
PHYSICAL REVIEW B 1 SEPTEMBER 2000-IIVOLUME 62, NUMBER 10
Monte Carlo study of the SÄ 1
2 and SÄ1 Heisenberg antiferromagnet

on a spatially anisotropic square lattice

Y. J. Kim and R. J. Birgeneau*

Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
~Received 18 April 2000!

We present a quantum Monte Carlo study of a Heisenberg antiferromagnet on a spatially anisotropic square
lattice, where the coupling strength in thex direction (Jx) is different from that in they direction (Jy). By
varying the anisotropya from 0 to 1, we interpolate between the one-dimensional chain and the two-
dimensional isotropic square lattice. BothS51/2 andS51 systems are considered separately in order to
facilitate comparison. The temperature dependence of the uniform susceptibility and the spin-spin correlation
length are computed down to very low temperatures for various values ofa. For S51, the existence of a
quantum critical point atac

S5150.040(5) as well as the scaling of the spin gap is confirmed. Universal
quantities predicted from theO(3) nonlinears model agree with our results ata50.04 without any adjustable
parameters. On the other hand, theS51/2 results are consistent withac

S51/250, as discussed by a number of
previous theoretical studies. Experimental implications forS51/2 compounds such as Sr2CuO3 are also
discussed.
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I. INTRODUCTION

Low dimensional quantum magnetism is currently one
the most intensively studied fields in condensed-matter ph
ics. Through the synergistic efforts of theory, numeric
simulation, and experiment, our understanding of the st
and dynamic behavior of low dimensional quantum magn
has grown tremendously. The study of the one-dimensio
~1D! quantum Heisenberg antiferromagnet~QHA! has a long
history dating back to the exact solution found by Bethe1 for
the S51/2 nearest-neighbor~NN! chain. He found the
ground-state eigenfunction for this system and showed
there is no long-range order atT50, unlike its classical
counterpart. The Bethe-Ansatz solution, however, is pecu
to the S51/2 chain and cannot be readily generalized. R
cent theoretical advances in quantum magnetism have c
primarily from applications of quantum field theory tec
niques. The low-energy, long-wavelength behavior of qu
tum antiferromagnets can be mapped onto an effective r
tivistic field theory.

In his pioneering work based on the large-spin, semic
sical mapping of the 1D QHA to theO(3) quantum nonlin-
ear s model (QNLsM) in (111) dimensions,2 Haldane
conjectured that all half-odd-integer spin chains should
have qualitatively like aS51/2 chain, while for integer spin
chains the zero-temperature spin correlations should de
exponentially with distance due to the presence of the
called Haldane gap,D. In two-dimensions, Chakravarty, Ha
perin, and Nelson3 have mapped the long-wavelength, low
temperature behavior of the two-dimensional~2D! QHA
onto the (211) dimensional QNLsM. They obtained a
phase diagram for the system with three regimes: quan
disordered~QD!, quantum critical~QC!, and renormalized
classical~RC!. In the QD regime, the spin correlation leng
j remains finite even atT50, as in the case of theS51 spin
chain. In the QC regime, temperature is the only relev
energy scale, and thusj diverges like;T21 as T→0: T
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50 is the quantum critical point. In the RC regime, the co
relation length diverges exponentially@;exp(1/T)#, so that
the ground state has long-range order.

