
PHYSICAL REVIEW B 1 SEPTEMBER 2000-IIVOLUME 62, NUMBER 10
Creep and depinning in disordered media
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Elastic systems driven in a disordered medium exhibit a depinning transition at zero temperature and a creep
regime at finite temperature and slow drivef. We derive functional renormalization-group equations which
allow us to describe in detail the properties of the slowly moving states in both cases. Since they hold at finite
velocity v, they allow us to remedy some shortcomings of the previous approaches to zero-temperature
depinning. In particular, they enable us to derive the depinning law directly from the equation of motion, with
no artificial prescription or additional physical assumptions, such as a scaling relation among the exponents.
Our approach provides a controlled framework to establish under which conditions the depinning regime is
universal. It explicitly demonstrates that the random potential seen by a moving extended system evolves at
large scale to a random field and yields a self-contained picture for the size of the avalanches associated with
the deterministic motion. At finite temperatureT.0 we find that the effective barriers grow with length scale
as the energy differences between neighboring metastable states, and demonstrate the resulting activated creep
law v;exp(2Cf2m/T) where the exponentm is obtained in ae542D expansion (D is the internal dimension
of the interface!. Our approach also provides quantitatively an interesting scenario for creep motion as it allows
us to identify several intermediate length scales. In particular, we unveil a ‘‘depinninglike’’ regime at scales
larger than the activation scale, with avalanches spreading from the thermal nucleus scale up to the much larger
correlation lengthRV . We predict thatRV;T2s f 2l diverges at small drive and temperature with exponents
s,l that we determine.
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I. INTRODUCTION

Understanding the statics and dynamics of elastic syst
in a random environment is a long-standing problem w
important applications for a host of experimental system
Such problems can be split into two broad categories:~i!
propagating interfaces such as magnetic domain walls,1 fluid
invasion in porous media,2 or epitaxial growth;3 ~ii ! periodic
systems such as vortex lattices,4 charge-density waves,5 or
Wigner crystals of electrons.6 In all these systems the bas
physical ingredients are identical: the elastic forces tend
keep the structure ordered~flat for an interface and periodi
for lattices!, whereas the impurities locally promote the wa
dering. From the competition between disorder and elasti
emerges a complicated energy landscape with many m
stable states. This results in glassy properties such as hy
esis and history dependence of the static configuration. In
dynamics, one expects of course this competition to h
important consequences on the response of the system
externally applied force.

To study the statics, the standard tools of statistical m
chanics could be applied, leading to a good understandin
the physical properties. Scaling arguments and simpli
models showed that even in the limit of weak disorder,
equilibrium large scale properties of disordered elastic s
tems are governed by the presence of impurities. In part
lar, below four ~internal! dimensions, displacements gro
unboundedly7 with the distance, resulting in rough interfac
and loss of strict translational order in periodic structure4

To go beyond simple scaling arguments and obtain a m
detailed description of the system is rather difficult and
present only main two methods, each with its own shortco
PRB 620163-1829/2000/62~10!/6241~27!/$15.00
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ings, have been developed. The first one is to perform
perturbative renormalization-group calculation on the dis
der, and is valid in 42e dimensions to first order ine. In this
functional renormalization-group~FRG! approach,8,9 the
whole correlation function of the disorder is renormalize
The occurrence of glassiness is signaled by a nonanalyt
appearing at a finite length scale during the flow, specifica
a cusp in the force correlator. This yields nontrivial pred
tions for the roughness exponents of interfaces.8 Another ap-
proach relies on the replica method to study either the me
field limit ~i.e., large number of components! or to perform a
Gaussian variational approximation of the physical mod
Using this variational approach both for manifolds10 and for
periodic systems,11,12 correlation functions and thermody
namic properties could be obtained. It confirms the existe
of glassy properties, with energy fluctuations growing asLu

