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Randomly dilute spin models: A six-loop field-theoretic study
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We consider the Ginzburg-LandabMN model that describesM N-vector cubic models with
O(M)-symmetric couplings. We compute the renormalization-group functions to six-loop order3n We
focus on the limitN— O which describes the critical behavior of kivector model in the presence of weak
guenched disorder. We perform a detailed analysis of the perturbative series for the random IsingMnodel (
=1). We obtain for the critical exponents:y=1.330(17), »=0.678(10), »=0.0303), a=
—0.034(30), B=0.3495), »=0.25(10). FoiM =2 we show that th®©(M) fixed point is stable, in agree-
ment with general nonperturbative arguments, and that no random fixed point exists.

I. INTRODUCTION system which undergoes a second-order phase transition

. does not change the critical behavior if the specific-heat criti-

The critical behavior of systems with quenched disorder is. : : .
) : : : tal exponenty,, Of the pure system is negative. df, . is
of considerable theoretical and experimental interest. A typi- P e P y 9 pure

X . o ) positive, the transition is altered. Indeed the specific-heat ex-
cal example is obtained by mixing danti)-ferromagnetic

) : ; _ _ponentaragdom in a disordered system is expected to be
material with a nonmagnetic one, obtaining the so-called d"negative??‘ Thus if apure IS POSItiVe, @yangom differs from

lute magnets. These materials are usually described in termpure' so that the pure system and the dilute one have a
of a lattice short-range Hamiltonian of the form

different critical behavior. In purd-vector models withiM

>1, the specific-heat exponent, is negative; therefore,

according to the Harris criterion, no change in the critical
(1.2 4 Lo :

asymptotic behavior is expected in the presence of weak

guenched disorder. This means that in these systems disorder
wheres is an M-component spin and the sum is extendedleads only to irrelevant scaling corrections. Three-
over all nearest-neighbor sites. The quantipesire uncor-  dimensional Ising systems are more interesting, sifgg is
related random variables, which are equal to one with probpositive. In this case, the presence of quenched impurities
ability x (the spin concentrationand zero with probability leads to a new universality class.
1—x (the impurity concentration The pure system corre- Theoretical investigations, using approaches based on the
sponds tax=1. One considers quenched disorder, since theenormalization group;*® and numerical Monte Carlo
relaxation time associated with the diffusion of the impuri- simulations’®=>* support the existence of a new random
ties is much larger than all other typical time scales, so thatlsing fixed point describing the critical behavior along the
for all practical purposes, one can consider the position off(x) line: the critical exponents are dilution independent
the impurities fixed. For sufficiently low spin dilution-1x, (for sufficiently low dilution and different from those of the
i.e., as long as one is above the percolation threshold of thpure Ising model.
magnetic atoms, the system described by the HamiltoHian Experiments confirm this picture. Cristalline mixtures of
undergoes a second-order phase transitiod &k)<T.(x  an Ising-like uniaxial antiferromagnet with short-range inter-
=1) (see, e.g., Ref. 1 for a revigw actions (e.g., Fek, MnF,) with a nonmagnetic material

The relevant question in the study of this class of systemsge.g., Znk) provide a typical realization of the random Ising

is the effect of the disorder on the critical behavior. Themodel (RIM) (see, e.g., Refs. 55-¥1Some experimental
Harris criteriorf states that the addition of impurities to a results are reported in Table I. This is not a complete list, but

Hy= —J% PiPiS"S;

TABLE |. Experimental estimates of the critical exponents for systems in the RIM universality class.

Ref. Material Concentration y v a B

58 FezZn,_,F> x=0.46 1.33(2) 0.69(3)

60 Mn.Zn,_,F, x=0.75 1.364(76) 0.715(35)

62 FezZn,_,F> x=0.9 0.350(9)
63 Mn.Zn, _,F, x=0.40,0.55,0.83 —0.09(3)

64 MnZn, _,F> x=0.5 0.33(2)
68 Fezn,_,F» x=0.5 0.36(2)
70 FezZn, ,F, x=0.93 —0.10(2)

71 FezZn, ,F, x=0.93 1.34(6) 0.70(2)
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it gives an overview of the experimental state of the artdimensiond=3 expansion, the scaling-field method, etc. In
Other experimental results can be found in Refs. 1 and 3&he renormalization-group approach, if the fixed point corre-
The experimental estimates are definitely different from thesponding to the pure model is unstable and the
values of the critical exponents for pure Ising systems, whiclkenormalization-group flow moves towards a new random
are (see Ref. 72, and references theyejn=1.237X4), v fixed point, then the random system has a different critical
=0.63002(23),#=0.10997), and3=0.32648(18). More- pehavior.

over, they appear to be independent of concentration. We |t js important to note that in the renormalization-group
mention that in the presence of an external magnetic ﬁel%pproach one assumes that the replica symmetry is not bro-
a!ong the ypiaxial dirgction, Qilute Ising systems present &an  In recent years, however, this picture has been
different critical behavior, equivalent to that of the random'questioneﬁ?‘%on the ground that the renormalization-group

f'etl.d Ilsmg Crinodel. Th|s Its Ia[so th(i Obtj.e(r:(t of mtensweRthfeo— approach does not take into account other local minimum
retical and experimental investigationsee,  €.g., Rels. configurations of the random Hamiltonidh.2), which may

74,79 . . ause the spontaneous breaking of the replica symmetry. In
Several experiments also tested the effect of disorder oﬁ]. '

the \ transition of “He that belongs to th&XY universality IS paper we assume the validity . of the s_tandard
class, corresponding tdl =2 .75-81 They studied the critical renor_mal!zatlon-group approach, and simply consider the
behavior of “He completely filling the pores of porous gold Hamiltonian(1.4) for N=0. o
or Viycor glass. The results indicate that the transition is in FOr generic values oM and N, the HamiltonianHy
the same universality class of the transition of the pure describesv cou%edN-vector models and it is usually called
system in agreement with the Harris criterfn. the MN model:> Hyy has four fixed points: the trivial
The starting point of the field-theoretic approach to theGaussian one, the ®)-symmetric fixed point describiny
study of ferromagnets in the presence of quenched disordglecoupledv-vector models, the @ N)-symmetric and the
is the Ginzburg-Landau-Wilson Hamiltoni4n mixed fixed point. The Gaussian one is never stable. The
stability of the other fixed points depends on the valuelslof
andN (see, e.g., Ref. 15 for a discussjomhe stability prop-
erties of the decoupled ®) fixed point can be inferred by
observing that the crossover exponent associated with the
+ig [¢(X)2]2] (1.2 O(MN)-symmetric interactioriwith couplingug) is related
4190 ' ' to the specific-heat critical exponent of the NDY fixed
point®1® Indeed, at the Q¢)-symmetric fixed point one
may interpretHyy as the Hamiltonian oN M-vector sys-
tems coupled by the ®{N)-symmetric term. But this inter-
1 o2 action is the sum of the products of the energy operators of
P(y)= —exp{ - —} (1.3)  the differentM-vector models. Therefore, at the K3f fixed
Jamw 4w

point, the crossover exponen$ associated with the
We consider quenched disorder. Therefore, in order to obtai

1 1 1
"-| ddx|E[am(x)]h§r¢<x>2+§¢<x>¢(x>2

wherer=T—T,, and ¢(x) is a spatially uncorrelated ran-
dom field with Gaussian distribution

ﬁ)(M N)-symmetric quartic term should be given by the

the free energy of the system, we must compute the partitiofiPecific-heat critical exponenty, of the M-vector model,
function Z(,9,) for a given distributiony(x), and then |nqepepdently oN. This argument |_mpI|es .that' fok1 =1
average the corresponding free energy over all distributiondSing-like systemsthe pure Ising fixed point is unstable
with probability P(). By using the standard replica trick, it SINc€ ¢=a >0, while for M>1 the OM) fixed point is
is possible to replace the quenched average with an annealSile given thatry <0. This is a general result that should
one. First, the system is replaced Kynoninteracting copies 10!d independently oN. _ _
with annealed disorder. Then, integrating over the disorder, FOr duenched disordered systems described by the Hamil-
one obtains the Hamiltoni&h tonian Hyg, the physically relevant region for the
renormalization-group flow corresponds to negative values
1 of the coupling ul*'® Therefore, for M>1 the
HMN:f ddx{ > E[(‘9u¢a,i)2+r¢§,i] renormalization-group flow is driven towards the pureM)(
e fixed point, and the quenched disorder yields corrections to
1 scaling proportional to the spin dilution and ftr with
+ > 27 (Uot Uo@;)d’i,id’ﬁ,,‘] , (1.4 A,=—ay, . Note that for the physically interesting two- and
1 ab three-vector models the absolute valueagf is very small:
wherea,b=1,... M andi,j=1,... N. The original sys- «a,=—0.013(see e.g., the recent results of Refs. 87)-&
tem, i.e., the dilutévi-vector model, is recovered in the limit a3=-—0.12(see, e.g., Refs. 88,91Thus disorder gives rise
N—0. Note that the coupling, is negative(being propor- to very slowly decaying scaling corrections. For Ising-like
tional to minus the variance of the quenched disordehile  systems, the pure Ising fixed point is instead unstable, and
the couplingu, is positive. the flow for negative values of the quartic couplimggads to
In this formulation, the critical properties of the dilute the stable mixed or random fixed point which is located in
M-vector model can be investigated by studying thethe region of negative values af. The above picture
renormalization-group flow of the Hamiltoniaii.4) in the  emerges clearly in the framework of theexpansion, al-
limit N—O, i.e., of Hy. One can then apply conventional though for the Ising-like systems the RIM fixed point is of
computational schemes, such as thexpansion, the fixed- order? \/e rather thare.
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that this procedure works also in higher dimensions, since
the method relies on the fact that the zeroes of the partition
function stay away from the real valueswofThis is far from
obvious in higher-dimensional systems.