Due to the peculiar role played by the spin quantum nu
ber in the ground-state properties, the 1D QHA has b
much studied since Haldane’s conjecture. The 2D QHA
also attracted considerable attention both for its intrinsic
terest and also because the magnetism in the parent c
pounds of the high temperature superconductors is well
scribed by theS51/2 2D QHA. Recently, attention has bee
given to the physics of magnetism in intermediate dime
sions; namely, systems which exhibit a crossover from o
to two dimensions. One can think of two different a
proaches to explore this problem. One method is to be
with spin ladders, which are obtained by coupling a sm
number of spin chains, and then to increase the numbe
chains in the spin ladder until 2D physics is obtained. Alt
natively, one can begin with an infinite number of decoup
spin chains, and then increase the coupling between the
chains gradually until the interchain coupling becomes co
parable to the intrachain coupling; in other words, one st
ies a spatially anisotropic square lattice quantum Heisenb
antiferromagnet~SASLQHA!. Spin ladders have been stud
ied much recently, and have revealed the initially surpris
result that the ground-state properties of theS51/2 spin lad-
der depend on the number of chains in the ladder,4 analogous
to the 1D QHA. Specifically, when even numbers of cha
~or legs! are coupled to form a ladder~even-n), they show
the same universal behavior as integer spin chains, w
odd-n S51/2 ladders behave essentially like a singleS
51/2 chain at low temperatures and long wavelengths.

Our study focuses on the SASLQHA, in which the dime
sional parameter~interchain coupling! can be variedcontinu-
ously. The Hamiltonian of the SASLQHA is essentially th
of parallel spin chains forming a square lattice with inte
chain couplingJx (Jx.0):

H5Jy(
i , j

Si , j•Si 11,j1(
i , j

JxSi , j•Si , j 11 . ~1!
6378 ©2000 The American Physical Society



us
t

le

re
h

th
th

ua

e
e

or
t

a
e
d

t
op

ex

rlo
-

l

d
he
e

g
e
-

o
ce
la
th
ite
b

yin
-
s-

rlo
I.
are

nd

n
is

en-

r

nt

e-

lat-

-
pin

t

rlo
is

PRB 62 6379MONTE CARLO STUDY OF THES5
1
2 AND S51 . . .
Here i and j label lattice sites along they direction and thex
direction, respectively. We will setJy5J and use a
[Jx /Jy as an anisotropy parameter in this paper. We
units in which\5kB5gmB51, and set the lattice constan
a51 along both thex and y directions. By varying 0<a
<1, the Hamiltonian Eq.~1! can interpolate between a sing
spin chain and an isotropic square lattice. TheS51/2 case
has drawn special attention recently, due to its conjectu
relevance to the physics of stripe structures in hig
temperature superconductors.5,6

One of the most interesting questions in the physics of
SASLQHA is the nature of the ground state. Since
ground state of the 1D QHA (a50) is disordered while the
QHA on an isotropic square lattice (a51) has a Ne´el or-
dered ground state, there should be an order-disorder q
tum transition for a critical value ofa5ac . For S51 this
seems intuitively clear. Asa is increased from zero, th
Haldane gap will decrease smoothly, vanishing at a nonz
ac

S51 . However, it is not at all obvious what the behavi
should be forS51/2. Although it is widely believed tha
ac

S51/250, there are a few studies claiming otherwise.5,7 Sa-
kai and Takahashi8 first considered the Hamiltonian Eq.~1!
by treating the interchain coupling in the smalla limit via
mean-field theory. They also estimated thatac

S51/2'0 and
ac

S51'0.025 by calculating the susceptibility via numeric
Lanzcos diagonalization. Azzouz and co-workers obtain
essentially the same results from their field theoretical stu
albeit with smallerac

S51'0.001 86.9,10 The renormalization-
group argument by Affleck and co-workers11,12 suggests tha
the answer is not universal but depends on the microsc
details of the model. For the nearest-neighbor model@Eq.
~1!#, ac

S51/250 was shown by zero-temperature series
pansions.

In this paper we show that our quantum Monte Ca
study of theS51/2 SASLQHA gives results which are con
sistent with the claim that Ne´el order sets in for infinitesima
a for S51/2.8,10,11,13–16For theS51 SASLQHA, we show
that ac

S5150.040(5) is the quantum critical point; we fin
that the thermodynamic properties at this point follow t
O(3) QNLsM predictions remarkably well. We compar
three quantities: the dimensionless ratioSQ /Txs ~defined be-
low!, the temperature dependences of the correlation len
j, and the uniform susceptibilityxu . These quantities agre
quantitatively with the QNLsM values without any adjust
able parameter.

