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A detailed study of the Fidich polaron model is performed on the basis of diagrammatic quantum Monte
Carlo methodN. V. Prokof'ev and B. V. Svistunov, Phys. Rev. Leffl, 2514(1998]. The method is further
developed both quantitativeliperformancg and qualitatively(new estimators and is enhanced by spectral
analysis of the polaron Green’s function, within an approach developed in the present paper. We present up to
date results for the binding energy, and make available precise data for the effective mass, including the region
of intermediate and strong couplings. We look at the structure of the polaron cloud and answer such questions
as the average number of phonons in the cloud and their number/momentum distribution. The spectral analysis
reveals nontrivial structure of the spectral density at intermediate and large coupling: the spectral continuum
features pronounced peaks that we attribute to unstable excited states of the polaron.

I. INTRODUCTION Despite a lot of work addressed to the Riioch Hamil-
tonian, the model is still far from being completely under-

originally emerged in the solid-state physics as a problem 0rtood. In the most interesting reglon—at intermediate and
electron moving in adielectrio medium. It became clear, &'9€ values ofe—almost all available treatments are of
however, that this problem is of essential general-physicaYa”at'onal character. Hence these treatments, even if consis-
interest, as a model of a quantum object strongly coupled t nt with each other, cannot guarantee quantitative and quali-
an environment. Starting from the work of Landathe po- tative reliability of the results. Moreover, some treatments
laron problem has been attracting a permanent attentiorf © known to be_ n qualitative disagreement W!th the others.
serving as a testing ground of new nonperturbative method4S @ characteristic example, note that certain approaches
The most popular model in the polaron problem is theSU99est that the polaron states at small and largeare of
so-called Fiblich Hamiltonian describing an electron qualitatively different nature, and there should occur a sort of
. . —11 . .
coupled to nondispersivéoptica) phonons of a dielectric Phase transition in the parameter”™"" This is not a phase

medium via its polarizatioriPlanck’s constant and electron transition in thermodynamic sense, since quite generally the
mass are set equal to unify matrix element mixing different polaronic states is filfte

(see, also, discussion in Ref.)13t may happen however

The polaron problenffor an introduction, see Ref) has

H=He+Hpn+Heph (1.1 that two stable polaronic states change places in energy vyith
extremely small energy gap at the avoided-crossing point,
k2 N and the polaron properties change drastically in a narrow

Hf% > Ak, (1.2 interval in «a; this l|54)r115enomenon is often called a “self-

trapping” transition.
The study of such important issues as electfofactor
Hoh= > wqbébq, (1.3  and the structure of the polaronic cloud was also restricted to
q the perturbation theory and variational treatments at small
momenta®~°It remained unclear what are the limits of ap-
_ t_ t plicability of these results, and whether they correctly de-
He.pr= ;1 V(@)(g=b g8k, (1.4 scribe the physics of polarons in the most important range of
intermediatex.
_ 1 Recently, a method of diagrammatic quantum Monte
V(Q):l(z\/zaﬁ)ma- (1.5  carlo (MC) was developed, which is very efficient for the
polaronlike problems.This method allows direct simulation
In Egs.(1.)—(1.9), a, andb, are the annihilation operators of entities specified in terms apositive definit¢ diagram-
for the electron with momenturk and for the phonon with  matic expansions in the thermodynamic limit with no restric-
momentumg, respectively,w,=w, is the g-independent tion for the form of particle-phonon interaction and dimen-
phonon frequency, which can be set equal to unity withousionality of the problem. In Ref. 1 the polaron Green'’s
loss of generality,« is a dimensionless coupling constant. function was simulated, and the results were used to extract
Below we solve this model for the three-dimensional casethe polaron spectrum.
although the method and the formalism we develop can be In the present paper, we employ the diagrammatic Monte
used in any dimension@s well as for many other polaron Carlo scheme of Ref. 1 for a detailed study of theHfiah
models. model. We significantly enhance the original schemgiby
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introducing N-phonon Green’s functionévith 2N external LemTTTT ~~.

phonon lineg which are simulated in one and the same MC Lemm el S

process with the ordinar§0-phonon Green'’s functionii) e SN . AN

developing a powerful procedure of spectral analysis of the ; ! RN \ )
Green'’s function. Thé-phonon Green'’s functions allow us / H P K ) J N

to consider the structure of the phonon cloud and facilitate® ¢ — ¢ ¢ —o
obtaining polaron parameters at largewhere the polaron is FIG. 1. A 0-phonon diagram.

essentially a many-phonon object. In particular, direct esti-

mators for the energy, effective mass, group velocity, Znd stable particlelike states. Hence if at a giv&rthere exists a

factors can be constructed. The spectral analysis of thstable polaron with the energg(k), the spectral function

Green'’s function gives the most complete information abouteads

the polaron, including the possibility to reveal stable and

metastable excited states, if any. I(@)=2)§0[w—EK)]+ ..., (2.6
The paper is organized as follows. In Sec. Il we introduceWhere

the set of Green'’s functions, describe the corresponding dia-

grammatic series, and discuss how they are related to the 7(K)=|(polaron(k)free electror(k))|2.

polaron parameters. In Sec. lll we describe qualitatively the 0

Monte Carlo proceduréthe quantitative discussion of the Moreover, if the polaron state is the ground state, its energy

updates is given in Appendix)AWe conclude this section and Z factor are “projected out” by the Green’s-function

with comparing diagrammatic Monte Carlo with some otherbehavior at long times:

recently developed numeric treatments for polaron, and pre- . (M) E(K)

senting data characterizing the performance of our algorithm. G(k, >0y ) —Zy’e” =7, (2.8

The calculated properties of the polar¢energy, effective

mass, structure of the polaronic cloud, gtre presented in

Sec. IV. In Sec. V we analyze excited states of the polaro

by restoring the spectral denglty of thg Grgen S funcpon by Gk, 70y, an) =(vadbg (7)- - - by (7)ay(7)

method of the spectral analysis described in Appendix B. N L

(2.7

Along with the standard polaron Green'’s functi@d), it
ﬁs reasonable to introduce tiNephonon Green’s function

xag(0)b (0)---b (0)|vag),
IIl. GREEN'S FUNCTIONS AND DIAGRAMS
N
In this section we introduce basic entities and establish p=k—2 q;. (2.9
their relations, which will be utilized in the rest of the paper. =
We start with the standard Green'’s function of the polaro

. ) X . i nRelations(z.3)—(2.8) are readily generalized to the case of
in the momentumK) —imaginary-time §) representation:

N-phonon Green’s function. In particular, tiphononz

factor for the stabléground-statepolaron with momentum
G(k,7)=(vada(7)ai(0)lvag, =0, (2D

a(7)=e""ae ", (2.2 Z"(qy, . .. .an) =|(polaron(k)|free electror(p)
+free phononsqy, . . ., 2
Here|vac) is the vacuum state. P 0 an))|
The physical information thaG(k,r) contains is clear (2.10
from the expansion [the momentunp is defined as in Eq2.9)], is given by
Gnk, > wg 5iar, a0 —Z8qy, ... gy)e 0T
G(kn=3 [(viallvagle -k, gy M o T AT S

) ) ~ Our MC procedure of simulating Green’s functions will
where{|v)} is a complete set of eigenstates of the Hamil-ytjlize a standard diagrammatic expansion—Matsubara tech-

tonian H in the sector of givenk, ie. H[v(k))  nique atT=0. The diagramssee Figs. 1 and)2are built of
=E,(K)[»(k)), Hlvag=E|vag. Since in our modeE,  the following elements:

=0, we omit it below. Rewriting Eq(2.3) as (i) free-electron propagatdsolid line

o0 2
G(k,T)IfO dw g (w)e™ 7, (2.9 G(O)(p,Tz—Tl)ZeX[<—%(TZ—T]_)), (2.12
(ii) phonon propagataidashed ling
gk(w)=2V slo—E,(K]l(vlallvagl?, (2.5 D(q,mo— r)=exf — wg(mo— )], (213

(iii) vertex factorV(q) ascribed to the vertex formed by a
one defines the spectral functiay(w) which has poles phonon propagatdmwith the momentung) and two adjacent
(sharp peaKsat frequencies corresponding to staliteeta-  electron propagators. External lines of diagrams arise from
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g'-\\\ /,——-"X Ill. DIAGRAMMATIC QUANTUM MONTE CARLO
In the previous work? it has been shown how to sum
o LT Y convergentand arbitrary otherwigediagrammatic series nu-
A "‘\\ o \;/"\\ PN merically without systematic errors. In this section we out-
AR PATEEERN / Y line the basic numerical procedure of evaluating series for
SN . k! :' A B various Green’s functions described in the previous section
P S G S W U S G G W SN (the details being discussed in Appendix And introduce a

) o number of estimators, that render the evaluation process sig-
FIG. 2. A 2-phonon diagram. Note that in diagrams for nificantly more efficient.

