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Diagrammatic quantum Monte Carlo study of the Fröhlich polaron
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A detailed study of the Fro¨hlich polaron model is performed on the basis of diagrammatic quantum Monte
Carlo method@N. V. Prokof’ev and B. V. Svistunov, Phys. Rev. Lett.81, 2514~1998!#. The method is further
developed both quantitatively~performance! and qualitatively~new estimators!, and is enhanced by spectral
analysis of the polaron Green’s function, within an approach developed in the present paper. We present up to
date results for the binding energy, and make available precise data for the effective mass, including the region
of intermediate and strong couplings. We look at the structure of the polaron cloud and answer such questions
as the average number of phonons in the cloud and their number/momentum distribution. The spectral analysis
reveals nontrivial structure of the spectral density at intermediate and large coupling: the spectral continuum
features pronounced peaks that we attribute to unstable excited states of the polaron.
o
,
ic
d

tio
od
he
n

n

s

ou
t.
se
b

n

r-
nd

of
sis-
ali-

nts
rs.
hes

t of

the

r
with
int,

row
f-

d to
all

p-
e-
of

te
e

ic-
n-
’s
ract

nte
I. INTRODUCTION

The polaron problem~for an introduction, see Ref. 2! has
originally emerged in the solid-state physics as a problem
electron moving in a~dielectric! medium. It became clear
however, that this problem is of essential general-phys
interest, as a model of a quantum object strongly couple
an environment. Starting from the work of Landau,3 the po-
laron problem has been attracting a permanent atten
serving as a testing ground of new nonperturbative meth

The most popular model in the polaron problem is t
so-called Fro¨hlich Hamiltonian describing an electro
coupled to nondispersive~optical! phonons of a dielectric
medium via its polarization~Planck’s constant and electro
mass are set equal to unity!:4

H5He1Hph1He-ph, ~1.1!

He5(
k

k2

2
ak

†ak , ~1.2!

Hph5(
q

vqbq
†bq , ~1.3!

He-ph5(
k,q

V~q!~bq
†2b2q!ak2q

† ak , ~1.4!

V~q!5 i ~2A2ap!1/2
1

q
. ~1.5!

In Eqs.~1.1!–~1.5!, ak andbq are the annihilation operator
for the electron with momentumk and for the phonon with
momentumq, respectively,vq[v0 is the q-independent
phonon frequency, which can be set equal to unity with
loss of generality,a is a dimensionless coupling constan
Below we solve this model for the three-dimensional ca
although the method and the formalism we develop can
used in any dimensions~as well as for many other polaro
models!.
PRB 620163-1829/2000/62~10!/6317~20!/$15.00
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Despite a lot of work addressed to the Fro¨hlich Hamil-
tonian, the model is still far from being completely unde
stood. In the most interesting region—at intermediate a
large values ofa—almost all available treatments are
variational character. Hence these treatments, even if con
tent with each other, cannot guarantee quantitative and qu
tative reliability of the results. Moreover, some treatme
are known to be in qualitative disagreement with the othe
As a characteristic example, note that certain approac
suggest that the polaron states at small and largea ’s are of
qualitatively different nature, and there should occur a sor
phase transition in the parametera.5–11 This is not a phase
transition in thermodynamic sense, since quite generally
matrix element mixing different polaronic states is finite12

~see, also, discussion in Ref. 13!. It may happen howeve
that two stable polaronic states change places in energy
extremely small energy gap at the avoided-crossing po
and the polaron properties change drastically in a nar
interval in a; this phenomenon is often called a ‘‘sel
trapping’’ transition.14,15

The study of such important issues as electronZ factor
and the structure of the polaronic cloud was also restricte
the perturbation theory and variational treatments at sm
momenta.16–19 It remained unclear what are the limits of a
plicability of these results, and whether they correctly d
scribe the physics of polarons in the most important range
intermediatea.

Recently, a method of diagrammatic quantum Mon
Carlo ~MC! was developed, which is very efficient for th
polaronlike problems.1 This method allows direct simulation
of entities specified in terms of~positive definite! diagram-
matic expansions in the thermodynamic limit with no restr
tion for the form of particle-phonon interaction and dime
sionality of the problem. In Ref. 1 the polaron Green
function was simulated, and the results were used to ext
the polaron spectrum.

In the present paper, we employ the diagrammatic Mo
Carlo scheme of Ref. 1 for a detailed study of the Fro¨hlich
model. We significantly enhance the original scheme by~i!
6317 ©2000 The American Physical Society
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introducingN-phonon Green’s functions~with 2N external
phonon lines!, which are simulated in one and the same M
process with the ordinary~0-phonon! Green’s function,~ii !
developing a powerful procedure of spectral analysis of
Green’s function. TheN-phonon Green’s functions allow u
to consider the structure of the phonon cloud and facilit
obtaining polaron parameters at largea, where the polaron is
essentially a many-phonon object. In particular, direct e
mators for the energy, effective mass, group velocity, anZ
factors can be constructed. The spectral analysis of
Green’s function gives the most complete information ab
the polaron, including the possibility to reveal stable a
metastable excited states, if any.

The paper is organized as follows. In Sec. II we introdu
the set of Green’s functions, describe the corresponding
grammatic series, and discuss how they are related to
polaron parameters. In Sec. III we describe qualitatively
Monte Carlo procedure~the quantitative discussion of th
updates is given in Appendix A!. We conclude this section
with comparing diagrammatic Monte Carlo with some oth
recently developed numeric treatments for polaron, and
senting data characterizing the performance of our algorit
The calculated properties of the polaron~energy, effective
mass, structure of the polaronic cloud, etc.! are presented in
Sec. IV. In Sec. V we analyze excited states of the pola
by restoring the spectral density of the Green’s function
method of the spectral analysis described in Appendix B

II. GREEN’S FUNCTIONS AND DIAGRAMS

In this section we introduce basic entities and estab
their relations, which will be utilized in the rest of the pape

We start with the standard Green’s function of the pola
in the momentum (k) –imaginary-time (t) representation:

G~k,t!5^vacuak~t!ak
†~0!uvac&, t>0, ~2.1!

ak~t!5eHtake
2Ht. ~2.2!

Here uvac& is the vacuum state.
The physical information thatG(k,t) contains is clear

from the expansion

G~k,t!5(
n

u^nuak
†uvac&u2e2[En(k)2E0] t, ~2.3!

where $un&% is a complete set of eigenstates of the Ham
tonian H in the sector of given k, i.e., Hun(k)&
5En(k)un(k)&, Huvac&5E0uvac&. Since in our modelE0
50, we omit it below. Rewriting Eq.~2.3! as

G~k,t!5E
0

`

dv gk~v!e2vt, ~2.4!

gk~v!5(
n

d @v2En~k!#u^nuak
†uvac&u2, ~2.5!

one defines the spectral functiongk(v) which has poles
~sharp peaks! at frequencies corresponding to stable~meta-
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stable! particlelike states. Hence if at a givenk there exists a
stable polaron with the energyE(k), the spectral function
reads

gk~v!5Z) 0
(k)d @v2E~k!#1 . . . , ~2.6!

where

Z 0
(k)5u^polaron~k!ufree electron~k!&u2.

~2.7!

Moreover, if the polaron state is the ground state, its ene
and Z factor are ‘‘projected out’’ by the Green’s-functio
behavior at long times:

G~k,t@v0
21!→Z 0

(k)e2E(k)t. ~2.8!

Along with the standard polaron Green’s function~2.1!, it
is reasonable to introduce theN-phonon Green’s function

GN~k,t;q1 , . . . ,qN!5^vacubqN
~t!•••bq1

~t!ap~t!

3ap
†~0!bq1

† ~0!•••bqN

† ~0!uvac&,

p5k2(
j 51

N

qj . ~2.9!

Relations~2.3!–~2.8! are readily generalized to the case
N-phonon Green’s function. In particular, theN-phononZ
factor for the stable~ground-state! polaron with momentum
k,

ZN
(k)~q1 , . . . ,qN!5u^polaron~k!ufree electron~p!

1free phonons~q1 , . . . ,qN!&u2

~2.10!

@the momentump is defined as in Eq.~2.9!#, is given by

GN~k,t@v0
21 ;q1 , . . . ,qN!→ZN

(k)~q1 , . . . ,qN!e2E(k)t.

~2.11!

Our MC procedure of simulating Green’s functions w
utilize a standard diagrammatic expansion–Matsubara te
nique atT50. The diagrams~see Figs. 1 and 2! are built of
the following elements:

~i! free-electron propagator~solid line!

G(0)~p,t22t1!5expS 2
p2

2
~t22t1! D , ~2.12!

~ii ! phonon propagator~dashed line!

D~q,t22t1!5exp@2vq~t22t1!#, ~2.13!

~iii ! vertex factorV(q) ascribed to the vertex formed by
phonon propagator~with the momentumq) and two adjacent
electron propagators. External lines of diagrams arise fr

FIG. 1. A 0-phonon diagram.
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the operators standing in Eqs.~2.1! and~2.9! and their times
and momenta are defined accordingly. Momenta of the in
nal lines are free up to the momentum conservation c
straint at each vertex. To obey this constraint, we cho
phonon momenta to be free, fixing thus the momenta of
electron lines. Times ascribed to the line ends are subjec
the chronologization constraint: The time of the left end is
the time of the right diagram end ist, times of the vertexes
must increase along the global electron line, directed from
to t. Integration over all free parameters of the diagrams
assumed, within the domains consistent with the constra

Upon the formulation of the diagrammatic rules, it is re
sonable to introduce the irreducibleN-phonon Green’s func-
tion, G̃N , which consists only of irreducible diagrams.~By
irreducible diagrams we understand those ones thatdo not
contain phonon lines decoupled from the electron.! From this
definition it is clear that the reducible part of theN-phonon
Green’s function,GN2G̃N , is a sum of products of irreduc
ible functions G̃N8, N8,N, and free phonon propagator
Therefore the reducible part does not contribute to the la
t asymptotic ofGN ~because of extra factorse2v0t coming
from the disconnected phonon propagators!, and, in particu-
lar, Eq. ~2.11! holds true forG̃N as well.

It is useful then to consider the following function:

P~k,t!5G~k,t!1 (
N51

` E dq1•••dqNG̃N~k,t;q1 , . . . ,qN!.

~2.14!

