 5 20.022 694 28720.017 985 168M20.003 583 538 4M220.000 135 661 64M321.699 30931026M4

6 , 0 0.029 450 61910.024 874 579MN10.005 728 397M2N210.000 315 578 63M3N325.858 68931026M4N421.037 350 6
31027M5N5

5 , 1 0.176 703 7110.088 351 856M10.060 895 618MN10.030 447 809M2N10.003 922 572 9M2N210.001 961 286 4M3N2

20.000 067 814 627M3N320.000 033 907 313M4N321.244 820 831026M4N426.224 103 931027M5N4

4 , 2 0.441 759 2810.317 084 77M10.048 102 565M210.056 033 914MN10.037 304 669M2N10.004 643 856 3M3N
10.000 518 719 55M2N210.000 095 257 657M3N220.000 082 051 06M4N225.434 44731026M3N325.829 275 4
31026M4N321.556 02631026M5N3

3 , 3 0.589 012 3810.473 106 41M10.097 561 547M210.004 130 717 7M310.024 385 168MN10.017 002 488M2N
10.002 190 569M3N20.000 107 191 41M4N13.903 947 131026M2N229.713 971 531026M3N229.982 375 131026M4N2

22.074 701 331026M5N2

2 , 4 0.441 759 2810.367 318 02M10.081 706 647M210.004 101 232 6M320.000 071 248 084M410.005 800 664 9MN
10.004 219 307 1M2N10.000 632 446 92M3N20.000 016 632 252M4N21.556 02631026M5N

1 , 5 0.176 703 7110.148 278 27M10.033 627 917M210.001 755 187M320.000 040 961 717M421.188 757 231026M5

10.000 969 206 11MN10.000 742 465 13M2N10.000 138 284 82M3N15.809 58331026M4N15.663 468 631027M5N
0 , 6 0.029 450 61910.024 874 579M10.005 728 397M210.000 315 578 63M325.858 68931026M421.037 350 631027M5
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Following Ref. 102, for each quantity we consider, we m
perform first a resummation of the series inv, see Eq.~2.26!.
This may be done in two different ways. We can either u
the Pade´-Borel method, or perform a conformal mapping
the Borel-transformed series, using the known value of
singularity of the Borel transform. Explicitly, let us consid
a p-loop series inu andv of the form

(
n50

p

(
k50

p2n

cnku
nvk. ~3.1!

In the first method, for each 0<n<p, we choose a real num
berbn and a positive integerr n such thatr n<p2n; then, we
consider

R1~cn!~p;bn ,r n ;v !5E
0

`

dte2ttbnF (
i 50

p2n2r n

Bi~ tv ! i G
3F11(

i 51

r n

Ci~ tv ! i G21

. ~3.2!
t

e

e

The coefficients Bi and Ci are fixed so that
R1(cn)(p;bn ,r n ;v)5(k50

p2ncnkv
k1O(vp2n11). Here we are

resumming the Borel transform of each coefficient of t
series inu by means of a Pade´ approximant@p2n2r n /r n#.
Equation ~3.2! is well defined as long as the integrand
regular for all positive values oft. However, for some values
of the parameters, the Pade´ approximant has poles on th
positive real axis—we will call these casesdefective—so that
the integral does not exist. These values ofbn andr n must of
course be discarded.

The second method uses the large-order behavior of
series and a conformal mapping.98,99 In this case, for each
0<n<p, we choose two real numbersbn andan and con-
sider

R2~cn!~p;bn ,r n ;v !5 (
k50

p2n

BkE
0

`

dte2ttbn
@y~vt !#k

@12y~vt !#an
,

~3.3!

where
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y~ t !5
AuḡI u1t2AuḡI u

AuḡI u1t1AuḡI u
, ~3.4!

and ḡI521/a is the singularity of the Borel transform fo
the pure Ising model. The numerical value ofa is given in
Eq. ~2.23!. Using these two methods we obtain two differe
partial resummations of the original series~3.1!:

(
n50

p

R1~cn!~p;bn ,r n ;v !un, ~3.5!