We have carried out quantum Monte Carlo simulations
large lattices utilizing the loop cluster algorithm. The latti
size has been kept at least ten times larger than the calcu
correlation length. The lengths and Trotter numbers of
simulated lattices are chosen so as to minimize any fin
size and lattice-spacing effects. Spin states are updated a
214 times to reach equilibrium and then measured 215 times.
The same algorithm has been applied sucessfully in stud
spin chains and spin ladders.17–19 We compute the tempera
ture ~T! and anisotropy (a) dependence of the uniform su
ceptibility, xu(a,T); the correlation length,j(a,T); the
staggered susceptibility,xs(a,T); and the static structure
factor at the antiferromagnetic wave vectorQ5(p,p),
SQ(a,T) for both theS51/2 andS51 SASLQHA.
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The structure of this paper is as follows: Our Monte Ca
results for theS51/2 SASLQHA are presented in Sec. I
The uniform susceptibility and the correlation length data
shown and discussed here. We present theS51 SASLQHA
Monte Carlo results in Sec. III. In Sec. IV, we determine a
discuss the phase diagram of theS51/2 and S51
SASLQHA using QNLsM language, especially focusing o
the quantum critical behavior. In Sec. V, implications of th
study in relation to experiments and other related low dim
sional quantum magnets are discussed.

II. RESULTS FOR SÄ1Õ2

In Fig. 1 we show the uniform susceptibility per spin fo
S51/2, as a function ofT for variousa in semilog scale. The
results for thea51 square lattice are taken from the rece
Monte Carlo study by Kim and Troyer.20 The crossover from
1D to 2D behavior is clear in this figure. For smalla, the
uniform susceptibility follows that of a single chain, but b
gins to deviate aroundT/J;5a. For largera, xu lies inter-
mediate between those for a single chain and the square
tice, as expected.

In the smalla limit, the Monte Carlo results can be com
pared with the results of experiments on weakly coupled s
chains. In particular, Sr2CuO3 has a structure whereS51/2
spin chains lie along the crystallographicb direction. The
interchain interaction along thea direction is frustrated, thus
making this system quasi-two-dimensional. In thebc plane,
the interaction along thec direction is much smaller than tha
in the b direction, therefore Sr2CuO3 is a very good realiza-
tion of theS51/2 SASLQHA in the smalla limit. Specifi-
cally, the crystallographicb direction corresponds to they
direction in the notation of the Hamiltonian, Eq.~1!, while

FIG. 1. The uniform susceptibility per spin,xu for S51/2, is
shown as a function ofT for variousa in semilogarithmic scale.
a51 data are taken from Ref. 20. The Sr2CuO3 experimental re-
sults~Ref. 21! are also shown; they are scaled to fit the Monte Ca
results andJ52200 K is used to scale temperature. The solid line
a plot of the field theory result from Ref. 22.
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the c direction corresponds to thex direction. Recently Mo-
toyama and co-workers21 measured the magnetic susceptib
ity of Sr2CuO3. They extracted a value for the intracha
exchangeJ52200(200)K by fitting the result to the theoret
ical expression proposed by Eggertet al.22 Motoyamaet al.
also observed the logarithmic correction term predicted
the theory. However, a sudden drop in the susceptibility n
20 K was observed, and this was attributed to the onse
three-dimensional~3D! Néel order. In Fig. 1, the Sr2CuO3
experimental results are shown as solid circles usingJ5Jb
52200 K. As one can see from the figure, this drop can
naturally explained by a small but nonzero interchain c
pling. From a comparison with our Monte Carlo results, o
can estimate the interchain coupling in Sr2CuO3 as Jc5Jx
'0.002J'0.4 meV.