whereu is a positive exponent. To obtain the glass phase
this method, one must break the replica symmetry. A
qualitative level, this is in good agreement with the physi
intuition of such systems as being composed of many lo
lying metastable states separated by high barriers. As
clearly shown in the case of periodic manifolds, the corre
tion functions can be obtained by both the FRG and va
tional approach and are found to be in very reasonable ag
ment, bridging the gap between the two-methods.11,13 Taken
together, these two approaches thus provide a very cohe
picture for the statics.14,13 In particular, they allow us to un-
derstand that although disorder leads to glassy feature
both the manifold and the periodic systems, these two ty
of problems belong to quite different universality classes
other respects, such as the large distance behavior of
correlations.14
6241 ©2000 The American Physical Society
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6242 PRB 62CHAUVE, GIAMARCHI, AND LE DOUSSAL
These properties have drastic consequences for the
namics of driven systems in the case, important in pract
where an elastic description holds~i.e., when plastic defor-
mations can be neglected!. Determining the response to a
externally applied force is not only an interesting theoreti
question, but also one of the most important experime
issues. Indeed, in most systems the velocityv versus forcef
characteristics is directly measurable and is simply linked
the transport properties@voltage-current for vortices, curren
voltage for charge-density wave~CDW! and Wigner crystals,
velocity-applied magnetic field for magnetic domain wall#.
In the presence of disorder it is natural to expect that, at z
temperature, the system remains pinned and only polar
under the action of a small applied force, i.e., moves unt
locks on a local minimum of the tilted energy landscape.
larger drive, the system follows the forcef and acquires a
nonzero asymptotic velocityv. In the simplest cases, th
effect of disorder at large velocity is washed out and o
recovers the viscous flow, as in the pure case. In the ther
dynamic limit, it is believed that there exists a thresho
force f c separating both states, and that a dynamical tra
tion occurs atf c calleddepinning, where the velocity is con-
tinuously switched on, like an order parameter of a seco
order transition in an equilibrium system,15 leading to av-f
characteristics such as the one shown in Fig. 1.

An estimate off c can be obtained via scaling arguments16

or with a criterion for the breakdown of the large veloci
expansion.17,18 Beyond f c , if one describes the depinning a
a conventional dynamical critical phenomenon, the import
quantities to determine are of course the depinning expo
b giving the velocityv;( f 2 f c)

b and the dynamical expo
nentz which relates space and time ast;r z.

An even more challenging question, and experimentall
least as relevant, is the response at finite temperatureT.0.
In the most naive description, the system can now overco
barriers via thermal activation, leading to a thermally a
sisted flow19 and a linear response at small force of the fo
v;e2D/Tf , where D is some typical barrier. It was
realized20–23 that because of the glassy nature of the sta
system, the motion is actually dominated by barriers wh
divergeas the drivef goes to zero, and thus the flow formu
with finite barriers is incorrect. Well below the thresho
critical force, the barriers are very high and thus the moti

FIG. 1. Typical force-velocity characteristics, exhibiting pinnin
at T50 with a threshold forcef c and creep atT.0,f , f c . At large
drive, the system flows as if there were no disorder.
y-
e,

l
al

o

ro
es
it
t

e
o-

i-

d-

t
nt

t

e
-

c
h

,

usually called ‘‘creep’’ is extremely slow. Scaling argu
ments, relying on strong assumptions such as the scalin
energy barriers and the use of statics properties to desc
an out of equilibrium system, were used to infer the smaf
response. This led to a nonlinear response, characterist
the creep regime, of the formv;exp(2Cf2m/T) where m
5(D2212zeq)/(22zeq) and zeq is the roughening expo
nent for the staticD-dimensional system.

Obtaining a detailed experimental confirmation of this b
havior is a nontrivial feat, in reasons of the range in veloc
required. Although in vortex systems these highly nonline
flux creep behaviors have been measured ubiquitously,
rather difficult to obtain clean determination of the exp
nents, given the many regimes of lengthscales which cha
terize type-II superconductors.4 In some recent measure
ments, some agreement with the creep law in the Bragg g
regime was obtained.24 Probably the most conclusive ev
dence for the above law was obtained, not in vortex syste
but for magnetic interfaces. Quite recently Lemerleet al.1

successfully fitted the force-velocity characteristics of a m
netic domain wall driven on a random substrate by
stretched exponential formv;exp2f20.25 over 11 decades
in velocity. This provided evidence not only of the stretch
exponential behavior, but of the validity of the exponent
well.