(
n50

p

R2~cn!~p;bn ,an ;v !un. ~3.6!

Nothing is known on the asymptotic behavior of these ser
and we will thus use the Pade´-Borel method. Starting from
Eq. ~3.5! we will thus consider

E1~c!~q,p;bu ,r u ;$bn%,$r n%!

[E
0

`

dte2ttbuF (
i 50

q2r u

Bi~v !~ tu! i G
3F11(

i 51

r u

Ci~v !~ tu! i G21

. ~3.7!

The coefficients Bi(v) and Ci(v) are fixed so that
E1(c)(q,p;bu ,r u ;$bn%,$r n%) coincides with the expansio
~3.5! up to terms of orderO(uq11). Note that we have in-
troduced here three additional parameters:bu , the power ap-
pearing in the Borel transform,r u that fixes the order of the
Padé approximant, andq which indicates the number o
terms that are resummed, and that, in the following, w
always satisfyq<p21. Analogously, starting from Eq
~3.6!, we defineE2(c)(q,p;bu ,r u ;$bn%,$an%). We will call
the first method the ‘‘double Pade´-Borel’’ method, while the
second will be named the ‘‘conformal Pade´-Borel’’ method.

Let us now apply these methods to the computation of
fixed point (ū* ,v̄* ). In this case, we resum theb functions
bu /u and bv /v and then look for a common zero withu
,0. We consider first the resummationE1, Eq. ~3.7!. A
detailed analysis shows that the coefficientsR1 can only be
defined forr n51. We have also triedr 052 andr 152, but
the resulting Pade´ approximants turned out defective. Ther
fore, we have fixedr n51 for all 0<n<5. We must also fix
the parameters$bn%. It is impossible to vary all of them
independently, since there are too many combinations.
this reason, we have taken allbn to be equal, i.e., we have se
bn5bv for all n. Finally, we have only considered the ca
q5p21. Therefore, the analysis is based on the appro
mants

Ê1~• !~p;bu ,r u ;bv!

5E1~• !~p21,p;bu ,r u ;$bn5bv%,$r n51%!.

~3.8!

Estimates of the fixed point (ū* ,v̄* ) have been obtained b
solving the equations
t

s,

l

e

or

i-

Ê1~b ū /ū!~p;bu ,r u ;bv!50, Ê1~b v̄ / v̄ !~p;bu ,r u ;bv!50.
~3.9!

We have usedr u51,2,p54,5,6 and we have variedbu and
bv between 0 and 20. As usual in these procedures, we m
determine the optimal values of the parametersbu and bv .
This is usually accomplished by looking for values ofbu and
bv such that the estimates are essentially independent o
orderp of the series. In the present case, we have not b
able to find any such pair. Indeed, the five-loop resultsp
55) are systematically higher than those obtained withp
54 andp56. For instance, if we average all estimates w
0<bu ,bv<5 we obtain

ū* 520.66~1!~p54!, 20.78~2!~p55!,

20.63~3!~p56!; ~3.10!

v̄* 52.235~3!~p54!, 2.273~4!~p55!,

2.250~23!~p56!. ~3.11!

The uncertainties quoted here are the standard deviation
the estimates in the quoted interval and show that the de
dence onbu , bv , and r u is very small compared to the
variation of the results withp. Increasingbu ,bv does not
help, since the five-loop result is largely insensitive to var
tions of the parameters, while, forp54 andp56, uū* u and

v̄* decrease with increasingbu and bv . It is difficult to
obtain a final estimate from these results. We quote

ū* 520.68~10!, v̄* 52.25~2!, ~3.12!

that includes all estimates reported above.
The instability of the results reported above withp seems

to indicate that some of the hypotheses underlying the ch
of the parameters is probably incorrect. One may suspect
choosing allbn equal does not allow a correct resummati
of the coefficients, and thatb ū andb v̄ need different choices
of the parameters. We have therefore tried a second stra
First, for eachb function, we have carefully analyzed eac
coefficient of the series inu, trying to find an optimal value
of the parameterbn—r n was fixed in all cases equal to 1—
by requiring the stability of the estimates of the coefficie
with respect to a change of the order of the series. Howe
only for the first two coefficients we were able to identify
stable region, so that we could not apply this method. On
other hand, as we shall see, this method works very well
the resummations of the coefficients that use the confor
mapping.