~Note that ifG̃N→GN , this expression would be singular
t→0 because of the divergence of the integrals for disc
nected phonon propagators.! The functionP is readily calcu-
lated by our MC procedure~see the next sections! and, ac-
cording to Eqs.~2.8! and ~2.11!, satisfies the relation

P~k,t@v0
21!→e2E(k)t. ~2.15!

Here we took into account the completeness relation

Z0
(k)1 (

N51

` E dq1•••dqNZN
(k)~q1 , . . . ,qN!51.

~2.16!

Equations~2.15! and~2.16! imply that the lowest levelE(k)
is nondegenerate. Otherwise one should introduce de
eracy factors to the right-hand sides of the equations.

FIG. 2. A 2-phonon diagram. Note that in diagrams f
N-phonon Green’s functions the phonon lines disconnected f
the rest of the diagram ends@these propagators originate from th
phonon operators in the definition~2.9! of GN] always appear in
pairs~labels A and B!, both lines in a pair having the same mome
tum.
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III. DIAGRAMMATIC QUANTUM MONTE CARLO

In the previous work1,20 it has been shown how to sum
convergent~and arbitrary otherwise! diagrammatic series nu
merically without systematic errors. In this section we o
line the basic numerical procedure of evaluating series
various Green’s functions described in the previous sec
~the details being discussed in Appendix A!, and introduce a
number of estimators, that render the evaluation process
nificantly more efficient.

Suppose that we are interested in the functionQ($y%),
which depends on a set of variables$y%, and which is given
in terms of a series of integrals with an ever increasing nu
ber of integration variables:

Q~$y%!5 (
m50

`

(
jm

E dx1•••dxmDm~jm ,$y%,x1 , . . . ,xm!.

~3.1!

Herejm indexes different terms/diagrams of the same or
m. The termm50 is understood as a certain function of$y%.
Both external$y% and internal$xi% variables are allowed to be
either continuous or discrete; in the latter case integrals
understood as sums. Diagrammatic MC process is a num
procedure based on the Metropolis principle21 that samples
various diagrams in the parameter space ($y%,m,jm ,$x%m)
and collects statistics forQ($y%) in such a way that the fina
result converges to the exact answer. The process has
much in common with the Monte Carlo simulation of a di
tribution given by a multidimensional integral. Neverthele
there is an essential difference associated with the fact
integration multiplicity in the expansion Eq.~3.1! is varying.

Summing the series forQ($y%) is the process of sequen
tial stochastic generation of diagrams described by functi
Dm , Eq. ~3.1!. The MC process consists of a number
elementary updates falling into two qualitatively differe
classes:~I! those which do not change the type of the d
gram ~change the values of arguments inDm , but not the
function itself!, and~II ! those which do change the diagra
order. The set of elementary updates and their impleme
tion is problem specific; the only necessary requirements
ergodicity, i.e., given two arbitrary diagrams it takes fin
number of updates to transform one to another, and deta
balance, i.e., diagrams contribute to the statistics accord
to ratio of theirD functions. In Appendix A we describe a se
of updates which we find to work very efficiently. Howeve
considering enormous freedom in constructing various
dates, we have little doubt that they may be further i
proved.

Though the Green’s function contains complete inform
tion associated with the polaron spectrum, and the accu
lation of the histogram forG is straightforward, it is reason
able to introduce certain direct estimators, including one
the Green’s function itself. These estimators substantially
hance the accuracy of calculations and/or allow collect
more information during one MC run~by ‘‘spreading’’ the
data to the different values of the external parameters!.

A. Estimators for effective mass, group velocity, and energy

We start with the family of estimators that are construc
in accordance with the following standard MC rule. Suppo
we have some quantityA specified by the diagrammatic ex
pansion

m
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A5(
n

D n
(A) , ~3.2!

whereD n
(A)’s are the diagrams forA which are parametrized

by internal variables denoted by the unified indexn, and the
summation overn is understood as the summation over d
crete variables and integration over the continuous on
Suppose next that allD n

(A)’s are positive definite and we
have a MC process of generation of randomn with probabil-
ity density given byD n

(A) . Then, if some quantityB is speci-
fied by a~similar! diagrammatic expansion

B5(
n

D n
(B) , ~3.3!

the estimator for the ratioB/A is given by

B

A
5S (

MCA $ n %
QnD Y (

MCA $ n %
1, ~3.4!

Qn5
D n

(B)

D n
(A)

. ~3.5!

Here MCA$n% means the set ofn ’s generated during the MC
run. Commonly, the quantitiesA and B in Eq. ~3.4! are,
respectively, the partition function and an observable. W
however, will use this relation in a somewhat different co
text. For one thing, in our caseA and B can correspond to
one and the same Green’s function, but at different value
external parameters~say, momentum or coupling constan!.
This way we are able to obtain results for a number of d
ferent values of the external parameters from a MC proc
for just one fixed set of parameters. We can also dire
calculate derivatives with respect to the external parame
To this end we should analytically take the correspond
limit from both sides of Eq.~3.4!.

Let us obtain estimators for the effective mass,m* , and
group velocity,v(k)5]E(k)/]k. First we note that (t→`,
l→0)

P~k1lê,t!

P~k,t!
→H exp~2l2t/2m* !, k50,

exp@2lêv~k!t#, kÞ0,
~3.6!

where ê is a unit vector. Considering the denominator a
the numerator of the left-hand side of Eq.~3.6! as A and B
~respectively!, we can take advantage of Eqs.~3.4! and~3.5!.
The functionQ is given by

Q5)
j

expS 2
1

2
@~pj1lê!22pj

2#~Dt! j D . ~3.7!

Here j numerates free-electron propagators of a given d
gram for P(k,t); pj is the momentum corresponding to th
propagatorj, and (Dt) j is the length of this propagator
Equation ~3.7! immediately follows from the fact that th
series forP(k1lê,t) can be obtained from the series f
P(k,t) by adding the momentumlê to all free-electron
propagators. As we are interested only in the limitl→0, we
can expand Eq.~3.7! in powers ofl:
-
s.

,
-

of

-
ss
ly
rs.
g

-

Q512lt~ êp̄!2
l2

2
t1

l2

2
t2~ êp̄!21O~l3!, ~3.8!

wherep̄ is the mean electronic momentum of the given d
gram

p̄5
1

t (
j

pj~Dt! j . ~3.9!

Comparing Eq.~3.8! with the corresponding expansions
the right-hand side of Eq.~3.6!, we arrive at the following
estimators:

^p̄& MC→v~k! ~t→`!, ~3.10!

12
t

3
^~ p̄!2& MC→ 1

m*
~t→`!, ~3.11!

where^•••& MC means MC averaging in accordance with E
~3.4!.

A special care should be taken for treating the time of
Green’s function as an external parameter of the diagrams~in
the sense adopted in this section!. The problem is that rela-
tions ~3.4! and ~3.5! imply that the internal parameters o
diagramsD n

(A) andD n
(B) have one and the same domain

definition, otherwise the ratio~3.5! is not correctly defined.
Meanwhile, the domain of internal times of diagrams direc
depends on the external time. To circumvent this proble
one can introduce scaled internal times by simple relat
t i5tt̃ i , wheret is the external time~length of diagram in
time!, t i is an internal time variable~position in time of an
electron-phonon vertex!, and t̃ iP@0,1# is the corresponding
scaled time variable with the domain of definition indepe
dent oft.

Now it is easy to obtain a direct estimator for the polar
energy. To this end we start from the relation

P@k,~11l!t#

P~k,t!
→e2lE(k)t ~t→`! ~3.12!

and proceed analogously to Eqs.~3.6!–~3.11!. In this case for
the functionQ we have

Q5~11l!NF)
j

expS 2l
pj

2

2
~Dt! j D G

3S)
s

exp@2lv0~Dt!s# D , ~3.13!

where indexesj and s stand for the electron and phono
propagators, respectively, andN is the number of integra-
tions over times~or, equivalently, number of interaction ve
tices! in a given diagram. Then, in the limitl→0, we ex-
pand the right-hand sides of Eqs.~3.12! and ~3.13! up to
terms proportional tol, and in accordance with Eqs.~3.4!
and ~3.5! arrive to the estimator

1

t K (
j

pj
2

2
~Dt! j1(

s
v0~Dt!s2NL

MC

→E~k! ~t→`!.

~3.14!
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B. Reweighting

We will also employ the reweighting technique,22 which
allows one to utilize the statistics being generated for so
given set of external variablesj for calculations at a differen
setj8. In terms of the diagrammatic Monte Carlo, this tec
nique is based on the relation

(
MC $ n% uj 8

Qn~j8!5 (
MC $ n % uj

Dn~j8!

Dn~j!
Qn~j8!, ~3.15!

whereQn is any quantity summed over MC statistics.~We
omitted superscriptA at Dn since it is not relevant here.! The
relation~3.15! follows from the fact that the MC statistics fo
the setj8 involves the same~in the sense of structure and th
values of internal parameters! diagrams as the statistics fo
the setj. The difference is only due to a different probabili
to generate a diagram with the setj rather thanj8. This
difference can be taken into account analytically by the c
responding ratio, which immediately leads to Eq.~3.15!.

In our case, typical external parameters are the interac
constant and the polaron momentum:j5(a,k). The corre-
sponding ratio of the diagrams is

Dn~a8,k8!

Dn~a,k!
5S a8

a D N/2

)
j

exp$2@~k82k!212pj~k82k!#

3~Dt! j /2%

5S a8

a D N/2

e2[(k82k)2/21p̄(k82k)] t. ~3.16!

This relation allows us to get many points at differenta8 and
k8, at no extra cost in CPU time, while performing MC at
given set ofa andk ~cf. Ref. 22!.

C. Exact estimator for Green’s function

Calculation of the Green’s function by means of his
gram, though is simple and natural, involves an appa
shortcoming, associated with the finite width of the his
gram cell. There is always a competition between the
creasing systematic error by making the size of the
smaller, and the increasing statistical accuracy, which
quires increasing the size of the histogram cell. This prob
can be solved by introducing anexact ~free of systematic
errors! estimator for the Green’s function, as follows from
generic consideration presented below.

Given some functionA(j0) of an external variable/set o
variablesj0, specified with the~positive definite! diagram-
matic expansion

A~j0!5(
n

Dn~j0![E dj(
n

Dn~j!d~j2j0!,

~3.17!

~considering a general case, we do not assume that the
main of definition ofn is independent ofj) and having ar-
ranged a MC process of generating configurations$n,j% with
the probability density proportional toDn(j), we would like
to construct an estimatoraj0

the average of which over th
MC process gives~up to a global normalization factor! the
function A(j0). Let us look foraj0

in the following form:
e

-

r-

n

-
nt
-
-
ll
-

m

o-

aj0
~n,j!5H q~n!Dn~j0!/Dn~j!, if jPG0 andDn~j!Þ0,

0, otherwise.
~3.18!