N-phonon Green’s functions the phonon lines disconnected from Suppose that we are interested in the funct@f{y})
the rest of the diagram endithese propagators originate from the which depends on a set of variablgg, and which is given

phonon operators in the definitid@.9) of Gy] always appear in j, tarmg of a series of integrals with an ever increasing num-
pairs(labels A and B, both lines in a pair having the same momen- ber of integration variables:

tum.

the operators standing in Eq€.1) and(2.9) and their imes ~ Q({y}H)= > > J dXq - AXyDin(Em {YHXe,s - o Xim)-
and momenta are defined accordingly. Momenta of the inter- m=0 tm 3.1)
nal lines are free up to the momentum conservation con- '
straint at each vertex. To obey this constraint, we choosklereén indexes different terms/diagrams of the same order
phonon momenta to be free, fixing thus the momenta of th& The termm=0 is understood as a certain function{gy.
electron lines. Times ascribed to the line ends are subject 8Ot externaly} and interna{x;} variables are allowed to be

the chronologization constraint: The time of the left end is o either continuous or discrete; in the latter case integrals are
the time of the right diagram end is times of the vertexes understood as sums. Diagrammatic MC process is a numeric

must increase along the global electron line, directed from @rocedure based on the Metropolis principiéat samples

to 7. Integration over all free parameters of the diagrams jyyarious diagrams in the parameter spage}(m.£m,{X}im)

assumed, within the domains consistent with the constraint$£ SduEoélgﬁ\ifsggsttf?hfgoégg anlvﬁ aTvr\]/Zlyptrr:)itet: Se ;'2:'\/ ery

sor?apbcl)g ttgeinz?gglljtlzaentohl?:rtehdeugilg*%r;t:gr:ggCGrrlgsﬁ,’S'tf:fmrfa'much in common with the Monte Carlo simulation of a dis-
L ) ) . . ] tribution given by a multidimensional integral. Nevertheless,
tion, Gy, which consists only of irreducible diagram®y  there is an essential difference associated with the fact that
irreducible diagrams we understand those ones dbabot  htegration multiplicity in the expansion E¢3.1) is varying.
con_ta_u_n pho_non lines decoupled fr(_)m the electrémom this Summing the series fa@({y}) is the process of sequen-
definition it is clear that the reducible part of thephonon g stochastic generation of diagrams described by functions
Green’s functionGy— Gy, is a sum of products of irreduc- D,,,, Eq. (3.1). The MC process consists of a number of
ible functionséN,, N’<N, and free phonon propagators. €lementary updates falling into two qualitatively different
Therefore the reducible part does not contribute to the largélasses{(l) those which do not change the type of the dia-
T asymptotic ofGy (because of extra factoes “o” coming  gram (change the values of arguments7n,, but not the
from the disconnected phonon propagaltoasd, in particu- function itsely, and(Il) those which do change .th.e diagram
lar, Eq.(2.11) holds true forGy, as well. c.)rde.r. The set of elgr_nentary updates and their _|mplementa—
It is useful then to consider the following function: tion is problem specific; the only necessary requirements are
ergodicity, i.e., given two arbitrary diagrams it takes finite
% number of updates to transform one to another, and detailed
P(k,7)=G(k,7)+ >, f dg;- - -dgnGn(k, 701, - - . ,0n)- balance, i.e., diagrams contribute to the statistics according
N=1 to ratio of theirD functions. In Appendix A we describe a set
214 of updates which we find to work very efficiently. However,

e . . : considering enormous freedom in constructing various up-
(Note that ifGy— Gy, this expression would be singular at dates, we have little doubt that they may be further im-

7—0 because of the divergence of the integrals for discon- roved
nected phonon propagatar§he functionP is readily calcu- P ’

: Though the Green’s function contains complete informa-
lated by our MC procedurésee the next sectionsind, ac- . iated with th | d th
cording to Eqs(2.8) and(2.11), satisfies the relation tlo_n assomate_ with the polaron spectrum, an _t € accumu-
' 7 lation of the histogram foG is straightforward, it is reason-

- - ble to introduce certain direct estimators, including one for
P(k, 7> wy ! BT, 219 @ cert ators, .
(k,m>wo7)—e (219 the Green'’s function itself. These estimators substantially en-
Here we took into account the completeness relation hance the accuracy of calculations and/or allow collecting

more information during one MC rutby “spreading” the
data to the different values of the external paramgters

Zék”N; f day- - -daguZ{(ay, - . . an) =1.

2.19 We start with the family of estimators that are constructed
Equationg2.15 and(2.16 imply that the lowest leveE (k) in accordance with the following standard MC rule. Suppose
is nondegenerate. Otherwise one should introduce degeme have some quantity specified by the diagrammatic ex-
eracy factors to the right-hand sides of the equations. pansion

A. Estimators for effective mass, group velocity, and energy
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2 2
A=> DWW, (3.2 Q:1—>\T(éﬁ)—%7+772(é6)2+0(>\3), (3.9

whereD")'s are the diagrams foh which are parametrized wherep is the mean electronic momentum of the given dia-
by internal variables denoted by the unified indexand the  gram

summation ovew is understood as the summation over dis-

crete variables and integration over the continuous ones. —
Suppose next that alD's are positive definite and we P=
have a MC process of generation of randemwith probabil- ) ) ) )
ity density given byD(VA) . Then, if some quantit is speci- Comparing Eq.(3.8) with the corresponding expansions of

L

; pi(AT);. (3.9

fied by a(similar) diagrammatic expansion the right-hand side of Eq.3.6), we arrive at the following
estimators:
B=2. DY, 33 (p) me—v(k) (=), (3.10
the estimator for the rati®/A is given by T —, 1
1—§<(p) >Mc—>m_ (1), (3.11
B *
A :( MCE% ”) Qv) MCE{ ’) 1 (3.4 where(- - -} yc means MC averaging in accordance with Eq.
A A (3.4).
®) A special care should be taken for treating the time of the
Q :D v (3.5) Green'’s function as an external parameter of the diagfams
" pW ' ' the sense adopted in this secliofihe problem is that rela-

tions (3.4) and (3.5 imply that the internal parameters of
Here MG\{»} means the set af's generated during the MC diagramsD ™ and D(®) have one and the same domain of
run. Commonly, the quantitied and B in Eq. (3.4 are,  definition, otherwise the rati3.5) is not correctly defined.
respectively, the partition function and an observable. Wemeanwhile, the domain of internal times of diagrams directly
however, will use this relation in a somewhat different con-depends on the external time. To circumvent this problem,
text. For one thing, in our cask andB can correspond t0 one can introduce scaled internal times by simple relation

one and the same Green’s function, but at different values o7t: 7+ wherer is the external timelength of diagram in
I I

ext_ernal parametersay, momentum or coupling consthnt_ time), 7; is an internal time variabléposition in time of an
This way we are able to obtain results for a number of dif-

ferent values of the external parameters from a MC procesglectron_-phonoq verte)x_and i€ [0’1]. is the c_or_r_esp(_)ndlng
for just one fixed set of parameters. We can also directlyscaled time variable with the domain of definition indepen-
calculate derivatives with respect to the external parameterg.ent of . : . :
To this end we should analytically take the corresponding Now it is easy to obtain a direct estimator for the polaron
limit from both sides of Eq(3.4). energy. To this end we start from the relation

Let us obtain estimators for the effective mass,, and P[K,(1+)\)7]
group velocity,v(k) = dE(k)/dk. First we note that {— o, —_

NE(KT (10
o ) e N7 (1 00) (3.12

- 2 B and proceed analogously to E¢8.6)—(3.11). In this case for
P(k+\e 1) _)[exp( A“r2m,), k=0, the functionQ we have

P(k,7) exd —Nev(k)r], k#0, S
Q=(1+\)N

2
. Pj
wheree is a unit vector. Considering the denominator and H ex;{ _)‘?(AT)I'”
the numerator of the left-hand side of E§.6) asA andB

(respectively, we can take advantage of E@3.4) and(3.5).

The functionQ is given by X

1'5[ exp[—)\wo(Ar)S]), (3.13

1 N where indexeg and s stand for the electron and phonon
Q=11 ex — 5P+ p](AT); . (3.7 propagators, respectively, aidis the number of integra-
: tions over timegor, equivalently, number of interaction ver-
Here j numerates free-electron propagators of a given diatices in a given diagram. Then, in the limk—0, we ex-
gram forP(k,7); p; is the momentum corresponding to the pand the right-hand sides of Eq&.12 and (3.13 up to
propagatorj, and (A7); is the length of this propagator. terms proportional to\, and in accordance with Eq$3.4)
Equation (3.7) immediately follows from the fact that the and(3.5 arrive to the estimator

series forP(k+\e,7) can be obtained from the series for 5

P(k,7) by adding the momentume to all free-electron E<E &(AT)1+2 wo(AT)s—N> —E(K) (1—%).
propagators. As we are interested only in the limit-0, we T\T 2 s MG

can expand Eq3.7) in powers of\: (3.19
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B. Reweighting () D(&)/D,(§), if EeToandD,(£)#0,
We will also employ the reweighting technigéfewhich afo("’g)_ 0, otherwise.
allows one to utilize the statistics being generated for some (3.18

given set of external variabl€sfor calculations at a different

set¢’. In terms of the diagrammatic Monte Carlo, this tech-_Here ro IS some finite dorr_nam in the space of varla_léjle
nique is based on the relation including the pointé,, q(v) is some function to be defined

later. [We adopt a convenient and consistent with the MC

D,(&") procedure convention th&,(£)=0, if £ is out of the range
> QEH= 2 Q,(¢"), (38.15  of definition of the corresponding diagrapftrom Eq.(3.18
MC {1} [/ mc{v}l; Du(€) we have

whereQ, is any quantity summed over MC statisti¢gVe

omitted superscriph at D,, since it is not relevant herpeThe (a§0> we=C> f déag (v,6)D,(§)

relation(3.15 follows from the fact that the MC statistics for v

the set¢’ involves the samén the sense of structure and the

values of internal parametgrdiagrams as the statistics for =C2 q(v)D,(&o) dé¢,

the set¢. The difference is only due to a different probability v ¢elo, Dy(§)70

to generate a diagram with the sgtrather thané’. This (3.19

difference can be taken into account analytically by the cor-

responding ratio, which immediately leads to E8.15). where
In our case, typical external parameters are the interaction

constant and the polaron momentu&s: (a,k). The corre- ci=> f déD,(¢) (3.20
sponding ratio of the diagrams is v
D(a' K') [a'\N2 is the normalization factor for the distribution of the random
A A _) IT expl—[(k’ —k)2+ 2p;(k"'—k)] pairs (v,¢) induced by the serig8.17). From Eq.(3.19 it is
D,(a,k) i seen that if we choose
N a = | de (3.2
= a_) e*[(k’*k)2/2+5(k'7k)]f. (316 ¢ello, D,(H#0
@ [note that, according to E¢3.18), the definition ofq(v) is

This relation allows us to get many points at differertand ~ relevant only wherD, (&) #0, and thag~*(») 0, since at
k’, at no extra cost in CPU time, while performing MC at a least small neighborhood of the poig§ contributes to the
given set ofa andk (cf. Ref. 22. integral, then