At present, the most precise field-theoretic results have
been obtained using the fixed-dimension expansioth=i3.
Several quantities have been computed: the critical
exponentg?2225-27.293436,37.3tha equation of state®’, and
the hyperuniversal rati®; .>**°The most precise estimates
of the critical exponents for the RIM have been obtained
from the analysis of the five-loop fixed-dimension expan-
sion, using Pad®orel-Leroy approximant®’ In spite of the
fact that the series considered aret Borel summable, the
results for the critical exponents are stable: they do not de-
d pend on the order of the series, the details of the analysis,
and, as we shall see, are in substantial agreement with our
results obtained following the precedure proposed in Ref.
102. This fact may be explained by the observation of Ref.
100 that the Borel resummation applied in the standard way

(a) ISING-LIKE b)) M>1

SAW
Mixed

Gaussian Ising oMy

)

FIG. 1. Renormalization-group flow in the coupling planey)
for (a) Ising (M =1) and(b) M-component 1>1) systems. Here
N=0.

Gaussian

The other fixed points of the Hamiltoni&i,, o are locate
in the unphysical regiom>0. Thus, they are not of interest
for the critical behavior of randomly dilute spin models. For
the sake of completeness, we mention that ¥or-1 the
mixed fixed point is in the region of positive and is

unstable® The last fixed point is on the positive=0 axis,
is stable and corresponds to thiél )-vector theory forN

(i.e., at fixedv/u) gives a reasonably accurate result for
small disorder if one truncates the expansion at an appropri-

—0. It is, therefore, in the same universality class of theate point, i.e., for not too long a series.

self-avoiding walk model. Figure 1 sketches the flow dia-

gram for Ising M=1) and multicomponentM >1) sys-
tems.

The MN model has also been extensively studied in the
context of thee expansion;}1-18:21.2324.283% ha critical ex-
ponents have been computed to three loops for generic val-

The Hamiltonian,,y has been the object of several ues ofM, N (Ref. 24 and to five loops foM =1 .13 Several
field-theoretic studies, especially fdt=1, the case that de- studies also considered the equation of $f#te?®and the
scribes the RIM. Several computations have been done in thevo-point correlation function®? In spite of these efforts,
framework of thee expansioff and of the fixed-dimension studies based on the expansion have been not able to go
d=3 expansion? In these approaches, since field-theoreticheyond a qualitative description of the physics of three-
perturbative expansions are asymptotic, the resummation @fimensional randomly dilute spin models. Thele
the series is essential to obtain accurate estimates of physicglnansiof? turns out not to be effective for a quantitative
guantities. For pure systems described by the Ginzburggtudy of the RIM (see, e.g., the analysis of the five-loop

Landaut-)\_ll\_/tllés4onf t#&?"t({;ﬂ:ﬁln one _ exploits mthe h_Br:)reI series done in Ref. 32A strictly related scheme is the so-
summability” of the fixed-dimension expansidifor whic called minimal-subtraction renormalization scheme without

Borel summabilty is provedand of thee expansion(for expansiont®® The three-loop! and four-loop®3¢*8results
which Borel summability is conjecturgdand the knowledge . . : :
are in reasonable agreement with the estimates obtained by

of the large-order behavior of the serf@s® Resummation thods. At five | h dom fixed
procedures using these properties lead to accurate estimai%tger methods. e loops, however, no random fixe
point can be fount using this method. This negative result

(see, e.g., Refs. 97-99,88)91 .
Much less is known for the quenched disordered model§@S been interpreted as a consequence of the non-Borel sum-
described byHy,. Indeed, the analytic structure of the cor- mability gf the perturbative expansion. In this case,'the four-
responding field theory is much more complicated. The zerolo0p series could represent the “optimal” truncation. We
dimensional model has been investigated in Ref. 100. Thef!so mention that the Hamiltoniafi.4) for M=1 and N
analyze the large-order behavior of the double expansion in>0 has been studied by the scaling-field metfibd.
the quartic couplingsi andv of the free energy and show  The randomly dilute Ising modéll.1) has been investi-
that the expansion in powers of, keeping the ratiov=  gated by many numerical simulatioitsee, e.g., Refs. 40—
—ulv fixed, is not Borel summable. In Ref. 101, it is shown 53). The first simulations were apparently finding critical ex-
that the non-Borel summability is a consequence of the fagpbonents depending on the spin concentration. It was later
that, because of the quenched average, there are additionaimarked®®!that this could be simply a crossover effect: the
singularities corresponding to the zeroes of the partitiorsimulations were not probing the critical region and were
function Z(,g,) obtained from the Hamiltoniafl.2). Re-  computing effective exponents strongly biased by the correc-
cently the problem has been reconsidered in Ref. 102. In théons to scaling. Recently, the critical exponents have been
same context of the zero-dimensional model, it has beenomputed® using finite-size scaling techniques. They found
shown that a more elaborate resummation gives the corregery strong corrections to scaling, decaying with a rather
determination of the free energy from its perturbative expansmall exponent w=0.376),—correspondingly A=wv
sion. The procedure is still based on a Borel summation=0.254)—which is approximately a factor of two smaller
which is performed in two steps: first, one resums in thethan the corresponding pure-case exponent. By taking into
couplingv each coefficient of the series in then, one re- proper account the confluent corrections, they were able to
sums the resulting series in the couplingrhere is no proof show that the critical exponents are universal with respect to
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TABLE Il. Best theoretical estimates of the critical exponents for the RIM universality class. We report
results for the massive scheme in fixed dimensien3 (“d=3 exp.”), the minimal subtraction scheme
without e expansion* d=3 MS”), and the best Monte Carl¢MC” ) results.

Method y v 7 )
This work d=3 exp.0(g® 1.33017) 0.67810) 0.0303) 0.2510)
Ref. 39, 2000 d=3 exp.0(g% 1.3253) 0.6715) 0.02510) 0.326)
Refs. 36,38, 1999 d=3 MS O(g* 1.318 0.675 0.049 0.39
Ref. 53, 1998 MC 1.3420) 0.6837153) 0.037445) 0.376)

variations of the spin concentration in a wide interval aboveO(N)-symmetric models in the high-temperature phesse,
the percolation point. Their final estimates are reported ire.g., Ref. 99. The method can also be extended to two-
Table I1. parameterp* models, such as thd N model. The idea is to

In this paper we compute the renormalization-group funcperform an expansion in powers of appropriately defined
tions of the generitM N model to six |OOpS in the framework zZero-momentum quartic Coup”ngs_ The theory is renormal-
of the fixed-dimensionl= 3 expansion. We extend the three- jzed by introducing a set of zero-momentum conditions for

loop series of Ref. 25 and the expansions for the cubic modghe (one-particle irreducibletwo-point and four-point corre-
(M=1) reported in Ref. 3qfive loopg and Ref. 91(siX  |ation functions:

loops. We will focus here on the cadé=0 corresponding

to disordered dilute systems. Hi_gher valuedNddre of inter- _ r(alZi?bj(p): 5ai’bjz;1[m2+ p?+0(pH], (2.1
est for several types of magnetic and structural phase transi-

tions and will be discussed in a separate paper.Merl  Wheredyj hj= dandi; ,

andN=2 the six-loop series have already been analyzed in 4 5

Ref. 91 where we investigated the stability of the ng,)bj,ck,dl(o)zz¢ M(US,i bj,ckdl TV Cai bj,ckdl)s
O(N)-symmetric point in the presence of cubic interactions.

We should mention that two-loop and three-loop series foand

the MN model in the fixed dimension expansion for generic
values ofd have been reported in Refs. 29,34.

ForM=1, N=0, we have performed several analyses of
the perturbative series following the method proposed in Ref. (2.3
102. The analysis of thg functions for the determinaton of N
the fixed point is particularly delicate and we have not been _
able to obtain a very robust estimate of the random fixed Cai bj.cka = 9ij O dit 3( Sandea™ dacdba™ daadbe):
point. Nonetheless, we derive quite accurate estimates of the (2.9

critical exponents. Indeed, their expansions are well behave|e:iqua,[ions(2 1) and(2.2) relate the second-moment mass

e e e oo 1 e ietand the zero-momentum auart coupliasnd. o th
with estimates obtained by other approaches. The errors W%orrespondmg Hamiltonian parametersio, andvo:
quote are quite conservative and are related to the variation u0=muZJZ;2, UO:vaUZ(ZZ_ (2.5
of the estimates with the different analyses performed. The

overall agreement is good: the perturbative method appeat§ addition we define the functios, through the relation
to have a good predictive power, in spite of the complicated ri2o)=g. 71 26
analytic structure of the Borel transform that does not allow aibj(0) = Bai,pZ¢ * (2.6
the direct application of the resummation methods used sugvhereI'(*2) is the (one-particle irreducibletwo-point func-
cessfully in pure systems. FdM=2 and N=0 we have tion with an insertion of; ¢2.

