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From Neel long-range order to spin liquids in the multiple-spin exchange model
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The phase diagram of the multiple-spin exchange model on the triangular lattice is studied using exact
diagonalizations. The two-spird{) and four-spin {,) exchanges have been taken into account for 12-, 16-,
19-, 21-, 24-, and 27-site samples in the parameter redjerD—0.25(for a fixedJ,=1). It is found that the
three-sublattice Nad-ordered state built up by the pure two-spin exchange can be destroyed by the four-spin
exchange, forming a spin-liquid state. The different data suggest that the phase diagram in this range of
parameters exhibits two phases. The piy@hase is a three-sublattice dleordered phase; a smdl} drives
it into a spin-liquid state with a spin gap filled of a large number of singlets. This spin-liquid phase is not of
the same generic kind as the phase studied by Misgetici. [Phys. Rev. B60, 1064(1999]. It is observed
on the finite-size samples that the spin-liquid phase, as tha-dtdered phase, exhibits a magnetization
plateau atm=1/3, and forJ,>0.15 a second plateau at=1/2. These two plateaus are associated, respec-
tively, with the semiclassical orderingaud anduuud

[. INTRODUCTION sublattice magnetization of the order of 40% of the saturated
value® Series expansions give a redud@8% but nonzero
The two-dimensional triangular lattice antiferromagnetsublattice magnetizatiof.
(2D-TLA) was first proposed to be a candidate for the disor- On the other hand, in the case of short-range correlations,
dered(or spin-liquid ground state of the spib-Heisenberg the situation is more straightforward, as soon as the available
model (Anderson and co-worker in the 1970'Befs. 1 and  Sizes are of the order of, or larger than, the correlation length.
2). Different approaches failed to support this conjecture, buf his is fortunately the case in the SL phase found inhe
favor a ground state with ™ long-range ordefLR0O).3->  —J, model J,<0, J,>0) by Misguichet al®’
Nevertheless, the lattice frustration on the 2D-TLA has at- In this work, we use exact diagonalizations to obtain the
tracted a great deal interest by theorists, providing a chalexact eigenenergies versus wave vectors and total spin for
lenge for exotic antiferromagnets. Recently, the multiple-12-, 16-, 19-, 21-, 24-, and 27-site samples of the-J,
spin exchange model has been extensively studied as anodel J,=1, J,>0) on the 2D-TLA. In the classical limit,
alternative to the Heisenberg model, showing a rich structurghe AFM ground state of the 2D-TLA can be described as a
of ground state§78 In this model, the ground state can be three-sublattice structure, with spins of different sublattices
ferromagnetic(FM), antiferromagnetic(AFM) with Neel = making angles of /3. Periodic boundary conditions are
LRO, or a spin-liquidSL). A prospective phase diagram has compatible with the three-sublattice structure for samples
been given by Misguiclet al, who considered two-, four-, with 12, 21, 24, and 27 sites, but not for the 16- and 19-site
and five-spin exchange interactions on the 2D-TLAhey  samples. Therefore, we use twisted boundary conditions for
found that a large enough four-spin exchange interactiothe 16- and 19-site sampfeand periodic boundary condi-
drives the FM phase into a SL phase. They did not study howions for the 12-, 21-, 24-, and 27-site ones.
the AFM Neel LRO is destroyed by the four-spin exchange
interaction, and how the transition betweeﬁelNERO and Il. MODEL: THE MULTIPLE-SPIN EXCHANGE
the short-range resonating valence b¢R¥B) phase takes HAMILTONIAN
place. This question is the main object of this paper.
Unhappily there is no exact method allowing the study of ~ The Hamiltonian of the multiple-spin exchange model is
the zero-temperature phases of such frustrated systems. Fog&en by
finite system, however, one can always, in principle, repre-
sent the eigenstates in the complete basis of spin configura-
tions. This allows one to have the exact ground states of
small size systems through numerical computations. The
huge number of spin configurations \)2becomes a great whereJ, are then-spin exchange tunneling probabilitieex-
obstacle in the way of numerical simulations. On the mosthange coefficienjs and P, and P, are then-spin ex-
recent computers, the largest sample that may be handled ainange operators and their inverse operators, respectively.
exact diagonalizations has<® sites. On the triangular lat- The alternative sign in the summation owverin Eq. (1)
tice, the quantum Monte Carlo method is plagued by thecomes from the permutation of fermions. In general, the ex-
well-known sign problem, but a new technique called sto-change coefficients decrease with increasinghe two-spin
chastic reconfiguration allows handling samples up to 12xchange term gives exactly the Heisenberg Hamiltonian up
x 12 sites’ All these calculations point to ¢ LRO, with a  to a constant, since one has

