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We present a quantum Monte Carlo study of a Heisenberg antiferromagnet on a spatially anisotropic square
lattice, where the coupling strength in thedirection (J,) is different from that in they direction {,). By
varying the anisotropyr from 0 to 1, we interpolate between the one-dimensional chain and the two-
dimensional isotropic square lattice. BoB* 1/2 andS=1 systems are considered separately in order to
facilitate comparison. The temperature dependence of the uniform susceptibility and the spin-spin correlation
length are computed down to very low temperatures for various values &br S=1, the existence of a
quantum critical point atxS~*=0.040(5) as well as the scaling of the spin gap is confirmed. Universal
quantities predicted from th@(3) nonlinearc model agree with our results at=0.04 without any adjustable
parameters. On the other hand, 8w 1/2 results are consistent Wi&f:llzzo, as discussed by a number of
previous theoretical studies. Experimental implications $s¥1/2 compounds such as ,8u0O; are also
discussed.

[. INTRODUCTION =0 is the quantum critical point. In the RC regime, the cor-
relation length diverges exponentially-exp(1T)], so that
Low dimensional quantum magnetism is currently one ofthe ground state has long-range order.
the most intensively studied fields in condensed-matter phys- Due to the peculiar role played by the spin quantum num-
ics. Through the synergistic efforts of theory, numericalP®r in the ground-state properties, the 1D QHA has been

simulation, and experiment, our understanding of the statig?Uch studied since Haldane’s conjecture. The 2D QHA has
also attracted considerable attention both for its intrinsic in-

and dynamic behavior of low dimensional quantum magnets, <t and also because the magnetism in the parent com-

has grown tremendously. The study of the one-dimensionarfounds of the high temperature superconductors is well de-

(1D) quantum Heisenberg antiferromagi@HA) has along  scribed by thes=1/2 2D QHA. Recently, attention has been
history dating back to the exact solution found by Betltz  given to the physics of magnetism in intermediate dimen-
the S=1/2 nearest-neighbo(NN) chain. He found the sions; namely, systems which exhibit a crossover from one
ground-state eigenfunction for this system and showed thab two dimensions. One can think of two different ap-
there is no long-range order a=0, unlike its classical proaches to explore this problem. One method is to begin
counterpart. The Bethe-Ansatz solution, however, is peculiawith spin ladders, which are obtained by coupling a small
to the S=1/2 chain and cannot be readily generalized. ReUmber of spin chains, and then to increase the number of
cent theoretical advances in quantum magnetism have conf&ins in the spin ladder until 2D physics is obtained. Alter-
primarily from applications of quantum field theory tech- natively, one can begin with an infinite number of decoupled
spin chains, and then increase the coupling between the spin

hiques. The low-energy, long-wavelength behavior of quanc ;e gradually until the interchain coupling becomes com-

tum antiferromagnets can be mapped onto an effective relgs,rapieto the intrachain coupling; in other words, one stud-
tivistic field theory. _ ies a spatially anisotropic square lattice quantum Heisenberg
In his pioneering work based on the large-spin, semiclasantiferromagnetSASLQHA). Spin ladders have been stud-
sical mapping of the 1D QHA to thé(3) quantum nonlin-  jed much recently, and have revealed the initially surprising
ear o model (QNLsM) in (1+1) dimensions, Haldane  result that the ground-state properties of 8ve1/2 spin lad-
conjectured that all half-odd-integer spin chains should beeer depend on the number of chains in the laddetalogous
have qualitatively like &= 1/2 chain, while for integer spin to the 1D QHA. Specifically, when even numbers of chains
chains the zero-temperature spin correlations should decayr leg9 are coupled to form a ladd€evenn), they show
exponentially with distance due to the presence of the sothe same universal behavior as integer spin chains, while
called Haldane ga@. In two-dimensions, Chakravarty, Hal- oddn S=1/2 ladders behave essentially like a single
perin, and Nelschhave mapped the long-wavelength, low- = 1/2 chain at low temperatures and long wavelengths.
temperature behavior of the two-dimensiori@D) QHA Our study focuses on the SASLQHA, in which the dimen-
onto the (2+1) dimensional QNkrM. They obtained a sional parameteiinterchain couplingcan be variec¢ontinu-
phase diagram for the system with three regimes: quanturdusly. The Hamiltonian of the SASLQHA is essentially that
disordered(QD), quantum critical(QC), and renormalized of parallel spin chains forming a square lattice with inter-
classical(RC). In the QD regime, the spin correlation length chain couplingd, (J,>0):
¢ remains finite even at=0, as in the case of th&=1 spin
chain. In the QC regime, temperature is the only relevant _ N , Q.
energy scale, and thus diverges like~T ! asT—0: T n inE,j S S+1’J+iz,j HS S @)
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Herei andj label lattice sites along thedirection and thex S=1/2