(2.2

Sai bj,ckdl :§( 0ai bjOck,dit Oai,ckObj,dl T ai,di Obj,ck) s

verified that no fixed point exists in the regior<0 and that From the pertubative expansion of the correlation func-
the O(M)-symmetric fixed point is stable, confirming the tionsI'®, I'® andI'*2 and the above relations, one de-
general arguments given above. rives the function& 4(u,v), Z,(u,v), Z,(u,v), Z(u,v) as a

The paper is organized as follows. In Sec. Il we derive thejouble expansion in andv.
perturbative series for the renormalization-group functions at The fixed points of the theory are given by the common
six loops and discuss the singularities of the Borel transformzeros of thes functions
The results of the analyses are presented in Sec. Il and the

final numerical values are reported in Table II. du
ﬁu(u,v)=ma—m , (2.7
Il. THE FIXED-DIMENSION PERTURBATIVE Ug:vo
EXPANSION OF THE THREE-DIMENSIONAL 5
1%
MN MODEL Bv(u,v)zm% ,
A. Renormalization of the theory Uo-vo

The fixed-dimensiong* field-theoretic approach pro-  calculated keepingi, andv, fixed. The stability properties
vides an accurate description of the critical properties off the fixed points are controlled by the matrix
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(9ﬁu(U,U) (9BU(U,U)
B Ju Jv
=1 apuw) aBy(uw) | @8
Ju Jv

computed at the given fixed point: a fixed point is stable if
both eigenvalues are positive. The eigenvalueare related

to the leading scaling corrections, which vanish &s”i
~|t|% whereA;=vw; .
One also introduces the functions

dlinZ, dlinZ, dinZ, 09
7]¢(U,U)— &lnm_ u Ju voop ( )

_aInZt_ <9InZtJr alnz, o1
muv)= =By v 210

Finally, the critical exponents are obtained from

n= 77¢(U*1U*)1 (21])
v=[2—n4(u*,0*)+ p(u*,v*)] L, (2.12
y=v(2—mn). (2.13

B. The perturbative series to six loops

RANDOMLY DILUTE SPIN MODELS: A SIX-LOOP . ..

6397

o, 12— 4(190+41M)
Bo=—vtv™t e N Y T 27e My Y
16(131+25M) ., 4(370+23MN)
278+ MN)(8+M) T 278+ MN)Z Y
+v > b{ull, (2.16
723
8(2+MN) —, 162+M)

9= 578+ MN)Z Y T 278+ MN) (8- M) Y

8(2+M) —,

(&
+—227(8+M) v +i+12>3 ej’u'v’, (2.17
2+MN — 2+M — 2(2+MN) _,
T grMN YT 8 rM YT BrMN)Z Y
L A2EM) 224 M)
(B+MN)(8+M) U T (8rm)Z?
P e, (218
i+j=3

For 3<i+j=<6, the coefficientd([” , b}, e(”, ande{) are
reported in the Tables Ill, IV, V, and VI, respectively.
We have performed the following checks on our calcula-

tions:

(i) Bu(u,0), 74(u,0) and 7,(u,0) reproduce the corre-

We have computed the perturbative expansion of the corsponding functions of the ®fN)-symmetric modef”:1%8

relation functions(2.1), (2.2), and (2.6) to six loops. The

diagrams contributing to the two-point and four-point func-
tions to six-loop order are reported in Ref. 105: they ar
approximately 1000, and it is therefore necessary to handlau
them with a symbolic manipulation program. For this pur-
pose, we wrote a package WmTHEMATICA 1% It generates

the diagrams using the algorithm described in Ref. 107, an
computes the symmetry and group factors of each of them.

e

(i) B,(0v), n4(0), and 7(0v) reproduce the corre-
sponding functions of the ®{)-symmetric modef” 1%
(i) For M =1, the functions, B,, 74, and» repro-
ce the corresponding functions of tNecomponent cubic
model®?

d (iv) The following relations hold foN=1:

Bulu,x—u)+ B,(u,x—u)=B,10Xx), (2.19

We did not calculate the integrals associated to each dia-

gram, but we used the numerical results compiled in Ref.

74(U,X—U) = 74(0X),

105. Summing all contributions we determined the renormal-

ization constants and all renormalization-group functions.
We report our results in terms of the rescaled couplings

(2.19

whereR, = 9/(8+K), so that the3 functions associated 1o
and v have the form B;(u,0)=—u+u?+0(u®) and
B, (0p)=—v+0v2+0(v°).

The resulting series are

2(2+M) — 4(190+4IMN) —,

_ 2 _
Bu= Ut U = W 7T M
4002+M) . 92A2+M) —,
278+ MN)(8+M) V7 278+ M2 WY
TS T, 2.15

i+j=3

7(Uu,Xx—u)=7(0x).

C. Borel summability and resummation of the series

Since field-theoretic perturbative expansions are
asymptotic, the resummation of the series is essential to ob-
tain accurate estimates of the physical quantities.

In the case of the Q)-symmetric¢* theory the expan-
sion is performed in powers of the zero-momentum four-
point coupling g. The large-order behavior of the series
S(g)=3s,g* of any quantity is related to the singulariy,
of the Borel transform closest to the origin. Indeed, for large
k, the coefficients, behaves as

sc~kl(—a)*kP[1+O(k™1)] with a=—1/g,.
(2.20

The value ofg, depends only on the Hamiltonian, while the
exponentb depends on which Green’s function is consid-
ered. The value ofg, can be obtained from a steepest-
descent calculation in which the relevant saddle point is a
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TABLE IIl. The coefficientsb{” , cf. Eq.(2.15.

—

RunRu'bi}”

0.273 855 17 0.075 364 02N+ 0.001 850 401 §12N?
0.451 615 5-0.225 807 78 +0.018 235 6081 N+ 0.009 117 802 M?N
0.250290 07 0.151 825 981 + 0.013 340 46B12+0.001 706 143 1IN +0.000 853 071 61 °N
0.051 324521 0.034 637 OM +0.004 487 3M12
—0.279 257 24 0.091 833 74MN— 0.005 459 564 §1°N2+0.000 023 722 898 °N?3
—0.629224 42 0.314 612 2M —0.055 501 87RIN—0.027 750 9361°N + 0.000 412 401 1181>N?+0.000 206 200 581 3N?
—0.552 674 83 0.366 981 881 — 0.045 322 20M2—0.009 254 176 BIN—0.003 679 674 K1°N +0.000 473 706 8V1°N
—0.233 60529 0.166 347 18 — 0.023 834 9812+ 0.000 468 672 381 °— 0.001 049 447 KN — 0.000 655 904 7181°N
—0.000 065 590 474 3N
—0.040 934 998 0.029 976 62M —0.004 608 231 M2+ 0.000 073 166 78V °
0.351 744 7% 0.132 425 ORIN + 0.011 322 0261°N2+0.000 054 833 719 °N3+8.676 893 3 10~ ‘M *N*
1.013 933 8 0.506 966 9% +0.129 670 28 N+ 0.064 835 12M >N+ 0.000 738 574 212N+ 0.000 369 287 141 3N?
+0.000 021 186 5281 *N*+0.000 010 593 26¥1 “N*
3,2 1.2323698 0.8553715M +0.119 593 3®1%+0.041 310 32R N+ 0.022 902 3M*N+0.001 123 614 $1°N
+0.000 171 409 5¥°N?+0.000 151 956 9 3N2+0.000 033 126 079 “N?
2,3 0.809703690.613054 3M+0.107 241 282+ 0.001 570 028 113+ 0.005 859 880 BIN -+ 0.004 100 697 M°N
+0.000 672 674 591°N +0.000 043 647 914 *N
1,4 0.289912910.225993 1% +0.043 074 4812+ 0.001 340 300 53+ 0.000 031 126 68*+0.000 775 205 M N
+0.000 522 962 M?N -+ 0.000 055 080 314 °N — 6.299 691 X 10 *M*N
5 0.0446553790.035 455 9181 +0.007 103 023¥1 2+ 0.000 275 809 4913+ 3.176 737 X 10" °M*
,0 - 0.5180 4598589 0.214 852 581 N—0.023 839 37612N?—0.000 500 216 8213N3+2.016 776 3 10" *M*N*+4.407 673 3
x 10 8M°N
5,1 —1.79893890.899 469 48 —0.300 455 0MN—0.150 227 5M2N—0.007 214 31R1°N?>—0.003 607 15613N?
+0.000 038 644 434 3N°+0.000 019 322 22M“N3+1.367 697 X 10" *M“*N*+ 6.838 485 3 10" "M °N*
4,2 —2.8025568-2.007 758 M —0.303 239 M?—0.156 735 281N —0.100 093 582N —0.010 862 9581°N
—0.000571 734 961 °N?—0.000 134 915 991 N2+ 0.000 075 475 779 *N?+7.511 658 8 10 *M3N3+9.186 419 6
X 10 6 M*N3+2.715 295 X 10" M 5N3
3,3 —251105552.002 622 M —0.403 218 02— 0.014 835 40813~ 0.038 290 98RIN— 0.026 220 76B1°N
—0.003 221 189 K13N+0.000 158 223 ®“N—0.000 012 833 971#1°N?
+0.000 015 558 75V1°N?+ 0.000 020 698 199 “N2+4.855 143 7 10" *M5N?
2,4 —1.3671792-1.128773 81— 0.246 967 9812—0.011 904 06M 3+ 0.000 141 928 281*— 0.005 372 355 M N
—0.003 788 503 512N —0.000 474 386 7M1 *N+0.000 047 179 342“N+4.395 619 5< 10 *M°N
1,5 —0.42388848 0.354539261—0.079 847 02R1%—0.004 109 70813+ 0.000 087 399 9914+ 2.436 887 8<10 °M°
—0.000 969 206 1121 N — 0.000 742 465 1¥1>N—0.000 138 284 821 °N —5.809 583 & 10" *M*N—5.663 468 6< 10" 'M°N
0,6 —0.0575098770.048617 4381 —0.011 215 64B1%2—0.000 619 663 8813+ 0.000 011 640 60M*+ 1.865 875 8<10™'M>
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finite-energy solutior(instanton of the classical field equa- ods used in the standags® theory*° We may consider the
tions with negative couplin§*® Since the Borel transform  series inu andv at fixed ratioz=v/u. The large-order be-
is singular forg=gp, its expansion in powers gfconverges i of the resulting expansion in powers wfis deter-