H=> (-1)"J,(P,+P. Y, J,>0, n=2, (1)
n
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1 whereS; is the component of the total spBon the internal
P,=25-S+3, (2)  symmetry axis of the spin system, ang and y, are the
magnetic susceptibilities on the internal symmetry axis and
whereS andS; are spins localized at sitésandj, respec- on the perpendicular plane, respectively. In the broken sym-
tively. The three-spin exchange operator is exactly equivametry picture the symmetry axis is perpendicular to the plane
lent to a sum of two-spin exchange operafbiBhus, the of the spins andy| (x.) measures the spin fluctuations or-
three-spin exchange term of Ed) can be absorbed into the thogonal to(in) the spin plane. Equatio(8) [Eq. (4)] is the
two-spin exchange term, as long as is replaced by the dynamical equation of a rigid rotatgof a quantum top
effective two-spin exchange coefficienfS"=J,— 2J;. Equations(3) and (4) show that the slopes of the total
Therefore, except for the two-spin exchange, the next mostnergy versusS(S+1) and S3 approach zero as N/ does
important term is the four-spin exchange. A pure positivewhen N—o. Here S; is an internal quantum number dy-
two-spin exchangé.e., the Heisenberg Hamiltonigon the  namically generated, which is not under control in a finite-
2D-TLA gives an AFM phase with N& LRO, and, as shown  size study. But the total spiB is a good quantum number
in Ref. 8, a pure four-spin exchange gives a SL phase. In thiand theN ! scaling of theS(S+ 1) dependence of the total
paper we use the specific properties of the spectra of thesghergy versus sample size is interesting because it is more
different kinds of phases to study the transition from onerapid than the scaling law of the order paraméternich goes
phase to the other, when the relative weight of the four-spimas N ~1/?) 41314
exchangelJ, increases relatively to the antiferromagnetic
two-spin coupling. In the following, all the energies are mea-
sured in units ofl"=1. . _
Little is known of this region of the phase diagram. Pre- [N @ SL phase, contrary to the BleLRO phase, the spin
vious works are based on a classical approximatisami- gap(l.e., the difference in total energy between ground states
classical spin-wave calculatioftsor mean-field Schwinger- in the S=1 sector and in th&=0 secto) does not collapse
boson result$? The classical result predicts a transition from t0 zero in the thermodynamic limit. The finite-size scaling
the three-sublattice N state to a four-sublattice tetrahedral 12w in this second situation is not known exactly, insofar as
state atl,=0.24. Both quantum approaches indicate that théhe “massive” phase is not characterized precisely. Heuris-
four-spin exchange strongly enhances fluctuations in th&cally, we expect the finite-size spin gap to decrease expo-
three-sublattice N& phase. Kubet al! found that the sub- nentially to a finite value\ («) with the characteristic length
lattice magnetization vanishes fod,>0.17. In the ¢ of the spin-spin correlqtions. For samples of linear size
Schwinger-boson approadh,the Neel state is destroyed smaller than the correlation length and in the_ crossover re-
when J,>0.25. These two techniques have a general tendime there_ are not en_ough guantum fluctuations to destroy
dency to underestimate the effects of quantum fluctuation§® sublattice magnetization and the system probably be-
on ordered phases. The exact diagonalization analysis prE‘S’i_Vles as it were classicdle., with a spin gap decreasing as
sented here indeed shows that theeNieng-ranged order N~ ). The following heurlstu_: law might be used to interpo-
disappears for a smaller value df (the critical value is late between the two behaviors:
estimated to be in the intervaf~0.07-0.}.