Here G0 is some finite domain in the space of variablej
including the pointj0 , q(n) is some function to be define
later. @We adopt a convenient and consistent with the M
procedure convention thatDn(j)[0, if j is out of the range
of definition of the corresponding diagram.# From Eq.~3.18!
we have

^aj0
& MC[C(

n
E djaj0

~n,j!Dn~j!

5C(
n

q~n!Dn~j0!E
jPG0 , Dn(j)Þ0

dj,

~3.19!

where

C215(
n
E djDn~j! ~3.20!

is the normalization factor for the distribution of the rando
pairs (n,j) induced by the series~3.17!. From Eq.~3.19! it is
seen that if we choose

q21~n!5E
jPG0 , Dn(j)Þ0

dj ~3.21!

@note that, according to Eq.~3.18!, the definition ofq(n) is
relevant only whenDn(j0)Þ0, and thatq21(n)Þ0, since at
least small neighborhood of the pointj0 contributes to the
integral#, then

^aj0
& MC5CA~j0!. ~3.22!

The particular form of the estimator for the Green’s fun
tion is readily obtained by identifyingj with t, and noting
that the ratio of diagrams standing in Eq.~3.18! is given in
this case by Eq.~3.13!. As the domain of definition of any
diagram with respect tot is independent of the diagram
structure:tP@0,̀ #, the factorq in Eq. ~3.18! is simply pro-
portional to the inverse size of the intervalG0. The choice of
G0 for each particulart0 is arbitrary, being a matter of tast
and convenience.

D. Improved estimators for phonon statistics

Collecting statistics for the phonon cloud can be sign
cantly improved by a trick described below. We start w
noting that in the case oft→`, which is relevant to the
ground-state properties, the set of allN-phonon diagrams
possesses a certain symmetry. To reveal this symmetry
transform diagrams to the circular representation by the ru
illustrated in Fig. 3. The transformation involves ‘‘gluing
the outer ends of the electron line, as well as the outer e
of pairs of ~corresponding to each other! external phonon
lines. It is easy to check that the procedure is consistent w
the definitions of propagators, Eqs.~2.12! and ~2.13!. In the
limit of large t, which we are interested in, the probability
find a phonon propagator with length.t/2 is vanishingly
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small. That is why we may omit orientation, understand
the time length of phonon propagator as the length of
smallest arc between its ends. With the same accuracy, in
limit t→`, we may ignore the pairs of phonon lines like th
one shown in Fig. 3~c!, which do not have unambiguou
circular counterparts. It is worth noting that circular di
grams naturally occur in a finite-temperature technique~cf.,
e.g., Ref. 23!, where the circumferencet has a meaning o
inverse temperature.

Within the circular representation the symmetry necess
for constructing improved estimators is clearly seen. Inde
a circular diagram represents awhole classof plain dia-
grams, due to its independence of the position of the p
corresponding to the ends of the plain diagram. Thus, hav
generated a certain plain diagram and associating it with
corresponding circular diagram, one effectively produce
whole class of diagrams to be included into the statistics

In practice, the procedure is as follows. Let indexi
51, . . . ,Ne label electron propagators in the circular di
gram; we thus split the diagram intoNe pieces each having
durationDt i in time, ( i 51

Ne D i5t. When the circular diagram
is cut anywhere on the intervalDt i we obtain a contribution
to G̃Ni

(k,t;q1
( i ) , . . . ,qNi

( i )), whereNi is the number of phonon

propagators which are cut along with the electron propag
on this interval, and$qi% are their momenta. An estimator fo
the integratedN-phononZ factor is found then to be

ZN
(k)[E . . . E )

j 51

N

dqjZN
(k)~q1 , . . . ,qN!

5K (
i 51

Ne Dt i

t
dNi ,NL

MC

, ~3.23!

FIG. 3. Correspondence between the standard and circular
resentations of diagrams.
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i.e., due to time invariance of the circular representation e
interval contributes to the statistics according to its durat
in time. The one-phonon distribution function within th
N-phonon states manifold is given by

FN
(k)~q![E . . . E )

j 52

N

dqjZN
(k)~q,q2 , . . . ,qN!

[
1

N (
l 51

N E . . . E )
j Þ l

N

dqj

3ZN
(k)~q1 , . . . ,ql5q, . . . ,qN!

5K (
i 51

Ne Dt i

t
dNi ,N

1

Ni
(
j 51

Ni

d~qj2q!L
MC

.

~3.24!

Obviously, ZN
(k)5*dqFN

(k)(q). Summing over allN we ob-
tain the one-phonon distribution function

F (k)~q!5 (
N51

`

FN
(k)~q!. ~3.25!

E. Diagrammatic quantum Monte Carlo vs other numeric
treatments of polaron problems

Recently, a number of effective and accurate nume
methods for polaron problems were developed. However
far as we can see, none of them can compete with the
grammatic Monte Carlo scheme, at least in simulating
three-dimensional~3D! Fröhlich model.

Among numerous variational methods one can single
a simple and computationally efficient method based
exact-diagonalization technique, that gives possibility
achieve high, well-controlled accuracy for the 1D Holste
model.24 However, since the variational basis of the meth
is constructed in real space this method encounters diffi
ties for long-range interactions and higher-dimensional
tices due to enormous enlargement of the variational sp
Finite-cluster exact-diagonalization methods,25–27 deal
mainly with small, usually one-dimensional, lattices~up to
20 sites26! with truncated phonon basis. They were gener
ized recently28 to the case of long-range particle-phonon i
teraction in one-dimensional systems. Still, results for fin
clusters withN sites are only approximate for macroscop
systems, and energies obtained by these methods are, st
speaking, not variational in the thermodynamic limit.24 An
extended discussion of shortcomings of other methods se
Ref. 24.

A fundamental limitation on the range of applicability o
exact-diagonalization methods is the dimension of the~trun-
cated! Hilbert space that has to be small enough for t
Hamiltonian matrix to be treatable by a computer. Hilbe
space grows exponentially with the number of effecti
single-particle degrees of freedom~typical number of
phonons, in the case of the polaron!. This exponential law is
severe in our case because we consider 3D~rather than 1D!
problem with continuous~rather than discrete! single-particle
degrees of freedom. In the strong-coupling limit, when t

p-
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typical number of phonons participating in the polaron
cloud is larger than, say, 10, exact-diagonalization meth
can hardly be applicable.

An elegant version of the path-integral Monte Carlo alg
rithm for the Holstein model was proposed recently by
Kornilovich,29,30 which is free of systematic errors. It i
worth noting that this is not just a coincidence, because
the models with discrete Hilbert space path integral exp
sion has the form of a series of finite-dimensional integra
and in this sense is mathematically equivalent to diagra
matic expansion. Apparently, this scheme, essentially rely
on the discreteness of the spatial motion of the electron, c
not be applied to the continuous Fro¨hlich model.~On another
hand, our method can be used to study Holstein model
has comparable efficiency.! Also, since in the path-integra
treatment of the polaron all phonon degrees of freedom
integrated out right at the start, one may not study the dis
bution of multiphonon states in the polaronic cloud.

We conclude this section by noting that our method d
not require large memory to perform the calculation; t
largest diagram order we had to deal with in this paper w
less than 104, which easily fits in 4 Mb RAM. Most of the
data points for small and intermediatea can be obtained in
one day of CPU time on Pentium II-200 with relative acc
racy better than 1023. Effective mass calculations at largea
are more elaborate and took up to two weeks fora513 ~the
same is true for calculations very close to the end po
where long-time phonon propagators play an important ro!.
On another hand, the polaron energy and phonon stati
are calculated rather easily~partially due to improved esti
mators!, and evena520 points can be obtained accurately
one to two days.

IV. NUMERIC RESULTS

In this section we present our results for the polaron
ergy, effective mass,Z factors and the structure of the po
laronic cloud up toa520. The Fro¨hlich model itself has to
be modified for very largea to account for lattice effects
~e.g., nonparabolic dispersion law for the electron, nonz
dispersion law for optical phonons, reciprocal lattice, et!.
From the comparison between the polaron radius in
strong-coupling limit31,2 and atomic distancea it follows that
continuous model is no longer valid fora.p/aAmv0, i.e.,
in the regiona.10–20 lattice effects become important.

A. Ground-state energy and effective mass

In Fig. 4 we present our results for the bottom of the ba
E0 as a function ofa in a wide region of coupling strengths
For all a energies are calculated to the relative accur
better than 1023 ~and up to 1024 for a,3). The data are
compared with Feynman’s variational treatment16 to demon-
strate the remarkable accuracy of the Feynman’s approac
the polaron energy. We thus conclude that just a simple
trapolation between the second-order perturbative resulE0
52a21.26(a/10)2 and Feynman’s strong-coupling varia
tional estimateE052a2/3p22.83~such an extrapolation is
very close to Feynman’s variational treatment in the wh
range of a ’s! yields quite satisfactory approximation fo
E0(a).
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In Fig. 5 accurate data for the effective mass are prese
up to m* ;1000. At a<9 the statistics were collected a
integer values ofa with reweighting~in accordance with the
procedure described in the previous section! to correspond-
ing finite intervals~see the plot!. At a.9 the reweighting
procedure proved to be ineffective.

Let us compare the data form* with the weak- and
strong-coupling analytic results. At smalla ’s, the formula
m* 5(12a/6)21, known to coincide with the perturbatio
expansion up to the second order,4,19,17 works well up toa
'2. In contrast to the case ofE0, the strong-coupling limit31

m* 5a4/48 drastically overestimates the effective mass
the whole range of physically interestinga ’s. Feynman’s
variational technique works better, but still with a conside
able deviation~up to 50%! in the region 5,a,10.

Almost the same degree of accuracy gives variatio
treatment by Feranchuk, Fisher, and Komarov.11 An impor-
tant point about this treatment, however, is that it sugges
‘‘phase transition’’~or self-trapping transition! from ‘‘light’’
to ‘‘heavy’’ polaron ata close to 7.5, which should lead t
an especially rapid increase ofm* just aftera57.5. In this

FIG. 4. Bottom of the polaron bandE0 as a function ofa. The
error bars are much smaller than the point size.