direction, respectively. We will setl,=J and use 0.16 T T T

=J,/J, as an anisotropy parameter in this paper. We use

units in whichz=kg=gug=1, and set the lattice constant i ]

a=1 along both thex andy directions. By varying &« 2%

=<1, the Hamiltonian Eq(1) can interpolate between a single 012 o .

spin chain and an isotropic square lattice. ¥w1/2 case A O a

has drawn special attention recently, due to its conjectured i 05 193 AA DD v

relevance to the physics of stripe structures in high- IXQQ A O +++ + @

temperature superconductar’. 270.08 A O + 1
One of the most interesting questions in the physics of the |:|:|DD _'-_FF

SASLQHA is the nature of the ground state. Since the - X a=0.002 Hj 1

ground state of the 1D QHA«(=0) is disordered while the g g=8:8; o

QHA on an isotropic square latticex&1) has a Nel or- 0.04- A =01 =

dered ground state, there should be an order-disorder quan- o a=0.3

tum transition for a critical value of= .. For S=1 this L+ a=1.0 :

o o e Sr,CuO

seems intuitively clear. Asy is increased from zero, the 273

Haldane gap will decrease smoothly, vanishing at a nonzero 0 - L L

a>=1. However, it is not at all obvious what the behavior 10 10 10 10

should be forS=1/2. Although it is widely believed that ™

aS=12=0, there are a few studies claiming otherwideSa- FIG. 1. The uniform susceptibility per spir,, for S=1/2, is

kai and Takahashifirst considered the Hamiltonian E€L)  shown as a function of for various « in semilogarithmic scale.
by treating the interchain coupling in the smalllimit via ~ @=1 data are taken from Ref. 20. The,6u0; experimental re-

mean-field theory. They also estimated th@ﬁ 120 and Sults(Ref. 2] are also shown; they are scaled to fit the Monte Carlo

aS~1~0.025 by calculating the susceptibility via numericalée;r;iso?r:ﬁe:ﬁzezlg?h};;‘yuf::u:?ffgﬂeég?ggfat”re' The solid line is

Lanzcos diagonalization. Azzouz and co-workers obtaine
essentially the same results from their field theoretical study, The structure of this paper is as follows: Our Monte Carlo