Let us now discuss the conformal Pade´-Borel method. As
before, we have tried two different strategies. In the first c
we have set allbn equal tobv and all an equal toav , we
have used the same parameters for the twob functions, and
we have looked for optimal values ofbu , bv , andav , set-
ting r u51,2. While before, for eachp, the estimates were
stable, in this case the fluctuations for each fixedp are very
large, and no estimate can be obtained.

Then, we applied the second strategy. We analyzed c
fully each coefficient of the series inu, finding optimal val-
uesbn,opt andan,opt for eachn andb function. Of course, the
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TABLE VII. Estimates of (ū* ,v̄* ) obtained using the conformal Pade´-Borel method. The results ar
averages over 0<bu<20, 23<db<3, 21<da<1, r 2,u51,2. ‘‘Def’’ is the percentage of defective Pad´
approximants in each analysis.

p55 p56
q r1,u (ū* , v̄* ) Def (ū* , v̄* ) Def

3 0 @20.615(27),2.175(43)# 80% @20.641(7),2.199(10)# 78%
4 0 @20.618(22),2.190(35)# 74% @20.630(9),2.194(16)# 61%
4 3 @20.619(20),2.191(33)# 71% @20.632(8),2.196(15)# 61%
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required stability analysis can only be performed if the se
is long enough, and thus we have always takenq<4. There-
fore, we consider

Ê2~• !~q,p;bu ,r u ;db ,da!5E2~• !~q,p;bu ,r u ;$bn,opt

1db%,$an,opt1da%!, ~3.13!

whereda anddb are (n-independent! numbers which allow
us to varybn andan around the optimal values. Estimates
the fixed point are obtained from

Ê2~b ū /ū!~q,p;bu ,r 1,u ;db ,da!50,

Ê2~b v̄ / v̄ !~q,p;bu ,r 2,u ;db ,da!50. ~3.14!

The first problem which must be addressed is the value of
parametersr 1,u and r 2,u . For b ū /ū we find that the Pade´
approximants are always defective forr 1,u51,2; they are
well behaved only forr 1,u53 andq54. Since the resumme
series inu has coefficients that are quite small, we decided
use alsor 1,u50, which corresponds to a direct summation
the series inu, without any Pade´-Borel transformation. For
b v̄ / v̄ we did not observe a regular pattern for the defect
Padé’s and we have usedr 2,u51,2, discarding all defective
cases.

The results, for chosen values ofp, q, andr 1,u are reported
in Table VII. The quoted uncertainty is the standard dev
tion of the results when23<db<3 and21<da<1. This
choice is completely arbitrary, but in similar analyses of d
ferent models we found that varyinga by 61 andb by 63
provides a reasonable estimate of the error. Notice that
have not optimizedbu , but we have averaged over all valu
between 0 and 20, since the dependence on this parame
extremely small. The results are stable, giving a final e
mate~average of the results withp56, q54)

ū* 520.631~16!, v̄* 52.195~20!. ~3.15!

The error bars have been chosen in such a way to includ
central values forp55 and p56. It should be noted that
even if our results are quite stable with respect to change
the parameters, most of the approximants do not contrib
since they are defective. For these reasons, in the follow
we will always carefully check the dependence of the e
mates on the value of the fixed point, considering also val
of (ū* ,v̄* ) that are well outside the confidence intervals
Eq. ~3.15!.