A couple of points need to be mentioned in estimating
interchain coupling in Sr2CuO3. First, since the analysis o
the susceptibility data involves the subtraction of a Cu
term due to impurities, subtle effects may be difficult to i
terpret unambiguously. However, recent nuclear magn
resonance Knight shift measurements, in which the Kni
shift is proportional to the uniform susceptibility, show com
plete agreement with the susceptibility data.23 Second,
Schulz24 and Wang25 have predicted the staggered magne
zation of this system as a function of the interchain coupli
m050.72(J' /J)1/2 from their interchain mean-field theory.26

With a50.002, we obtainm050.032'0.064mB , which
agrees with the experimentally27 determined value of
0.06(1)mB , giving credence to our estimate of the intercha
coupling in Sr2CuO3.

The spin-spin correlation length is deduced from fits
the calculated instantaneous spin-spin correlation functio
the asymptotic Ornstein-Zernike~OZ! form. Only large dis-
tance numerical data are included in the fits to ensure tha
asymptotic behavior is probed. As discussed in our previ
Monte Carlo studies of quantum spin systems,17,18 the 1D
OZ form works best at high temperatures, while the 2D O
form works better at low temperatures. However, for theS
51 SASLQHA we observe a crossover to the 3D OZ fo
at low temperatures. This crossover of the correlation fu
tion will be discussed in Sec. V.

The correlation lengths so obtained forS51/2 are plotted
in Fig. 2 on a logarithmic scale as a function of inver
temperature. Therefore linear behavior in this plot cor
sponds to an exponential dependence onT21, and the slope
corresponds to the spin stiffness. At low enough tempe
tures, all data show linear behavior except fora50, signal-
ing that a50 is indeed a critical point. The solid lines a
the results of fits to the crossover form suggested by Ca
Neto and Hone,5 which interpolates between the low-T ex-
pression calculated by Hasenfratz and Niedermayer28 for the
(211)-dimensional QNLsM and j;T21 at high tempera-
ture:

j5Aexp@2prs~a!/T#/F11
1

2

T

2prs~a!G . ~2!

Two adjustable parameters are used in the fitting: A andrs .
The anisotropy dependence ofrs(a) is used to provide a
crossover temperature scale between quantum critical
renormalized classical behavior in Sec. IV. We find that
n
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rs(a) values extracted from fittingjx and jy agree within
the errors, as evidenced by the identical slopes in Fig. 2

III. RESULTS FOR SÄ1

The uniform susceptibility data forS51 are shown in
Fig. 3. The results for the square lattice (a51) are taken
from recent QMC work by Harada and co-workers.29 As in
the S51/2 case, for smalla any deviation from the single
chain data is only observed at very low temperatures. A
evident in Fig. 3, one observes distinctively different beha
ior for a50.02 compared with that fora50.05. Specifically,
xu(a50.02) drops to zero at low temperatures, signaling
opening of a spin gap and concomitantly a spin liquid grou
state. Indeed, one can fit the data with the asymptotic fo
xu(T);exp(2D/T) at low temperatures. The result of the
is shown as the solid line fora50.02 in Fig. 3. The spin gap
values from these fits are as follows:D(a50.01)/J
50.32(1), D(a50.02)/J50.25(1), and D(a50.03)/J
50.17(1). Note that thea50.01 anda50.03 data are not
shown in Fig. 3 for graphical purposes.

In Fig. 4, the correlation length data in they direction are
plotted for S51. Since most correlation length data alon
the x direction are smaller than one lattice constant, they
not plotted. Note the linear scale in this figure, unlike t
logarithmic scale in Fig. 2 forS51/2. This clearly shows the
1/T dependence of the correlation length fora50.04, which
thus identifiesa50.04 as a quantum critical point. Fo
smaller values ofa the correlation length saturates
low temperatures: j0(a50.01)57.0(2), j0(a50.02)
510.8(5), j0(a50.03)519.0(5). For a.ac , the correla-
tion length diverges exponentially in 1/T. Therefore one can

FIG. 2. The correlation length forS51/2 as a function ofJ/T
for various values ofa in a logarithmic scale. Filled symbols de
note the correlation length in thex direction (jx), while open sym-
bols arejy data. For smalla (a<0.05), thejx’s are smaller than
one lattice constant and are not shown in the figure. Solid lines
fits to Eq.~2!, showing the exponential dependence ofj on T21.
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fit the data to Eq.~2! to obtain the spin stiffnessrs(a).
Some precautions are necessary in extracting the cor

tion length from the correlation function via fits to the O
form. The OZ form for the correlation function in general

FIG. 3. The uniform susceptibility per spin,xu for S51, shown
as a function ofT for various values ofa on a semilogarithmic
scale. Thea51 data are taken from Ref. 28. The solid line is t
result of a fit to the asymptotic formxu;exp(2D/T). Inset: The
a50.04 data on a linear scale. The solid line isJxu50.34T/J.