FIG. 5. Effective mass as a function of coupling parameter. O
MC data ~circles interpolated by solid line; error bars are show
but for a,9 they are smaller than the point size, and as smal
1023m* for a,6) are compared with perturbation theory an
strong-coupling-limit results~dashed lines!, Feynman’s approach
~squares!, and Feranchuket al. variational approach~diamonds!.
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connection, we note that our curvem* (a) is essentially
smooth and does not suggest any sort of sharp crosso
@The results of more deep numeric study of the possibility
the self-trapping transition and more than one stable
laronic state are presented in the next~sub!sections.#

B. Structure of polaronic cloud

In this subsection we present our results for the electroZ
factor, or Z0

(k) , for k50 as a function of the coupling
strength in the region of small and intermediatea ~for a
.10, the bare electron weight in the polaron ground st
becomes vanishingly small!, and fora51 as a function of
momentum up to the end point. We study also, how
distribution of phonons in the ground state,ZN

(0) , and the

average number of phonons,N̄5(N51
` NZN

(0) , evolve witha.
Finally, we show how the physics of the end point is seen
the transformation of the one-particle distribution functi
Fk(q), Eq. ~3.25!, and how it allows to identify the relevan
self-energy diagram.

For smalla andk50 the leading behavior is readily ob
tained from the perturbation theory:

F1
(0)~q!5

A2a

4p2

sinu

@q2/211#2 dq du dw,

Z0
(0)512a/2. ~4.1!

We have verified that fora,1 the perturbative results~4.1!
are describing the data rather accurately@see also Figs. 6, 8
and dashed curve~connecting filled circles! in Fig. 11#.

The data in Fig. 6 make it clear that perturbation theo
may not be trusted fora.1 when the bare-electron state
the polaron wave function is no longer the dominant con
bution, e.g.,Z0

(0)(a53),0.2. The bare electronZ factor
vanishes rather rapidly fora.3 @the dependenceZ0

(0)(a) is

FIG. 6. The bare-electronZ0
(0) factor for the ground state as

function of the coupling strength; filled circles are the MC data~due
to improved estimatorsZ0

(0) was calculated to accuracy better th
1024 in absolute values! and the solid line is the perturbation theo
result ~4.1!.
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faster than exponential# and becomes,1025 for a>10. We
do not attempt to fit the data to the particular function
dependence since we believe that in the interval 3,a,10
the polaron state undergoes a smooth transformation betw
weak- and strong-coupling limits.

In Fig. 7 we show the distribution of multiphonon stat
in the polaron cloud atk50. We see how it gradually
evolves from the perturbation theory case into the stro
coupling regime. Fora.10 the data may be fit to the Gaus
ian distribution, but at smaller values ofa the distribution is
essentially asymmetric—it decays faster forN.N̄ than for
N,N̄. We note that even fora517 the phonon numbe
distribution is rather large which means that the polaro
cloud is essentially a superposition of states with differentN.
The effects resulting from this fact are outside the scope

FIG. 7. Partial contributions ofN-phonon states to the polaro
ground state for various values ofa. Error bars are shown, but ar
typically smaller than the point size.~The dashed lines are to guid
the eye.!

FIG. 8. The average number of phonons in the polaron gro
state as a function ofa. Filled circles are the MC data~calculated to
the relative accuracy better than 1023), the dashed line is the per
turbation theory result~4.1!, and the solid line is the parabolic fit fo
the strong coupling limit.
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the variationalC4 theory and may, for example, account f
the considerable deviation of the effective mass discus
above.

It is well known that polaron models often support t
self-trapping phenomenon, when the ground state chang
a relatively narrow interval of parameters from light-
heavy-mass state with a sharp increase in the numbe
phonons contributing to the polaronic cloud. The same p
nomenon was advocated for the Fro¨hlich model by a number
of authors,5–11 including the statement that more than o
stable polaron state exists in the region of intermediatea.
Clearly, if there were a sharp transformation of the polaro
ground state, it would have been immediately seen in
phonon statistics. Such a transformation might be not vis
on the energy plot if the hybridization matrix element b
tween the two competing states is not small, and their ene
derivatives,dE/da, are close to each other at the point
crossing. However, if we are to speak aboutdifferent po-
laronic states, then~almost by definition! their structure has
to undergo an abrupt change witha. Our data on the bare
electronZ factor Z0

(0) and phonon distribution functionsZN
(0)

are evolving smoothly witha and thus prove continuou
formation of the self-trapped state.

To further support this conclusion, we plot in Fig. 8 th
dependenceN̄ vs a. The crossover between the perturbati
result N̄;a/2 of Ref. 19 and the strong-coupling limi
whereN̄;0.22a2, demonstrates no sign of the level crossi
picture. As a side remark we note that the result of Ref.
which predicted that perturbation theory forN̄ works well in
the intermediate range 1,a<6 is not true. In fact, this law
breaks down along with the perturbation theory.

Consider now the evolution of the polaronic cloud wi
momentum as we approach the end point.@The dispersion
curve E(k) featuring the end point at momentumkc of the
form E(k→kc)5E01v02(k2kc)

2/2mc was calculated in
Ref. 1.# Although the polaronic state is stable forE(k)
2E(0),v0 the bare electron weight vanishes ask→kc , see
Fig. 9. From this plot we estimatekc(a51)'1.83. This fig-
ure also makes it clear to what degree the earlier result
Z0

(k) is momentum-independent32 works.
With the numerical tools at hand it is possible to ‘‘vis

alize’’ the physics of the end point. In accordance with t

FIG. 9. The bare-electronZ factor as a function of the polaro
momentum up to the end point.
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generic Pitaevskii theory of the end point,33 in the vicinity of
the end point the polaron can be considered as a~weakly!
bound state of phonon, carrying almost all the momentum
the state, and a polaron with almost zero momentum. T
physics is transparent from the comparison between the
tistics of N-phonon states in the ground state and atk→kc

shown in Fig. 10. Evidently, the two curves can be match
by shifting the ground-state distribution by 1, i.e.,ZN

(kc)

'ZN11
(0) ~the maximum of theZN

(k51.79) curve is a little de-
pleted because of the remaining finite weightZ0

(0) since k
,kc). It means that the polaronic state near the end poin
a superposition of bound states of the phonon with mom
tum aroundkc and a polaron at the band bottom.

Since Fig. 10 does not tell us explicitly what are the p
rameters of the extra phonon present in the polaronic cl
at k→kc , we plot in Figs. 11 and 12 normalized distributio
functions of phonon momenta~in uqu and in the angle be-
tween qk̂). It is obvious from these figures that the ext
phonon momentum is concentrated aroundk.

FIG. 10. Partial weightsZN of theN-phonon states in the struc
ture of the polaronic state fora51 at the band bottom~error bars
are less then 1023) and near the end point~error bars are shown!.
The dashed lines are to guide the eye.

FIG. 11. Phonon distribution functions inq modulus for the
ground state~filled circles! and close to the end point fork51.79
~open circles!. The momentumk is indicated by a bar at theq axis.
~The lines are linear interpolations between numeric points w
error bars of order of the point size.!
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V. SPECTRAL ANALYSIS

The spectral functiongk(v) ~2.5! provides important in-
formation about the system since it has poles~sharp peaks! at
frequencies corresponding to stable~metastable! particlelike
states. Besides, since the probability of absorption of a
electron with the momentumk into a polaron state is propor
tional to the spectral function, the latter can be measu
experimentally by angle-resolved inverse photoemiss
spectroscopy.

In spite of many elaborated treatments of the propertie
the polaron, the knowledge about high-energy part of
polaron spectrum is mostly limited by attempts to calcul
the spectral density either by perturbation theory approac
or at strong-coupling limit.34 As both the Green’s function
asymptotic behavior and the machinery of estimators p
vides information about ground-state properties only,
spectral density is indispensable for the study of exci
states of the system.

Recently, spectral density was calculated for the Holst
model35 and extended Holstein model.28 The first approach
was based on infinite-dimensions approximation, and
second one was done for a finite cluster. None of these m
ods is applicable to the 3D continuous Fro¨hlich polaron.

The spectral analysis, i.e., solving Eq.~2.4!, was per-
formed by a method developed in the present paper@detailed
description of the method and testing examples are prese
in Appendix B#.

The problem of inverting Eq.~2.4! is ill posed;36 with
incomplete and noisy information aboutG(k,t) an infinite
number of solutions exist and therefore one has to sele
solution which is the most representative by some criteri
The maximum entropy method~MEM! looks for the most
probable spectral function, given available information ab
G(k,t).37,38 It provides an attractive reasoning and regul
ization which circumvent saw-tooth instability. Howeve
two features of the original method prevented us from us
it ~advantages and drawbacks of the MEM can be found
Ref. 38!: ~i! the preassigned discretization of thev space,
which is disastrous if the spectral function contains b
sharp,d-function-like, peaks and smooth parts with sha
edges;~ii ! the likelihood function for the distribution of the
most probable solution is assumed to have only one Gaus

FIG. 12. Phonon distribution functions in the angle between
vectorsq andk close to the end point fork51.79~error bars are of
order of the point size!.
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peak and this functional form can poorly approximate t
actual distribution.38 Our ‘‘continuous sampling method’
deals equally well with smooth andd-functional features in
the spectral function, and the final answer emerges as
average over large number of representative solutions w
ever the distribution function. The only price which has to
paid for the above-mentioned improvements is larger co
puter resources spent on the spectral analysis~up to few days
of CPU time on Pentium II-200!; still, in all cases we have
encounted the spectral analysis required less time than
ducing accurate Monte Carlo data. The most important f
tures of the method are that it avoids distortion of equat
by nonlinear terms and does not suffer from systematic
rors caused by preassigned discretization of thev space.

To perform a joint check of the diagrammatic Mon
Carlo approach and the method of spectral analysis, we c
pared the spectral densities obtained by our numeric calc
tions and by perturbation theory for zero temperature. T
analytic expression for the high-energy part (v.0) of the
spectral density could be obtained for the arbitrary inter
tion potentialV(uqu) which depends on the modulusuqu of
the phonon momentum. For zero polaron momentum,k50,
the imaginary part of the linear ina self-energy part
S(0,v.0) is

Im S~0,v!52
1

A2p
Av21uV@A2~v21!#u2u~v21!.

~5.1!

~Here u is the theta function.! Then, using the relation
g0(v)52Im Gk50(v)/p and keeping only linear with re
spect toa terms one gets

g0~v.0!5
1

A2p2

Av21

v2
uV@A2~v21!#u2u~v21!.

~5.2!