albeit with smalleraS~*~0.001 86%° The re2normallzat|on- results for theS—=1/2 SASLOHA are presented in Sec. I,
group argument by Affleck and co-workets suggests that  The yniform susceptibility and the correlation length data are
the answer is not universal but depends on the microscopighown and discussed here. We present3hd SASLQHA
details of the model. For the nearest-neighbor mdé®.  Monte Carlo results in Sec. Ill. In Sec. IV, we determine and
(D], @g~"*=0 was shown by zero-temperature series exdiscuss the phase diagram of th8=1/2 and S=1
pansions. SASLQHA using QNloM language, especially focusing on
In this paper we show that our quantum Monte Carlothe quantum critical behavior. In Sec. V, implications of this
study of theS=1/2 SASLQHA gives results which are con- study in relation to experiments and other related low dimen-
sistent with the claim that N order sets in for infinitesimal sional quantum magnets are discussed.
a for S=1/281011.13-1605r theS=1 SASLQHA, we show
that o>~ *=0.040(5) is the quantum critical point; we find
that the thermodynamic properties at this point follow the
O(3) ONLoM predictions remarkably well. We compare  In Fig. 1 we show the uniform susceptibility per spin for
three quantities: the dimensionless radig/ T x (defined be-  S=1/2, as a function of for variousa in semilog scale. The
low), the temperature dependences of the correlation lengttesults for thew=1 square lattice are taken from the recent
&, and the uniform susceptibility,. These quantities agree Monte Carlo study by Kim and TroyéP.The crossover from
guantitatively with the QNkrM values without any adjust- 1D to 2D behavior is clear in this figure. For smal] the
able parameter. uniform susceptibility follows that of a single chain, but be-
We have carried out quantum Monte Carlo simulations orgins to deviate around/J~5«. For largera, x, lies inter-
large lattices utilizing the loop cluster algorithm. The lattice mediate between those for a single chain and the square lat-
size has been kept at least ten times larger than the calculatéde, as expected.
correlation length. The lengths and Trotter numbers of the In the smalle limit, the Monte Carlo results can be com-
simulated lattices are chosen so as to minimize any finitepared with the results of experiments on weakly coupled spin
size and lattice-spacing effects. Spin states are updated abathains. In particular, $€uQ; has a structure wherg=1/2
214 times to reach equilibrium and then measurédtines.  spin chains lie along the crystallograpHicdirection. The
The same algorithm has been applied sucessfully in studyinigterchain interaction along theedirection is frustrated, thus
spin chains and spin ladders1°We compute the tempera- making this system quasi-two-dimensional. In theplane,
ture (T) and anisotropy ¢) dependence of the uniform sus- the interaction along thedirection is much smaller than that
ceptibility, x,(«,T); the correlation lengthé(«,T); the in theb direction, therefore SCuG; is a very good realiza-
staggered susceptibilityys(«,T); and the static structure tion of the S=1/2 SASLQHA in the smalk limit. Specifi-
factor at the antiferromagnetic wave vect@=(m,), cally, the crystallographi® direction corresponds to theg
So(a,T) for both theS=1/2 andS=1 SASLQHA. direction in the notation of the Hamiltonian, E@L), while

II. RESULTS FOR S=1/2
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the c direction corresponds to thedirection. Recently Mo-
toyama and co-worketsmeasured the magnetic susceptibil-
ity of Sr,CuQ;. They extracted a value for the intrachain
exchangel=2200(200K by fitting the result to the theoret-
ical expression proposed by Eggettal 2> Motoyamaet all.
also observed the logarithmic correction term predicted in
the theory. However, a sudden drop in the susceptibility near
20 K was observed, and this was attributed to the onset of
three-dimensional3D) Neel order. In Fig. 1, the SCuQ,
experimental results are shown as solid circles ugiagly,
=2200 K. As one can see from the figure, this drop can be
naturally explained by a small but nonzero interchain cou-
pling. From a comparison with our Monte Carlo results, one
can estimate the interchain coupling in,GuO; as J.=J,
~0.002~0.4 meV.

A couple of points need to be mentioned in estimating the
interchain coupling in SCuG;. First, since the analysis of
the susceptibility data involves the subtraction of a Curie
term due to impurities, subtle effects may be difficult to in-
terpret unambiguously. However, recent nuclear magnetic 0 5 0 15 20 25
resonance Knight shift measurements, in which the Knight JT
shift is proportional to the uniform susceptibility, show com-
plete agreement with the susceptibility dataSecond,
SchulZ* and Wang® have predicted the staggered magneti-
zation of this system as a function of the interchain coupling
mo=0.72(, /J)¥? from their interchain mean-field theofy.
With «=0.002, we obtainmy=0.032~0.064ug, which
agrees with the experimentally determined value of
0.06(1)ug, giving credence to our estimate of the interchain
coupling in SgCuO;.