B. Finite-size scaling in the SL phase

B
Ill. CRITERION TO DISCRIMINATE BETWEEN NE EL AlL)=A(=)+ Fexq L/€). ®

LRO AND A SL PHASE: POSSIBILITY

OF THE SPIN GAP - ]
C. Quantum critical regime

A. Finite-size energy spectrum of the Nel LRO phase . L
g9y sp P The use of this heuristic lafEq. (5)] encounters a severe

In the classical limit, aN-site 2D-TLA sample with Nel  difficulty as soon as the disordered system approaches a
LRO is characterized by a three-sublattice structure with spiguantum critical point: in such a situation the correlation
N/6 on each sublattice. Coupling of these thi¢f spins  |ength& diverges, the gap closes to zero, and on a finite-size
gives total spirSwith min{2S+1,N/2— S+ 1} degenerac§.  sample it is impossible to discriminate between such a situ-
In an isotropic antiferromagnésuch as the collinear AFM  ation and isotropic Nel LRO [Eq. (3)].
which has equal spin susceptibilities and spin-wave veloci-
ties) the finite-size total energy depends on the total $pin D. Numerical results
(to first order in 1N) as '

In view of this difficulty we have done a finite-size scal-
ing of the spin gap by using the simplest lineak behavior
which probably gives a lower bound of the gap in a SL
] ) outside critical points. The physical reason is that we expect
whereEq,=Ne¢, is the energy of the ground state in the ther-he finjte-size corrections of the gap value to be smaller in a
ity of the sample. In the anisotropic case this equation shoulghan in a LRO Nel phase where it vanishes asNIf The

1
Es=Eq+ MS(S-I— 1), (3

be rewritten: results extrapolated tdl—o are shown in Fig. 1. Strictly
1 1/1 1 speaking the spin gap never extrapolates to zero except for a
Es=Eg+ =——S(S+1)+ _(__ _> 2 (4)  Pured, where it is equal to 4zero within its error bgAt J,
2Ny, 2N\x|  xo =0, the data of Bernwet al* for N=36 are added to the
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FIG. 1. ExtrapolatiorN—c of the spin gaps of 12-, 21-, 24-, S(s+ 1)

and 27-site samples for differed;. The inset shows the extrapo-
lation atJ,=0. The spin gap foN=36 is evaluated from data of
Ref. 4. Since not all symmetry sectors were investigatedSfed
and N= 36, the energy of the lowest triplet is not known exactly.
Therefore we estimated the spin gap by:%[E(SZS)— E(S
=0)], as in Ref. 5. Lines are guides for the eye.

FIG. 2. Spectrum of the Heisenberg modé}€0) for the 21-
site sampleV: levels withk=(0,0) and symmetrieR, ;=1 and
R,=1 (R, is the phase factor obtained in@rotation about the
origin). V¥: levels with k=(0,0) and symmetrieR,,53=1, R,
=—1. I>: levels withk, (the corners of the Brillouin zoneand
symmetriesR,.s=1. Dashes: levels with wave vectors inside the

present results; see Fig.) Nevertheless, these data aIreadyBrmoum zone.

show three distinct ranges for the parameler for very

smallJ, (below 0.075 Neel LRO is plausible but should be (iii ) As the 7 rotation symmetry of the lattice is broken in
confirmed by another approach. Rhylarger than 0.1 a gap this particular ground state, these QDJS’s appear either in the
certainly opens rapidly with increasitdg and then decreases odd or even representation of the twofold rotation gréage

for J,>0.175. The spin gap criterion cannot give more in-Ref. 4 for more details

sight into the phase diagram. We will now move to the (iv) The numbers and characteristiggiantum numbejs
analysis of the symmetries of the low-lying levels of the of the QDJS’s in eacB sector are precisely fixed by thedty:
spectra to characterize more precisely these three phases.for the 21-site spectrum displayed in Fig(&s for all sizes
that have been studied up to npthe numbers of low-lying
levels and their quantum numbers correspond exactly to the

IV. SYMMETRIES OF THE LOW LYING LEVELS . . .
4 above-mentioned theoretical predictions.

IN A NEEL-ORDERED PHASE

A. Theoretical background

First, we show the low-energy spectrum of the pure B. Numerical results

Heisenberg model on the 21-site sam(#@. 2). In order to The dynamical law given by Eq4) is still imperfectly
emphasize the low-energy structure we have displayed thebeyed for the 21-site sample: in particular the generation of
low-energy spectrum minus a rigid rotator energ®(S  the internal symmetry is still imperfect but nevertheless the
+1). spectrum of a quantum top could already be anticipated.