The expression for the low-energy part (v,0) of the spec-
tral density depends on the specific form of the interact
potential and we consider the perturbation-theory result
the short-range interaction

V~ uqu!5 i ~2A2ap!1/2
1

Aq21k2
, ~5.3!

which reduces to the Fro¨hlich one whenk→0. The low-
energy part is the delta-functional peak

g0~v,0!5
a

~k1A2!2
dS v1a

A2

k1A2
D . ~5.4!

The comparison of our numeric results for the low-ener
part of the Fro¨hlich polaron (k50) spectral density fora
50.05 and Eq.~5.4! demonstrates a perfect agreement~with
the accuracy 1024 for the polaron energy andZ factor!,
whereas our results for the high-energy part~upper panel in
Fig. 13! significantly deviate from the analytic curve. This
not surprising since for Fro¨hlich polaron the perturbation
theory expression is diverging asv→v0 and, therefore the
perturbation theory breaks down. To test the case when
turbation theory is obviously valid we setk51 and obtained

e
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a perfect agreement for both the low- and high-energy p
of g(v) ~lower panel in Fig. 13!. We note that the high-
energy part ofg(v) is successfully restored by our metho
despite the fact that the total weight of the feature is less t
1022 for a50.05.

One can note that the main deviation of the actual sp
trum of Fröhlich polaron from the perturbation-theory resu
is the extra broad peak in the actual spectral density av
;3.5. To study this feature we calculatedg(v) for a
50.5, a51, anda52 ~see Fig. 14!. Note, that the peak is
seen for higher values of the interaction constant and
weight grows witha. Near the threshold,v51, the spectral
density demonstrates the square-root dependence;Av21
~see the inset!.

To trace the evolution of the peak at higher values oa
we calculated the spectral density fora54, a56, anda
58 ~see Fig. 15!. At a54 the peak atv;3.5 already domi-
nates in the spectral density. Moreover, a distinct hi
energy shoulder appears ata54, which transforms into a
broad peak atv;9 in the spectral density fora56. The
spectral density fora58 demonstrates further redistributio
of the spectral weight between different maxima without s
nificant shift of the peak positions. One can also see
there is a high-energy shoulder which is, probably, the p
cursor of another peak which would appear for higher val
of the interaction constant.

The excited states of the polaron were studied within
frameworks of different approaches39–43by calculating optic

FIG. 13. The comparison of the numeric results~solid lines! and
the perturbation-theory curves~dashed lines! for the spectral density
of Fröhlich model witha50.05 ~upper panel! and the short-range
interaction model witha50.05 andk51 ~lower panel!.
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absorption spectra. The light absorption is associated w
the transitions from the polaron ground statef0 with k50
andE5E0 to the excited statesf with Ef which are charac-
terized by the presence of a finite number of real phon
along with the polaron. The optic absorption spectrum at
frequencyv is proportional to the transition probability

P~v!52p( ^f0uÔu f &^ f uÔuf0&d~E02Ef1v!.

~5.5!

~HereÔ5Er is the electric dipole interaction,E is the elec-
tric field.!

It was shown in the weak-coupling limit39,40 that the optic
absorption spectrum has a broad peak with the onset s
rated from the polaron state by the optic phonon energy.
calculations confirm~see Fig. 14! that there are no meta
stable excited states of the polaron in the weak-coupling
gime.

On the other hand, in the strong-coupling limit the ex
tence of the metastable relaxed excited state~RES!, i.e., the
state where the lattice readapts to the new electronic confi
ration and the polaron-lattice system is in the local minimu
of the total energy, was predicted.41–43 This state manifests
itself as a sharp peak in the absorption spectrum which
located at the frequency equal to the energy differe
ERES2E0. To check the existence of RES one can study
spectral density~2.5! since although the matrix elements
transition probability~5.5! and spectral density~2.5! are dif-
ferent, both functions have to demonstrate sharp peaks a

FIG. 14. The spectral density of Fro¨hlich polaron fora50.5
~dotted line!, a51 ~solid line!, anda52 ~dashed line!, with energy
counted from the position of the polaron. The initial fragment of t
spectral density fora51 is shown in the inset.



w
e
gy
re

s
t
r

tw

on
th
u
s
a

o
n
ly
s

nd

an-
een
e.
non-

and,

all

d
and
un-

aria-
states
the
all,
de-
e

ns
us-

E
re
tion

hey
c-
a

x-

pa-
tes

the
p-

t-

re
r-

is

6328 PRB 62MISHCHENKO, PROKOF’EV, SAKAMOTO, AND SVISTUNOV
energies of the metastable excited states. From Fig. 15
conclude that there is no metastable excited state becaus
width of the peaks is comparable with the excitation ener
i.e., with the distance from the polaron ground state. Mo
over, according to the strong-coupling approaches,41 the ex-
citation energy of the RES state is proportional toa2,
whereas peak positions ing(v) with respect toE0 do not
change witha.

The variational treatment developed in Ref. 11 sugge
that in a certain region ofa there may exist two differen
stablestates of the polaron~the corresponding equations fo
variational parameters have two solutions!. Our numeric
study can shed light on this situation.

First, let us discuss what one could observe would the
states really exist. If at some pointa5a* there occurs a
level crossing so that the ground state switches from
state to another, and the two states differ essentially in
number of phonons and/or in the effective mass, one wo
expect at the pointa* a sharp change of these quantitie
The change should be almost jumplike in the case of sm
hybridization between the two states, and look like a smo
crossover otherwise. Even in the case of sufficiently stro
hybridization, one may distinguish between two qualitative
different cases:~i! the case when the level separation is le

FIG. 15. Evolution of spectral density witha in the crossover
region from intermediate to strong couplings.~The polaron ground-
state peak is shown only fora58. Note, that the spectral analys
still resolves it, despite its very small weight,1023.! The energy is
counted from the position of the polaron.
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thanv0 ~and thus both states are stable against decay!, and
~ii ! the case when the upper level is in the continuum, a
therefore is unstable. We note that the case~i! was observed
for Holstein polaron in one-dimensional lattice24 and in infi-
nite dimension approximation.35 Strictly speaking, in the
case~ii ! one can invoke the second level only in some qu
titative sense, since there is no qualitative difference betw
the case~ii ! and a situation with only one polaron stat
These quantitative features could be associated with the
monotonic behavior of the derivatives~with respect toa) of
the effective mass and/or the mean number of phonons,
of course, another peak in the spectral density.

From our study of spectral densities we see that for
coupling strengthsg(0,v,1)50, which means that, in
contrast to the Holstein model, the case~i! does not take
place for Fro¨hlich polaron. While there is no stable excite
state in the energy gap between the ground-state energy
incoherent continuum, there are several many-phonon
stable states at energiesEf2E0;1, ;3.5, and;8.5. One
can speculate that these states reveal themselves in v
tional approaches and can be mistreated as quasistable
of the polaron. It should be emphasized, however, that
situation does not resemble that of the level crossing at
since we do not observe nonmonotonic behavior of the
rivatives~with respect toa) of the effective mass and/or th
mean number of phonons.
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APPENDIX A: UPDATING PROCEDURES

1. Updates of class I

Updating procedures of this class are the simplest. T
mimic standard rules of simulating a given distribution fun
tion Dm . In the present case we are dealing with quite
number of variables having different physical meaning: e
ternal variables$y% includet, N, a, andk, and internal vari-
ables describe the topology of the diagram~indexjm), times
of electron-phonon vertices and momenta of phonon pro
gators. From this list of variables follows a set of upda
simulating multidimensional distributionDm .

a. Vertex shift in time

We choose at random any interaction vertex inside
graph~we exclude the diagram closing points which are u
dated separately!, and change its time position fromtv to tv8
on the interval (t1 ,t2) between the nearest left- and righ
neighbor vertices, i.e.,t1,tv , tv8,t2. Let the incoming
and outgoing electron momenta for the selected vertex ap
andp1q. The normalized probability density to find the ve
tex at timetv8 is a simple exponential function
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W~tv8!5
DEe2(tv82t1)DE

12e2(t22t1)DE
, ~A1!

whereDE5E(p)2E(p1q)7vp depending on whether th
updated vertex is the left or right end of the correspond
phonon propagator, which allows a trivial solution of th
equation

E
t1

tv8W~s!ds5r , ~A2!

in the form

tv85t12
ln~12r @12e2(t22t1)DE# !

DE
. ~A3!

Here and belowr is the random number homogeneously d
tributed on the unit interval. Since the new variable is
lected according to the exact probability density the acc
tance ratio for this update is unity.

b. Change of transferred momentum angle

We choose at random any phonon propagator exc
those attached to the diagram ends~propagators attached t
the diagram ends appear inpairs with equal momenta, thus
single propagator updates do not apply to them! and change
its momentumq→q8 so thatuqu5uq8u. Let the propagator
connect vertices at timest1 and t2. Evaluating the average
electron momentum between these vertices

^p&t1 ,t2
5

E
t1

t2
p~t!dt

t22t1
, ~A4!

and introducing vectorp05^p&t1 ,t2
1q, we may write the

probability density to find azimuthal and polar anglesw,u
between vectorsq andp0 as

W~w,u!;sin~u!expH 2
t22t1

m
p0q cosuJ . ~A5!