C. Exact estimator for Green’s function (ag,) mc=CA(&)- (3.22

Calculation of the Green’s function by means of histo-  The particular form of the estimator for the Green’s func-
gram, though is simple and natural, involves an apparenfon is readily obtained by identifying with =, and noting
shortcoming, associated with the finite width of the histo-that the ratio of diagrams standing in H§.18) is given in
gram cell. There is always a competition between the dethis case by Eq(3.13. As the domain of definition of any
creasing systematic error by making the size of the celljiagram with respect ta- is independent of the diagram
smaller, and the increasing statistical accuracy, which restructure:re[0.], the factorq in Eq. (3.18 is simply pro-
quires increasing the size of the histogram cell. This problenportional to the inverse size of the intenda). The choice of

can be solved by introducing aexact (free of systematic [ for each particulatr, is arbitrary, being a matter of taste
errorg estimator for the Green'’s function, as follows from a gnd convenience.

generic consideration presented below.
Given some functiorA(&,) of an external variable/set of

variables¢,, specified with thepositive definite¢ diagram-
matic expansion Collecting statistics for the phonon cloud can be signifi-

cantly improved by a trick described below. We start with
noting that in the case of—o, which is relevant to the
A(ﬁo)ZEV: Dy(§o)5f dg};, D,(8) (£~ o), ground-state properties, the set of Aliphonon diagrams
(3.17 possesses a certain symmetry. To reveal this symmetry, we
o transform diagrams to the circular representation by the rules
(considering a general case, we do not assume that the dfyystrated in Fig. 3. The transformation involves “gluing”
main of definition ofv is independent of) and having ar-  the outer ends of the electron line, as well as the outer ends
ranged a MC process of generating configurationg} with  of pairs of (corresponding to each otheexternal phonon
the probability density proportional t8,(§), we would like  Jines. It is easy to check that the procedure is consistent with
to construct an estimat(:'m‘rg0 the average of which over the the definitions of propagators, Eq2.12 and(2.13. In the
MC process givesup to a global normalization factothe  limit of large 7, which we are interested in, the probability to
function A(&o). Let us look fora, in the following form: find a phonon propagator with length 7/2 is vanishingly

D. Improved estimators for phonon statistics
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i.e., due to time invariance of the circular representation each
interval contributes to the statistics according to its duration
in time. The one-phonon distribution function within the
N-phonon states manifold is given by

@

@) N
F&k)(q)EJ fjl:[z dg;z{(a,qz, . . . an)

~,\‘B A/, . N N
N =1 '

j#I
(b) ng\lk)(qli CEC 1q|:q1 e qu)
(b")
Ne ATi 1 Ni
. I =\ 2 g 2 da—a))
b - el i=1 7 ij=1 MC
- (3.29
A Obviously, Zf“k)=quF(Nk)(q). Summing over allN we ob-
tain the one-phonon distribution function
© F<k)(q>=N2l FE(a). (3.2

FIG. 3. Correspondence between the standard and circular rep-

resentations of diagrams. ) ) )
E. Diagrammatic quantum Monte Carlo vs other numeric

small. That is why we may omit orientation, understanding treatments of polaron problems

the time length of phonon propagator as the length of the Recently, a number of effective and accurate numeric
smallest arc between its ends. With the same accuracy, in theethods for polaron problems were developed. However, as
limit 7—oc, we may ignore the pairs of phonon lines like the far as we can see, none of them can compete with the dia-
one shown in Fig. &), which do not have unambiguous grammatic Monte Carlo scheme, at least in simulating the
circular counterparts. It is worth noting that circular dia- three-dimensional3D) Frohlich model.

grams naturally occur in a finite-temperature technifefe Among numerous variational methods one can single out
e.g., Ref. 23 where the circumference has a meaning of a simple and computationally efficient method based on
inverse temperature. exact-diagonalization technique, that gives possibility to

Within the circular representation the symmetry necessargchieve high, well-controlled accuracy for the 1D Holstein
for constructing improved estimators is clearly seen. Indeednodel?* However, since the variational basis of the method
a circular diagram representsvehole classof plain dia- is constructed in real space this method encounters difficul-
grams, due to its independence of the position of the pointies for long-range interactions and higher-dimensional lat-
corresponding to the ends of the plain diagram. Thus, havingices due to enormous enlargement of the variational space.
generated a certain plain diagram and associating it with thEinite-cluster exact-diagonalization methdds?’ deal
corresponding circular diagram, one effectively produces anainly with small, usually one-dimensional, latticagp to
whole class of diagrams to be included into the statistics. 20 site$®) with truncated phonon basis. They were general-

In practice, the procedure is as follows. Let index ized recentl§® to the case of long-range particle-phonon in-
=1,... N, label electron propagators in the circular dia- teraction in one-dimensional systems. Still, results for finite
gram; we thus split the diagram intd, pieces each having clusters withN sites are only approximate for macroscopic
durationA 7, in time, =, A= 7. When the circular diagram Systems, and energies obtained by these methods are, strictly
is cut anywhere on the intervalr, we obtain a contribution SPeaking, not variational in the thermodynamic liffitAn ,
to éNi(k’T;q(li)l o 'q(hii))’ whereN; is the number of phonon g(et;anzdéled discussion of shortcomings of other methods see in
propagators which are cut along with the electron propagator a fundamental limitation on the range of applicability of
on this interval, andq;} are their momenta. An estimator for exact-diagonalization methods is the dimension of(then-
the integratedN-phononZ factor is found then to be cated Hilbert space that has to be small enough for the

Hamiltonian matrix to be treatable by a computer. Hilbert

() _ N ) space grows exponentially with the number of effective
Zy =f f .Hl dg;Zy’(As, - - - An) single-particle degrees of freedorttypical number of
= phonons, in the case of the polajomhis exponential law is
Ne AT severe in our case because we consider(faiher than 1[p
= < > — o, ,N> , (3.23  problem with continuougrather than discrejesingle-particle
=17 MC degrees of freedom. In the strong-coupling limit, when the
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typical number of phonons participating in the polaronic B
cloud is larger than, say, 10, exact-diagonalization methods T
can hardly be applicable. T ‘ -o- Feynman
An elegant version of the path-integral Monte Carlo algo- i e
rithm for the Holstein model was proposed recently by P.
Kornilovich,2%3° which is free of systematic errors. It is 20! “
worth noting that this is not just a coincidence, because for
the models with discrete Hilbert space path integral expan-
sion has the form of a series of finite-dimensional integrals, -30} + QMC
and in this sense is mathematically equivalent to diagram-
matic expansion. Apparently, this scheme, essentially relying
on the discreteness of the spatial motion of the electron, can- -40 ¢}
not be applied to the continuous Flich model.(On another
hand, our method can be used to study Holstein model and
has comparable efficiengyAlso, since in the path-integral -50 5 3 10 15 50 0,
treatment of the polaron all phonon degrees of freedom are
integrated out right at the start, one may not study the distri- FIG. 4. Bottom of the polaron bari, as a function ofx. The
bution of multiphonon states in the polaronic cloud. error bars are much smaller than the point size.
We conclude this section by noting that our method does
not require |arge memory to perform the Ca|cu|ati0n; the In F|g 5 accurate data for the effective mass are presented
largest diagram order we had to deal with in this paper wasiP to m, ~1000. At «<9 the statistics were collected at
less than 18} which easily fits in 4 Mb RAM. Most of the integer values o with reweighting(in accordance with the
data points for small and intermediatecan be obtained in Procedure described in the previous sedtitncorrespond-
one day of CPU time on Pentium 11-200 with relative accu-ing finite intervals(see the plgt At a>9 the reweighting
racy better than 10°. Effective mass calculations at large  Procedure proved to be ineffective.
are more elaborate and took up to two weeksder13 (the Let us compare the data fan, with the weak- and
same is true for calculations very close to the end pointrong-coupling analytic results. At smaifs, the formula
where long-time phonon propagators play an importangrole My =(1—a/6)*, known to coincide with the perturbation
On another hand, the polaron energy and phonon statisti@pansion up to the second ordéf;*" works well up toa

are calculated rather easilpartially due to improved esti- ~2.In contrast to the case &, the strong-coupling limit
mators, and everw= 20 points can be obtained accurately in M, = @"/48 drastically overestimates the effective mass in
one to two days. the whole range of physically interesting's. Feynman’s

variational technique works better, but still with a consider-
able deviation(up to 50% in the region < o< 10.
IV. NUMERIC RESULTS Almost the same degree of accuracy gives variational
In this section we present our results for the polaron en{réatment by Feranchuk, Fisher, and Koma]rbAq Impor-
ergy, effective massZ factors and the structure of the po- tant point abpyt this treatment,.however,}s that it ;uggests a
laronic cloud up toe=20. The Frdlich model itself has to  Phase transition”(or self-trapping transitionfrom “light
be modified for very larger to account for lattice effects (© “heavy” polaron ata close to 7.5, which should lead to
(e.g., nonparabolic dispersion law for the electron, nonzer@" especially rapid increase of, just aftera=7.5. In this
dispersion law for optical phonons, reciprocal lattice, )etc.
From the comparison between the polaron radius in the Log, (m.)
strong-coupling limit"2 and atomic distancait follows that
continuous model is no longer valid far> w/a\ymwy, i.e.,
in the regiona>10-20 lattice effects become important.