Let us first concentrate on the lowest part of the energy Above these levels with specific properties, there appear
spectrum in eacl$ sector(solid and open triangles in the eigenstates with wave vectors belonging to the inside of the
figure). This family of levels forms on a finite-size lattice the Brillouin zone (simple dashes in Fig.)2A group of such
quantum counterpart of the semiclassicaleNstate. These eigenstates with different total spin represents a magnon ex-
specific states are in the trivial representation of the invaricitation of the Nel ground state. As the antiferromagnetic
ance group of the three-sublatticéelerdered solutioh.To  magnons have a linear dispersion law, the softest magnon
be definite,(i) the Nesl ground state breaks the one-stepenergy scales as the smallest wave vector accommodated in
translation but is invariant in a three-step translation: as @he Brillouin zone of the finite-size sample. Thus, for sizes
consequence the only wave vectors appearing in this famillarge enough, these levels collapse to the ground state as
of QDJS’s(for quasidegenerate joint states defined by Bernul/y/N, more slowly than the QDJS'’s which collapse a 1¢
et al’) are, respectively, the centér=(0,0) and corners the thermodynamic N& ground-state energy. That is the
+kq of the Brillouin zone. reason for the appearance in Fig. 2 of a quasigap between the

(ii) These QDJS's belong specifically to the trivial repre-QDJS’s and the magnon excitations.
sentation ofC,, as the Nel state itselfi.e., they are invari- This hierarchy of low-lying levels is a very strong con-
ant in a 27/3 rotation and in a reflection symmetry straint on the finite-size samples spectra. It is perfect for
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FIG. 4. Number of singlet states between the ground states of

~ FIG. 3. Spin-wave velocities of 21-, 24- and 27-site sampleSihe 5—0 (or 1/2) andS=1 (or 3/2) sectors. Lines are guides for the
Lines are guides for the eye. These quantities are computed as tlg%_

ratio of the firstAS=1 excitation energy divided by the momentum
of the corresponding excitatiofaccording tov =AE/Ak). For J,

>0.1, these numbers do not correspond to well-defined physic
excitations because of the strong perturbations of the spectra. N

aH’ons. But as might be seen in Fig. 4, this phase exhibits a
yery large number of singlets in the magnetic gap and seems

tice atJ,=0.1, Fig. 4 exhibits a huge number of low-energy singletIn this respect similar to the spin-liquid phase of the Heisen-

ottt 220,21
states below the spin gap and the system is therefore already in a $1€"9 model on théagomelattice:™“" However, we are not
phase. aware of any exponential degenerdeg., ~expWN)] in the

classical multiple-spin exchang®SE) model?? as is the
case for the classic&dlagomeantiferromagnet.

We suspect that a much larger four-spin exchange param-
eter will be needed to recover the SL phase studied by Mis-
guichet al. These data point to the existence of this phase in
a finite range of parameters 0.6%3,<0.25. However, one
cannot disregard the hypothesis that these properties are in
fact those of a critical point, with a critical region enlarged
by finite-size effects. More work with different methods is
geeded to clarify this point.

sizes up to 27 and fat, smaller or equal to 0.075 and totally
absent® for J, larger or equal to 0.1.

(i) This result, associated with the spin-gap behavior, con
sistently proves that fad, larger or equal to 0.1 the system
is in a spin-liquid state with rather short-range spin-spin cor
relations.

(ii) For J,=<0.075 the structure of the low-lying eigenlev-
els of the spectra are compatible with éld.RO. But as
discussed above, it is indeed impossible to precisely point t
a quantum critical transition within this approach. In view of
the spectra, we might speculate that the transition is second VI. MAGNETIZATION PLATEAUS
order and that it takes place between 0.07 and 0.1. o i