Given the phenomenological aspect of these predicti
and the uncontrolled nature of the assumptions made, b
for the creep and for the depinning, it is important to deri
this behavior in a systematic way from the equation of m
tion. Less tools are available than for the statics, and a
ages over disorder should be made using dynamical meth
Fortunately, it is still possible to use a function
renormalization-group~FRG! approach for the dynamica
problem. Such an approach has been used atT50 to study
depinning.25,26 It allowed for a calculation of the depinnin
exponents, inD542e. However this approach is still rathe
unsatisfactory. The FRG flow used in Refs. 25 and 26
essentially the static one, the finite velocity being only
voked to remove—by hand—some ambiguities and to cut
the flow, with no real controlled way to show that this is th
correct procedure. Furthermore in these approaches it is
necessary to assume, instead of deriving them from the F
some scaling relations in order to obtain the exponents.
other rather problematic point is that, with no additional i
put, the method of Ref. 26 would yield three universal
classes for the depinning: two universality classes depen
on the nature of the disorder~random bond versus random
field! for manifolds and one for periodic systems, while n
merics and physical arguments25 suggested that only two
~random field and periodic! universality classes could exis
In addition, since this is also intrinsically aT50 ~and v
50) approach, it cannot be used to tackle the creep beh
ior.

We propose here a single theory for describing all
regimes of a moving elastic system, including depinning a
the nonzero temperature regimes. Our FRG equations
tain from the start the finite velocity and finite temperatu
They thus allow to address questions which are beyond
reach of either approximate scaling theories, orv50 FRG
flow. For the depinning we are able to determine the con
tions required for the existence of a universal depinning
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PRB 62 6243CREEP AND DEPINNING IN DISORDERED MEDIA
havior, as well as computing the depinning exponents~and
estimatingf c). We show in particular that only two univer
sality classes exist~out of the three! for the depinning since
we explicitly find that random bond systems flow to t
random-field universality class. We can also extract from
equations the characteristic length scales of the depinn
The main advantage of our approach is of course to add
the finite T small v regime as well. The method allows t
derive the creep formula directly and thus allows to confir
the assumptions made on the scaling of the energy barr
In addition we show that the creep is followed by a dep
ninglike regime and determine its characteristic len
scales. A short account of some of these results was
sented in Ref. 27.

The paper is organized as follows: in Sec. II we pres
the equation of motion and the types of disorder studied h
Section III is devoted to a brief review of scaling argume
and a summary of useful results from perturbation theo
presented in Appendix B. Section IV contains the fie
theoretical formulation of the problem and the associa
renormalization-group flow equations, derived in Append
C. The static case is studied in Sec. IV C, focusing on
appearance of the cusp. The effect of the temperature is s
ied in detail in Appendixes D and E. In the next sections,
study the depinning~V! and creep~VI ! regimes. Both sec-
tions contain the outline of the derivation and a physi
discussion. Appendix G is devoted to the effect of a sm
velocity on the FRG. We conclude in Sec. VII, referring
an extension of our work proposed in Appendix F. In A
pendix A we fix the notations used throughout the paper

II. ELASTICITY AND DISORDER

Elastic systems are extended objects which ‘‘prefer’’
be flat or well ordered. We are dealing with two differe
types of elastic systems which, however, can be treated in
same way. On the one hand,interfaces, i.e., surfaces with a
stiffness that makes local distortions energetically expens
on the other hand,latticeswith elastic displacements allowe
about a regularly ordered configuration.

The first type is the easiest to visualize. The interface
assumed to have no overhangs and is thus described
height functionur defined at each pointr ~see Fig. 2!. Its
energy is proportional to its area* rA11u¹uu2 and in the
elastic limit u¹uu!1, reduces to

Hel@u#5E
r

c

2
u¹uu2 ~2.1!

relative to the flatur50 configuration~notations are defined
in Appendix A!. We denote byc the stiffness, or elastic
constant.

Periodic structures, such as flux-line lattices or char
density waves~CDW!, can be described by the same type
elastic Hamiltonian. For each point~or line! in the elastic
periodic system one can introduce a~vector! displacement
field uR that gives the shift from the reference positionR ~see
Fig. 2!. The elastic energy for small displacements is giv
by a quadratic form in the differencesuR2uR8 between
neighboring points and thus can be written as Eq.~2.1! in a
continuum description (r being a generic point in space!.
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When u has more than one component,c should be under-
stood as a tensor~see Appendix F!.

To take the quenched disorder into account in such s
tems it is necessary to express the energy of the above el
structure in the presence of impurities. The coupling to
substrate or to local fields is easily written for interface mo
els and is more subtle for lattices. Quite generally the c
pling to disorder leads to an energy

Hdis5E
r
V~r ,ur ! ~2.2!

which gives rise to a pinning forceF(r ,u)52]uV(r ,u) act-
ing on the displacementur . Depending on the microscopi
origin of the disorder termV, the coupling~2.2! leads to
quite different physics.