only for |g|<|gp|. An analytic extension can be obtained by mined by the singularity of the Borel transform that is closest
a conformal mapping® such as L= .
to the origin,u,(2), given by

y(g)= 291 (2.20 .
Vi-g/gp+1 T )=—a(RMN+RMz) for z>0
Up(Z

In this way the Borel transform becomes a series in powers
of y(g) that converges for all positive values gfprovided
that all singularities of the Borel transform are on the real 2N Run
negative axis® In this case one obtains a convergent se- N+1 Ry
guence of approximations for the original quantity. For the
O(N)-symmetric theory accurate estimatexe, e.g., Ref.

88) have been obtained resumming the available seriegs the _1 =—a| Ryn+ —Ryz| for — 2N RMN<Z<O
functior?” is known up to six loops, while the functiong, Up(2) N+1 Ry ’
and 7, are known to seven loog§? (2.22

The large-order behavior of the perturbative expansions in
the MN model can be studied by employing the same methwhere
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TABLE IV. The coefficientsb®)

i, cf. Eq.(2.16.

—

RunRu'bf}”

0.643 805 17 0.057 412 78N —0.001 716 196 #1°N?

1.392 840 9 0.292 489 581+ 0.006 162 536 81 N—0.003 091 125 R1°N

1.044 096 # 0.266 819 081 +0.002 914 216 #?

0.273855 17 0.075 364 0281 -+ 0.001 850 401 &1°

—0.767 061 77 0.089 054 66/ N+ 0.000 040 711 369 2N?—0.000 087 586 1114 °N°

—2.239897 5-0.498 686 6M — 0.043 414 86BN — 0.005 804 006 # 2N+ 0.000 210 243 2612N?—0.000 236 477 96 3N?

—2.558 967 1 0.756 803 8% — 0.031 949 53612+ 0.005 862 969 KN+ 0.001 844 722 K12N — 0.000 165 852 %I °N

—1.3553512-0.429 192 1% — 0.022 689 59R12+ 0.000 045 447 676 °

—0.279 257 24 0.091 833 7481 — 0.005 459 564 B12+0.000 023 722 898 °

1.096 534 8 0.157 912 981N+ 0.002 358 463 M>N?—0.000 061 471 348 3N3—5.387 124 % 10 SM*N*

4.043801 7 0.942 746 781 +0.146 946 1N +0.028 781 32R1°N — 0.001 618 043M12N?— 0.000 453 793 B1°N?

+7.278 269 X 10" "M3N®-0.000 020 110 739 “N?

3,2 6.225191 #2.021 627 B1+0.117 709 1812+ 0.007 958 597 M N — 0.002 803 581 N — 0.001 192 960 R13N
+0.000 192 993 491°N?+ 0.000 046 931 93¢ 3N?— 0.000 026 294 129 “N?

2,3 4.986 258 6-1.777 248 61 +0.131 447 2812 —0.000 353 239 33— 0.017 641 69M N — 0.005 214 260 K >N
—0.000219 635 861°N—0.000 011 811 618 *N

1,4 2.065813 2 0.759 094 181 +0.060 829 13612+ 0.000 053 192 889 3+ 2.029 398 X 10 °M*

0,5 0.351 744 7% 0.132 425 0M +0.011 322 0212+ 0.000 054 833 7193+ 8.676 893 3 10~ 'M*

6,0 —1.774 553 3-0.304 043 161N —0.009 433 807 M?N?+0.000 066 993 86¥1 *N°—6.572 489 5¢ 10 *M“*N*—3.753 114

X 10" "M5SN®

5,1 —7.917 919 8-1.911 909 M —0.435 499 BN —0.098 350 0%1°N +0.001 628 356 B12N?+0.000 574 969 01 3N?
—0.000 089 164 587 3N°—0.000 041 503 63@*N° —8.062 592 X 10" 'M“*N*—1.789 683 % 10" ®M5N*

4,2 —15.356 405-5.343 761 &1 — 0.373 370 661°— 0.135 163 261 N— 0.031 925 762N
+0.000 802 053 78 3N +0.000 369 924 991°N2— 0.000 277 569 981 °N2— 0.000 107 182 7K1 “N>+8.962 758 % 10" *M3N®
—1.151447 K10 *M*N®—-3.312 458 X 10 *M°N?

3,3 —16.500 282-6.453 637 ™ — 0.608 917 82— 0.006 886 370 K13+ 0.067 945 798N + 0.025 945 70M >N
+0.001 934 762 M3N—0.000 109 395 4191 “N — 0.000 649 533 O1>°N2—0.000 177 529 01 3N?—9.125 024 X 10" *M“*N?
—2.852933 810 ®M°5N?

2,4 —10.296 588-4.192 549 ™M — 0.431 921 481°— 0.006 916 124 §13—0.000 022 535 528 *+ 0.036 155 316N
+0.011 884 07B1?2N+0.000 659 559 1181 °N — 0.000 016 702 579 *N —9.449 295 6< 10" 'M°N

1,5 —3.515982 3-1.455 350 M — 0.155 659 9812—0.002 881 853 B1°+2.476 827 6< 10 *M*+1.219 495 5¢ 10" 'M°

0,6 —0.510498 89-0.214 852 5% — 0.023 839 37512~ 0.000 500 216 821°+2.016 776 3 10 ®M*+4.407 673 % 10 8M°

PO OFRPNWMAMOEFERLDNW
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non-Borel summable contributions are not present in higher
, RK:8+_K- (223 dimensions. It is likely that the same phenomenon occurs

even in three dimensions. As a consequence, a summation
Using EQ.(2.22 and the conformal mappin@.21), one can  procedure based on E(R.24) and a conformal mapping of

resum the perturbative seriestrat fixedz This method has the type(2.21) would not lead to a sequence of approxima-

been applied in Ref. 91 to the analysis of thetions converging to the correct restit.

renormalization-group functions of the three-dimensional cu- Fortunately, this is not the end of the story. As shown

bic model. recently in Ref. 102, at least in zero dimensions, one can still
The result(2.22 has been obtained for integht,N=1. resum the perturbative series. Indeed the zero-dimensional

For N=0, one may think that the correct behavior is ob-free energy can be obtained from its perturbative expansion

a=0.1477742 . ..

tained by analytic continuation of ER.22), i.e., if one applies a more elaborated procedure which is still
based on a Borel summation. Let us write the double expan-
1 . .
= a(+Ry2), (2.24) sion of the free energy(u,v) in powers ofu,v as
Up(2) "
for all z. However, this is not correct. Indeed, as explicitly f(u,v)= EO c,(v)un, (2.25
n=

shown in Refs. 100,101 in the context of the zero-
dimensional random Ising model, there is an additional con- .
tribution to the large-order behavior of the seriesiiat fixed _ K

= —u/v, which makes the series non-Borel summable, giv- C“(v)zgo CniV™ (2.29
ing rise to singularities of the Borel transform on the positive
real axis. They are due to the zeroes of the partition functiomhe main result of Ref. 102 is that the expansions of the
at fixed disorder. We have no reason to believe that similacoefficients(2.26) and the resulting series at fixad Eq.
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TABLE V. The coefficientse{”), cf. Eq. 2.17.

iJ RunRwef”

3,0 0.000 541 761 340.000 338 600 841 N+ 0.000 033 860 081 °N?

2,1 0.001 625 284 0.000 812 642 0 + 0.000 203 160 N+ 0.000 101 580 28I°N

1,2 0.001 625 284 0.001 015 802 M +0.000 101 580 2812

0,3 0.000 541 761 34.0.000 338 600 8! + 0.000 033 860 0842

4.0 0.000 992 548 380.000 702 518 OMIN+0.000 101 811 B1°N?>—6.551 688 6< 10 'M N3

3,1 0.003 970 1935 0.001 985 096 81 +0.000 824 975 5N+ 0.000 412 487 7181°N—5.241 350 K 10" *M?N?
—2.620675 510 °*M3N?