The spin-spin correlation length is deduced from fits o
the calculated instantaneous spin-spin correlation function to
the asymptotic Ornstein-Zernik@®©2) form. Only large dis- IIl. RESULTS FOR S=1
tance numerical data are included in the fits to ensure that the
asymptotic behavior is probed. As discussed in our previous The uniform susceptibility data fo8=1 are shown in
Monte Carlo studies of quantum spin systefh® the 1D  Fig. 3. The results for the square lattice<1) are taken
OZ form works best at high temperatures, while the 2D OZfrom recent QMC work by Harada and co-worké&tsAs in
form works better at low temperatures. However, for §1¢ the S=1/2 case, for smalkr any deviation from the single
=1 SASLQHA we observe a crossover to the 3D OZ formchain data is only observed at very low temperatures. As is
at low temperatures. This crossover of the correlation funcevident in Fig. 3, one observes distinctively different behav-
tion will be discussed in Sec. V. ior for «=0.02 compared with that fax= 0.05. Specifically,

The correlation lengths so obtained &+ 1/2 are plotted  x,(a=0.02) drops to zero at low temperatures, signaling the
in Fig. 2 on a logarithmic scale as a function of inverseopening of a spin gap and concomitantly a spin liquid ground
temperature. Therefore linear behavior in this plot corre-state. Indeed, one can fit the data with the asymptotic form
sponds to an exponential dependencelon, and the slope  x,(T)~exp(—A/T) at low temperatures. The result of the fit
corresponds to the spin stiffness. At low enough temperais shown as the solid line far=0.02 in Fig. 3. The spin gap
tures, all data show linear behavior except éor 0, signal- values from these fits are as followsA(«=0.01)4
ing thata=0 is indeed a critical point. The solid lines are =0.321), A(a=0.02)J=0.251), and A(a=0.03)4
the results of fits to the crossover form suggested by Castre:0.171). Note that thea=0.01 anda=0.03 data are not
Neto and Honé,which interpolates between the Iovex-  shown in Fig. 3 for graphical purposes.

FIG. 2. The correlation length fo8=1/2 as a function of/T
for various values ofx in a logarithmic scale. Filled symbols de-
note the correlation length in thedirection (£,), while open sym-
bols are¢, data. For smalkr (¢=<0.05), the¢,’s are smaller than
one lattice constant and are not shown in the figure. Solid lines are
fits to Eq.(2), showing the exponential dependencetain T~ 2.

ps(a@) values extracted from fitting, and &, agree within
sthe errors, as evidenced by the identical slopes in Fig. 2.

pression calculated by Hasenfratz and Niederntdyer the In Fig. 4, the correlation length data in thelirection are
(2+1)-dimensional QNirM and é~T~! at high tempera- plotted for S=1. Since most correlation length data along
ture: the x direction are smaller than one lattice constant, they are

not plotted. Note the linear scale in this figure, unlike the
logarithmic scale in Fig. 2 fo&=1/2. This clearly shows the
. 2 1/T dependence of the correlation length ter 0.04, which
thus identifiesae=0.04 as a quantum critical point. For
Two adjustable parameters are used in the fitting: A@nd  smaller values ofa the correlation length saturates at
The anisotropy dependence pf(«) is used to provide a low temperatures: &3(«=0.01)=7.0(2), &o(e=0.02)
crossover temperature scale between quantum critical and10.85), &,(@=0.03)=19.005). For a>«a,, the correla-
renormalized classical behavior in Sec. IV. We find that thetion length diverges exponentially inTL/ Therefore one can

= Aex 2mpy(a)/T)/| 1+ 5 27pg( )
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FIG. 3. The uniform susceptibility per spig, for S=1, shown
as a function ofT for various values ofx on a semilogarithmic
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FIG. 5. Inverse correlation function multiplied by the exponen-
tial factore "'¢/£/C(r) plotted as a function of distanag¢. The
solid lines are the results of fits to the formr™ with \ fixed at the
given values. All data are taken atJ=0.04.