This result is a trivial consequence of the quadratic disp
sion law for the bare electron spectrum. Clearly, the n
azimuthal angle is selected at random (w52pr ), and cosu
is selected according to the simple exponential function
complete analogy with Eqs.~A1! and ~A3! up to trivial
change of notations. The acceptance ratio is thus unity.

c. Change of transferred momentum modulus

In this procedure propagators are selected as explaine
the previous subsection, but now we change the modulu
the transferred momentum while keeping the polar and
muthal angles between the vectorsp0 andq fixed. The prob-
ability density now reads

W~q!;V~q!q2 expH 2
t22t1

2m
@q2p0 cosu#2J

;expH 2
t22t1

2m
@q2p0 cosu#2J , ~A6!
g

-
-
-

pt

r-

n
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where we have used explicitly the property of the Fro¨hlich
model thatV(q)q2 is q independent. By tabulating the in
verse error function we ensure fast numerical solution of
equation erf(z)5r , or z5erf21(r ), and thus generation o
the new valueq5zA2m/(t22t1)1p0 cosu with acceptance
ratio unity.

d. Change of diagram structure

We select at random any nearest-neighbor pair of vert
inside the graph~again, the diagram closing vertices are e
cluded! and exchange the assignment of the phonon pro
gators between these vertices. Namely, if the original m
mentum transfer wasq1 in vertex 1 andq2 in vertex 2, we
suggest to change these momenta toq2 and q1 correspond-
ingly. The acceptance ratio for this procedure depends
whether we are dealing with the left (c51) or right (c
521) ends of the phonon propagators,

R5e2t[E(p1c1q12c2q2)2E(p)2v0(c12c2)] , ~A7!

wheret is the time difference, andp is the electron momen
tum between the selected vertices. Clearly, this proced
effectively changes the topology of bosonic lines while kee
ing fixed their momenta.

e. Change of diagram length in time

This procedure is done in two variants~almost identical to
the procedure of shifting the vertex position in time!. Con-
sider the case when no artificial potential except the chem
potential is used. In the first variant we select the new ti
differencet between the positions of the right diagram e
at its left nearest-neighbor vertex according to the probab
density

W~t8!5DEe2t8DE, ~A8!

whereDE5E(p)1Nzv02m, andp is the momentum of the
last electron propagator,m is the chemical potential, andNz
is the number of phonon propagators attached to the diag
right end ~obviously, Nz is the same for the diagram le
end!. In the second variant we select new time differenc
between the positions of all nearest-neighbor pairs of ve
ces. For each such a pair the probability density is still giv
by Eq. ~A8!, where in the most general caseNz must be
understood as the number of phonon propagators which
cut when the diagram is cut anywhere between the sele
pair of vertices. Notice, that the second variant requi
much longer computation time; thus if the typical diagra
order is very large it must be applied less frequently. In b
variants the acceptance ratio is unity.

There is a bottleneck in the time decay of the electronP
function, which does not allow efficient sampling of bo
long-time and short-time behavior and causes normaliza
problems at largea, namely, P(t) drops to almost zero
value at short times, and then climbs back toP;1 before it
settles to the asymptotic decay~2.15!.

There is, however, a general prescription of how to elim
nate such difficulties by using the so-called ‘‘guidin
function’’44 or fictitious potential renormalization. Thi
method was successfully applied recently45 to the problem of
tunneling transition amplitudes, where one is bound to c
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lect reliable statistics which varies by orders and orders
magnitude between different points in time. The idea is
modify the statistics of suggested diagrams by introduc
the acceptance ratio

R5Afic~tnew!/Afic~told!, ~A9!

and accordingly multiplying all MC estimators in the tim
domain by 1/Afic(t), where the fictitious potentialAfic(t) is
arbitrary. Note that in Eq.~A9! we are dealing with the ex
ternal variablet—the diagram length in time. In the prese
case the best choice would beAfic;1/P(t). We achieve this
goal by self-consistently adjustingAfic to 1/PMC(t) after a
certain large number of updates during the thermaliza
stage@herePMC(t) is the statistical result forP(t)]. After
thermalization stage we start collecting new statistics
P(t) and keepAfic fixed.

f. Change of coupling constant

Since the diagram weight depends on the coupling c
stant asaNp whereNp is the number of phonon propagato
in the diagram, all we need to do is to select new value oa
with this power-law probability density. Normalized prob
ability density is obtained by restricting allowed values ofa
to a certain parameter range. Acceptance ratio is unity.

g. Change of external momentum

Given the average electron momentum of the diagramp̄
5^p&0,t , see Eq.~A4!, with external momentumk, we de-
fine vectorp05k2^p&0,t and write the probability density to
select new external momentumk8 as

W~k8!;expH 2
t

2m
~k82p0!2J . ~A10!

As before the new variable is seeded according to this p
ability density utilizing the tabulated error function@see Sec.
I A 3 and Eq.~A6!# and thus is always accepted.

One note is in order here. Although one is allowed
change the coupling constant and the external momentu
a single MC process, it seems more efficient to keep th
variables fixed instead of spreading the statistics over s
range in the (k,a) parameter space. However, the know
edge of the relative weights according to which a given d
gram contributes to the statistics of variousa andk may be
utilized in collecting statistics for the finite neighborhood
the point (k0 ,a0) used in a given MC simulation. Obviously
reliable results for points other than (k0 ,a0) are obtained
only provided that for typical diagrams the relative weigh
are of order unity. As explained in the text, this knowledge
also used in deriving estimators for the effective mass
group velocity of the polaron.

2. Updates of class II

These updates are in the heart of the method since
change the diagram order. The generic rules for construc
them are as follows.20 Let the updateA transform a diagram
Dm(jm ,y,x1 , . . . ,xm) into Dm1n(jm1n ,y,x1 , . . . ,xm ,
xm11 , . . . ,xm1n), and, correspondingly, its counterpartB
perform the inverse transformation. Forn new variables we
f
o
g

n

r

-

b-

in
se
e

-
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introduce vector notation:xW5$xm11 ,xm12 , . . . ,xm1n%. The
updateA involves two steps. First, itproposesa change,
selecting a new diagram,Dm1n , and a particular value ofxW ,
which is seeded with a certain normalized distribution fun
tion W(xW ). There are no requirements strictly fixing the for
of W(xW ), but to render the algorithm most efficient, it
desirable thatW(xW ) be chosen as close as possible
Dm1n(x), i.e., to the actual statistical probability density ofxW
in the new diagram. Upon proposing the modification, t
update is accepted, with probability,Pacc(xW ), or rejected. The
updateB, removing variablex, is accepted with probability
Prem(xW ). For the pair of complementary updates to be b
anced, the following Metropolis-like prescription should b
fulfilled:20

Pacc~xW !5H R~xW !/W~xW !, if R~xW !,W~xW !,

1, otherwise,
~A11!

Prem~xW !5H W~xW !/R~xW !, if R~xW !.W~xW !,

1, otherwise,
~A12!

where

R~xW !5
pB
pA

Dm1n~jm1n ,y,x1 , . . . ,xm ,xW !

Dm~jm ,y,x1 , . . . ,xm!
~A13!

and pA and pB are the probabilities of selecting updatesA
andB, which, in principle, may differ. To solve the polaro
problem and account for any possible diagram it is suffici
to have two pairs of complementary processes of type
which are described in detail below.

a. AddingÕremoving phonon propagators to the diagram

Consider the algorithm for the process increasing
number of internal phonon propagators~i.e., excluding those
attached to the diagram closing points! by 1. This update is
done in two variants which differ in the probability densitie
according to which the new propagator parameters are
gested. First we select the time positiont1 for the left-hand
end of the extra phonon propagator. This is done by choos
at random~with equal probabilities! one of the free-electron
propagators, and by taking fort1 any time~with equal prob-
ability density! within this propagator. Then we select th
transferred momentum and propagator length in time us
the distribution function

W~q,t!5
v0

4pq0
e2tv0(11q/q0)2

, ~A14!

whereq0
2/25v0, i.e., we first seeduqu according toW1(q)

51/@q0(11q/q0)2# ~and isotropic around the poin
q50), and then t according to W2(qut)5v0(1
1q/q0)2e2tv0(11q/q0)2

. Since the typical length of the pho
non propagator in time depends on how close is the pola
momentum to the dispersion law end point, we also use
other variant of seeding new variablesq andt, namely, we
factorize the distribution function intoW(q,t)5W1(q8
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5uq2ku)W3(t) ~i.e., isotropic around the pointk), where
W3(t)5Ve2tV and V!v0 down to V;0.01v0 close to
the end point.

We underline that the above choices are motivated by
physics of the problem, in particular, if the combinatio
V2(q)q2 was some power-law function ofq ~e.g., when the
interaction vertex is nonsingular at small momentum or e
goes to zero asq→0) one would better have to choos
W1(q→0)}V2(q)q2 to ensure that nowhere in the acce
sible parameter region the acceptance ratio~see below! is
singular.

Now the proposing stage is completed, and we are re
to perform accept/reject step, following the above presc
tion, Eq. ~A11!. The corresponding functionW(xW ) (xW
[$t1 ,t2 ,q%) reads~for the first version!

W~xW !5
v0e2tv0(11q/q0)2

4pt0q0
, ~A15!

wheret0 is the length of the free-electron propagator, whe
the pointt1 is selected. As mentioned already, this form
W is by no means a unique one. Apart from the factorpB /pA
which will be discussed later, the ratio~A13! is now com-
pletely defined since

Dm1n~jm1n ,y,x1 , . . . ,xm ,xW !

Dm~jm ,y,x1 , . . . ,xm!

5
2A2pa

~2p!3
e2(t22t1)[v01E(^p&t1 ,t2

2q)2E(^p&t1 ,t2
)] .

~A16!

The algorithm for the processB is to select at random
~with equal probabilities! some phonon propagator, and, if
is not attached to the diagram end, with the probabilit
given in Eqs.~A12! and ~A15! remove it.

To complete the description of the subprocessesA andB,
we should define the ratiopB /pA . It is quite reasonable to
select creation and annihilation procedures with equal pr
abilities. At the first glance it might seem that this immed
ately leads topB /pA51, but this is not true. The point is tha
when we select an electron propagator for placing the p
t1, we haveNe equal chances, whereNe is the number of
free-electron propagators in the diagram being modified@de-
e

n

-

dy
-

e
f

s

b-

nt

nominator of Eq.~A13!#, and when we select a phono
propagator for removing, we haveNph equal chances, wher
Nph is the number of phonon propagators in the diagr
from which we try to remove the propagator@numerator of
Eq. ~A13!#. TheseNe andNph are straightforwardly related
to each other:

Nph5~Ne11!/2. ~A17!

We thus get

pB
pA

5
2Ne

Ne11
5

2Nph21

Nph
. ~A18!

@Note a misprint in Ref. 1, where the right-hand side of E
~10! givespA /pB instead ofpB /pA].

b. AddingÕremoving a pair of phonon propagators attached
to diagram ends

We recall that diagrams forGN , see Eq.~2.9! and Fig. 2,
have pairs of phonon propagators with free~disconnected
from the rest of the diagram! ends; each propagator in a pa
has the same momentum.@We remind one that these propa
gators originate from the phonon operators in the definit
~2.9! of the functionGN .# We say that these propagators a
‘‘attached’’ to the diagram ends because they have to be
at t50 ~for the left-end propagator! and end att5t ~for the
right-end propagator!.