2,2 0.005 955 2903 0.003 999 468 M +0.000 510 911 6412+ 0.000 215 639 98I N+ 0.000 099 957 96M1 °N — 3.931 013 2
x 10 8M°3N

1,3 0.003 970 1935 0.002 810 072 B1 +0.000 407 246 ¥1%2—2.620 675 5 10 °M?3

0,4 0.000 992 548 380.000 702 518 OM + 0.000 101 811 M?—6.551 688 6< 10~ 'M3

5,0 —0.000 366 597 35 0.000 257 211 MN —0.000 032 026 6112N?+ 2.243 070 < 10" *M3N®-1.109 404 5< 10" "M “*N*

4,1 —0.001 832 986 7 0.000 916 493 381 — 0.000 369 565 181N — 0.000 184 782 561 °N +0.000 024 649 511 °N?
+0.000 012 324 73@3N?—1.109 404 5¢ 10 *M3N°®—5.547 022 5< 10" "M “N3

3,2 —0.003 665 973 5 0.002 480 084 § — 0.000 323 548 9212 — 0.000 092 032 422N — 7.909 230 5¢ 10" "M 2N
+0.000 022 612 644N+ 4.073 734 5< 10 *M?N?—1.819417 6< 10" "M3N?—1.109 404 5< 10" M *N?

2,3 —0.003 665 973 5 0.002 604 024 81 —0.000 351 593 21212+ 0.000 016 962 914+ 0.000 031 907 838 N

+0.000 031 327 12N +5.467 786 6< 10 *M3N—1.109 404 5< 10" *M*N
1,4 —0.001 832986 7 0.001 286 058 M — 0.000 160 133 0812+ 0.000 011 215 390 °— 5.547 022 5< 10" ‘M *
0,5 —0.000 366 597 35 0.000 257 211 M —0.000 032 026 611 %+ 2.243 070 % 10 ®M3—1.109 404 5 10" 'M*
6,0 0.000 695 680 370.000 565 859 4 N+ 0.000 120 573 01 °N?+5.746 6979 10°M3N°—3.838 518 3 10 EM“*N*
—1.044 127 310 8M5N°

5,1 0.004 174 0822 0.002 087 041 M +0.001 308 115 ¥ N+ 0.000 654 057 681 >N+ 0.000 069 380 43¢ >N?
+0.000 034 690 21913N?—2.100 316 4< 10" "M 3N3—1.050 158 < 10" "M *N3—1.252 952 8< 10" 'M“*N*—6.264 764
X 10 8M5N*

4,2 0.010 435 206 0.007 420 482 M +0.001 101 44 0 M2+ 0.001 067 408 BN+ 0.000 698 498 81 °N

+0.000 082 397 393N + 8.656 394 7 10 *M2N2+3.993 465 3< 10" ®M3N2—1.673 660 3 10~ "M*N2—1.903 470 3
X107 "M3N®-4.084 117 XX 10" 'M*N3—1.566 191 10~ ‘M °N?

3,3 0.013 913 607 0.010 984 22K +0.002 178 550 812+ 0.000 082 419 6513+ 0.000 332 961 58I N
+0.000 231 392 082N+ 0.000 031 719 214 3N —3.682 058 % 10" "M*N+1.517 571 8<10 *M2N?+7.950 922 3
X107 'M3N?—3.994 977 K 10" "M*N?—2.088 254 % 10" "M >N?

2,4 0.010 435 206 0.008 467 404 B +0.001 790 97®12+0.000 082 410 8523 —3.123 648 3 10~ 'M*
+0.000 020 486 706 N+ 0.000 017 623 28@ 2N+ 3.789 616 810" M3N—2.634 129 X 10" 'M*N— 1.566 191
X107 "M°N

1,5 0.004 174 0822 0.003 395 156 B +0.000 723 438 11912+ 0.000 034 480 18V1°—2.303 11X 10" 'M*—6.264 764
X 10 8M°

0,6 0.000 695 680 370.000 565 859 4M +0.000 120 573 012+ 5.746 697 K 10 *M3—3.838 518 3 10" 8M*

—1.044127 X 10 8Mm°

(2.25, are Borel summable. Using this result, a resummation Ill. ANALYSIS OF THE SIX-LOOP EXPANSION
of the free energy is obtained in two steps. First, one resums FOR N=0

the coefficientc,(v); then, using the computed coefficients,
one resums the series in The resummation of Eq2.26
can be performed using the PaBerel-Leroy method, as As we said in the Introduction, the random Ising model
suggested in Ref. 102. However, also the conformal methodorresponds td =1 andN=0. There are two relevant fixed
can be used, since the large-order behavior is known exactlpoints, the Ising and the random point, see Fig. 1. In Ref. 91

A. The random Ising model

Indeed, we already discussed the stability of the Ising point. We
N found that this fixed point is unstable since the stability ma-

. (v)xﬁ f(u,v) (2.27 trix has a negative eigenvalue=—0.1776), in good

n aun ' ' agreement with the general argument predictiag=

u=0 —a,/v=—0.1745(12). We will now investigate the ran-

Thus, c,(v) can be related to zero-momentum correlationdom fixed point, which is stable and determines therefore the
functions in the theory withu=0, which is the standard critical behavior of the RIM.

M-vector model. Therefore, one can use the well-known re- In order to study the critical properties of the random

sults for the large-order behavior of the perturbative series ifixed point, we used several different resummation proce-
the O(M)-symmetric theory>%® dures, according to the discussion of the previous section.
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TABLE VL. The coefficientse(’, cf. Eq.(2.18.

—

IR
RMINRMJei(j)

—0.025 120 499 0.016 979 91M N — 0.002 209 834 M12N?

—0.075 361 497 0.037 680 7481 —0.013 259 00M N — 0.006 629 504 K1°N

—0.075 361 497 0.049 233 6151 —0.005 776 433 M?—0.001 706 143 RIN—0.000 853 071 64 °N

—0.025 120 499-0.016 979 91 — 0.002 209 834 M2

0.021 460 04F 0.015 690 83B1 N+ 0.002 405 927 B12N?—0.000 037 238 569 >N°

0.085 840 19 0.042 920 0951 +0.019 843 236N +0.009 921 617 812N — 0.000 297 908 §?N?—0.000 148 954 28 3N?
0.128 760 28 0.087 481 04 +0.011 550 44812+ 0.006 663 954 BN+ 0.002 885 114 2N — 0.000 223 431 383N
0.085840 19 0.061 713 88B1 +0.008 967 804 §12—0.000 214 544 781°+ 0.001 049 447 KN+ 0.000 655 904 78 °N
+0.000 065 590 474 3N

P NWPMAMOEFRLDNW®W
W NP OWNPEFO

0,4 0.021 460 047 0.015 690 8381 +0.002 405 927 B12—0.000 037 238 568 3

5,0 —0.022 694 287 0.017 985 16BN —0.003 583 538 #12N?—0.000 135 661 641 °N°— 1.699 30X 10" *M*N*

4,1 —0.113 471 43 0.056 735 71K — 0.033 190 121N — 0.016 595 06R1?N— 0.001 322 630 ®12N?—0.000 661 315 1913N?
—0.000 016 993 091 3N3—8.496 545 10" *M*N?

3,2 —0.226 942 87 0.159 312 381 — 0.022 920 47K 2— 0.020 539 291N — 0.012 755 93M >N — 0.001 243 1461°N
—0.000 158 968 391°N?—0.000 113 470 3V1°N2—0.000 016 993 01 *N?

2,3 —0.226 942 87 0.174 625 B4 — 0.032 245 32B1%— 0.000 834 147 5W3—0.005 226 182 BN —0.003 590 056 512N
—0.000 522 468 9% 3N —0.000 016 993 081 “N

1,4 —0.113 471 43-0.089 150 6361 — 0.017 394 7812—0.000 623 227 891~ 0.000 014 796 2371*—0.000 775 205 ¥IN
—0.000 522 962 M?N— 0.000 055 080 314 °N + 6.299 691 X 10 *M“N

0,5 —0.022 694 287 0.017 985 1681 —0.003 583 538 #2—0.000 135 661 6X1°— 1.699 30X 10" *M*

6,0 0'0297458 6519 0.024 874 578N+ 0.005 728 39M?N2+0.000 315 578 681 3N°— 5.858 68% 10 ®M“*N*—1.037 350 6
X107 '"M°N

5,1 0.176 703 71 0.088 351 8561 -+ 0.060 895 6181 N+ 0.030 447 80BN+ 0.003 922 572 M2N2+0.001 961 286 ¥ 3N?

—0.000 067 814 6271 3N2—0.000 033 907 318 *N3—1.244 820 & 10" *M“*N*—6.224 103 X 10" 'M°N*

4,2 0.441 759 28 0.317 084 7% +0.048 102 56512+ 0.056 033 914 N+ 0.037 304 66M 2N+ 0.004 643 856 BI1°N
+0.000 518 719 582N+ 0.000 095 257 65V1°N?—0.000 082 051 01 *N?—5.434 44 10 M 3N®—5.829 275 4
X 10" ®M*N3—1.556 026< 10" M°N®

3,3 0.589 012 38 0.473 106 4M +0.097 561 54K 2+ 0.004 130 717 M3+ 0.024 385 16BIN+0.017 002 48B1°N
+0.002 190 56®1°N—0.000 107 191 4¥*N+3.903 947 X 10" ®M?N?—9.713 971 5¢ 10" ®M3N?-9.982 375 X 10" *M*N?
—2.074701 %10 ®M>N?