e "¢ d-1
ey
rh 2

C(r)~ ()

whered is the dimensionality. In quantum systems at low

scale. Thew=1 data are taken from Ref. 28. The solid line is the temperaturesd should be replaced by the effective dimen-

result of a fit to the asymptotic forny,~exp(—A/T). Inset: The
a=0.04 data on a linear scale. The solid lineljg,=0.34T/J.

fit the data to Eq(2) to obtain the spin stiffnesgy(a).

sionality (d+1). Since the low-temperature and long-
wavelength behavior of the=1 SASLQHA with nonzerax
is mapped onto the (21)-dimensionald(3) QNLoM, the
functional form of the correlation function at low tempera-

Some precautions are necessary in extracting the correl&dres and long distances should be the OZ form wital.

tion length from the correlation function via fits to the 0z Similarly,

the 1DS=1 spin chain(SASLQHA with «=0)

\ a Tt : : , - 18 \p/m
form. The OZ form for the correlation function in general is has a correlation function of the=0.5 OZ form:* We in-
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FIG. 4. The correlation length along tlyedirection, &, , for S
=1 as a function of/T for various values ofr. Note that this plot
is on a linear scale, so that the straight line through ¢te0.04
data signifies the T/ dependence of. Filled symbols show expo-

deed observe a crossover in the functional forr€@f) from
A=0.5toA=1 by increasinga from zero to a small but
nonzero value in th&=1 SASLQHA. In Fig. 5, the corre-
lation function at the low temperatuii@J= 0.04 is plotted to
illustrate the difference iv. In order to show the subtle
dependence, €(r) is multiplied by the exponential factor,
and only thee™"¢/¢/C(r)~r* part is shown as a function of
r/é. The A=1 behavior is apparent far=0.025, whilex
=0.5 describes thee=0 data better. For comparison pur-
poses,C(r) for an S=1/2 chain @=0) is also plotted; in
that case tha =0 behavior is quite clear.

One should note that this crossover is observed only in the
QD phase, since the finite correlation lengths in this phase
allow the QMC technique to probe the low-temperature be-
havior. On the other hand, in phases with a diverging corre-
lation length, it is difficult to study the ground-state proper-
ties with the QMC method. Considering that the SASLQHA
behaves classically at high temperatures, it is possible that
the S=1/2 data in Fig. 5 7/J=0.04) have not reached low
enough temperatures to show the true ground-state behavior
of A=0.5. In deducing the correlation length data shown in
Fig. 4, thex =1 form was used forr=0.02 at low tempera-
tures, whilex=0.5 was used otherwise.

IV. QUANTUM CRITICAL POINT
The phase diagram of ttig&=1 SASLQHA is sketched in

nentially diverging correlation lengths, while open symbols showFig. 6, Whe_re we use the_ energy gApa_nd spir_1 stiffness
the saturation of the correlation length at low temperature for a Q2 7ps, obtained from the fits discussed in previous sections

ground state.

as the crossover energy scales. We use the terminology of
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FIG. 6. Phase diagram of th8=1 SASLQHA. The open (b) s
squares are 2p¢/J obtained by fitting the correlation length to the - 14
asymptotic form Eq(2), and the open triangles are the energy gap *
A/J obtained by fitting the uniform susceptibility to the form L k3 13
~exp(—A/T). The shaded lines are the power laws, Ed$.and . ol B
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. . . . <
the O(3) QNLoM to identify the different phases in the L * § § % ~11
figure2 The inverse anisotropy ratio d/corresponds to the * ¥ %o
coupling constang. The S=1/2 phase diagram is almost s s g
identical to that of Ref. 30, and hence is not shown here. ° ¢ o 2

At the quantum phase transition in{2L) dimensionspg
andA obey the scaling laws FIG. 7. () Dimensionless rati®q /T xs as a function of inverse

temperature for various values af The solid line is the prediction
from the O(3) QNLoM. (b) Correlation length multiplied by tem-

ps~(9:—9)", (4)  perature as a function of inverse temperature. The solid line corre-
sponds to the value;p=2.49.