A. Ground-state energy and effective mass N

In Fig. 4 we present our results for the bottom of the band o
Eq as a function okx in a wide region of coupling strengths. 10 L7
For all @ energies are calculated to the relative accuracy (1-0/6) =
better than 10° (and up to 104 for a<3). The data are g
compared with Feynman’s variational treatntémo demon-
strate the remarkable accuracy of the Feynman’s approach to 0 ‘ , ‘ , , ‘ ‘
the polaron energy. We thus conclude that just a simple ex- 6 2 4 6 8 10 12 14a

trapolation betweezn the second-order perturbative résilt FIG. 5. Effective mass as a function of coupling parameter. Our
=—a—1.26(a/10)" and Feynman's strong-coupling varia- \mc data(circles interpolated by solid line; error bars are shown,

tional estimateE,= — a®/37— 2.83(such an extrapolation is put for «<9 they are smaller than the point size, and as small as
very close to Feynman'’s variational treatment in the whole10-3m, for a<6) are compared with perturbation theory and

range of a’s) yields quite satisfactory approximation for strong-coupling-limit resultgdashed lines Feynman's approach

Eo(a). (squarey and Feranchulet al. variational approaclkdiamonds.
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function of the coupling strength; filled circles are the MC dalae ) o
to improved estimatorZ{?) was calculated to accuracy better than ~ FIG. 7. Partial contributions oR-phonon states to the polaron

10 “ in absolute valugsand the solid line is the perturbation theory 9ground state for various values at Error bars are shown, but are
result (4.1). typically smaller than the point siz€The dashed lines are to guide

the eye)

connection, we note that our curve, («) is essentially

smooth and does not suggest any sort of sharp crossovdaster than exponentipand becomes: 10 ° for a=10. We
[The results of more deep numeric study of the possibility ofdo not attempt to fit the data to the particular functional
the self-trapping transition and more than one stable podependence since we believe that in the intervala3<10

laronic state are presented in the nésdbsections) the polaron state undergoes a smooth transformation between
weak- and strong-coupling limits.
B. Structure of polaronic cloud In Fig. 7 we show the distribution of multiphonon states

. . in the polaron cloud ak=0. We see how it gradually
In this su{asectlon we present our results for the eledron g q\ves from the perturbation theory case into the strong-
factor, or Zy”, for k=0 as a function of the coupling c¢oypling regime. For>10 the data may be fit to the Gauss-
strength in the region of small and intermediaie(for «  jan distribution, but at smaller values afthe distribution is

>10, the bare electron weight in the polaron ground stateessentially asymmetric—it decays faster for-N than for
becomes vanishingly smglland fora=1 as a function of — -

momentum up to the end point. We study also, how thd\<N. We note that even foex=17 the phonon number
distribution of phonons in the ground sta@&o), and the distribution is rather large which means that the polaronic

— ) . cloud is essentially a superposition of states with diffeiént
average number of phono$=2>_,NZ’, evolve witha.

; X e _ The effects resulting from this fact are outside the scope of
Finally, we show how the physics of the end point is seen in

the transformation of the one-particle distribution function

F«(q), Eq. (3.25, and how it allows to identify the relevant
self-energy diagram. 80
For smalla andk=0 the leading behavior is readily ob-
. \ 70 0.22 o*-3.8
tained from the perturbation theory:
60 [
V2a  sing 50 |
O(g)= ——
I:l (q) 4772 [q2/2+1] dqded(p, 40"
300
ZOW=1-al2. (4.1 a0 |
We have verified that fon<1 the perturbative resultg.1) 10+ L
are describing the data rather accurafslye also Figs. 6, 8, 0 -_*-—w—'—“g—"wz

and dashed curvieonnecting filled circlesin Fig. 11]. 10 15 20

The data in Fig. 6 make it clear that perturbation theqry FIG. 8. The average number of phonons in the polaron ground
may not be trusted fow>1 when the bare-electron state in g6 a5 a function af. Filled circles are the MC datalculated to
the polaron wave function is no longer the dominant contri-e rejative accuracy better than19, the dashed line is the per-
bution, e.9.,Z§’(a=3)<0.2. The bare electro@ factor  tyrbation theory result4.1), and the solid line is the parabolic fit for
vanishes rather rapidly fae>3 [the dependencégo)(a) iS  the strong coupling limit.
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0.00 05 j 5 {; ” FIG. 10. Partial weightZy of the N-phonon states in the struc-

ture of the polaronic state far=1 at the band bottorterror bars

FIG. 9. The bare-electrod factor as a function of the polaron are less then 1¢%) and near the end poirierror bars are shown
momentum up to the end point. The dashed lines are to guide the eye.

. 4
:Ee vana’qc(j)nal\éfl tgeo_ryt_and T?ﬁ’ ' fo;fex?mple, accgunt for ﬁ]eneric Pitaevskii theory of the end pofiin the vicinity of
€ considerable deviation of the effeclive mass CISCUSSEy onq point the polaron can be considered dweakly)

above. .
It is well known that polaron models often support the bound state of phonon, carrying almost all the momentum of

self-trapping phenomenon, when the ground state changes {Re state, and a polaron with almost zero momentum. This
a relatively narrow interval of parameters from light- to Physics is transparent from the comparison between the sta-
heavy-mass state with a sharp increase in the number distics of N-phonon states in the ground state and-atk,
phonons contributing to the polaronic cloud. The same pheshown in Fig. 10. Evidently, the two curves can be matched
nomenon was advocated for the'Rlioh model by a number by shifting the ground-state distribution by 1, i.&®

of authors; mcludlng.the statement that more than one _z(©)  (the maximum of thez{~7 curve is a little de-
stable polaron state exists in the region of intermediate leted because of the remaining finite weigﬂﬁf) since k
Clearly, if there were a sharp transformation of the polaronié) 9

ground state, it would have been immediately seen in the<k°)' It means that the polaronic state near the end point is

phonon statistics. Such a transformation might be not visibl@ SUP€rposition of bound states of the phonon with momen-

on the energy plot if the hybridization matrix element be-tum aroundk. and a polaron at the band bottom.

tween the two competing states is not small, and their energy Since Fig. 10 does not tell us explicitly what are the pa-

derivatives,dE/de, are close to each other at the point of fameters of the extra phonon present in the polaronic cloud

crossing. However, if we are to speak abdiifferentpo- ~ atk—Kc, we plotin Figs. 11 and 12 normalized distribution

laronic states, thetalmost by definition their structure has functions of phonon momentdn [g| and in the angle be-

to undergo an abrupt change with Our data on the bare tweenqgk). It is obvious from these figures that the extra

electronZ factor Z{”) and phonon distribution functior&?’ ~ phonon momentum is concentrated arodnd

are evolving smoothly withe and thus prove continuous

formation of the self-trapped state. F(q)
To further support this conclusion, we plot in Fig. 8 the

depend_enc& vs a. The crossover between the perturbative
result N~«/2 of Ref. 19 and the strong-coupling limit,

whereN~0.222, demonstrates no sign of the level crossing
picture. As a side remark we note that the result of Ref. 19

which predicted that perturbation theory fdrworks well in
the intermediate range<la<6 is not true. In fact, this law
breaks down along with the perturbation theory. 051
Consider now the evolution of the polaronic cloud with
momentum as we approach the end pojitihe dispersion
curve E(k) featuring the end point at momentukp of the
form E(k—k.)=Eq+ wo— (k—k.)?/2m, was calculated in

Ref. 1] Although the polaronic state is stable fé(k) 0 o
—E(0)<wq the bare electron weight vanisheskas k., see 0 q
Fig. 9. From this plot we estimate(«=1)~1.83. This fig- FIG. 11. Phonon distribution functions ig modulus for the
UrE ?"50 makes it (?Iear to what degree the earlier result thgfround statefilled circles and close to the end point fdr=1.79
z{) is momentum-independeRtworks. (open circles The momentunk is indicated by a bar at thgaxis.

With the numerical tools at hand it is possible to “visu- (The lines are linear interpolations between numeric points with
alize” the physics of the end point. In accordance with theerror bars of order of the point size.
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F@ peak and this functional form can poorly approximate the
actual distributior’® Our “continuous sampling method”

3.0 - deals equally well with smooth anéifunctional features in
the spectral function, and the final answer emerges as an

25 | average over large number of representative solutions what-
ever the distribution function. The only price which has to be

2.0 A paid for the above-mentioned improvements is larger com-
puter resources spent on the spectral analygigo few days

1.5 - of CPU time on Pentium 11-200 still, in all cases we have
encounted the spectral analysis required less time than pro-

1.0 | ducing accurate Monte Carlo data. The most important fea-
tures of the method are that it avoids distortion of equation

0.5 | by nonlinear terms and does not suffer from systematic er-
rors caused by preassigned discretization ofdhgpace.

0.0475 o5 ™ 5 X 5E 5 To perform a joint check of the diagrammatic Monte

Carlo approach and the method of spectral analysis, we com-
FIG. 12. Phonon distribution functions in the angle between thepared the spectral densities obtained by our numeric calcula-
vectorsg andk close to the end point fde=1.79 (error bars are of  tions and by perturbation theory for zero temperature. The
order of the point size analytic expression for the high-energy pait>0) of the
spectral density could be obtained for the arbitrary interac-
tion potentialV(|q|) which depends on the modullig| of
The spectral functiom,(w) (2.5 provides important in- the phonon momentum. For zero polaron momentam(,
formation about the system since it has paqksarp peaksat  the imaginary part of the linear inx self-energy part
frequencies corresponding to staljfeetastableparticlelike X (0,0>0) is
states. Besides, since the probability of absorption of a free
electron with the momentut into a polaron state is propor- 1
tional to the spectral function, the latter can be measured M3 (0,w)=— —=o—1|V[V2(0—1)]]?6(w—1).
experimentally by angle-resolved inverse photoemission V2m
spectroscopy. 5.1

In spite of many elaborated treatments of the properties ofHere ¢ is the theta function. Then, using the relation

the polaron, the knowledge about high-energy part of thgy (4)=—Im G,_,(w)/7 and keeping only linear with re-
polaron spectrum is mostly limited by attempts to calculatespect toa terms one gets

the spectral density either by perturbation theory approaches

V. SPECTRAL ANALYSIS

or at strong-coupling limit* As both the Green’s function 1 VJo-1

asymptotic behavior and the machinery of estimators pro- go(w>0)=——|V[x/2(w—l)]|20(w—1).
vides information about ground-state properties only, the \/5772 w?

spectral density is indispensable for the study of excited (5.2

states of the system. . The expression for the low-energy pat€0) of the spec-

moRdi%e 2% theecr:(rja; ddinoslgtyema;gggquﬁ;e%rfsotr;her';gtlzshtelqm density depends on the specific form of the interaction
: PP otential and we consider the perturbation-theory result for

was based on |nf|n|te—d|mgn§|ons approximation, and th e short-range interaction
second one was done for a finite cluster. None of these meth-
ods is applicable to the 3D continuous Rlich polaron.