We can compare our results for the fixed point with p
vious determinations. Reference 26 reports (ū* ,v̄* )
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5(20.667,2.244) obtained from the Chisholm-Borel ana
sis of the four-loop series. The same expansion was
analyzed by Varnashev37 obtaining (ū* ,v̄* )
5@20.582(85),2.230(83)# and (ū* ,v̄* )5@20.625(60),
2.187(56)# using different sets of Pade´ approximants. Thee
algorithm by Wynn with a Mittag-Leffler transform was use
in Ref. 27 finding (ū* ,v̄* )5(20.587,2.178). From the
analysis of the five-loop series Pakhnin and Sokolov39 obtain
(ū* ,v̄* )5@20.711(12),2.261(18)#. While the four-loop re-
sults are in good agreement with our estimates, the five-l
estimate differs significantly, a fact that may indicate that
claim of Ref. 39 that the error on their estimates is appro
mately 1–2% is rather optimistic. Note also that the five-lo
result is quite different from the previous four-loop es
mates.

We have also tried to determine the eigenvalues of
stability matrixV, cf. Eq. ~2.8!, that controls the subleadin
corrections in the model. We used both a double Pade´-Borel
transformation and the conformal-Pade´-Borel method. In the
first case we obtain estimates that vary strongly with
order, and, as it happened for the position of the fixed po
it is impossible to obtain results that are insensitive to
order p. For r u51, discarding the cases in which the com
puted eigenvalues are complex, we obtain for the smal
eigenvaluev:

v50.16~2!~p54!, 0.21~3!~p55!, 0.16~3!~p56!.
~3.16!

We have included in the error the dependence on the pos
of the fixed point. These estimates have been obtained
ting r n51 and averaging overbu andbv varying between 0
and 10. We have not tried to optimize the choice of the
parameters, since the estimates show only a small de
dence on them. We have also consideredr u52. In this case
a large fraction of the approximants is defective~for p54
they are all defective!. We obtain

v50.29~4!~p55!, 0.33~5!~p56!. ~3.17!

The quite large discrepancy between the estimates~3.16! and
~3.17! clearly indicates that the analysis is not very robust
conservative final estimate is

v50.25~10!, ~3.18!

that includes the previous results.
We have also tried the conformal-Pade´-Borel method, op-

timizing separately each coefficient. However, several pr
lem appeared immediately. First, we could not perform
Padé-Borel resummation of the series inu of the elements of



d

-

u

tri

e
a
g
a

w
te
t

ro

d

ta
n

t

s
th
o
se

the
lue

ce
ed

ith

en
-

q.
the

the

ults
l

-
ding

ters
the

ith
if

in
ble

,
n

xi-

re-

e

able
e

am
t-

e

6404 PRB 62ANDREA PELISSETTO AND ETTORE VICARI
the stability matrix. Indeed, in all cases, some Pade´ approx-
imant was defective. As in the determination of the fixe
point position, we tried to resum the series inu without any
additional transformation. Forp54 this gives reasonable re
sults, and we can estimatev50.29(9). However, for p
55,6 all eigenvalues we find are complex, and as such m
be discarded.

The fact that the series appearing in the stability ma
generate always defective Pade´ approximants may indicate
that the series inu arenot Borel summable. In this case, on
expects that the estimates converge towards the correct v
up to a certain number of loops. Increasing further the len
of the series, worsens the final results. If indeed the exp
sion is not Borel summable, the previous results seem
indicate that for the subleading exponentv the best results
are obtained at four loops.

Let us now compute the critical exponents. As before,
tried several different methods. A first estimate was de
mined using the double Pade´-Borel method. Each exponen
was computed from the approximantsÊ1(e)(p;bu ,r u ;bv)
defined in Eq.~3.8!. For g andn, the series 1/g and 1/n are
more stable and thus the final estimates are obtained f
their analysis. Forh, if we write h5(hn(v)un, then
h0(v);v2 and h1(v);v. In this case, forn50 we re-
summed the seriesh0(v)/v2, while for n51 we considered
h1(v)/v. The results we obtain are very stable, even if we
not optimize the parametersbu andbv .