In the case of interfaces Eq.~2.2! originates from

Hdis5E
r ,z

V~r ,z!r~r ,z!, ~2.3!

r~r ,z!5E
kz

eikz•(z2ur )5d~z2ur ! ~2.4!

in terms of the densityr(r ,z). One then usually distin-
guishes two cases: either ‘‘random bond’’~RB! whenV(r ,z)
is short range~random exchange for magnetic domain wall!,
or ‘‘random field’’ ~RF! as discussed below, whereV(r ,z)
has long-range correlations.

In the case of periodic structures, the densityr(r ) can be
expressed using the set of vectorsk of the reciprocal lattice
and Eq.~2.2! originates from

Hdis5E
r
W~r !r~r !, ~2.5!

r~r !.r0(
k

eik•(r 2ur ), ~2.6!

FIG. 2. Top: an interface with height fieldur abover. We de-
note byr the ~internal! coordinates along the interface and byz the
height coordinates. Bottom: a lattice with reference positionsR and
displacementsuR from R.
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6244 PRB 62CHAUVE, GIAMARCHI, AND LE DOUSSAL
wherer0 the average density.11 The potentialW is random,
of short ranger f ~e.g., point impurities for a vortex lattice o
a CDW!. We call this case ‘‘random periodic’’~RP!.

In both cases, using Eqs.~2.3!–~2.6! and~2.2! one obtains
for the correlations ofV in Eq. ~2.2!

@V~r ,u!2V~r 8,u8!#2522d rr 8R~u2u8!, ~2.7!

whereR(u) is a periodic function with the periodicitya of
the lattice in the periodic~RP! case.28 The d function is cut
off at the microscopic scaler f .

For an interface,R(u) has the shape shown in Fig. 3.
that case, the widthr f of R(u) is typically given by the
width of the interface or the size of impurities. The for
resulting from such a random bond disorder h
correlations29

F~r ,u!F~r 8,u8!5d rr 8D~u2u8! ~2.8!

as shown in Fig. 3 where

D~u!52R9~u!. ~2.9!

The signature of such a RB disorder for the interface is t
*D50 sinceR8(u) decreases to zero at infinity.

Another type of disorder occurs in the case of interfa
separating two phases, like, e.g., a domain wall in a dis
dered magnet. A random field couples differently to the t
phases on the right and left of the interface, thus the ene
resulting from the coupling to disorder involves an integ
in the bulk of the system and not justat the interface posi-
tion. The correlation of the force can still be expressed
Eq. ~2.8! and D still decreases to zero above a scaler f as
shown on Fig. 3. Contrarily to the RB case,*D does not
vanish. For a single-component displacement fieldu, the RF,
of correlator~2.8!, is still formally the derivative of a poten
tial V(r ,u)52*udu8F(r ,u8). The correlations of this ficti-
tious potential are of the form ~2.7! with R(u)

52*0
udu8*0

u8du9D(u9), and one hasR(u).2 1
2 uuu*D for

uuu@r f which can be visualized as a random walk~whereu
plays the role of ‘‘time’’ and therandom-field strength*D
522R8(`) is the ‘‘diffusion constant’’!. Contrarily to the
RB for whichR(u) is short range,R(u) for the RF grows at
largeu as shown on Fig. 3.

In this paper we study the overdamped driven motion
such elastic systems which obey

FIG. 3. Up: RB case, down: RF case. Right: correlator of
potential, left: correlator of the force.
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h] turt5c¹2urt1F~r ,urt !1z rt1 f , ~2.10!

whereh is a friction, f is the external driving force densit
and z rt a Langevin noise. The correlation̂z rtz r 8t8&
52hTd rr 8d tt8 defines as usual a temperatureT for this out
of equilibrium system. The long time behavior of Eq.~2.10!
at zero drivef 50, reduces to the thermodynamics at te
peratureT. In Eq. ~2.10! the bare30 pinning forceF(r ,u) is
Gaussian with zero average and correlator given by Eq.~2.8!.
We will consider three universality classes forD correspond-
ing to an interface in a random potential~RB!, in a random
field ~RF!, or a periodic system in a random potential~RP!.
Physical realizations of such disorders would be, resp
tively, a random anisotropy for a magnetic domain wall,1 the
random-field Ising systems,31 and vortex lattices or
CDW’s.11,25