T : 1
The spectral analysis, i.e., solving E@®.4), was per- V(lah=i(2V2am)V2——, (5.3
formed by a method developed in the present pigetailed V% + k2

description of the method and testing examples are presented . .
in Appendix B. Wdhlch reduces to the Fhiich one whenk—0. The low-

The problem of inverting Eq(2.4) is ill posed® with ~ €N€rY part is the delta-functional peak

incomplete and noisy information aboGt(k,7) an infinite \/5
number of solutions exist and therefore one has to select a - * =

- >0l . >CIC Jo(w<0) Ol w+a . (5.4
solution which is the most representative by some criterion. (k+ J2)2 K2

The maximum entropy methodEM) looks for the most

probable spectral function, given available information about The comparison of our numeric results for the low-energy
G(k,7).5"% It provides an attractive reasoning and regular-part of the Fralich polaron «=0) spectral density for
ization which circumvent saw-tooth instability. However, =0.05 and Eq(5.4) demonstrates a perfect agreemenmith
two features of the original method prevented us from usinghe accuracy 10* for the polaron energy and factop,

it (advantages and drawbacks of the MEM can be found invhereas our results for the high-energy pagper panel in
Ref. 38: (i) the preassigned discretization of thespace, Fig. 13 significantly deviat.g from the analytic curve. This is
which is disastrous if the spectral function contains bothnot surprising since for Fidich polaron the perturbation
sharp, 5-function-like, peaks and smooth parts with sharptheory expression is diverging as— wq and, therefore the
edges;(ii) the likelihood function for the distribution of the perturbation theory breaks down. To test the case when per-
most probable solution is assumed to have only one Gaussidurbation theory is obviously valid we set=1 and obtained
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FIG. 13. The comparison of the numeric resitslid lineg and  counted from the position of the polaron. The initial fragment of the
the perturbation-theory curveédashed linesfor the spectral density  spectral density forr=1 is shown in the inset.
of Frohlich model witha=0.05 (upper paneland the short-range
interaction model withh=0.05 andx=1 (lower panel.

absorption spectra. The light absorption is associated with
. the transitions from the polaron ground staig with k=0
a perfect agreement for both the low- and high-energy part _ . : . )
of g(w) (lower panel in Fig. 18 We note that the high- ?de—Eo to the excited statet;wlth E; which are charac

t ofg(w) is successfully restored by our method terized _by the presence of a fl_nlte numb_er of real phonons
325;% ?r?er fact that the total weight of the feat{lre is less thaalong with the polaron. The optic absorption spectrum at the
102 for a=0.05. equencyw is proportional to the transition probability

One can note that the main deviation of the actual spec- R A

trum of Frdhlich polaron from the perturbation-theory result P(w)=272, {¢o|O|F)(F|O|po)S(Eg—Es+ w).
is the extra broad peak in the actual spectral density at (5.5
~3.5. To study this feature we calculatef{w) for « '

=0.5, =1, anda=2 (see Fig. 14 Note, that the peak is (HereO=Er is the electric dipole interactiofE is the elec-
seen for higher values of the interaction constant and itsric field.)

weight grows witha. Near the thresholdy =1, the spectral It was shown in the weak-coupling limift*°that the optic
density demonstrates the square-root dependen¢e — 1 absorption spectrum has a broad peak with the onset sepa-
(see the inset rated from the polaron state by the optic phonon energy. Our

To trace the evolution of the peak at higher valuesrof calculations confirm(see Fig. 1 that there are no meta-
we calculated the spectral density far=4, =6, and « stable excited states of the polaron in the weak-coupling re-
=8 (see Fig. 15 At «=4 the peak ato~3.5 already domi- gime.
nates in the spectral density. Moreover, a distinct high- On the other hand, in the strong-coupling limit the exis-
energy shoulder appears at=4, which transforms into a tence of the metastable relaxed excited s(RES, i.e., the
broad peak atw~9 in the spectral density for=6. The  state where the lattice readapts to the new electronic configu-
spectral density for=8 demonstrates further redistribution ration and the polaron-lattice system is in the local minimum
of the spectral weight between different maxima without sig-of the total energy, was predictét.* This state manifests
nificant shift of the peak positions. One can also see thatself as a sharp peak in the absorption spectrum which is
there is a high-energy shoulder which is, probably, the prelocated at the frequency equal to the energy difference
cursor of another peak which would appear for higher value&gres— Eq. To check the existence of RES one can study the
of the interaction constant. spectral density2.5 since although the matrix elements of

The excited states of the polaron were studied within theransition probability(5.5) and spectral densit{2.5) are dif-
frameworks of different approachids**by calculating optic ~ ferent, both functions have to demonstrate sharp peaks at the
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0.70 — than wq (and thus both states are stable against deead
z 060 (i) the case when the upper level is in the continuum, and
% 0.50 —| therefore is unstable. We note that the cAsevas observed
o 040 o=4 for Holstein polaron in one-dimensional lattféand in infi-
% 0.30 nite dimension approximatioft. Strictly speaking, in the
@ 0.20 case(ii) one can invoke the second level only in some quan-
@ 010 titative sense, since there is no qualitative difference between
0.00 — T T T the case(ii) and a situation with only one polaron state.
000 400 800 1200 16.00 20.00 24.00 These quantitative features could be associated with the non-
Energy monotonic behavior of the derivativéwith respect tax) of
0.40 the effective mass and/or the mean number of phonons, and,
= q of course, another peak in the spectral density.
‘@ 0.30 From our study of spectral densities we see that for all
a 0.20 1 o=6 coupling strengthgg(0<w<1)=0, which means that, in
s Y contrast to the Holstein model, the ca@g does not take
g 010 place for Frdilich polaron. While there is no stable excited
w 1 state in the energy gap between the ground-state energy and
0.00 AL B S incoherent continuum, there are several many-phonon un-
0.00 4.00 800 1200 16.00 2000 24.00 stable states at energiEs—Eo~1, ~3.5, and~8.5. One
Energy can speculate that these states reveal themselves in varia-
tional approaches and can be mistreated as quasistable states
0.25 of the polaron. It should be emphasized, however, that the
£ 0.20 situation does not resemble that of the level crossing at all,
S 045 | since we do not observe nonmonotonic behavior of the de-
% R =8 rivatives (with respect tax) of the effective mass and/or the
g 0107 mean number of phonons.
S 005
0.00 T T T T T T T T | ACKNOWLEDGMENTS
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energies of the metastable excited states. From Fig. 15 we
conclude that there is no metastable excited state because the APPENDIX A: UPDATING PROCEDURES
width of the peaks is comparable with the excitation energy,
i.e., with the distance from the polaron ground state. More-
over, according to the strong-coupling approactiabe ex- Updating procedures of this class are the simplest. They
citation energy of the RES state is proportional 8, mimic standard rules of simulating a given distribution func-
whereas peak positions g(w) with respect toEy do not  tion D,,. In the present case we are dealing with quite a
change witha. number of variables having different physical meaning: ex-
The variational treatment developed in Ref. 11 suggestgernal variablegy} include 7, N, «, andk, and internal vari-
that in a certain region ofr there may exist two different ables describe the topology of the diagrédndex &), times
stablestates of the polarofthe corresponding equations for of electron-phonon vertices and momenta of phonon propa-
variational parameters have two solutibn®©ur numeric  gators. From this list of variables follows a set of updates

1. Updates of class |

study can shed light on this situation. simulating multidimensional distributio®,, .
First, let us discuss what one could observe would the two
states really exist. If at some poiat=c«, there occurs a a. Vertex shift in time

level crossing so that the ground state switches from one ] ] o

state to another, and the two states differ essentially in the W€ choose at random any interaction vertex inside the
number of phonons and/or in the effective mass, one woul@raph(we exclude the diagram closing points which are up-
expect at the pointr, a sharp change of these quantities.dated separatelyand change its time position from to 7,

The change should be almost jumplike in the case of sma@n the interval ¢;,7,) between the nearest left- and right-
hybridization between the two states, and look like a smootieighbor vertices, i.e.71<7,, 7,<7,. Let the incoming
crossover otherwise. Even in the case of sufficiently strong@nd outgoing electron momenta for the selected verteyare
hybridization, one may distinguish between two qualitativelyandp+q. The normalized probability density to find the ver-
different cases(i) the case when the level separation is lesgex at timer, is a simple exponential function
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AEe (7~ m)AE where we have used explicitly the property of the Ifich

(A1) model thatV(q)q? is q independent. By tabulating the in-
verse error function we ensure fast numerical solution of the

whereAE=E(p) —E(p+q) + w, depending on whether the equation erfg)=r, or z=erf *(r), and thu; generation of

updated vertex is the left or right end of the correspondingh€ new valuey=zy2m/(r,— 1) +po cosd with acceptance

phonon propagator, which allows a trivial solution of the ratio unity.

equation

W)= G e

d. Change of diagram structure

fT‘LW(s)ds=r (A2) We select at random any nearest-neighbor pair of vertices
' inside the graphiagain, the diagram closing vertices are ex-

. cluded and exchange the assignment of the phonon propa-

in the form gators between these vertices. Namely, if the original mo-
In(1—rl1—e-(r2- AE mentum transfer wagq, in vertex 1 andg, in vertex 2, we
n(l-rfi-e D (A3) suggest to change these momentajfcandq, correspond-

AE ' ingly. The acceptance ratio for this procedure depends on

whether we are dealing with the lefc€1) or right (c

=—1) ends of the phonon propagators,

71

T, =T1—

Here and below is the random number homogeneously dis-
tributed on the unit interval. Since the new variable is se-
lected according to the exact probability density the accep- R= e~ ME(P+c101-c202) ~E(P) —~ wo(c1— )] (A7)
tance ratio for this update is unity. '
wherer is the time difference, ang is the electron momen-
b. Change of transferred momentum angle tum between the selected vertices. Clearly, this procedure