2,4 0.441 759 28 0.367 318 OR + 0.081 706 64K 2+ 0.004 101 232 §°—0.000 071 248 084 *+ 0.005 800 664 BIN
+0.004 219 307 M?N+ 0.000 632 446 921 °N— 0.000 016 632 252 *N— 1.556 026< 10" °*M°>N

1,5 0.176 703 74 0.148 278 2K +0.033 627 91K 2+ 0.001 755 18K 3—0.000 040 961 7IM*—1.188 757 2< 10" °M°
+0.000 969 206 1M N+ 0.000 742 465 1181°N + 0.000 138 284 821N +5.809 583 10" *M“*N+5.663 468 6< 10" 'M°N

0,6 0.029 450 619 0.024 874 57M + 0.005 728 39>+ 0.000 315 578 68— 5.858 68X 10~ °M“*—1.037 350 6< 10” 'M°>

Following Ref. 102, for each quantity we consider, we mustThe coefficients B; and C; are fixed so that
perform first a resummation of the serievinsee Eq(2.26). R(¢h)(p;by,rhiv) =3P fcwk+ 0P "*1). Here we are
This may be done in two different ways. We can either useesumming the Borel transform of each coefficient of the
the PadeBorel method, or perform a conformal mapping of series inu by means of a Padapproximan{p—n—r,/r,].
the Borel-transformed series, using the known value of th@&quation (3.2) is well defined as long as the integrand is
singularity of the Borel transform. Explicitly, let us consider regular for all positive values df However, for some values
a p-loop series iru andv of the form of the parameters, the Pad@proximant has poles on the
o positive real axis—we will call these casasfective—so that
> ek (3.2) the integral QOes not exist. These valuebptindr,, must of
b ' ' course be discarded.
_ The second method uses the large-order behavior of the
In the first method, for eachOn<p, we choose a real nUm- ggries and a conformal mappif® In this case, for each

berby, and a positive integer, such that,<p—n; then, we  g<p<p, we choose two real numbebs, and «,, and con-
consider sider

p—n=ry

Rl(cn)(p;bn,rn;v)zf:dte—ttbn[ 20 Bi(tv)' [y(vt)]®

p—n ©
R (piby i) = 3, By [ ate oo YOO
2(Ca)(Pibn Toiv) =3, B | [1-y(D)]o

-1 (3.3
(3.2

rn
x| 1+ (to)!
Z’l Ci(tv) where
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Vg +t—= Vgl E1(Balu)(piby.ruib,)=0, E1(B,7v)(piby.ruib,)=0.
y(t)= _—\/T (3.4 (3.9
Vigil+t+V]g| We have used,=1,2,p=4,5,6 and we have varien|, and

b, between 0 and 20. As usual in these procedures, we must

determine the optimal values of the parametefsandb,, .

This is usually accomplished by looking for valueshgfand

b, such that the estimates are essentially independent of the

orderp of the series. In the present case, we have not been
p able to find any such pair. Indeed, the five-loop resujts (
> Ry(Cp)(p;by,ro;v)u, (3.5 =5) are systematically higher than those obtained with

n=0 =4 andp=6. For instance, if we average all estimates with

0=<b,,b,<5 we obtain

and g,= —1/a is the singularity of the Borel transform for
the pure Ising model. The numerical valueafs given in
Eq. (2.23. Using these two methods we obtain two different
partial resummations of the original serigs1):

p

2, RelCn) (Piby.an o) 39 UF=—0.661)(p=4), ~0.782)(p=5),
Nothing is known on the asymptotic behavior of these series, —0.633)(p=6); (3.10
and we will thus use the Padorel method. Starting from
Eq. (3.5 we will thus consider v*=2.2353)(p=4), 2.2734)(p=5),

El(C)(qvp;bu yru ;{bn}!{rn})

0 a-ry
Ef dtetth[E Bi(v)(tu)!
0 i=0

2.25023)(p=6). (3.12)

The uncertainties quoted here are the standard deviations of
the estimates in the quoted interval and show that the depen-
dence onb,, b,, andr, is very small compared to the
variation of the results wittp. Increasingb,,b, does not
help, since the five-loop result is largely insensitive to varia-

tions of the parameters, while, fpr=4 andp=6, |u*| and

v* decrease with increasing, and b, . It is difficult to
obtain a final estimate from these results. We quote

-1
X

3.7

1+_§}l Ci(v)(tu)’

The coefficients Bij(v) and C;(v) are fixed so that
Ei(c)(q,p;by.ry:{ba}.{r,}) coincides with the expansion
(3.5 up to terms of orde©(u?*?!). Note that we have in-
troduced here three additional parametérs: the power ap- — —
pearing in the Borel transform,, that fixes the order of the u*=-0.6810), v*=2.252), (3.12
Pade approximant, andy which indicates the number of that includes all estimates reported above.

terms that are resummed, and that, in thg following, will  The instability of the results reported above wjitiseems
always satisfyg=p—1. Analogously, starting from Eq. g jngicate that some of the hypotheses underlying the choice
(3.6), we defineE,(c)(a,piby.ryi{bn}.{an}). We will call  f the parameters is probably incorrect. One may suspect that
the first method the “double Padgorel” method, while the  choosing allb,, equal does not allow a correct resummation
second will be named the “conformal PaBerel” method. o the coefficients, and tha; and 3, need different choices
Let us now apply these methods to the computation of they the parameters. We have therefore tried a second strategy.
fixed point U*,v*). In this case, we resum the functions  First, for eachB function, we have carefully analyzed each
Bu/u and B, /v and then look for a common zero with  coefficient of the series i, trying to find an optimal value
<0. We consider first the resummatiddy, Eq. (3.7). A of the parameteb,—r,, was fixed in all cases equal to 1—
detailed analysis shows that the coefficieRtscan only be by requiring the stability of the estimates of the coefficient
defined forr,=1. We have also triedy=2 andr,;=2, but  with respect to a change of the order of the series. However,
the resulting Padapproximants turned out defective. There- only for the first two coefficients we were able to identify a
fore, we have fixed ,=1 for all 0=n=<5. We must also fix stable region, so that we could not apply this method. On the
the parametergb,}. It is impossible to vary all of them other hand, as we shall see, this method works very well for
independently, since there are too many combinations. Fahe resummations of the coefficients that use the conformal
this reason, we have taken bj| to be equal, i.e., we have set mapping.
b,=b, for all n. Finally, we have only considered the case Let us now discuss the conformal PaBerel method. As
g=p—1. Therefore, the analysis is based on the approxibefore, we have tried two different strategies. In the first case

mants we have set alb, equal tob, and all ¢, equal toe, , we
have used the same parameters for the Bnvonctions, and

Ev(-)(p;by.ry:b,) we have looked for optimal values bf , b,, ande«,, set-
ting r,=1,2. While before, for eaclp, the estimates were

=E;1(-)(p—=1p;by,ru;{ba=b,}.{rn=1}). stable, in this case the fluctuations for each figeare very

(3.8 large, and no estimate can be obtained.
o Then, we applied the second strategy. We analyzed care-
Estimates of the fixed poinuf ,v*) have been obtained by fully each coefficient of the series in finding optimal val-
solving the equations uesb, opranday, o for eachn andg function. Of course, the
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TABLE VII. Estimates of G‘,?) obtained using the conformal PaBerel method. The results are
averages over€b,<20, —3<4,<3, —1<4,<1, r,,=1,2. "Def” is the percentage of defective Pade
approximants in each analysis.

p=5 p=6
q My (u*, v*) Def (u*, v*) Def
3 0 [—0.615(27),2.175(43) 80% [—0.6417),2.199(10) 78%
4 0 [—0.618(22),2.190(35) 74% [ —0.6309),2.194(16) 61%
4 3 [—0.619(20),2.191(33) 71% [—0.6328),2.196(15) 61%

required stability analysis can only be performed if the series=(—0.667,2.244) obtained from the Chisholm-Borel analy-
is long enough, and thus we have always ta§jet. There- sis of the four-loop series. The same expansion was also

fore, we consider analyzed by  Vamash&V obtaining  (*,v*)
. _ _ B _ _ =[—0.582(85),2.230(83) and (u*,v*)=[—0.625(60),
E2(-)(A,Piby.Ty; 8, 8a) =Ea(-)(A,Pi0y. Ty by opt 2.187(56) using different sets of Padgpproximants. The

+ Sob { @noptt 8a)), (313 algorithm by Wynn with a Mittag-Leffler transform was used

in Ref. 27 finding (*,0*)=(—0.587,2.178). From the
analysis of the five-loop series Pakhnin and SokSlobtain
(u*,v*)=[—-0.711(12),2.261(18) While the four-loop re-
sults are in good agreement with our estimates, the five-loop
estimate differs significantly, a fact that may indicate that the
claim of Ref. 39 that the error on their estimates is approxi-
. — mately 1-2% is rather optimistic. Note also that the five-loop
Ea(B,1v)(9,p;byF2u;8p,84)=0. (814 result is quite different from the previous four-loop esti-

The first problem which must be addressed is the value of thE1ates.

arameters - and r For [T/U we find that the Pade We have also tried to determine the eigenvalues of the
P ; lu 2u- ut™ o stability matrixQ, cf. Eq.(2.8), that controls the subleading
approximants are always defective for,=1,2; they are

well behaved onlv for - =3 anda=4. Since the resummed corrections in the model. We used both a double” FRaie|
L Y 10, = a==. : transformation and the conformal-PaBerel method. In the
series inu has coefficients that are quite small, we decided '[ofirst case we obtain estimates that vary strongly with the

