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From Néel long-range order to spin liquids in the multiple-spin exchange model
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The phase diagram of the multiple-spin exchange model on the triangular lattice is studied using exact
diagonalizations. The two-spin (J2) and four-spin (J4) exchanges have been taken into account for 12-, 16-,
19-, 21-, 24-, and 27-site samples in the parameter regionJ450 –0.25~for a fixedJ251). It is found that the
three-sublattice Ne´el-ordered state built up by the pure two-spin exchange can be destroyed by the four-spin
exchange, forming a spin-liquid state. The different data suggest that the phase diagram in this range of
parameters exhibits two phases. The pureJ2 phase is a three-sublattice Ne´el-ordered phase; a smallJ4 drives
it into a spin-liquid state with a spin gap filled of a large number of singlets. This spin-liquid phase is not of
the same generic kind as the phase studied by Misguichet al. @Phys. Rev. B60, 1064~1999!#. It is observed
on the finite-size samples that the spin-liquid phase, as the Ne´el-ordered phase, exhibits a magnetization
plateau atm51/3, and forJ4.0.15 a second plateau atm51/2. These two plateaus are associated, respec-
tively, with the semiclassical orderingsuud anduuud.
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I. INTRODUCTION

The two-dimensional triangular lattice antiferromagn
~2D-TLA! was first proposed to be a candidate for the dis
dered~or spin-liquid! ground state of the spin-1

2 Heisenberg
model ~Anderson and co-worker in the 1970’s~Refs. 1 and
2!. Different approaches failed to support this conjecture,
favor a ground state with Ne´el long-range order~LRO!.3–5

Nevertheless, the lattice frustration on the 2D-TLA has
tracted a great deal interest by theorists, providing a c
lenge for exotic antiferromagnets. Recently, the multip
spin exchange model has been extensively studied a
alternative to the Heisenberg model, showing a rich struc
of ground states.6–8 In this model, the ground state can b
ferromagnetic ~FM!, antiferromagnetic~AFM! with Néel
LRO, or a spin-liquid~SL!. A prospective phase diagram ha
been given by Misguichet al., who considered two-, four-
and five-spin exchange interactions on the 2D-TLA.8 They
found that a large enough four-spin exchange interac
drives the FM phase into a SL phase. They did not study h
the AFM Néel LRO is destroyed by the four-spin exchan
interaction, and how the transition between Ne´el LRO and
the short-range resonating valence bond~RVB! phase takes
place. This question is the main object of this paper.

Unhappily there is no exact method allowing the study
the zero-temperature phases of such frustrated systems.
finite system, however, one can always, in principle, rep
sent the eigenstates in the complete basis of spin config
tions. This allows one to have the exact ground states
small size systems through numerical computations.
huge number of spin configurations (2N) becomes a grea
obstacle in the way of numerical simulations. On the m
recent computers, the largest sample that may be handle
exact diagonalizations has 636 sites. On the triangular lat
tice, the quantum Monte Carlo method is plagued by
well-known sign problem, but a new technique called s
chastic reconfiguration allows handling samples up to
312 sites.9 All these calculations point to Ne´el LRO, with a
PRB 620163-1829/2000/62~10!/6372~6!/$15.00
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sublattice magnetization of the order of 40% of the satura
value.5 Series expansions give a reduced~20%! but nonzero
sublattice magnetization.10

On the other hand, in the case of short-range correlatio
the situation is more straightforward, as soon as the availa
sizes are of the order of, or larger than, the correlation len
This is fortunately the case in the SL phase found in theJ2
2J4 model (J2<0, J4.0) by Misguichet al.8,7

In this work, we use exact diagonalizations to obtain t
exact eigenenergies versus wave vectors and total spin
12-, 16-, 19-, 21-, 24-, and 27-site samples of theJ22J4
model (J251, J4.0) on the 2D-TLA. In the classical limit,
the AFM ground state of the 2D-TLA can be described a
three-sublattice structure, with spins of different sublattic
making angles of 2p/3. Periodic boundary conditions ar
compatible with the three-sublattice structure for samp
with 12, 21, 24, and 27 sites, but not for the 16- and 19-s
samples. Therefore, we use twisted boundary conditions
the 16- and 19-site samples4 and periodic boundary condi
tions for the 12-, 21-, 24-, and 27-site ones.