We choose at random any phonon propagator excerﬁffectively changes the topology of bosonic lines while keep-

those attached to the diagram erigsopagators attached to "9 fixed their momenta.
the diagram ends appear [rairs with equal momenta, thus
single propagator updates do not apply to themd change
its momentumg—q’ so that|qg|=|q’|. Let the propagator This procedure is done in two variarfedmost identical to
connect vertices at times, and 7,. Evaluating the average the procedure of shifting the vertex position in tin€on-
electron momentum between these vertices sider the case when no artificial potential except the chemical
potential is used. In the first variant we select the new time

ffz (7d differencer between the positions of the right diagram end

- plm)ar at its left nearest-neighbor vertex according to the probability
_— (A4)  density

Top— T1

e. Change of diagram length in time

(P)ry .=

and introducing vectopo=(p), ., +d, we may write the W(7')=AEe "AE, (A8)

probability density to find azimuthal and polar anglesy

whereAE=E(p) + N,wg— u, andp is the momentum of the
between vectorg andp, as

last electron propagatoy, is the chemical potential, ard,

is the number of phonon propagators attached to the diagram
! pogqcosdf. (As)  right end (obviously,N, is the same for the diagram left
m end. In the second variant we select new time differences

This result is a trivial consequence of the quadratic disperpetween the positions of all nearest-neighbor pairs of verti-

sion law for the bare electron spectrum. Clearly, the ne ces. For each such a pair the probability density is still given

azimuthal angle is selected at randog=(27r), and cog V\by Eq. (A8), where in the most general cadl must be

is selected according to the simple exponential function inunderstood as the number of phonon propagators which are

complete analogy with EqsiAl) and (A3) up to trivial cut when the diagram is cut anywhere between the selected

change of notations. The acceptance ratio is thus unit pair of vertices. Notice, that the second variant requires
9 ' P Y- much longer computation time; thus if the typical diagram

order is very large it must be applied less frequently. In both
variants the acceptance ratio is unity.

In this procedure propagators are selected as explained in There is a bottleneck in the time decay of the electfon
the previous subsection, but now we change the modulus @finction, which does not allow efficient sampling of both
the transferred momentum while keeping the polar and azitong-time and short-time behavior and causes normalization
muthal angles between the vectpgsandd fixed. The prob-  problems at largen, namely, P(7) drops to almost zero

wwﬁygmma%—h

c. Change of transferred momentum modulus

ability density now reads value at short times, and then climbs backPte 1 before it
settles to the asymptotic decég.15).
_ 2 T2 T P There is, however, a general prescription of how to elimi-
W(a)~V(a)q exp{ 2m [~ po cose] nate such difficulties by using the so-called “guiding
function”* or fictitious potential renormalization. This

_ T 2 method was successfully applied recefrtp the problem of
exp[ 2m LA~ pocosd] ] (A6) tunneling transition amplitudes, where one is bound to col-
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lect reliable statistics which varies by orders and orders ofntroduce vector notationX={Xm.1,Xm+ 2 - - - Xmsn}. The

magnitude between different points in time. The idea is tq pdate 4 involves two steps. First, iproposesa change,
modify the statistics of suggested diagrams by 'mmduc'ngselecting a new diagrary,, . ,, and a particular value o

the acceptance ratio which is seeded with a certain normalized distribution func-
R= Afic( Tnew! Avic( Tola) (A9) tion WS)Z). There are no requirements strictly fixing the form
of W(x), but to render the algorithm most efficient, it is
desirable thatW(i) be chosen as close as possible to
arbitrary. Note that in Eq(A9) we are dealing with the ex- _DmM(X)’ i.e.,_to the actual statistical probability q_ens_ity;of
ternal variabler—the diagram length in time. In the present " the new diagram. Upon proposing the modification, the

case the best choice would Bg.~ 1/P(7). We achieve this update is accepted, with probabilify,.{X), or rejected. The
goal by self-consistently adjusting, to 1/Py,c(7) after a updatPB, removing variablex, is accepted with probability
certain large number of updates during the thermalizatiorP ¢,(X). For the pair of complementary updates to be bal-
stage[here Py,c(7) is the statistical result foP(7)]. After  anced, the following Metropolis-like prescription should be
thermalization stage we start collecting new statistics forfulfilled:2°

P(7) and keepAj. fixed.

and accordingly multiplying all MC estimators in the time
domain by 1As.(7), where the fictitious potentighg.(7) is

(A11)

_ - RGOIW(X), if R(X)<W(X),
f. Change of coupling constant PacdX)=

Since the diagram weight depends on the coupling con- L otherwise,
stant asaNe whereN, is the number of phonon propagators - - - -
in the diagram, all we need to do is to select new value of p #;):{W(X)/R(X)’ if RO)>W(x), (A12)
with this power-law probability density. Normalized prob- e 1, otherwise,
ability density is obtained by restricting allowed valuesaof
to a certain parameter range. Acceptance ratio is unity. ~ where

g. Change of external momentum Diin(EminsYoXiy o+« XmiX)

| . R(X)= 2
Given the average electron momentum of the diagpam P4 Dl(ém,Y X1, -+« Xm)

=(p)o.,, see Eq.(A4), with external momenturk, we de-

fine vectorpy=k—(p)o , and write the probability density to

select new external momentukh as

(A13)

andp4 and pg are the probabilities of selecting updatds
and B, which, in principle, may differ. To solve the polaron
problem and account for any possible diagram it is sufficient

r to have two pairs of complementary processes of type Il
W(k’)~exp[ — %(k’—po)z]. (A10) which are described in detail below.
As before the new variable is seeded according to this prob- @ Addingremoving phonon propagators to the diagram
ability density utilizing the tabulated error functipsee Sec. Consider the algorithm for the process increasing the
I A3 and Eq.(A6)] and thus is always accepted. number of internal phonon propagatdi®., excluding those

One note is in order here. Although one is allowed toattached to the diagram closing pointy 1. This update is
change the coupling constant and the external momentum iglone in two variants which differ in the probability densities
a single MC process, it seems more efficient to keep thesgccording to which the new propagator parameters are sug-
variables fixed instead of spreading the statistics over somgested. First we select the time positiepfor the left-hand
range in the K,«) parameter space. However, the knowl- end of the extra phonon propagator. This is done by choosing
edge of the relative weights according to which a given diaat random(with equal probabilitiesone of the free-electron
gram contributes to the statistics of variamusandk may be  propagators, and by taking fa any time(with equal prob-
utilized in collecting statistics for the finite neighborhood of ability density within this propagator. Then we select the
the point ko, o) used in a given MC simulation. Obviously, transferred momentum and propagator length in time using
reliable results for points other thaky,«y) are obtained the distribution function
only provided that for typical diagrams the relative weights
are of order unity. As explained in the text, this knowledge is wo
also used in deriving estimators for the effective mass and W(q,7)= 2
group velocity of the polaron. 7o

e ra)o(l+q/q0)2, (A14)

where g3/2= w,, i.e., we first seedq| according toW,(q)
2. Updates of class Il =1[9o(1+0a/qe)?] (and isotropic around the point

These updates are in the heart of the method since they=0), and then 7 according to W,(q|7)=wo(1
change the diagram order. The generic rules for constructing- g/q)%e” rao(1+0/d0)® | Since the typical length of the pho-
them are as follow&’ Let the update4 transform a diagram non propagator in time depends on how close is the polaron
D€ VoX1y oo Xm) N0 Dpn(EmensYoX1s -« - X momentum to the dispersion law end point, we also use an-
Xm+1s - - - Xmen), and, correspondingly, its counterpdst other variant of seeding new variablgsand r, namely, we
perform the inverse transformation. Femew variables we factorize the distribution function intoN(qg,7)=W;(q’
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=|q—k|)W5(7) (i.e., isotropic around the poirk), where  nominator of Eq.(A13)], and when we select a phonon

Wy(7)=0e ™ and Q< w, down to Q~0.0lw, close to  propagator for removing, we hav,, equal chances, where

the end point. Npn is the number of phonon propagators in the diagram
We underline that the above choices are motivated by th&om which we try to remove the propagaterumerator of

physics of the problem, in particular, if the combination EQ. (A13)]. TheseN, and N, are straightforwardly related

V?(q)q? was some power-law function of (e.g., when the to each other:

interaction vertex is nonsingular at small momentum or even

goes to zero ag]—0) one would better have to choose _

W;(g—0)xV2(q)g? to ensure that nowhere in the acces- Npn=(Ne+1)/2. (AL7)

sible parameter region the acceptance résiee belowis  We thus get

singular.

Now the proposing stage is completed, and we are ready
Ps 2Ne 2Np—1

to perform accept/reject step, following the above prescrip- Ps _ _ (A18)
tion, Eq. (All). The corresponding functionW(x) (x Pa Netl  Npp
={r1,72,0}) reads(for the first version [Note a misprint in Ref. 1, where the right-hand side of Eq.
(10) givesp 4/pp instead ofpg/p 4]-
R woe—rm0(1+q/qo)2
W(X)= ———, (A15)
477000 b. Addingremoving a pair of phonon propagators attached

] to diagram ends
where is the length of the free-electron propagator, where

the pointr, is selected. As mentioned already, this form of
W is by no means a unique one. Apart from the fagtgfp 4
which will be discussed later, the ratidé13) is now com-
pletely defined since

We recall that diagrams fdgy, see Eq(2.9) and Fig. 2,
have pairs of phonon propagators with fredisconnected
from the rest of the diagranends; each propagator in a pair
has the same momentufiwwe remind one that these propa-
gators originate from the phonon operators in the definition
(2.9 of the functionGy, .] We say that these propagators are
Dinsn(Emsn YoXas - -+ X X) “attached” to the diagram ends because they have to begin
Di(dmyYiXa, -+ - Xm) att=0 (for the left-end propagatpand end at=r (for the
right-end propagatdr

2.2 To add/remove a pair of free-end phonon propagators
= T e (2= 1)@+ E(P) 7 7, ~O) ~E(P)7 ,7)], (e.g., propagators labeled “B” in Fig.)2ve use the same
(2m)3 procedure as in previous subsection, except for minor

changes to which we proceed now. First, we select time po-
(A16) sitions 7, for the left-end propagator length, and for the

. . right-end propagator starting point, according to the prob-
The algorithm for the procesB is to select at random abilty  densities Wi(r;)=0e 971 and W, (r,)

(with equal probabilitiessome phonon propagator, and, if it — Qe 207 In the first variant of the updat® = wg and

is not attached to the diagram end, with the probabilities .
given in Eqs.(A12) and (A15) remove it. In the second)<wg. Also, the phonon momentum is pro-

To complete the description of the subprocesdemnds, Eﬂse_dkrs'c\? tt?‘e sgme distributioi; (g’ =q) or Wy(q
we should define the ratipz/p 4. It is quite reasonable to q—ki). We thus have
select creation and annihilation procedures with equal prob-

abilities. At the first glance it might seem that this immedi- 02e MUrtr—1)
ately leads t@z/p 4= 1, but this is not true. The point is that W(X)= > (A19)
when we select an electron propagator for placing the point 4mdo(1+9'/do)

71, we haveN, equal chances, whend, is the number of
free-electron propagators in the diagram being modffiesd  and

Dmin(émen YiXe, - - ,Xm,)_())
D €m YsX1, « o Xm)

exp{—[E(P)os, — D) —E(P)o-) 11— [E(P), -~ A —E(P)-, (7= 72)} m1<7;
IZ\Z/E%EH)O(TJFHTZ)X exp{_[E(<p>0,72_q)_E(<p>0,7'2)]72_[E(<p>72,7'1_2q)_E(<p>72,rl)](7-l_TZ)
(2 [E(P)s, ~ D —E(P) (=7} M.