Without choosing any particular value for them, but sim
ply averaging over all values between 0 and 10, we ob
the results of Table VIII. Note that we have not quoted a
estimate ofh for p54: in all cases, some Pade´ approximant
was defective. The quoted uncertainty, that expresses
variation of the estimates when changingbu , bv , andr u , is
very small, and it is clear that it cannot be interpreted a
correct estimate of the error, since the variation with
order p of the series is much larger. In Table VIII we als
report the estimates of the exponents corresponding to
eral different values of (ū* ,v̄* ): beside the estimate~3.15!,

TABLE VIII. Estimates of the critical exponents for the RIM
universality class obtained using a double Pade´-Borel resummation.
The estimates correspond to the following choices of the par
eters: 0<bu ,bv<20, r u51,2. The subscript indicates the percen
age of cases in which some Pade´ approximant appearing in th
resummation procedure was defective.

(ū* ,v̄* ) n g h

p54
(20.631,2.195) 0.6706(3)49% 1.3222(4)50%

(20.640,2.230) 0.6740(3)49% 1.3282(5)50%

(20.680,2.240) 0.6725(2)49% 1.3283(5)50%

p55
(20.631,2.195) 0.6740(4)0% 1.3270(7)0% 0.030 81(3)0%

(20.745,2.275) 0.6739(4)0% 1.3291(7)0% 0.027 38(2)0%

(20.800,2.270) 0.6687(3)0% 1.3213(7)0% 0.023 87(2)0%

p56
(20.631,2.195) 0.6677(4)0% 1.3130(8)0% 0.032 72(2)50%

(20.570,2.210) 0.6745(6)0% 1.3225(11)0% 0.038 10(4)50%

(20.700,2.290) 0.6727(4)0% 1.3223(8)0% 0.033 33(2)50%
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we consider two values appearing in the first analysis of
fixed point position, those with the largest and smallest va
of ū* , when bu and bv vary in @0,5#. The dependence on
(ū* ,v̄* ) is quite small, of the same order of the dependen
on the orderp. As final estimate we quote the value obtain
for p56, using the estimate~3.15! for the fixed point. The
error is estimated by the difference between the results w
p55 andp56. Therefore, we have

g51.313~14!, n50.668~6!, h50.0327~19!.
~3.19!

Note that, within one error bar, all estimates ofg and n
reported in Table VIII are compatible with the results giv
above. Instead, the estimates ofh show a stronger depen
dence on the critical point, anda priori, since we do not
know how reliable are the uncertainties reported in E
~3.15!, it is possible that the correct estimate is outside
confidence interval reported above.

We will now use the conformal Pade´-Borel method. A
first estimate is obtained considering approximants of
form

Ê3~• !~q,p;bu ,r u ;bv ,av!

5E2~• !~q,p;bu ,r u ;$bn5bv%,$an5av%!,

~3.20!

setting allbn equal tobv and an equal toav . The results
show a tiny dependence onbu , while no systematic differ-
ence is observed between the approximants withr u51 and
r u52. Therefore, we averaged over all nondefective res
with 0<bu<10 andr u51,2. Then, we looked for optima
intervals @aopt2Da,aopt1Da#, @bopt2Db,bopt1Db# for
the parametersav and bv . They were determined by mini
mizing the discrepancies among the estimates correspon
to (p,q)5(5,3), (5,4), (6,3), and (6,4). UsingDa51 and
Db53 as we did before, we obtainbopt55 and aopt5
20.5. The results corresponding to this choice of parame
are reported in Table IX. As a final estimate we quote
value obtained forp56 andq54, using the estimate~3.15!
for the fixed point:

g51.338~21!, n50.676~11!, h50.0279~5!.
~3.21!