To add/remove a pair of free-end phonon propagat
~e.g., propagators labeled ‘‘B’’ in Fig. 2! we use the same
procedure as in previous subsection, except for mi
changes to which we proceed now. First, we select time
sitions t1 for the left-end propagator length, andt2 for the
right-end propagator starting point, according to the pro
ability densities Wl(t1)5Ve2Vt1 and Wr(t2)
5Ve2V(t2t2). In the first variant of the updateV5v0 and
in the secondV!v0. Also, the phonon momentum is pro
posed using the same distributionW1(q85q) or W1(q8
5uq2ku). We thus have

W~xW !5
V2e2V(t1t12t2)

4pq0~11q8/q0!2
, ~A19!

and
Dm1n~jm1n ,y,x1 , . . . ,xm ,xW !

Dm~jm ,y,x1 , . . . ,xm!

5
2A2pa

~2p!3
e2v0(t1t12t2)3H exp$2@E(^p&0,t1

2q)2E(^p&0,t1
!#t12@E(^p&t2 ,t2q)2E~^p&t2 ,t)]( t2t2)% t1,t2

exp$2[E(^p&0,t2
2q)2E(^p&0,t2

)] t22@E~^p&t2 ,t1
22q)2E(^p&t2 ,t1

)] ~t12t2!

2@E(^p&t1 ,t2q)2E(^p&t1 ,t)]( t2t1)% t1.t2 .

~A20!
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The algorithm for the inverse procedure is to select
random~with equal probabilities! a pair of propagators from
the list of pairs attached to the diagram end, and with
probabilities given in Eqs.~A12! and~A19! remove it. Since
we select procedures inserting and removing pairs of pro
gators with equal probabilities, we have

pB
pA

5
1

Nz11
. ~A21!

APPENDIX B: METHOD OF SPECTRAL ANALYSIS

1. General background and outline of the method

The problem of restoring positive definite spectral dens
functionr(v) from known imaginary-time Green’s functio
G(t) is the problem of solving linear first-type Fredhol
equation

E
0

`

e2tvr~v!dv5G~t!, ~B1!

where the domain of definition of the functionsG(t) and
r(v) is @0,̀ #. The normalization of the Green’s functio
G(0)51 implies the additional constraint

E
0

`

r~v!dv51. ~B2!

In a realistic situation the Green’s function is known a
discrete set of times$t i%, i 51, . . . ,N with some statistical
errors at each time point. As is well known, in this case
problem of solving Eq.~B1! belongs to the class of ill-pose
problems. The characteristic feature of the ill-posed prob
is that the solution of Eq.~B1! is not unique even when
statistical errors are absent, as there is an infinite numbe
unknown functionsr̃(v) satisfying Eq.~B1!. In the case of
finite statistical errors one may face a situation when
solution of Eq.~B1! under the constraint~B2! does not exist
at all. Therefore it is natural to formulate the problem as
find an approximate solutionr min(v) which reproducesG at
a finite set of times with smallest deviationD min . The defi-
nition of the measure of deviation depends on the met
used, and the value of minimal deviationD min is determined
by the magnitude of statistical errors.

There are two fundamental difficulties that are inheren
the spectral analysis. The first one is the well-known sa
tooth instability of the linear Fredholm equation of the fir
type—an approximate solutionr̃(v) does not reproduce th
true solutionr(v) even if r̃(v) generates the Green’s func
tion

G̃~t!5E
0

`

e2vtr̃~v!dv ~B3!

which reproducesG(t) with any preassigned accuracy. Th
difficulty is treated usually by the regularization method th
smoothes the saw-tooth noise of approximate solutionr̃(v).
The idea of the regularization method is to introduce so
nonlinearity into Eq.~B1! that imposes constraints on th
derivatives ofr̃(v). There are two main drawbacks of th
t
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method. First, regularization method is unable to restore
spectral density which has sharp features. Second, due
distortion of the initial equation by additional regularizatio
terms the approximate solution reproduces the functionG(t)
with relatively high deviationD@Dmin . Hence the informa-
tion from the most representative region of the deviatio
D;Dmin is lost.

The second difficulty inherent to the problem of solvin
Eq. ~B1! is that any representation ofr̃(v) by a preassigned
discrete set$r(v f)%, f 51, . . . ,M is the source of uncon
trollable systematic errors. For one thing, if the functi
r(v) contains a sharp feature with a significant weight
somev8, which does not match the discrete set$v f%, this
feature cannot be reproduced properly and therefore the
of the spectral density can be distorted beyond recognit
Note that all iteration methods as well as the methods ba
on solving the nonlinear system of equations use preassig
discretization of thev space.

We present a method of solving equation~B1! that avoids
distortion of equation by nonlinear terms and thus probes
most representative interval of deviations. Besides,
method does not suffer from systematic errors as it does
involve preassigned discretization of thev space. The idea
of the method is to generate by a stochastic procedur
~large enough! set of M positive definite statistically inde
pendent approximate solutions$r̃ j (v)%, j 51, . . . ,M with
deviation measuresD j;Dmin . And then, taking advantag
of the linearity of Eq.~B1!, choose the final solution as th
average

r~v!5M 21(
j 51

M

r̃ j~v!. ~B4!

The reason is that while the particular solutionr̃ j (v) pos-
sesses the saw-tooth instability, the stochastic characte
the procedure of particular solution generation should lea
averaging out the saw-tooth noise. Note that the condit
r̃ j (v).0 and constraint~B2! substantially enhance the con
vergence of the averaging Eq.~B4!.

The method of generation of a particular solution is bas
on the optimization of the deviation

D@ r̃#5E
0

t max
uG~t!2G̃~t!uG21~t!dt. ~B5!

Heret max is the maximalt up to whichG(t) is known. The
weight functionG21(t) is to efficiently utilize information
from the whole range@0,t max#, even in the case when th
function G(t) decreases by orders of magnitude witht.
Note that we use weight functionG21(t) rather than
G̃21(t) to avoid feedback instabilities in generationr̃(v).

Our optimization procedure does not involve preassign
fragmentation of thev space. The number of paramete
used for parameterization of the spectral density funct
r̃(v) is being varied during optimization process, so that a
spectral function can, in principle, be reproduced within a
preassigned accuracy. The process of generating a parti
solution involves a random choice of the initial-configurati
parameters and subsequent optimization of the deviation
changing the parameter values, as well as the number o
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parameters. The maximal number of continuous parame
and the number of particular solutionsM are limited only by
the computer performance.

2. Configuration and method of getting independent solution

We parametrizer̃ as a sum

r̃~v!5(
t51

K

x$Pt%
~v! ~B6!

of rectangulars$Pt%5$ht ,wt ,ct%

x$Pt%
~v!5H ht , vP@ct2wt/2,ct1wt/2#,

0, otherwise
~B7!

determined by heightht.0, width wt.0, and centerct.0.
A configuration

C5ˆ$Pt%, t51, . . . ,K‰ ~B8!

with the constraint

(
t51

K

htwt51 ~B9!

defines, according to Eqs.~B6! and ~B3!, the functionG̃(t)
at any time point

G̃C~t!5H 1, t50,

2t21(
t51

K

hte
2ctt sinh~wtt/2!, tÞ0.

~B10!

To express the deviation~B5! as an analytic function o
the values of G and G̃ at the set of times$t i%, i
51, . . . ,N @where the functionG(t) is known#, we use lin-
ear interpolation between closest points. Note that the s
cific type of the functions~B7! is not crucial for the genera
features of the method although simple form of analytic
pressions~B9! and ~B10! is of value for fast performance.

The procedure of obtaining a particular solutionr̃ j (v)
consists of randomly generating some initial configurat
C j

init followed by nondeterministic sequence of configurati
changes until deviation satisfies the condition

D@C j
fin#,Du;Dmin ~B11!

(Du is the upper limiting deviation! for final configuration
C j

fin . The nondeterministic character of configurati
changes is achieved by random selection of various elem
tary updates.

3. General features of elementary updates

By elementary update we mean a random change of
configuration, which is either accepted or rejected in acc
dance with certain rules. There are two classes of elemen
updates. The updates of the class I do not alter the numb
rectangularsK changing only the values of the paramete
from a randomly chosen set$Pt%. The updates of the class
either add a new rectangular with randomly chosen par
eters$hK11 ,wK11 ,cK11%, or remove stochastically chose
rs

e-

-

n

n-

e
r-
ry
of

-

rectangulart from the configuration. If a proposed chang
violates constraint~B9! ~e.g., a change ofwt or ht , or any
update of the class II!, then the necessary change of som
other parameter set$Pt8% is simultaneously proposed, to sa
isfy the requirement of the constraint.

The updates should keep parameters of a new config
tion within domain of definition of configurationC. For-
mally, the domains of definition of configuration~B8! are
Jht

5@0,̀ #, Jct
5@0,̀ #, Jwt

5@0,2ct#, and JKP@1,̀ #.
However, for the sake of faster convergence, we reduce
mains of definition.

As there is no generala priori prescription for choosing
reduced domains of definition, the rule of thumb is to st
with maximal domains and then, after some rough solutio
found, reduce the domains to reasonable values suggeste
this solution. In particular, since the probability to propose
change of any parameter of configuration is proportiona
K21, it is natural to restrict maximal number of rectangula
JKP@1,Kmax# by some large numberKmax. To forbid rect-
angulars with extremely small weight, which contribution
G̃(t) is less than statistic errors ofG(t), one can impose the
constrainthtwtP@Smin,1#, with Smin!Kmax

21 . When there is
some preliminary knowledge that overwhelming majority
integral weight of the spectral functionr(v) is in a range
@vmin ,vmax#, one can restrict the domain of definition of th
parameterct by Jct

5@vmin ,vmax#. Then, to reduce the

phase space one can chooseJht
5@hmin ,`# and Jwt

5$wmin ,min@2(ct2vmin),2(vmax2ct)#%.
While the initial configuration, the update type, and t

parameter to be altered are chosen stochastically, the v
tion of the values of the parameters relevant to the updat
optimized to maximize the decrease ofD. Each elementary
update of our optimization procedure~even that of the class
II ! is organized as a proposal to change some continu
parameterj by randomly generateddj in a way that the new
value belongs toJj . Although proposals with smaller val
ues ofdj are accepted with higher probability it is importan
for the sake of better convergence, to propose someti
changesdj that probe the whole domain of definitionJj .
To probe all scales ofdjP@djmin ,djmax# we generate
dj with the probability density function P
;@max(udjminu,udjmaxu)/udju#g, whereg@1.

Calculating the deviation measuresD(j), D(j1dj),
D(j1dj/2), and searching for the minimum of the parabo
interpolation, we find an optimal value of the parame
change

djopt52B/2A, ~B12!

where

A52@D~j1dj!22D~j1dj/2!1D~j!#~dj!22,
~B13!

and

B5@4D~j1dj/2!2D~j1dj!23D~j!#dj. ~B14!