;JhS: :ésrgé“i:uo ,wv;/tulgﬂtcgr:re;g%zgir: ?rgr']rsefgtr;ua?g]nat?onrmorder, and, as it happened for the position of the fixed point,
= ' y ’ it is impossible to obtain results that are insensitive to the

B, /v we did not observe a regular .patter.n for the defgctiveorderp_ Forr,=1, discarding the cases in which the com-

Padés and we have uset,,=1,2, discarding all defective puted eigenvalues are complex, we obtain for the smallest

cases. eigenvaluew:
The results, for chosen valuesmfo, andr, are reported

in Table VII. The quoted uncertainty is the standard devia- ©=0.162)(p=4), 0.213)(p=5), 0.163)(p=6).
tion of the results wher-3<6§,<3 and—1<§,<1. This (3.16

choice is completely arbitrary, but in similar analyses of dif-\y/a have included in the error the dependence on the position

ferent models we found that varyingby =1 andbby =3 ¢ yhe fixed point. These estimates have been obtained set-
provides a reasonable estimate of the error. Notice that w

. ﬁng r,=1 and averaging oveds, andb, varying between 0
have not optimized, , but we have averaged over all values 4 10 \we have not tried to optimize the choice of these

between 0 and 20, since the dependence on this parameters,a meters, since the estimates show only a small depen-
extremely small. The results are stable, giving a final estigence on them. We have also considergd 2. In this case
mate (average of the results with=6,q=4) a large fraction of the approximants is defectifer p=4

they are all defective We obtain

where §, and &, are (n-independentnumbers which allow
us to varyb,, and«,, around the optimal values. Estimates of
the fixed point are obtained from

EZ(BU/U)(qipibu 1r1,u ; 5b15a)201

u*=-0.63116), v*=2.19520). (3.15

The error bars have been chosen in such a way to include all ©=0.294)(p=5), 0.335)(p=6). (3.17
central values fop=>5 andp=6. It should be noted that, The quite large discrepancy between the estim@d$) and
even if our results are quite stable with respect to changes @8.17) clearly indicates that the analysis is not very robust. A
the parameters, most of the approximants do not contributeonservative final estimate is

since they are defective. For these reasons, in the following

we will always carefully check the dependence of the esti- 0=0.2510), (3.18
mates on the value of the fixed point, considering also valueﬁqat includes the previous results.

of (Ek ,F) that are well outside the confidence intervals of We have also tried the Conforma|_|5aﬂere| method, op_

Eq. (3.15. _ o timizing separately each coefficient. However, several prob-
We can compare our results for the fixed point with pre-lem appeared immediately. First, we could not perform a

vious determinations. Reference 26 reports*,¢*) PadeBorel resummation of the series irof the elements of
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TABLE VIIl. Estimates of the critical exponents for the RIM we consider two values appearing in the first analysis of the

universality class obtained using a double RBdeel resummation.
The estimates correspond to the following choices of the param
eters: Gsb,,b,=<20, r,=1,2. The subscript indicates the percent-
age of cases in which some Padpproximant appearing in the

resummation procedure was defective.

(u*,v*)

14

Y

(—0.631,2.195)
(—0.640,2.230)
(—0.680,2.240)

(—0.631,2.195)
(—0.745,2.275)
(—0.800,2.270)

(—0.631,2.195)
(—0.570,2.210)
(—0.700,2.290)

p=4

0.6706(3y
0.6740(3y,
0.6725(29v,

1.3222(4}00,
1.3282(5 )00,
1.3283(5 )0y,

p=>5

0.6740(4),
0.6739(4),
0.6687(3),

1.3270(7)o
1.3291(7 o,
1.3213(7 o4

p=6

0.6677(4),
0.6745(6),
0.6727(4),

1.3130(8 )0
1.3225(11)0,
1.3223(8 )y

0.030 81(3)s,
0.027 38(2)s,
0.023 87(2)y,

0.032 72(2)09
0.038 10(4}9
0.03333(2)05

fixed point position, those with the largest and smallest value
of u*, whenb, andb, vary in[0,5]. The dependence on

(u*,v*) is quite small, of the same order of the dependence
on the ordep. As final estimate we quote the value obtained
for p=6, using the estimaté3.15 for the fixed point. The
error is estimated by the difference between the results with
p=5 andp=6. Therefore, we have
v=1.31314), »=0.6686), 7=0.032719).
(3.19

Note that, within one error bar, all estimates ofand v
reported in Table VIII are compatible with the results given
above. Instead, the estimates »fshow a stronger depen-
dence on the critical point, and priori, since we do not
know how reliable are the uncertainties reported in Eg.
(3.15, it is possible that the correct estimate is outside the
confidence interval reported above.

We will now use the conformal Padgorel method. A
first estimate is obtained considering approximants of the

form

the stability matrix. Indeed, in all cases, some Pagprox- Es(-)(q,p;by.ry:b, . a,)

imant was defective. As in the determination of the fixed-

point position, we tried to resum the seriestinvithout any =Ea(-)(a,p;by.ryi{bn=b,} {an=a,}),

additional transformation. Fqy= 4 this gives reasonable re- (3.20

sults, and we can estimate=0.299). However, for p .

=5,6 all eigenvalues we find are complex, and as such musetting allb, equal tob, and a,, equal toe, . The results

be discarded. show a tiny dependence dn,, while no systematic differ-
The fact that the series appearing in the stability matrixeNCe is observed between the approximants wjth1 and

generate always defective Padpproximants may indicate ru_=2. Therefore, we averaged over all nondefective _results

that the series il arenot Borel summable. In this case, one With 0=<b,=<10 andr,=1,2. Then, we looked for optimal

expects that the estimates converge towards the correct valif§ervals [aop—Aa, agyt Aa], [Dop—Ab,beyt+Ab] for

up to a certain number of loops. Increasing further the lengtfth® parameters, andb, . They were determined by mini-

of the series, worsens the final results. If indeed the exparizing the discrepancies among the estimates corresponding

sion is not Borel summable, the previous results seem t& (P,d)=(5,3), (5,4), (6,3), and (6,4). Usinje=1 and

indicate that for the subleading exponentthe best results Ab=3 as we did before, we obtaib,,=5 and aqp=

are obtained at four loops. —0.5. The results corresponding to this choice of parameters
Let us now compute the critical exponents. As before, weare reported in Table IX. As a final estimate we quote the

tried several different methods. A first estimate was detervalue obtained fop=6 andq=4, using the estimat3.15

mined using the double Paddorel method. Each exponent for the fixed point:

was computed from the approximaris (e)(p;b,,ry;b,) _ _ _

defined in Eq(3.8). For y and v, the series I and 1k are y=133821), »=0.67611), »=0.02795). (3.21)

more stable and thus the final estimates are obtained from ’

their analysis. Fory, if we write n=Xn,(v)u", then For y andv the estimates given above are compatible with

no(v)~v? and 7,(v)~v. In this case, fom=0 we re- all results of Table IX. In particular, they are correct even if

summed the seriesq(v)/v?, while forn=1 we considered the error in Eq.(3.19 is underestimated. They are also in

n1(v)/v. The results we obtain are very stable, even if we dogood agreement with the estimates obtained with the double

not optimize the parametels, andb, . PadeBorel transformation, cf. Eq3.19. On the other hand,
Without choosing any particular value for them, but sim-it is not clear if the error o is reliable. Indeed, comparison

ply averaging over all values between 0 and 10, we obtaiwith Eq. (3.19 may indicate that the correct value gfis

the results of Table VIII. Note that we have not quoted anylarger than what predicted by this analysis.

estimate ofp for p=4: in all cases, some Padpproximant As we did for the fixed point, we can also use the approxi-

was defective. The quoted uncertainty, that expresses thﬂantséz defined in Eq.(3.13, optimizing separately each

variation of the estimates when changing, b, , andr,, is  coefficient. The results are reported in Table X and corre-

very small, and it is clear that it cannot be interpreted as &pond to G<b,<10, —3<4,<3, —1<4,<1, andr,

correct estimate of the error, since the variation with the=1 2. As it can be seen from the very small “errors” on the

orderp of the series is much larger. In Table VIII we also results, the dependence bpis tiny and we have not tried to

report the estimates of the exponents corresponding to segptimize this parameter. The results are reasonably stable

eral different values of (* ,v*): beside the estimatg.15,  with respect to changes pfandq and also the dependence
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TABLE IX. Estimates of the critical exponents for the RIM universality class obtained using the confor-
mal PadeBorel method(irst analysi$. All estimates correspond to the following choices of the parameters:
0<b,<10, 2<b,<8, —1.5<a,<0.5, r,=1,2. The subscript indicates the percentage of defectivé Pade
approximants. The upper part of the table reports the estimatesifos{) = (—0.631,2.195) and different
values ofp andg. The lower part reports estimates obtained setpirgd andq=4 for several values of

(u*,v*).
p=5, q=3 p=>5, q=4 p=6, q=3 p=6, q=4
y 1.336(18)0, 1.308(19)00; 1.305(15)00; 1.338(21)0,
v 0.673(11)40, 0.660(10)4, 0.657(7 k494 0.676(11)0,
7 0.0285(15)4, 0.0288(17)gv 0.0278(4)7, 0.0279(5 )04
(—0.647,2.215) €0.615,2.175) £0.700,2.290) €0.570,2.210)