(A20)
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The algorithm for the inverse procedure is to select aimethod. First, regularization method is unable to restore the
random(with equal probabilitiesa pair of propagators from spectral density which has sharp features. Second, due to a
the list of pairs attached to the diagram end, and with thalistortion of the initial equation by additional regularization
probabilities given in Eq4A12) and(A19) remove it. Since terms the approximate solution reproduces the fundBi¢n)
we select procedures inserting and removing pairs of propawith relatively high deviatiorD>D ,;,. Hence the informa-

gators with equal probabilities, we have tion from the most representative region of the deviations
D~D i, is lost.

Ps _ 1 (A21) The second difficulty inherent to the problem of solving

pa N+1° Eq. (B1) is that any representation p{w) by a preassigned

discrete sef{p(ws)}, f=1,... M is the source of uncon-
APPENDIX B: METHOD OF SPECTRAL ANALYSIS trollable systematic errors. For one thing, if the function
) p(w) contains a sharp feature with a significant weight at

1. General background and outline of the method somew’, which does not match the discrete $et}, this

The problem of restoring positive definite spectral densityfeature cannot be reproduced properly and therefore the rest
function p(w) from known imaginary-time Green’s function ©f the spectral density can be distorted beyond recognition.
G(7) is the problem of solving linear first-type Fredholm Note that all iteration methods as well as the methods based
equation on solving the nonlinear system of equations use preassigned

discretization of thev space.
© We present a method of solving equati®1) that avoids
f e “plw)do=G(7), (BL)  istortion of equation by nonlinear terms and thus probes the
most representative interval of deviations. Besides, the
where the domain of definition of the functiof®(7) and  method does not suffer from systematic errors as it does not
p(w) is [022]. The normalization of the Green’s function involve preassigned discretization of taespace. The idea

0

G(0)=1 implies the additional constraint of the method is to generate by a stochastic procedure a
(large enoughset of M positive definite statistically inde-
pr(w)dw=1. (B2) pendent approximate solutior{§j(w)}, ji=1,... M with
0 deviation measure®;~D,,. And then, taking advantage

of the linearity of Eq.(B1), choose the final solution as the
In a realistic situation the Green’s function is known at aagverage

discrete set of time$r;}, i=1,... N with some statistical
errors at each time point. As is well known, in this case the Mo
problem of solving Eq(B1) belongs to the class of ill-posed p(w)=M 71121 pi(w). (B4)

problems. The characteristic feature of the ill-posed problem

is that the solution of Eq(BI) is not unique even When rpe reaq0n s that while the particular solutipf{w) pos-

statistical errors ar~e absent, as there is an infinite number %fesses the saw-tooth instability, the stochastic character of

unknown functionsp(w) satisfying Eq.(B1). In the case of the procedure of particular solution generation should lead to

finite statistical errors one may face a situation when theyveraging out the saw-tooth noise. Note that the condition

solution of Eq.(B1) under the constrainB2) does not exist p;(w)>0 and constraintB2) substantially enhance the con-

a_lt all. Therefore itis natqral to formulgte the problem as tovergence of the averaging E(B4).

find an approximate solutiop () which reproduces at The method of generation of a particular solution is based

a finite set of times with smallest deviati@,. The defi- e optimization of the deviation

nition of the measure of deviation depends on the method

used, and the value of minimal deviati®n,,, is determined - T max -

by the magnitude of statistical errors. D[p]=f |G(7)~G(7)|G™ H(n)dr. (BS)
There are two fundamental difficulties that are inherent to 0

the spectral analysis. The first one is the well-known SaWHere r .., is the maximalr up to whichG(7) is known. The
tooth instability of the linear Fredholm equation of the first weight functionG~(7) is to efficiently utilize information

type—an approximate solutign(») does not reproduce the from the whole rang¢0,7 naJ, €ven in the case when the

true solutionp(w) even if p(w) generates the Green’s func- function G(7) decreases by orders of magnitude with
tion Note that we use weight functios 1(7) rather than

G~ Y(7) to avoid feedback instabilities in generatipfw).
&(r)= fwe‘“f(w)dw (B3) Our optimization procedure does not involve preassigned
P fragmentation of thew space. The number of parameters

. ) ) _ used for parameterization of the spectral density function
which reproduce$&(7) with any preassigned accuracy. This ~

e ; o p(w) is being varied during optimization process, so that any
difficulty is treated usually by the regularization method thatSpectral function can, in principle, be reproduced within any

smoothes the saw-tooth noise of approximate solytan).  preassigned accuracy. The process of generating a particular
The idea of the regularization method is to introduce som&pytion involves a random choice of the initial-configuration

nonlinearity into Eq.(B1) that imposes constraints on the parameters and subsequent optimization of the deviation by
derivatives ofp(w). There are two main drawbacks of this changing the parameter values, as well as the number of the
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parameters. The maximal number of continuous parametergctangulart from the configuration. If a proposed change

and the number of particular solutiohMsare limited only by
the computer performance.

2. Configuration and method of getting independent solution

We parametrize as a sum

K
p(0)= 2 Xipy(©)

(B6)
of rectangularg P} ={h, ,w;,c}
hy, we[ci—w/2,c,+w/2],
= . B7
Xipy(@) 0, otherwise &)

determined by height,>0, widthw,>0, and centec,;>0.
A configuration

C:{{Pt}! t

with the constraint

- K} (B8)

(B9)

K
z hew,=

defines, according to EqéB6) and (B3), the functionG(7)
at any time point

1, 7=0,
K

&)=
AD=) 2,13 heor sinhw,r/2).
t=1

7#0.
(B10)

To express the deviatiofB5) as an analytic function of

the values of G and G at the set of times{r}, i
=1,... N [where the functiorG(7) is known|, we use lin-

violates constrain{B9) (e.g., a change ofv; or h;, or any
update of the class)ll then the necessary change of some
other parameter s¢P,,} is simultaneously proposed, to sat-
isfy the requirement of the constraint.

The updates should keep parameters of a new configura-
tion within domain of definition of configuratio. For-
mally, the domains of definition of configuratidi®8) are
Ep=[02], Ec=[05], Ew=[02], and Exe[1e].
However, for the sake of faster convergence, we reduce do-
mains of definition.

As there is no general priori prescription for choosing
reduced domains of definition, the rule of thumb is to start
with maximal domains and then, after some rough solution is
found, reduce the domains to reasonable values suggested by
this solution. In particular, since the probability to propose a
change of any parameter of configuration is proportional to
K ™1, it is natural to restrict maximal number of rectangulars
Exe[1Kmad by some large numbef ... To forbid rect-
angulars with extremely small weight, which contribution to

G(r) is less than statistic errors 6f(7), one can impose the
constrainthw; € [ Spin 1], With Spin<K 2. When there is
some preliminary knowledge that overwhelming majority of
integral weight of the spectral function(w) is in a range

[ ®min:@maxl, ONE can restrict the domain of definition of the
parameterc, by Ect:[wmin!wmax]- Then, to reduce the
phase space one can chooﬁt=[hmin,w] and EWt
={Win, MIN2(Ci— ©min) » 2(@max— C1) 1} -

While the initial configuration, the update type, and the
parameter to be altered are chosen stochastically, the varia-
tion of the values of the parameters relevant to the update is
optimized to maximize the decrease ®Bf Each elementary
update of our optimization procedufeven that of the class
Il) is organized as a proposal to change some continuous
parameteg by randomly generated¢ in a way that the new

ear interpolation between closest points. Note that the spevalue belongs t& . Although proposals with smaller val-

cific type of the functiongB7) is not crucial for the general

ues of6¢ are accepted with higher probability it is important,

features of the method although simple form of analytic exfor the sake of better convergence, to propose sometimes

pressiongB9) and (B10) is of value for fast performance.
The procedure of obtaining a particular soluUpr(w)

consists of randomly generating some initial configurationéé

changessé¢ that probe the whole domain of definitica, .
To probe all scales of6ée[ 6&min, 0émax] We generate
with  the probability density function P

™ followed by nondeterministic sequence of configuration™ [max(S&minls| 6&mad)/| 5€|17, wherey>1.

changes until deviation satisfies the condition
D[C{"]<Dy~Dmin (B11)

(Du is the upper limiting deviationfor final configuration
C '“. The nondeterministic character

tary updates.