A~(9—gc)", ©) 1
xu(T)=Ql(°°)§T, (6)

with a critical exponenty~0.69 for the 2D QHA Since
a~ ! plays the role of the coupling constagt we plot  where;(«)=0.26(1) is a universal constatttSince the
Ag(a—a.)” as a shaded line in Fig. 6. Note thi is fixed  spin-wave velocity is anisotropic in this case, one should
from the S=1 chain value, so that there is no adjustablepresumably use,c, instead ofc? in Eq. (6). The inset of
parameter. The power-law scaling fits the gap data quit€ig. 3 clearly shows the linear dependence gbn tempera-
well, confirming that the low-temperature long-wavelengthture. The fitted value of the slope is 0(2# Since we do not
behavior of theS=1 SASLQHA is consistent with that of know the value ofc,, we use the fitted value of the slope
the O(3) QNLoM. and Eq.(6) to estimatec, . If we take the spin wave velocity
To illustrate thata=0.04 is indeed the quantum critical value c, determined above, the spin wave velocity in the
point of the S=1 SASLQHA, the dimensionless ratio direction isc,/J=~0.3. This gives the ratio of the spin-wave
So/Txs is plotted in Fig. Ta). According to the QC scaling velocity ¢, /c,~0.12, which is very close to the value given
prediction for the®(3) QNLoM,*? this ratio should exhibit by the series expansion studyand spin-wave theory:
universal behavior in the QC regime with the specific valuec,/c,~0.14. One should note that the anisotropy in the spin-
So/Txs=1.10(2). As shown in Fig. Ta), the «=0.04 data wave velocity is enhanced from the mean-field value
for Sq/Txs are constant around 1.1 at low temperatures, inc,/c,= Ja=0.2) due to quantum fluctuations.
guantitative agreement with the QC scaling value. This ratio

has been sucessfully used in identifying quantum critical be- V. DISCUSSION
havior in different systems, for example, weakly coupled
spin ladders? We also show the correlation leng#y mul- The most surprising result for tig=1 SASLQHA is the

tiplied by temperature in Fig. (B), to emphasize the T/ smallness of the valuexs '~0.04, compared with the
dependence of, at the quantum critical poinz;=0.04, at Haldane gap value of th&=1 spin chain A,/J~0.41).
low temperatures. Using the QMM predictior?® &T  One would naively think that the interchain coupling should
=c/1.04, we obtain the spin wave velocity of/J=2.6, be comparable to the Haldane gap to overcome the large
which is slightly larger than the 1D valu@.49, but smaller energy gap and drive the system to long-range order. Indeed,
than the 2D valué3.067). such heuristic reasoning works well in the case of coupled
Another quantitative prediction from th@(3) QNLcM even-legged spin ladders, where the value of the spin gap
is the uniform susceptibility. In the QC regime the uniform and the critical interladder coupling values ard.5J and
susceptibility is given a8 ~0.3J, respectively, for an array of two-leg ladders. Corre-
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sponding values for an array of four-leg ladders ar®.1J  of the interplane coupling in the spin ladder compound
and~0.07J. SrCw 05 and that of the interchain coupling in the spin chain