FIG. 4. The correlation length along they direction,jy , for S
51 as a function ofJ/T for various values ofa. Note that this plot
is on a linear scale, so that the straight line through thea50.04
data signifies the 1/T dependence ofj. Filled symbols show expo-
nentially diverging correlation lengths, while open symbols sh
the saturation of the correlation length at low temperature for a
ground state.
la-

C~r !;
e2r /j

r l
, l5

~d21!

2
, ~3!

where d is the dimensionality. In quantum systems at lo
temperatures,d should be replaced by the effective dime
sionality (d11). Since the low-temperature and lon
wavelength behavior of theS51 SASLQHA with nonzeroa
is mapped onto the (211)-dimensionalO(3) QNLsM, the
functional form of the correlation function at low temper
tures and long distances should be the OZ form withl51.
Similarly, the 1DS51 spin chain~SASLQHA with a50)
has a correlation function of thel50.5 OZ form.18 We in-
deed observe a crossover in the functional form ofC(r ) from
l50.5 to l51 by increasinga from zero to a small but
nonzero value in theS51 SASLQHA. In Fig. 5, the corre-
lation function at the low temperatureT/J50.04 is plotted to
illustrate the difference inl. In order to show the subtlel
dependence, 1/C(r ) is multiplied by the exponential factor
and only thee2r /j/j/C(r );r l part is shown as a function o
r /j. The l51 behavior is apparent fora50.025, whilel
50.5 describes thea50 data better. For comparison pu
poses,C(r ) for an S51/2 chain (a50) is also plotted; in
that case thel50 behavior is quite clear.

One should note that this crossover is observed only in
QD phase, since the finite correlation lengths in this ph
allow the QMC technique to probe the low-temperature
havior. On the other hand, in phases with a diverging co
lation length, it is difficult to study the ground-state prope
ties with the QMC method. Considering that the SASLQH
behaves classically at high temperatures, it is possible
the S51/2 data in Fig. 5 (T/J50.04) have not reached low
enough temperatures to show the true ground-state beha
of l50.5. In deducing the correlation length data shown
Fig. 4, thel51 form was used fora>0.02 at low tempera-
tures, whilel50.5 was used otherwise.

IV. QUANTUM CRITICAL POINT

The phase diagram of theS51 SASLQHA is sketched in
Fig. 6, where we use the energy gapD and spin stiffness
2prs , obtained from the fits discussed in previous sectio
as the crossover energy scales. We use the terminolog

D

FIG. 5. Inverse correlation function multiplied by the expone
tial factor e2r /j/j/C(r ) plotted as a function of distancer /j. The
solid lines are the results of fits to the form;r l with l fixed at the
given values. All data are taken atT/J50.04.
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the O(3) QNLsM to identify the different phases in th
figure.3 The inverse anisotropy ratio 1/a corresponds to the
coupling constantg. The S51/2 phase diagram is almos
identical to that of Ref. 30, and hence is not shown here

At the quantum phase transition in (211) dimensions,rs
andD obey the scaling laws

rs;~gc2g!n, ~4!

D;~g2gc!
n, ~5!

with a critical exponentn'0.69 for the 2D QHA.31 Since
a21 plays the role of the coupling constantg, we plot
D0(a2ac)

n as a shaded line in Fig. 6. Note thatD0 is fixed
from the S51 chain value, so that there is no adjustab
parameter. The power-law scaling fits the gap data q
well, confirming that the low-temperature long-waveleng
behavior of theS51 SASLQHA is consistent with that o
the O(3) QNLsM.