For g andn the estimates given above are compatible w
all results of Table IX. In particular, they are correct even
the error in Eq.~3.15! is underestimated. They are also
good agreement with the estimates obtained with the dou
Padé-Borel transformation, cf. Eq.~3.19!. On the other hand
it is not clear if the error onh is reliable. Indeed, compariso
with Eq. ~3.19! may indicate that the correct value ofh is
larger than what predicted by this analysis.

As we did for the fixed point, we can also use the appro
mantsÊ2 defined in Eq.~3.13!, optimizing separately each
coefficient. The results are reported in Table X and cor
spond to 0<bu<10, 23<db<3, 21<da<1, and r u
51,2. As it can be seen from the very small ‘‘errors’’ on th
results, the dependence onbu is tiny and we have not tried to
optimize this parameter. The results are reasonably st
with respect to changes ofp andq and also the dependenc

-
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TABLE IX. Estimates of the critical exponents for the RIM universality class obtained using the co
mal Pade´-Borel method~first analysis!. All estimates correspond to the following choices of the paramet
0<bu<10, 2<bv<8, 21.5<av<0.5, r u51,2. The subscript indicates the percentage of defective P´

approximants. The upper part of the table reports the estimates for (ū* ,v̄* )5(20.631,2.195) and differen
values ofp and q. The lower part reports estimates obtained settingp56 andq54 for several values of

(ū* ,v̄* ).

p55, q53 p55, q54 p56, q53 p56, q54

g 1.336(18)40% 1.308(19)40% 1.305(15)50% 1.338(21)0%

n 0.673(11)44% 0.660(10)44% 0.657(7)54% 0.676(11)0%

h 0.0285(15)4% 0.0288(17)46% 0.0278(4)27% 0.0279(5)31%

(20.647,2.215) (20.615,2.175) (20.700,2.290) (20.570,2.210)

g 1.342(21)0% 1.334(21)0% 1.371(23)0% 1.349(21)0%

n 0.678(11)0% 0.674(11)0% 0.694(13)0% 0.685(13)0%

h 0.0277(5)31% 0.0280(4)33% 0.0270(12)28% 0.0334(4)30%
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on the value of the fixed point is small. As final results fro
this analysis we quote the values obtained withp56 andq
54:

g51.321~8!, n50.681~1!, h50.0313~5!. ~3.22!

We can compare these results with the previous estim
~3.19! and~3.21!. The agreement is reasonable, although
quoted error onn andh is probably underestimated. This
confirmed by the fact that the scaling relationg5(22h)n is
not satisfied within error bars: indeed, using the estimate
n andh, we getg51.341(2).

We want now to obtain final estimates from the analy
presented above. Since in the conformal Pade´-Borel method
we make use of some additional information, the position
the singularity of the Borel transform, we believe this ana
sis to be the most reliable one. As our final estimate we ha
therefore, considered the average between Eqs.~3.21! and
~3.22!, fixing the error in such a way to include also th
estimates~3.19!. In this way we obtain

g51.330~17!, n50.678~10!, h50.030~3!. ~3.23!

A check of these results is provided by the scaling relat
g5n(22h). Using the values ofn and h we obtain g
51.336(20) in good agreement with the direct estimate
es
e

of

s

f
-
e,

n

second check of these results is given by the inequalitien
>2/3'0.666 67 and g12h/3>4/3'1.333 33, that are
clearly satisfied by our estimates, e.g.,g12h/351.350(17).
Finally, we want to stress that our final estimates~3.23! are
compatible with all results appearing in Tables VIII, IX, an
X, even those computed for (ū* ,v̄* ) largely different from
the estimate~3.15!. Thus, we believe that our error estimat
take properly into account the uncertainty on the position
the fixed point.

Using the scaling relationsa5223n andb5 1
2 n(11h)

we have

a520.034~30!, b50.349~5!. ~3.24!