II. MODEL: THE MULTIPLE-SPIN EXCHANGE
HAMILTONIAN

The Hamiltonian of the multiple-spin exchange model
given by

H5(
n

~21!nJn~Pn1Pn
21!, Jn.0, n>2, ~1!

whereJn are then-spin exchange tunneling probabilities~ex-
change coefficients!, and Pn and Pn

21 are then-spin ex-
change operators and their inverse operators, respecti
The alternative sign in the summation overn in Eq. ~1!
comes from the permutation of fermions. In general, the
change coefficients decrease with increasingn. The two-spin
exchange term gives exactly the Heisenberg Hamiltonian
to a constant, since one has
6372 ©2000 The American Physical Society
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P252Si•Sj1
1

2
, ~2!

whereSi and Sj are spins localized at sitesi and j, respec-
tively. The three-spin exchange operator is exactly equ
lent to a sum of two-spin exchange operators.8 Thus, the
three-spin exchange term of Eq.~1! can be absorbed into th
two-spin exchange term, as long asJ2 is replaced by the
effective two-spin exchange coefficientJ2

eff5J222J3.
Therefore, except for the two-spin exchange, the next m
important term is the four-spin exchange. A pure posit
two-spin exchange~i.e., the Heisenberg Hamiltonian! on the
2D-TLA gives an AFM phase with Ne´el LRO, and, as shown
in Ref. 8, a pure four-spin exchange gives a SL phase. In
paper we use the specific properties of the spectra of th
different kinds of phases to study the transition from o
phase to the other, when the relative weight of the four-s
exchangeJ4 increases relatively to the antiferromagne
two-spin coupling. In the following, all the energies are me
sured in units ofJ2

eff51.
Little is known of this region of the phase diagram. Pr

vious works are based on a classical approximation,6 semi-
classical spin-wave calculations11 or mean-field Schwinger
boson results.12 The classical result predicts a transition fro
the three-sublattice Ne´el state to a four-sublattice tetrahedr
state atJ450.24. Both quantum approaches indicate that
four-spin exchange strongly enhances fluctuations in
three-sublattice Ne´el phase. Kuboet al.11 found that the sub-
lattice magnetization vanishes forJ4.0.17. In the
Schwinger-boson approach,12 the Néel state is destroyed
when J4.0.25. These two techniques have a general t
dency to underestimate the effects of quantum fluctuati
on ordered phases. The exact diagonalization analysis
sented here indeed shows that the Ne´el long-ranged order
disappears for a smaller value ofJ4 ~the critical value is
estimated to be in the intervalJ4

C;0.07–0.1!.

III. CRITERION TO DISCRIMINATE BETWEEN NE ´ EL
LRO AND A SL PHASE: POSSIBILITY

OF THE SPIN GAP

A. Finite-size energy spectrum of the Ne´el LRO phase

In the classical limit, anN-site 2D-TLA sample with Ne´el
LRO is characterized by a three-sublattice structure with s
N/6 on each sublattice. Coupling of these threeN/6 spins
gives total spinS with min$2S11,N/22S11% degeneracy.4

In an isotropic antiferromagnet~such as the collinear AFM
which has equal spin susceptibilities and spin-wave velo
ties! the finite-size total energy depends on the total spiS
~to first order in 1/N) as

ES5E01
1

2Nx
S~S11!, ~3!

whereE05Ne0 is the energy of the ground state in the the
modynamic limit andx is the isotropic magnetic susceptibi
ity of the sample. In the anisotropic case this equation sho
be rewritten:

ES5E01
1

2Nx'

S~S11!1
1

2N S 1

x i
2

1

x'
DS3

2 , ~4!
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whereS3 is the component of the total spinSon the internal
symmetry axis of the spin system, andx i and x' are the
magnetic susceptibilities on the internal symmetry axis a
on the perpendicular plane, respectively. In the broken s
metry picture the symmetry axis is perpendicular to the pla
of the spins andx i (x') measures the spin fluctuations o
thogonal to~in! the spin plane. Equation~3! @Eq. ~4!# is the
dynamical equation of a rigid rotator~of a quantum top!.