To illustrate thatac50.04 is indeed the quantum critica
point of the S51 SASLQHA, the dimensionless rati
SQ /Txs is plotted in Fig. 7~a!. According to the QC scaling
prediction for theO(3) QNLsM,32 this ratio should exhibit
universal behavior in the QC regime with the specific va
SQ /Txs51.10(2). As shown in Fig. 7~a!, the a50.04 data
for SQ /Txs are constant around 1.1 at low temperatures
quantitative agreement with the QC scaling value. This ra
has been sucessfully used in identifying quantum critical
havior in different systems, for example, weakly coupl
spin ladders.19 We also show the correlation lengthjy mul-
tiplied by temperature in Fig. 7~b!, to emphasize the 1/T
dependence ofjy at the quantum critical point,ac50.04, at
low temperatures. Using the QNLsM prediction33 jyT
5c/1.04, we obtain the spin wave velocity ofcy /J52.6,
which is slightly larger than the 1D value~2.49!, but smaller
than the 2D value~3.067!.

Another quantitative prediction from theO(3) QNLsM
is the uniform susceptibility. In the QC regime the unifor
susceptibility is given as33

FIG. 6. Phase diagram of theS51 SASLQHA. The open
squares are 2prs /J obtained by fitting the correlation length to th
asymptotic form Eq.~2!, and the open triangles are the energy g
D/J obtained by fitting the uniform susceptibility to the form
;exp(2D/T). The shaded lines are the power laws, Eqs.~4! and
~5!.
te

e

n
o
-

xu~T!5V1~`!
1

c2
T, ~6!

whereV1(`)50.26(1) is a universal constant.31 Since the
spin-wave velocity is anisotropic in this case, one sho
presumably usecxcy instead ofc2 in Eq. ~6!. The inset of
Fig. 3 clearly shows the linear dependence ofxu on tempera-
ture. The fitted value of the slope is 0.34~1!. Since we do not
know the value ofcx , we use the fitted value of the slop
and Eq.~6! to estimatecx . If we take the spin wave velocity
value cy determined above, the spin wave velocity in thex
direction iscx /J'0.3. This gives the ratio of the spin-wav
velocity cx /cy'0.12, which is very close to the value give
by the series expansion study11 and spin-wave theory:7

cx /cy'0.14. One should note that the anisotropy in the sp
wave velocity is enhanced from the mean-field val
(cx /cy5Aa50.2) due to quantum fluctuations.

V. DISCUSSION

The most surprising result for theS51 SASLQHA is the
smallness of the valueac

S51'0.04, compared with the
Haldane gap value of theS51 spin chain (DH /J'0.41).
One would naively think that the interchain coupling shou
be comparable to the Haldane gap to overcome the la
energy gap and drive the system to long-range order. Ind
such heuristic reasoning works well in the case of coup
even-legged spin ladders, where the value of the spin
and the critical interladder coupling values are;0.5J and
;0.3J, respectively, for an array of two-leg ladders. Corr

FIG. 7. ~a! Dimensionless ratioSQ /Txs as a function of inverse
temperature for various values ofa. The solid line is the prediction
from theO(3) QNLsM. ~b! Correlation length multiplied by tem-
perature as a function of inverse temperature. The solid line co
sponds to the valuec1D52.49.
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sponding values for an array of four-leg ladders are;0.1J
and;0.07J.