For comparison we have also performed a direct anal
of the perturbative series, resumming the expansions
fixed v̄* /ū* . In zero dimensions, these series are not Bo
summable, and this is expected to be true in any dimens
However, for the short series we are considering, we can
hope to obtain reasonable results. We have used the s
procedures described in Ref. 91, performing a conform
transformation and usingūb(z) given in Eq. ~2.24! as the
position of the singularity. We obtain

ū* 520.763~25!, v̄* 52.306~43!; ~3.25!
nfor-
m-
tive
TABLE X. Estimates of the critical exponents for the RIM universality class obtained using the co
mal Pade´-Borel method~second analysis!. All estimates correspond to the following choices of the para
eters: 0<bu<10, 23<db<3, 21<da<1, r u51,2. The subscript indicates the percentage of defec

Padéapproximants. The upper part of the table reports the estimates for (ū* ,v̄* )5(20.631,2.195) and
different values ofp and q. The lower part reports estimates obtained settingp56 andq54 for several

values of (ū* ,v̄* ).

p55, q53 p55, q54 p56, q53 p56, q54

g 1.335(16)42% 1.329(15)67% 1.322(7)47% 1.321(8)56%

n 0.684(3)45% 0.682(3)72% 0.682(1)33% 0.681(1)67%

h 0.0299(4)0% 0.0299(15)0% 0.0312(6)0% 0.0313(5)0%

(20.647,2.215) (20.615,2.175) (20.700,2.290) (20.570,2.210)

g 1.323(8)67% 1.318(8)67% 1.332(10)67% 1.331(7)67%

n 0.683(1)68% 0.680(1)65% 0.690(1)71% 0.687(1)68%

h 0.0314(5)0% 0.0313(5)0% 0.0315(5)0% 0.0368(6)0%
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TABLE XI. Field-theoretic estimates of the critical exponents for the RIM universality class. Hered
53 exp.’’ denotes the massive scheme in three dimensions, ‘‘MS exp.’’ is the minimal subtraction sc
without e expansion. All perturbative results have been obtained by means of Pade´-Borel or Chisholm-Borel
resummations, except the results of Ref. 27 indicated by ‘‘e W’’ obtained using thee algorithm of Wynn and
of this work.

Method g n h v

This work d53 exp.O(g6) 1.330~17! 0.678~10! 0.030~3! 0.25~10!

Ref. 39, 2000 d53 exp.O(g5) 1.325~3! 0.671~5! 0.025~10! 0.32~6!

Ref. 37, 2000 d53 exp.O(g4) 1.336~2! 0.681~12! 0.040~11! 0.31
1.323~5! 0.672~4! 0.034~10! 0.33

Ref. 36, 1999 d53 exp.O(g4) 0.372~5!

Ref. 27, 1989 d53 exp.O(g4) 1.321 0.671
Ref. 27, 1989 d53 exp.O(g4)eW 1.318 0.668
Ref. 26, 1989 d53 exp.O(g4) 1.326 0.670 0.034
Refs. 36,38, 1999 d53 MS O(g4) 1.318 0.675 0.049 0.39~4!

Ref. 19, 1982 scaling field 1.38 0.70 0.42
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g51.327~12!, n50.673~8!, h50.029~3!,

v50.34~11!. ~3.26!

The estimate of the fixed point is very different from th
computed before. This may indicate that the non-Borel su
mability causes a large systematic error in this type of an
sis. Probably the optimal truncation for theb functions cor-
responds to shorter series. On the other hand, the cri
exponents show a tiny dependence on the position of
fixed point. The estimates we obtain are in good agreem
with our previous ones, indicating that the exponent se
are much better behaved.