Equations~3! and ~4! show that the slopes of the tota
energy versusS(S11) and S3

2 approach zero as 1/N does
when N→`. Here S3 is an internal quantum number dy
namically generated, which is not under control in a fini
size study. But the total spinS is a good quantum numbe
and theN21 scaling of theS(S11) dependence of the tota
energy versus sample size is interesting because it is m
rapid than the scaling law of the order parameter~which goes
asN21/2).4,13,14

B. Finite-size scaling in the SL phase

In a SL phase, contrary to the Ne´el LRO phase, the spin
gap~i.e., the difference in total energy between ground sta
in the S51 sector and in theS50 sector! does not collapse
to zero in the thermodynamic limit. The finite-size scalin
law in this second situation is not known exactly, insofar
the ‘‘massive’’ phase is not characterized precisely. Heu
tically, we expect the finite-size spin gap to decrease ex
nentially to a finite valueD(`) with the characteristic length
j of the spin-spin correlations. For samples of linear sizeL
smaller than the correlation length and in the crossover
gime, there are not enough quantum fluctuations to des
the sublattice magnetization and the system probably
haves as it were classical~i.e., with a spin gap decreasing a
N21). The following heuristic law might be used to interpo
late between the two behaviors:

D~L !5D~`!1
b

L2
exp~2L/j!. ~5!

C. Quantum critical regime

The use of this heuristic law@Eq. ~5!# encounters a sever
difficulty as soon as the disordered system approache
quantum critical point: in such a situation the correlati
lengthj diverges, the gap closes to zero, and on a finite-s
sample it is impossible to discriminate between such a s
ation and isotropic Ne´el LRO @Eq. ~3!#.

D. Numerical results

In view of this difficulty we have done a finite-size sca
ing of the spin gap by using the simplest linear 1/N behavior
which probably gives a lower bound of the gap in a S
outside critical points. The physical reason is that we exp
the finite-size corrections of the gap value to be smaller i
system with a finite correlation length~no long-range order!
than in a LRO Ne´el phase where it vanishes as 1/N.15 The
results extrapolated toN→` are shown in Fig. 1. Strictly
speaking the spin gap never extrapolates to zero except
pureJ2 where it is equal to zero within its error bar.~At J4
50, the data of Bernuet al.4 for N536 are added to the
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6374 PRB 62LiMING, MISGUICH, SINDZINGRE, AND LHUILLIER
present results; see Fig. 1.! Nevertheless, these data alrea
show three distinct ranges for the parameterJ4: for very
small J4 ~below 0.075! Néel LRO is plausible but should b
confirmed by another approach. ForJ4 larger than 0.1 a gap
certainly opens rapidly with increasingJ4 and then decrease
for J4.0.175. The spin gap criterion cannot give more
sight into the phase diagram. We will now move to t
analysis of the symmetries of the low-lying levels of t
spectra to characterize more precisely these three phase

IV. SYMMETRIES OF THE LOW LYING LEVELS
IN A NÉ EL-ORDERED PHASE

A. Theoretical background

First, we show the low-energy spectrum of the pu
Heisenberg model on the 21-site sample~Fig. 2!. In order to
emphasize the low-energy structure we have displayed
low-energy spectrum minus a rigid rotator energyaS(S
11).

Let us first concentrate on the lowest part of the ene
spectrum in eachS sector~solid and open triangles in th
figure!. This family of levels forms on a finite-size lattice th
quantum counterpart of the semiclassical Ne´el state. These
specific states are in the trivial representation of the inv
ance group of the three-sublattice Ne´el ordered solution.4 To
be definite,~i! the Néel ground state breaks the one-st
translation but is invariant in a three-step translation: a
consequence the only wave vectors appearing in this fam
of QDJS’s~for quasidegenerate joint states defined by Be
et al.4! are, respectively, the centerk5(0,0) and corners
6k0 of the Brillouin zone.

~ii ! These QDJS’s belong specifically to the trivial repr
sentation ofC3v as the Ne´el state itself~i.e., they are invari-
ant in a 2p/3 rotation and in a reflection symmetry!.