Recently there has been a number of studies on the na
of the ground state ofS51/2 spin ladders. Specifically, muc
theoretical interest has focused on the question of whethe
not the ground state of theS51/2 antiferromagnetic two-leg
ladder is the same as that of theS51 chain. Since theS
51 chain is equivalent to theS51/2 two-leg ladder with an
infinite ferromagnetic coupling, the above question can
rephrased as whether theS51/2 ladder goes through a pha
transition when the interchain coupling is varied from a po
tive ~antiferromagnetic! value to a negative~ferromagnetic!
value. White34 has shown that the antiferromagnetic ladd
can be transformed continously to anS51 chain by switch-
ing on an irrelevant next-nearest-neighbor coupling, th
claiming the equivalence of the two. Kim and co-worker35

recently studied a two-leg ladder with various model para
eters by a bosonization method and have provided evide
that the antiferromagnetic ladder andS51 chain belong to
different universality classes, each having distinct topolo
cal string order. Our results appear to show the distinctiv
different nature of the ground state of theS51 Haldane
chain and that of the antiferromagnetic ladder. Howev
more theoretical and numerical studies are necessary to
solve this issue unambiguously.

Although both the SASLQHA and spin ladders sho
crossovers between 1D and 2D behavior, the intrinsic dif
ence between the two approaches should be noted. At
temperatures, the SASLQHA behaves as an array of de
pled chains. The 2D behavior is only observed at low te
peratures, as shown in Figs. 1 and 5. However, the spin
ders at high temperatures show essentially 2D physics, s
the spin-spin correlation length is shorter than the width
the spin ladder. Therefore the crossover for the spin ladd
~2D → 1D as T→0) is complementary to that of th
SASLQHA.

In Sec. II, we estimated the exchange interaction betw
chains in Sr2CuO3 as ;0.4 meV. Greven and Birgenea
have considered a similar exchange interaction
SrCu2O3.36 Namely, they have noted that the effective co
pling between copper spins in different ladder planes is m
diated by Sr21 ions and they have argued that this interladd
exchange should be about 10 meV. This value is also use
describe the behavior of the three-leg ladder compo
Sr2Cu3O5.37 This represents quite a large discrepancy
tween values estimated for seemingly similar superexcha
interactions. However, one should observe that the geom
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of the interplane coupling in the spin ladder compou
SrCu2O3 and that of the interchain coupling in the spin cha
compound Sr2CuO3 are quite different. Specifically, in
Sr2CuO3 , all Cu21 –Sr21 –Cu21 bond angles are close t
90°, while there exist linear Cu21 –Sr21 –Cu21 bonds in
SrCu2O3 and Sr2Cu3O5. If one assumes that the couplin
between these Cu21 ions is primarily due to the superex
change mediated by Sr21 ions, one can infer that the effec
tive interplane coupling in SrCu2O3 is mostly due to the
180° Cu21 –Sr21 –Cu21 superexchange interaction. Th
leads us to speculate that the small value (;0.4 meV) of the
interchain coupling in Sr2CuO3 is due to the absence of lin
ear Cu21 –Sr21 –Cu21 superexchange paths.

This realization is important in understanding the sp
fluctuations in superconducting YBa2Cu3O61d , since the bi-
layer coupling path in YBa2Cu3O61d is similar to the inter-
plane coupling path in the spin ladder compound SrCu2O3.38

Although the detailed nature of the hopping integral betwe
bilayers is not known, Andersenet al. have shown that the
hopping mediated by the yttrium ion contributes significan
to the bilayer exchange coupling.39 Obviously, more theoret-
ical calculations of the bilayer exchange interaction a
needed.

In summary, we have studied theS51/2 and S51
SASLQHA with the quantum Monte Carlo method. By var
ing the anisotropya from 0 to 1, we go continuously from
the one-dimensional chain to the two-dimensional isotro
square lattice. The temperature dependence of the unif
susceptibility and the spin-spin correlation length are p
sented for various values ofa. For S51, we show that there
exists a quantum critical point atac

S5150.040(5), in agree-
ment with other analytic predictions. The power-law beha
ior of the spin gap is also confirmed. In addition, univers
quantities predicted from the QNLsM, such asSQ /Txs
'1.1 andV1(`)'0.26, agree with our results ata50.04,
without any adjustable parameter. TheS51/2 results are
consistent withac

S51/250, as discussed by a number of pr
vious theoretical studies. We also estimate the interch
coupling in theS51/2 compound Sr2CuO3 by comparing the
measured uniform susceptibility data with our QMC resu
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