(i) From J,=0 to J,~0.1 we see a softening of the In an external magnetic fiel8 along thez axis, the _totgl
spin-wave velocity consistent with the gradual decrease ofN€rgdy of the state with compones} of the total spin is
the Neel LRO (Fig. 3. However, Fig. 4 shows that a large 91V€n by
number of singlet states are already present at low energy
whenJ,=0.1. Therefore, the system is certainly no longer in Eg=Es—S,B. (6)
the ordered phase dt=0.1. We can conclude from Fig. 3
that the spin-wave velocity does not vanish at the criticalThe magnetization is determined by the minimunEgf re-
point (even if the precise location of the transition cannot bespective toS,, which requiresiEg/3S,=0. Therefore, in
determinedl This has been previously suggested by varioughe isotropic case with Ng LRO, one has
analytical approaché$:°The sizes studied are nevertheless

too small to check the prediction of Azaret all’ of an m=2yxB—1/N, (7)
0O(4) symmetry of the effective field theory at the critical
point. wherem=2S/N is the polarization relative to the saturated
magnetizatiorN/2 andy is indeed the magnetic susceptibil-
V. LOW-ENERGY EXCITATIONS OF THE SL PHASE ity

We noticed that when the four-spin exchange interaction
Contrary to our expectations, the SL phase which appeaiigicreases, deviation from E¢3) occurs abous,=N/6 and
immediately after the disappearance of théeNardered N/4. This is in agreement with the earlier mean-field calcu-
phase is not the phase studied by Misgwtial® It is indeed  lation of Kubo and Momdi who predicted magnetization
a SL phase, with a gap and short-range spin-spin correlglateaus atm=1/3 andm=1/2 in the J,—J, model. We
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2 03T 7T 13 width increases witld,. Finally, there still exists a plateau at
m 0.2 F W = aboutm=1/2 in samples with odd numbers of sites, but it
N 01 F 3 distributes over the two closest positions to the 1/2 magneti-
= o J St N S L S E N S zation. Them=1/3 andm=1/2 plateaus correspond to the
€ 0 0.1 02 classical uud and uuud ordering of spins(see Momoi

04 E : et al?3 for the four-sublatticeiuud state. These phases are
g 02F )_J_r’_l 4,=0.25 more “classical” than the zero-field phase, but yet show a
B e e s B | £ 8 AVEVANA B decrease of the sublattice magnetization from the classical
= 04 E e ' ;
S 0z E HI_,_,J J0Ts saturation values.
.-: O :—I 1 1 | 1 1 1 | 1 1 1 I 1 1 II | 1 1 1 1
© 04 L — VIl. CONCLUSION
@ 0k PRI TR SRVERN BV AREEN In conclusion, we studied the transition between thelNe
= 04 F avoeered ordered state and a spin-liquid state of the multiple-spin ex-
0‘3 3 »—A_'_IJ| | I‘IEO‘OTE’ | change model by means of the exact diagonalization method.
o4 E J.I!,’:f'f’ LI AL The pure three-sublattice’Beordered phase is gradually de-
02 E >__:—’_H =70 E stroyed by quantum fluctuations when increasing the four-
0 B PR RRINN BT B SR R B spin exchange coupling. The spin-wave velocity decreases
0 2 4 6 8 10 but apparently remains finite at the transition. The quantum-
Magnetic field B (gug) disordered phase tuned by the four-spin exchange coupling is

different from the purd, phase studied by Misguickt al. It
FIG. 5. Magnetization vs external magnetic field for differént  exhibits low-energy singlet excitations, reminding one of
(N=24). The dotted lines label the 1/3 and 1/2 magnetization. ThQ(agom’él__ This result opens many interesting questions that
top panel shows the widths of the 1/} and 1/2 (J) plateaus  cannot be answered in the present framework: is this phase a
Vs Jy. new generic SL phase or a finite-size manifestation of a
quantum critical regime? Are these singlet excitations the
present the magnetization curve of the 24-site sample in Figresonon” modes invoked by Rokhsar and Kivelsént
5. A small plateau exists at 1/3 magnetizationdgr0, and  agreement with previous studi®se find two magnetization
its width first increases slowly a%, increases and then de- plateaus at 1/3 and 1/2 of the full magnetization. These pla-
creases from around,=0.125. This 1/3 plateau has also teaus are associated with the semiclassinadl and uuud
been found in previous studidsee Ref. 24 and references ordering structures. A finite-size scaling on much larger sizes
therein in the pure three-sublattice ‘Mieordered system. is needed to draw a definite conclusion on this magnetic
The m=1/2 magnetization appears at abdyt=0.1 and its phase diagram.
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