Recently there has been a number of studies on the natutmmpound SICuO; are quite different. Specifically, in
of the ground state @= 1/2 spin ladders. Specifically, much Sr,CuQ; , all C/#"—SP*—CW" bond angles are close to
theoretical interest has focused on the question of whether @0°, while there exist linear Cii—SP*—CUW* bonds in
not the ground state of the=1/2 antiferromagnetic two-leg SrCy,0; and SpCu;Os. If one assumes that the coupling
ladder is the same as that of t§e=1 chain. Since thes  between these Cii ions is primarily due to the superex-
=1 chain is equivalent to th&= 1/2 two-leg ladder with an change mediated by & ions, one can infer that the effec-
infinite ferromagnetic coupling, the above question can beive interplane coupling in SrGO; is mostly due to the
rephrased as whether tBe= 1/2 ladder goes through a phase 180° C#*—SP*—CW" superexchange interaction. This
transition when the interchain coupling is varied from a posi-leads us to speculate that the small valagd(4 meV) of the
tive (antiferromagneticvalue to a negativéferromagnetic  interchain coupling in SICuGQ; is due to the absence of lin-
value. Whité* has shown that the antiferromagnetic ladderear C* —SP*—Cl?* superexchange paths.
can be transformed continously to 85 1 chain by switch- This realization is important in understanding the spin
ing on an irrelevant next-nearest-neighbor coupling, thusluctuations in superconducting YBau;Og_. 5, since the bi-
claiming the equivalence of the two. Kim and co-workers layer coupling path in YB# W04, 5 is similar to the inter-
recently studied a two-leg ladder with various model paramplane coupling path in the spin ladder compound S
eters by a bosonization method and have provided evidencgithough the detailed nature of the hopping integral between
that the antiferromagnetic ladder asé1 chain belong to bilayers is not known, Andersegt al. have shown that the
different universality classes, each having distinct topologi-hopping mediated by the yttrium ion contributes significantly
cal string order. Our results appear to show the distinctivelyto the bilayer exchange couplifigObviously, more theoret-
different nature of the ground state of ti&e=1 Haldane ical calculations of the bilayer exchange interaction are
chain and that of the antiferromagnetic ladder. Howeverneeded.
more theoretical and numerical studies are necessary to re- In summary, we have studied th®=1/2 and S=1
solve this issue unambiguously. SASLQHA with the quantum Monte Carlo method. By vary-

Although both the SASLQHA and spin ladders showing the anisotropyx from 0 to 1, we go continuously from
crossovers between 1D and 2D behavior, the intrinsic differthe one-dimensional chain to the two-dimensional isotropic
ence between the two approaches should be noted. At higdquare lattice. The temperature dependence of the uniform
temperatures, the SASLQHA behaves as an array of decogusceptibility and the spin-spin correlation length are pre-
pled chains. The 2D behavior is only observed at low temsented for various values of. For S=1, we show that there
peratures, as shown in Figs. 1 and 5. However, the spin ladxists a quantum critical point 3129:1:0_04(3(5)’ in agree-
ders at high temperatures show essentially 2D physics, singgent with other analytic predictions. The power-law behav-
the spin-spin correlation length is shorter than the width ofior of the spin gap is also confirmed. In addition, universal
the spin ladder. Therefore the crossover for the spin laddergyantities predicted from the QNtM, such asSq/Txs
(2D — 1D as T—0) is complementary to that of the ~1.1 and(,(=)~0.26, agree with our results at=0.04,
SASLQHA. without any adjustable parameter. TiSe=1/2 results are

In Sec. Il, we estimated the exchange interaction betweepgnsistent witheS=12=0, as discussed by a number of pre-
chains in S}CuQ; as ~0.4 meV. Greven and Birgeneau ;s theoretical studies. We also estimate the interchain
have considered a similar exchange interaction forcoupling in theS=1/2 compound SCuO; by comparing the

36 H
SrCp0;.”> Namely, they have noted that the effective cou-measured uniform susceptibility data with our QMC results.
pling between copper spins in different ladder planes is me-

diated by St* ions and they have argued that this interladder
exchange should be about 10 meV. This value is also used to
describe the behavior of the three-leg ladder compound We would like to thank M. Greven for invaluable discus-
Sr,Cu;05.3" This represents quite a large discrepancy besions. This work was supported by the National Science
tween values estimated for seemingly similar superexchangéoundation-Low Temperature Physics Programs under Grant
interactions. However, one should observe that the geometijo. DMR 97-15315.
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