In the caseA.0 andjoptPJj we adopt as the update pro
posald̃j one of the valuesdj, dj/2, or djopt for which the
deviation measureD(j1 d̃j) is the smallest. Otherwise, i
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the parabola minimum is outsideJj , one has to compare
only deviations fordj anddj/2.

4. Global updates

The updating strategy has to provide efficient minimiz
tion of the deviation measure until criterion~B11! is satis-
fied. It is highly inefficient to accept only those proposa
that lead to the decrease of deviation, since, in a general c
there is an enormous number of deviation local mini
D loc@C#.Du . As we observed it in practice, these multip
minima drastically slow down~or even freeze! the process.

To optimize escape from a local minimum, one has
provide a possibility of reaching a new local minimum wi
lower deviation through a sequence of less optimal confi
rations. It might seem that the most natural way of doing t
would be to accept sometimes~with low enough probability!
the updates leading to the increase of the deviation. H
ever, this simple strategy turns out to be impractical. T
reason is that the density of configurations per interval
deviation sharply increases withD. So that the acceptanc
probability for a deviation-increasing update should be fi
tuned to the value ofD. Otherwise, the optimization proces
will be either nonconvergent, or ineffective~if the accep-
tance probability is, correspondingly, either too large, or
small in some region ofD).

A way out of the situation is to perform some sequence
T temporaryelementary updates of a configurationC(0),

C~0!→C~1!→•••→C~r !→C~r 11!→•••→C~T!,

~B15!

where the proposal to update the configurationC(r )→C(r
11) is ~temporary! accepted with the probability

Pr→r 11

5H 1, D@C~r 11!#,D@C~r !#,

f ~D@C~r !#/D@C~r 11!# !, D@C~r 11!#.D@C~r !#.

~B16!

@Function f satisfies boundary conditionsf (0)50 and f (1)
51.] Then we choose out of the configurations$C(r )% ~B15!
the one with minimal deviation and, if it is different from
C(0), declare it to be the result of the global update, or
this configuration turns out to be justC(0), reject the update

We choose the functionf in the form

f ~x!5x11d~d.0!, ~B17!

which leads to comparatively high probabilities to acce
small increases of deviation measures and hampers sig
cant enlargements of deviation. Empirically, we found o
that the global update procedure is most effective if o
keeps parameterd5d1;0 at the firstT1 steps of sequenc
~B15! ~to leave local minimum! and then changes this pa
rameter to a valued5d2@1 for the lastT2T1 elementary
updates~to decrease the deviation measure!. In our algorithm
the values TP@1,Tmax#, T1P@1,T#, d1P@0,1#, and d2
P@1,dmax# were stochastically chosen for each global upd
run.
-
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5. Final solution and refinement

After a set ofM configurations

$Cj
fin , j 51, . . . ,M % ~B18!

that satisfy the criterion~B11! is produced, the solution~B4!
is obtained by summing up the rectangulars~B7! and~B18!.

We, however, employ a more elaborated procedu
which we call refinement. Namely, we use the set~B18! as a
source ofM ref new independent starting configurations f
further optimization. These starting configurations are gen
ated as a linear combinations of randomly chosen mem
of the set~B18! with stochastic weight coefficients. Then, th
refined final solution is represented as the average~B4! of
M ref particular solutions resulting from the optimization pr
cedure.

The main advantage of such a trick is that initial config
rations for optimization procedure now satisfy the criteri
~B11! from the very beginning and, thus, upper limiting d
viation Du can be considerably reduced. Moreover, as a
linear combination of sufficiently large numberR of ran-
domly chosen parent configurations$Ch

fin ,h51, . . . ,R%
smoothes the saw-tooth noise, the deviation of a summ
configurationCref

fin is normally lower than that of each add
tive one.

6. Elementary updates of class I

(A) Shift of rectangular. Change the centerct of a ran-
domly chosen rectangulart. The continuous parameter fo
optimization~B12!–~B14! is j5ct which is restricted by do-
main of definitionJct

5@vmin1wt/2,vmax2wt/2#.
(B) Change of width without change of weight. Alter the

width wt of a randomly chosen rectangulart without change
of the rectangular weighthtwt5const and centerct . The
continuous parameter for optimization isj5wt which is re-
stricted byJwt

5$wmin ,min@2(ct2vmin),2(vmax2ct)#%.
(C) Change of weight of two rectangulars. Change the

heights of two rectangularst and t8 ~wheret is a randomly
chosen andt8 is either randomly chosen or closest tot rect-
angular! without change of widths of both rectangulars. Co
tinuous parameter for optimization is the variation of t
rectangulart heightj5ht . To restrict the weights of chose
rectangulars to@Smin,1# and preserve the total normalizatio
~B2! this update suggests to changeht→ht1dj and ht8→ht82djwt8 /wt with dj confined to the interval

Smin /wt2ht,dj,~ht82Smin /wt8!wt /wt8 . ~B19!

7. Elementary updates of class II

(D) Adding a new rectangular. To add a new rectangula
one has to generate some new set$Pnew%
5$hnew,wnew,cnew% and reduce the weight of some oth
rectangulart ~either randomly chosen or closest! in order to
keep the normalization condition~B2!. The reduction of the
rectangular weightt is obtained by decreasing its heightht .

The center of the new rectangular is selected at rand
according to

cnew5~vmin1wmin/2!1~vmax2vmin2wmin!r . ~B20!
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As soon as the valuecnew is generated, the maximal possib
width of a new rectangular is given by

wnew
max52 min~vmax2cnew,cnew2vmin!. ~B21!

Continuous parameter for optimizationdj5hnewwnew is
generated to keep weights of both new rectangular and r
angulart larger thanSmin

dj5Smin1r ~htwt2Smin!. ~B22!

Then, the value of the new rectangular heighthnew for given
dj is generated to keep the width of new rectangular wit
the limits @wmin ,wnew

max#

hnew5dj/wnew
max1r ~dj/wmin2dj/wnew

max!. ~B23!

(E) Removing a rectangular. To remove some randoml
chosen rectangulart, we enlarge the heightht8 of some an-
other ~either randomly chosen or closest! rectangulart8 ac-
cording to condition~B2!. Since such procedure does n
involve continuous parameter for optimization, we unite
moving of rectangulart with the shift procedure~A! of the
rectangulart8. Then, the proposal is the configuration wi
the smallest deviation measure.

(F) Splitting a rectangular. This update cuts some recta
gular t into two rectangulars with the same heightsht and
widths wnew1

5wmin1r (wt2wmin) and wnew2
5wt2wnew1

.
Since removing a rectangulart and adding of two new glued
rectangulars does not change the spectral function we in
duce the continuous parameterdj which describes the shif

FIG. 16. Model spectral density~dashed line! and the result of
spectral analysis~solid line!. The position of the delta function is
shown only in the lower panel.
ct-

n

-

o-

of the center of a new rectangular with the smallest weig
Second rectangular is shifted into opposite direction to k
the center of gravity of two rectangulars unaltered. The
main of definitionJj obviously follows from the parameter
of the new rectangulars.

(G) Gluing rectangulars. This update glue two~either
randomly chosen or closest! rectangularst and t8 into single
new rectangular with the weighthnewwnew5htwt1wt8ht8
and widthwnew5(wt1wt8)/2. Theinitial center of the new
rectangularcnew corresponds to the center of gravity of rec
angularst and t8. We introduce a continuous parameter
simultaneously shifting the new rectangular.

8. Tests

To check the accuracy of our approach, we tested it
the spectral density distribution that spreads over a la
range of frequencies and simultaneously possesses fine s
ture in low-frequency region. The test spectrum was mode
as the sum of the delta function with the energy«d50.03
and the weightZd50.07, and continuous high-frequenc
spectral density which starts at the threshold« th50.04. The
continuous part of the spectrumrcon was modeled by the
function @in fact, this functional form is predicted by th
Pitaevskii theory forr(v) near the end point#

rcon~v!5
ZdAv2« th

2pA«gap@~v2« th!1«gap#
~B24!

FIG. 17. The model spectrum~dashed lines! and results of spec-
tral analysis~solid lines! for h51022 ~upper panel! and h51023

~lower panel!.
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~here «gap5« th2«d is a microgap! in the range v
P@« th ,0.566# and by a triangle at higher frequencies~see the
dashed line in the upper panel of Fig. 16!.

The Green’s functionG(t) was calculated from the
model spectral density in thenmax5300 points t i
5tmaxi

2/nmax in the time range from zero totmax51000.
The restored spectral density reproduces both gross fea
of high-frequency part~upper panel in Fig. 16! and the fine
structure at small frequencies~lower panel of Fig. 16!. The
energy and the weight of the delta function was restored w
the accuracy 1024. The final solution was obtained by th
averaging Eq.~B4! of M51100 particular solutions.

To evaluate the precision which characterizes how typ
particular solution r̃ j (v) @see Eq. ~B3!# reproduces the
Green’s functionG(t), we introduce the maximal relativ
deviation

h5maxF uG~t i !2G̃~t i !u
G~t i !

G ,i P@1,nmax#, ~B25!
,

a

r,
res

h

l

which typical value ish51024 for a particular solution of
the spectrum in Fig. 16.

Since the Green’s function which is obtained from Mon
Carlo calculations contains some statistic errors at each
point, the minimal value of parameterh is limited by the
quality of the calculated Green’s functionG(t). To study the
influence of the~uncorrelated! statistic errors we studied th
stability of the method against stochastic noise

G~t i !→G~t i !~11hr i !,i 51,nmax, ~B26!

introduced by random numbersr iP@0,1#. It is seen that the
method restores the gross features of the spectrum~position
and width! even for rather roughly calculated Green’s fun
tion, with h51022 ~upper panel in Fig. 17!, whereas the
precision h51023 is sufficient to resolve the line shap
~lower panel in Fig. 17!.
tter

olidi

.

un.

v.
1N.V. Prokof’ev and B.V. Svistunov, Phys. Rev. Lett.81, 2514
~1998!.

2J. Appel, inSolid State Physics, edited by H. Ehrenreich, F. Seitz
and D. Turnbull~Academic, New York, 1968!, Vol. 21.

3L.D. Landau, Phys. Z. Sowjetunion3, 664 ~1933! @English trans-
lation: Collected Papers~Gordon and Breach, New York, 1965!,
pp. 67-68#.
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