FIG. 1. ExtrapolationN→` of the spin gaps of 12-, 21-, 24-
and 27-site samples for differentJ4. The inset shows the extrapo
lation atJ450. The spin gap forN536 is evaluated from data o
Ref. 4. Since not all symmetry sectors were investigated forS51
and N536, the energy of the lowest triplet is not known exact
Therefore we estimated the spin gap byD. 1

6 @E(S53)2E(S
50)#, as in Ref. 5. Lines are guides for the eye.
-
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~iii ! As thep rotation symmetry of the lattice is broken i
this particular ground state, these QDJS’s appear either in
odd or even representation of the twofold rotation group~see
Ref. 4 for more details!.

~iv! The numbers and characteristics~quantum numbers!
of the QDJS’s in eachSsector are precisely fixed by theory4

for the 21-site spectrum displayed in Fig. 2~as for all sizes
that have been studied up to now! the numbers of low-lying
levels and their quantum numbers correspond exactly to
above-mentioned theoretical predictions.

B. Numerical results

The dynamical law given by Eq.~4! is still imperfectly
obeyed for the 21-site sample: in particular the generation
the internal symmetry is still imperfect but nevertheless
spectrum of a quantum top could already be anticipated.

Above these levels with specific properties, there app
eigenstates with wave vectors belonging to the inside of
Brillouin zone ~simple dashes in Fig. 2!. A group of such
eigenstates with different total spin represents a magnon
citation of the Ne´el ground state. As the antiferromagnet
magnons have a linear dispersion law, the softest mag
energy scales as the smallest wave vector accommodat
the Brillouin zone of the finite-size sample. Thus, for siz
large enough, these levels collapse to the ground stat
1/AN, more slowly than the QDJS’s which collapse as 1/N to
the thermodynamic Ne´el ground-state energy. That is th
reason for the appearance in Fig. 2 of a quasigap betwee
QDJS’s and the magnon excitations.

This hierarchy of low-lying levels is a very strong con
straint on the finite-size samples spectra. It is perfect

FIG. 2. Spectrum of the Heisenberg model (J450) for the 21-
site sample.,: levels withk5(0,0) and symmetriesR2p/351 and
Rp51 (Ru is the phase factor obtained in au rotation about the
origin!. .: levels with k5(0,0) and symmetriesR2p/351, Rp

521. x: levels with k0 ~the corners of the Brillouin zone! and
symmetriesR2p/351. Dashes: levels with wave vectors inside t
Brillouin zone.
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sizes up to 27 and forJ4 smaller or equal to 0.075 and totall
absent16 for J4 larger or equal to 0.1.

~i! This result, associated with the spin-gap behavior, c
sistently proves that forJ4 larger or equal to 0.1 the system
is in a spin-liquid state with rather short-range spin-spin c
relations.

~ii ! For J4<0.075 the structure of the low-lying eigenlev
els of the spectra are compatible with Ne´el LRO. But as
discussed above, it is indeed impossible to precisely poin
a quantum critical transition within this approach. In view
the spectra, we might speculate that the transition is sec
order and that it takes place between 0.07 and 0.1.

~iii ! From J450 to J4.0.1 we see a softening of th
spin-wave velocity consistent with the gradual decrease
the Néel LRO ~Fig. 3!. However, Fig. 4 shows that a larg
number of singlet states are already present at low en
whenJ450.1. Therefore, the system is certainly no longer
the ordered phase atJ4.0.1. We can conclude from Fig.
that the spin-wave velocity does not vanish at the criti
point ~even if the precise location of the transition cannot
determined!. This has been previously suggested by vario
analytical approaches.17–19The sizes studied are neverthele
too small to check the prediction of Azariaet al.17 of an
O(4) symmetry of the effective field theory at the critic
point.