Let us now compare our results with previous fie
theoretic determinations, see Table XI. We observe a v
good agrement with all the reported results. Note that
error bars ong andn are larger than those previously quote
We believe our uncertainties to be more realistic. Indeed,
have often found in this work that Pade´-Borel estimates are
insensitive to the parameters used in the analysis, in par
lar to the parameterb characterizing the Borel-Leroy trans
form. Therefore, error estimates based on this criterion m
underestimate the uncertainty of the results. The perturba
results reported in Table XI correspond to the mass
scheme in fixed dimensiond53 and to the minimal subtrac
tion scheme withoute expansion. It should be noted that th
latter scheme does not provide any estimate at five loop38
-
-
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Indeed, at this order the resummedb functions do not have
any zero in the regionu,0. This fact is probably related to
the fact that the series which is analyzed is not Borel su
mable. Therefore, perturbative expansions should have
optimal truncation beyond which the quality of the resu
worsens. For theb functions in the minimal subtraction
scheme, the optimal number of loops appears to be f
Two other methods have been used to compute the cri
exponents: the scaling-field method19 and the Ae
expansion.12 The former gives reasonable results, while t
latter is unable to provide quantitative estimates of criti
quantities, see, e.g., Ref. 38. We can also compare our re
with the recent Monte Carlo estimates of Ref. 53. The agr
ment is quite good forg and n, while our estimate ofh is
slightly smaller, although still compatible within one erro
bar. This is not unexpected and appears as a general fe
of the d53 expansion: indeed, also for the pure model,
estimate ofh obtained in the fixed-dimension expansion
lower than the Monte Carlo and high-temperature res
~see Ref. 72 and references therein!.

B. The random M-vector model for MÐ2

In this section we consider the random vector model
M>2. First, we have studied the regionu,0, looking for a
possible fixed point. We have not found any stable soluti
in agreement with the general arguments given in the in
t
TABLE XII. Estimates of the subleading exponentv at the O(M )-symmetric fixed point. The las
column reports the theoretical prediction2aM /nM .

M p54 p55 p56 Final 2aM /nM

2 0.009~36! 0.003~9! 0.007~4! 0.007~8! 0.0192~6! Ref. 87
0.0223~24! Ref. 90
0.0163~67! Ref. 88

3 0.142~19! 0.151~8! 0.156~5! 0.156~10! 0.172~14! Ref. 88
0.203~12! Ref. 111

4 0.274~35! 0.269~10! 0.280~6! 0.280~12! 0.301~22! Ref. 88
0.360~16! Ref. 111

8 0.580~40! 0.563~13! 0.586~8! 0.586~16! 0.683~11! Ref. 111
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duction: the mixed point is indeed located in the regionu
.0, and it is therefore irrelevant for the critical behavior
the dilute model. What remains to be checked is the stab
of the O(M ) fixed point. As we mentioned in the introduc
tion, a general argument predicts that this fixed point
stable; the random~cubic! perturbation introduces only sub
leading corrections with exponentv52aM /nM . This expo-
nent can be easily computed from

v5
]b ū

]ū
~0,v̄ !, ~3.27!

which is N independent as expected.
The analysis is identical to that performed for the stabi

of the Ising point in Ref. 91. We use a conformal transf
mation and the large-order behavior of the series; then we
the optimal valuesbopt andaopt of the parameters by requir
ing the estimates ofv̄* andv to be stable with respect to th
order of the series used. The errors were obtained varyina
and b in the intervals@aopt22,aopt12# and @bopt23,bopt
13#. As in Ref. 91, the final result is reported with an u
certainty corresponding to two standard deviations.
ty

s

-
x

The final results for some values ofM are reported in
Table XII, together with estimates of the theoretical pred
tion 2aM /nM . For M>3 these results clearly indicate th
the O(M )-symmetric point is stable. The results are som
what lower than the theoretical prediction, especially if w
consider the high-temperature estimates of the critical ex
nents of Ref. 111. This is not surprising: indeed the estima
of the subleading exponentsv show in many cases discrep
ancies with estimates obtained by using other methods. T
is probably connected to the nonanalyticity of theb function
at the fixed point.93,112,113,109,114A similar discrepancy, al-
though still well within a combined error bar, is observed f
M52. In this case, we obtainv.0, indicating that the fixed
point is stable. The error, however, does not allow us
exclude the opposite case.
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