¥ 1.342(21)y, 1.334(21)y, 1.371(23)y, 1.349(21),,
v 0.678(11)0, 0.674(11), 0.694(13), 0.685(13)0,
7 0.0277(5%04 0.0280(4 3305 0.0270(12)gy, 0.0334(4 )00

on the value of the fixed point is small. As final results from second check of these results is given by the inequalities
this analysis we quote the values obtained with6 andq =2/3~0.66667 and y+27/3=4/3~1.33333, that are
=4: clearly satisfied by our estimates, e.g+ 27/3=1.350(17).
Finally, we want to stress that our final estimat83 are
y=1.32%8), v=0.6811), »=0.03135). (3.22  compatible with all results appearing in Tables VIII, IX, and

We can compare these results with the previous estimates €Ven those computed fou{,v™) largely different from
(3.19 and(3.21). The agreement is reasonable, although théhe estlmate§3._13. Thus, we believe that our error estl_rr_1ates
quoted error onv and 7 is probably underestimated. This is take_properly into account the uncertainty on the position of
confirmed by the fact that the scaling relatipr (2— n)vis  the fixed point. , .
not satisfied within error bars: indeed, using the estimates of YSing the scaling relationa=2—-3» and 8= v(1+ 7)
v and 77, we gety=1.3412). we have
We want now to obtain final estimates from the analyses _ _
presented above. Since in the conformal PBdesl method @=-0.03430), £=0.3495). 3.29
we make use Of some additional information, the pOSitiOI’l Of For Comparison we have also performed a direct ana|ysis
the singularity of the Borel transform, we believe this analy-gf the perturbative series, resumming the expansions for
sis to be the most reliable one. As our final estimate we hav‘?ixedv_*lﬁ*. In zero dimensions, these series are not Borel
tgezrefo]rc_e,_ conﬁldered the avehrage betwe?” IEgQJ) Iand h summable, and this is expected to be true in any dimension.
( '.2)’ IXing the error in such a way to include also the However, for the short series we are considering, we can still
estimates(3.19). In this way we obtain hope to obtain reasonable results. We have used the same
y=1.33017), v=0.67810), 5=0.0303). (3.23 procedures. described'in_Ref. 91, p.erforming a conformal

transformation and using,(z) given in Eq.(2.24 as the
A check of these results is provided by the scaling relatiorposition of the singularity. We obtain
y=v(2— 7). Using the values ofv and » we obtain y o o
=1.336(20) in good agreement with the direct estimate. A u*=-0.76325, v*=2.30643); (3.2

TABLE X. Estimates of the critical exponents for the RIM universality class obtained using the confor-
mal PadeBorel method(second analysjs All estimates correspond to the following choices of the param-
eters: O<b,<10, —-3<6,<3,—-1<4,<1, r,=1,2. The subscript indicates the percentage of defective
Padeapproximants. The upper part of the table reports the estimatesufQui{)=(—0.631,2.195) and
different values ofp and g. The lower part reports estimates obtained setprg6 andq=4 for several

values of (1*,v*).

p=5, q=3 p=5, q=4 p=6, q=3 p=6, q=4
Y 1335(16)12% 1329(15k7% 1322(7)‘7% 1321(8k6%
v 0.684(3 )50 0.682(3 )0 0.682(1 )30, 0.681(1 )70,
7 0.0299(4 ), 0.0299(15)0, 0.0312(6 )0, 0.0313(5),

(—0.647,2.215) ¢0.615,2.175) £0.700,2.290) €0.570,2.210)

y 1.323(8 )79, 1.318(8 )79 1.332(10)70, 1.331(7 %794
v 0.683(1 %50 0.680(1 %50, 0.690(1 y10 0.687(1 )80
7 0.0314(5), 0.0313(5), 0.0315(5)0, 0.0368(6 )0,
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TABLE XI. Field-theoretic estimates of the critical exponents for the RIM universality class. Here *
=3 exp.” denotes the massive scheme in three dimensions, “MS exp.” is the minimal subtraction scheme
without € expansion. All perturbative results have been obtained by means offeaekeor Chisholm-Borel
resummations, except the results of Ref. 27 indicated bW obtained using thes algorithm of Wynn and

of this work.
Method Yy v n [0)
This work d=3 exp.0(g®) 1.33017) 0.67810) 0.0303) 0.2510)
Ref. 39, 2000 d=3 exp.0(g®) 1.3253) 0.6715) 0.02510) 0.326)
Ref. 37, 2000 d=3 exp.O(g" 1.3362) 0.68112) 0.04011) 0.31
1.3235) 0.6724) 0.03410) 0.33
Ref. 36, 1999 d=3 exp.0(g% 0.3725)
Ref. 27, 1989 d=3 exp.0(g% 1.321 0.671
Ref. 27, 1989 d=3 exp.0(g*) eW 1.318 0.668
Ref. 26, 1989 d=3 exp.0(g*) 1.326 0.670 0.034
Refs. 36,38, 1999 d=3 MS O(g* 1.318 0.675 0.049 0.39
Ref. 19, 1982 scaling field 1.38 0.70 0.42
y=1.32712), »v=0.6738), 7=0.0293), Indeed, at this order the resummgdunctions do not have
any zero in the region<0. This fact is probably related to
w=0.3411). (3.26 the fact that the series which is analyzed is not Borel sum-

mable. Therefore, perturbative expansions should have an
The estimate of the fixed point is very different from that optimal truncation beyond which the quality of the results
computed before. This may indicate that the non-Borel sumworsens. For the8 functions in the minimal subtraction
mability causes a large systematic error in this type of analyscheme, the optimal number of loops appears to be four.
sis. Probably the optimal truncation for tjefunctions cor- ~ Two other methods have been used to compute the critical
responds to shorter series. On the other hand, the criticaixponents: the scaling-field metHdd and the e
exponents show a tiny dependence on the position of thexpansiort? The former gives reasonable results, while the
fixed point. The estimates we obtain are in good agreemenatter is unable to provide quantitative estimates of critical
with our previous ones, indicating that the exponent serieguantities, see, e.g., Ref. 38. We can also compare our results
are much better behaved. with the recent Monte Carlo estimates of Ref. 53. The agree-

Let us now compare our results with previous field- ment is quite good fory and v, while our estimate ofy is

theoretic determinations, see Table XI. We observe a verglightly smaller, although still compatible within one error
good agrement with all the reported results. Note that oubar. This is not unexpected and appears as a general feature
error bars ony andv are larger than those previously quoted. of the d=3 expansion: indeed, also for the pure model, the
We believe our uncertainties to be more realistic. Indeed, westimate ofy obtained in the fixed-dimension expansion is
have often found in this work that Pa@®rel estimates are lower than the Monte Carlo and high-temperature results
insensitive to the parameters used in the analysis, in particisee Ref. 72 and references thejein
lar to the parametel characterizing the Borel-Leroy trans-
form. Therefore, error estimates based on this criterion may
underestimate the uncertainty of the results. The perturbative
results reported in Table XI correspond to the massive In this section we consider the random vector model for
scheme in fixed dimensioh=3 and to the minimal subtrac- M=2. First, we have studied the regior<0, looking for a
tion scheme withou¢ expansion. It should be noted that the possible fixed point. We have not found any stable solution,
latter scheme does not provide any estimate at five I3bps.in agreement with the general arguments given in the intro-

B. The random M-vector model for M=2

TABLE XII. Estimates of the subleading exponeat at the O(M)-symmetric fixed point. The last
column reports the theoretical predictionay /vy, .

M p=4 p=5 p=6 Final —ay /vy

0.00936) 0.0039) 0.0074) 0.0078) 0.01926) Ref. 87
0.022324) Ref. 90
0.016367) Ref. 88

3 0.14219) 0.1518) 0.1565) 0.15610) 0.17214) Ref. 88
0.20312) Ref. 111
4 0.27435) 0.26910) 0.2806) 0.28012) 0.30122) Ref. 88

0.36016) Ref. 111
8 0.58@40) 0.56313) 0.5868) 0.58616) 0.68311) Ref. 111
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duction: the mixed point is indeed located in the region The final results for some values M are reported in
>0, and it is therefore irrelevant for the critical behavior of Table XII, together with estimates of the theoretical predic-
the dilute model. What remains to be checked is the stabilitfion — ay, /v, . For M=3 these results clearly indicate that
of the O(M) fixed point. As we mentioned in the introduc- the O(M)-symmetric point is stable. The results are some-
tion, a general argument predicts that this fixed point iswhat lower than the theoretical prediction, especially if we
stable; the randorfcubic) perturbation introduces only sub- consider the high-temperature estimates of the critical expo-
leading corrections with exponeat= — ay /vy . This €Xpo-  nents of Ref. 111. This is not surprising: indeed the estimates
nent can be easily computed from of the subleading exponenis show in many cases discrep-
ancies with estimates obtained by using other methods. This
0= 07'6_7(0'0_)’ (3.27)  is probably connected to the nonanalyticity of fhéunction
au at the fixed poinf>112:113109.11% simjlar discrepancy, al-
which is N independent as expected. though still yvell within a corr_lbined_err_or b_ar, is obser\/_ed for
The analysis is identical to that performed for the stability™ = 2- In this case, we obtaia>0, indicating that the fixed
of the Ising point in Ref. 91. We use a conformal transfor-POINt is stable. The error, however, does not allow us to
mation and the large-order behavior of the series; then we figxclude the opposite case.
the optimal valued,,, and a,; of the parameters by requir-
ing the estimates af* andw to be stable with respect to the
order of the series used. The errors were obtained varying
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