V. LOW-ENERGY EXCITATIONS OF THE SL PHASE

Contrary to our expectations, the SL phase which appe
immediately after the disappearance of the Ne´el-ordered
phase is not the phase studied by Misguichet al.8 It is indeed
a SL phase, with a gap and short-range spin-spin corr

FIG. 3. Spin-wave velocities of 21-, 24- and 27-site samp
Lines are guides for the eye. These quantities are computed a
ratio of the firstDS51 excitation energy divided by the momentu
of the corresponding excitation~according tov5DE/Dk). For J4

.0.1, these numbers do not correspond to well-defined phys
excitations because of the strong perturbations of the spectra.
tice atJ450.1, Fig. 4 exhibits a huge number of low-energy sing
states below the spin gap and the system is therefore already in
phase.
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tions. But as might be seen in Fig. 4, this phase exhibit
very large number of singlets in the magnetic gap and se
in this respect similar to the spin-liquid phase of the Heis
berg model on thekagome´ lattice.20,21 However, we are not
aware of any exponential degeneracy@i.e., ;exp(N)] in the
classical multiple-spin exchange~MSE! model,22 as is the
case for the classicalkagome´ antiferromagnet.

We suspect that a much larger four-spin exchange par
eter will be needed to recover the SL phase studied by M
guichet al. These data point to the existence of this phase
a finite range of parameters 0.075<J4<0.25. However, one
cannot disregard the hypothesis that these properties a
fact those of a critical point, with a critical region enlarge
by finite-size effects. More work with different methods
needed to clarify this point.

VI. MAGNETIZATION PLATEAUS

In an external magnetic fieldB along thez axis, the total
energy of the state with componentSz of the total spin is
given by

EB5ES2SzB. ~6!

The magnetization is determined by the minimum ofEB re-
spective toSz , which requires]EB /]Sz50. Therefore, in
the isotropic case with Ne´el LRO, one has

m52xB21/N, ~7!

wherem52S/N is the polarization relative to the saturate
magnetizationN/2 andx is indeed the magnetic susceptib
ity.

We noticed that when the four-spin exchange interact
increases, deviation from Eq.~3! occurs aboutSz5N/6 and
N/4. This is in agreement with the earlier mean-field calc
lation of Kubo and Momoi6 who predicted magnetization
plateaus atm51/3 andm51/2 in the J22J4 model. We

.
the

al
o-

t
SL

FIG. 4. Number of singlet states between the ground state
theS50 ~or 1/2! andS51 ~or 3/2! sectors. Lines are guides for th
eye.
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present the magnetization curve of the 24-site sample in
5. A small plateau exists at 1/3 magnetization forJ450, and
its width first increases slowly asJ4 increases and then de
creases from aroundJ450.125. This 1/3 plateau has als
been found in previous studies~see Ref. 24 and reference
therein! in the pure three-sublattice Ne´el-ordered system
The m51/2 magnetization appears at aboutJ450.1 and its

FIG. 5. Magnetization vs external magnetic field for differentJ4

(N524). The dotted lines label the 1/3 and 1/2 magnetization.
top panel shows the widths of the 1/3 (,) and 1/2 (h) plateaus
vs J4.
y

v

.

.

e

g.

width increases withJ4. Finally, there still exists a plateau a
aboutm51/2 in samples with odd numbers of sites, but
distributes over the two closest positions to the 1/2 magn
zation. Them51/3 andm51/2 plateaus correspond to th
classical uud and uuud ordering of spins~see Momoi
et al.23 for the four-sublatticeuuud state!. These phases ar
more ‘‘classical’’ than the zero-field phase, but yet show
decrease of the sublattice magnetization from the class
saturation values.

VII. CONCLUSION

In conclusion, we studied the transition between the Ne´el-
ordered state and a spin-liquid state of the multiple-spin
change model by means of the exact diagonalization meth
The pure three-sublattice Ne´el-ordered phase is gradually de
stroyed by quantum fluctuations when increasing the fo
spin exchange coupling. The spin-wave velocity decrea
but apparently remains finite at the transition. The quantu
disordered phase tuned by the four-spin exchange couplin
different from the pureJ4 phase studied by Misguichet al. It
exhibits low-energy singlet excitations, reminding one
kagome´ SL. This result opens many interesting questions t
cannot be answered in the present framework: is this pha
new generic SL phase or a finite-size manifestation o
quantum critical regime? Are these singlet excitations
‘‘resonon’’ modes invoked by Rokhsar and Kivelson?25 In
agreement with previous studies,6 we find two magnetization
plateaus at 1/3 and 1/2 of the full magnetization. These p
teaus are associated with the semiclassicaluud and uuud
ordering structures. A finite-size scaling on much larger si
is needed to draw a definite conclusion on this magn
phase diagram.
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