3. General features of elementary updates

of configuration
changes is achieved by random selection of various elemen-

Calculating the deviation measurd3(&), D(&+ 6¢),
D(&é+ 6¢/2), and searching for the minimum of the parabolic
interpolation, we find an optimal value of the parameter
change

By elementary update we mean a random change of the
configuration, which is either accepted or rejected in accorand
dance with certain rules. There are two classes of elementary

updates. The updates of the class | do not alter the number of
rectangularK changing only the values of the parameters
from a randomly chosen séP;}. The updates of the class Il

0&qpi= —BI2A, (B12)
where
A=2[D(£+ 8¢ —2D(£+ 8€2)+D(£)]1(88€) 2,
(B13)
B=[4D(&+ 6£/12)—D(&é+ 66)—3D(€)]6¢. (B14)

In the caseA>0 andé,ye =, we adopt as the update pro-

either add a new rectangular with randomly chosen paramPosald¢ one of the values¢, 5¢/2, or 5 for which the
eters{hx1,Wk.1,Ck+1}, OF remove stochastically chosen deviation measur® (¢+6¢) is the smallest. Otherwise, if
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the parabola minimum is outsidig, one has to compare 5. Final solution and refinement
only deviations for6¢ and 5¢/2. After a set ofM configurations
4. Global updates {CJﬁ”, ji=1,... M} (B19)

The updating strategy has to provide efficient minimiza-that satisfy the criterioB11) is produced, the solutio(B4)
tion of the deviation measure until criteriqB1l) is satis- s gbtained by summing up the rectangulég) and (B18).
fied. It is highly inefficient to accept only those proposals e, however, employ a more elaborated procedure,
that lead to the decrease of deviation, since, in a general casghich we call refinement. Namely, we use the @t8) as a
there is an enormous number of deviation local minimasoyrce ofM o new independent starting configurations for
DiodC]>D,. As we observed it in practice, these multiple fyrther optimization. These starting configurations are gener-
minima drastically slow dowifor even freezethe process. ated as a linear combinations of randomly chosen members

To optimize escape from a local minimum, one has toof the set(B18) with stochastic weight coefficients. Then, the
provide a possibility of reaching a new local minimum with refined final solution is represented as the averd@® of
lower deviation through a sequence of less optimal configuy . particular solutions resulting from the optimization pro-
rations. It might seem that the most natural way of doing thisedure.
would be to accept sometimeésith low enough probability The main advantage of such a trick is that initial configu-
the updates leading to the increase of the deviation. Howrations for optimization procedure now satisfy the criterion
ever, this simple strategy turns out to be impractical. Thqg11) from the very beginning and, thus, upper limiting de-
reason is that the density of configurations per interval ofiation D, can be considerably reduced. Moreover, as any
deviation sharply increases wilh. So that the acceptance |inear combination of sufficiently large numb& of ran-
probability for a deviation-increasing update should be finejomiy chosen parent configuration{s(:i” 7=1,...R}

tuned to the value ob. Otherwise, the optimization process gy oothes the saw-tooth noise, the deviation of a summary

will be either nonconvergent, or ineffectivéf the accep-  .,nqqurationC™ is normally lower than that of each addi-

tance probability is, correspondingly, either too large, or tog,

! X ive one.
small in some region obD).
A way out of the situation is to perform some sequence of
T temporaryelementary updates of a configuratié0), 6. Elementary updates of class |
(A) Shift of rectangular Change the centes; of a ran-
C(0)—=C(1)—---—C(r)—=C(r+1)—---—C(T), domly chosen rectanguldar The continuous parameter for

(B15) optimization(B12)—(B14) is £=c; which is restricted by do-
main of definition= ¢ = [ @min* W/2,@mnax— Wi/2].

(B) Change of width without change of weighiter the
width w; of a randomly chosen rectangulawithout change
of the rectangular weighh,w;=const and centec,. The
Prorit continuous parameter for optimization§s-w; which is re-
stricted byEwt:{Wmin-min[z(ct_wmin)az(wmax_ col}-

_ 1, DIC(r+1)]<DICn)], (C) Change of weight of two rectangular€hange the

f(D[C(r)]/D[C(r+1)]), D[C(r+1)]>DJ[C(r)]. heights of two rectangulansandt’ (wheret is a randomly
(B1e)  chosen and’ is either randomly chosen or closestttect-
N angulay without change of widths of both rectangulars. Con-
[Functionf satisfies boundary conditiorf§0)=0 andf(1)  tinuous parameter for optimization is the variation of the
=1.] Then we choose out of the configuratidic¢r)} (B15  rectangulat heighté=h,. To restrict the weights of chosen
the one with minimal deviation and, if it is different from rectangulars tS,,,,1] and preserve the total normalization
C(0), declare it to be the result of the global update, or, if(Bz) this update suggests to chanbe—h,+ 8¢ and h,

this configuration turns out to be jusf0), reject the update. ., , — sew,, /w, with 8¢ confined to the interval
We choose the functiohin the form

where the proposal to update the configuratit{n)— C(r
+1) is (temporary accepted with the probability

Siin/ Wy — < &< (hy = S /Wy )W /Wy . (B19)

f(x)=x*9(d>0), (B17)
which leads to comparatively high probabilities to accept 7. Elementary updates of class Il
small increases of deviation measures and hampers signifi- (D) Adding a new rectangulafTo add a new rectangular
cant enlargements of deviation. Empirically, we found outone has to generate some new  SefP, ..
that the global update procedure is most effective if one={h.y,Wnew:Crewdy @nd reduce the weight of some other
keeps parametat=d;~0 at the firstT, steps of sequence rectangulat (either randomly chosen or closgst order to
(B15) (to leave local minimumand then changes this pa- keep the normalization conditioiB2). The reduction of the
rameter to a valuel=d,>1 for the lastT—T, elementary rectangular weight is obtained by decreasing its heidht
updategto decrease the deviation meagute our algorithm The center of the new rectangular is selected at random
the valuesTe[1,Thad, T1€[1,T], d;e[0,1], and d,  according to
e[1,dmax] Were stochastically chosen for each global update
run. Chew™ (@minT Wiin/2) + (@ max— @min= Wimin) T (B20)
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FIG. 16. Model spectral densitglashed lingand the result of Energy
spectral analysigsolid ling). The position of the delta function is
shown only in the lower panel. FIG. 17. The model spectrufdashed lingsand results of spec-

tral analysis(solid lineg for =102 (upper panéland =102
As soon as the value,,, is generated, the maximal possible (lower panel.
width of a new rectangular is given by
of the center of a new rectangular with the smallest weight.
Wi = 2 MiN( @ max— Crews Crew™ @min) - (B21) Second rectangular is shifted into opposite direction to keep
the center of gravity of two rectangulars unaltered. The do-
Continuous parameter for optimizatio®¢=h,eWnew IS main of definitionZ= ; obviously follows from the parameters
generated to keep weights of both new rectangular and rectf the new rectangulars.

angulart larger thanS,;, (G) Gluing rectangulars This update glue twdeither
randomly chosen or closgsectangularg andt’ into single
0&= Siint I ("W — Siyin) - (B22)  new rectangular with the Weight e Wnew=NeW;+ W, hy:

Then, the value of the new rectangular height,, for given and widthwpe,= (W, +wy,)/2. Theinitial center of the new

&€ is generated to keep the width of new rectangular WithinreCtangUIaICneW corresponds to the center of gravity of rect-
a angularst andt’. We introduce a continuous parameter by

H H m
the limits [Winin, Wrew simultaneously shifting the new rectangular.
Nnew= 5§/aneav)\:+ r(0&/Win— 5§/anee\1;/( . (B23)
8. Tests

(E) Removing a rectangulaifo remove some randomly 14 check the accuracy of our approach, we tested it for
chosen rectanguldy we enlarge the heigfit,, of SOME an-  the spectral density distribution that spreads over a large
other (either randomly chosen or clospsectangulart’ ac-  range of frequencies and simultaneously possesses fine struc-
cording to condition(B2). Since such procedure does not e in jow-frequency region. The test spectrum was modeled
involve continuous parameter for optimization, we unite re-5q the sum of the delta function with the energy=0.03
moving of rectangulat with the shift proceduréA) of the .4 the weightZ ;=0.07, and continuous high-frequency
rectangulart’. Then, the proposal is the configuration with spectral density which starts at the thresheid=0.04. The
the Sma”es’.t deviation measure. continuous part of the spectrupy,, was modeled by the

(F) Splitting a rectangularThis update cuts some rectan- ¢ncfion [in fact, this functional form is predicted by the
gulart into two rectangulars with the same heightsand  pji4 oy skii theory fop(w) near the end poiit
widths Wnewl=wmm+r(wt—wmm) and Whew,= W= Whney, -
Since removing a rectangulaand adding of two new glued Za\/w——%
rectangulars does not change the spectral function we intro- Peor @)= (B24)
duce the continuous paramet® which describes the shift ZW@,{(w—SthHSgap]
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(here e4o=en—es IS a microgap in the range w which typical value isyp=10* for a particular solution of

e[ew,0.566 and by a triangle at higher frequenciege the the spectrum in Fig. 16.

dashed line in the upper panel of Fig.)16 Since the Green’s function which is obtained from Monte
The Green's functionG(7) was calculated from the Carlo calculations contains some statistic errors at each time

model spectral density in then,,=300 points 7,  point, the minimal value of parameter is limited by the

= Timad “/Nmax in the time range from zero te,,=1000.  quality of the calculated Green’s functi@( 7). To study the

The restored spectral density reproduces both gross featurgjuence of the(uncorrelatell statistic errors we studied the

of high-frequency partupper panel in Fig. 16and the fine  giapjlity of the method against stochastic noise
structure at small frequenciélmwer panel of Fig. 1§ The

energy and thegeight of the delta function was restored with
the accuracy 10°. The final solution was obtained by the P
averaging E)(;(B4) of M=1100 particular solutions. ’ G(7) = Gln) (14 r0). 1= LN max. (B26)
To evaluate the precision which characterizes how typical
particular solution}')j(w) [see Eq.(B3)] reproduces the introduced by random numberse[0,1]. It is seen that the
Green’s functionG(7), we introduce the maximal relative method restores the gross features of the spectpasition
deviation and width even for rather roughly calculated Green’s func-
- tion, with »=10"2 (upper panel in Fig. 17 whereas the
B |G(7))—G(7) precision »=10"2 is sufficient to resolve the line shape
K B ETEn)

},i €[1Nmad, (B29 (lower panel in Fig. 1V
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