It is also useful to rewrite Eq.~2.10! in the comoving
frame at average velocityv5^] turt&. In the remainder of this
paper, we switch tourt→urt1vt and thus study the follow-
ing equation of motion:

H ^] turt&50

~h] t2c¹2!urt5F~r ,vt1urt !1z rt1 f̃
, ~2.11!

where f̃ 5 f 2hv is the average pinning force andr belongs
to aD-dimensional internal space. From now on we spec
ize to an unidimensional displacement fieldur as would be
the case for an interface model or a singleQ CDW. This
simpler case already captures the main physics at small
locity, investigated here. Extensions to many-compon
systems will be briefly discussed.

Before giving a quantitative treatment using renormaliz
tion group, let us review the qualitative arguments whi
have been given previously to describe the physics origin
ing from Eq.~2.10!.

III. PRELIMINARY ARGUMENTS

A. Statics

In the absence of drive, Eq.~2.10! is equivalent to the
equilibrium problem at temperatureT. The state of the sys
tem results from the competition between elasticity, pinni
and thermal fluctuations. The physics of such problems
be investigated by a host of methods4,11,16,7,8and here we
only recall the salient points. Temperature does not play
important role as will become clear and we begin with t
T50 case.

A subsystem of sizeR, with displacement w(R)

5A(uR2u0)2, is submitted to a typical elastic force densi
f el5cw(R)/R2 and to a typical pinning force densityf pin

5AD(0)/RD. Balancing these quantities, one obtains th
elasticity wins at large scales forD.4, resulting in a flat
interface witha priori bounded displacements. InD,4, sys-
tems of sizeR smaller than the Larkin length

Rc5S c2r f
2

D~0!
D 1/42D

~3.1!

wander as predicted by the Larkin model:7

e
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PRB 62 6245CREEP AND DEPINNING IN DISORDERED MEDIA
w~R!;r f S R

Rc
D 42D/2

. ~3.2!

At larger scalesR.Rc , the system wanders further than th
correlation lengthr f of the disorder. This simple pictur
breaks down and the system can be viewed as made of
kin domains of sizeRc , which are independently pinned
First-order perturbation theory confirms this picture bel
the Larkin length. The static equilibrium~equal-time! corre-
lation function atT50 is ~see Appendix B!

u2q,tuq,t5
D~0!

~cq2!2
. ~3.3!

The wandering computed from Eq.~3.3!,

1

2
~ur ,t2u0,t!

2;
D~0!

c2
S4r e/e, ~3.4!

for D542e gives back Eq.~3.2!, and we recover the scalin
expression~3.1! by equating the wandering tor f

2 :

Rc5S e
c2r f

2

S4D~0!
D 1/e

. ~3.5!

We used that*q@(12cosq•r)/q4#5ADr42D for 2,D,4
with AD542e52pe/222G@2e/2#/16;S4 /e whene→01.

The remarkable feature is that atT50, straight perturba-
tion theory,32 or the use of replicas or equilibrium
dynamics,33,34gives that Eq.~3.3! is exactto all ordersin D,
and is identical to the correlation in the Larkin model.7 In-
deed, the naive perturbation series organizes as if the pin
energy were simply expanded inu @thus the pinning force is
independent ofu with F(r )F(r 8)5D(0)d(r 2r 8)#, resulting
in a Gaussian model.

In fact, due to the occurrence of multiple minima beyo
Rc , this perturbative result is incorrect35 at large scale. It can
be shown, for example, on discrete systems, that if a c
figuration ur

GS which minimizes H@u#5* r@(c/2)(¹ur)
2

1V(r ,ur)# is defined on a volume larger thanRc , then the
Hessian (d2H/durdur 8)@uGS# becomes singular.36 Such in-
stability appears clearly in a functional renormalizatio
group~FRG! treatment of the problem8 which proves thatD
becomes nonanalytic beyond the lengthRc , as will be dis-
cussed below. It can also be seen within variational or me
field treatments using replicas10 that replica symmetry break
ing ~RSB! is necessary to describe the physics beyond
Larkin length Rc . Using either replicas with RSB or th
FRG it is possible to describe the physics at all scales an
obtain the correct roughness exponentzeq defined by

w~R!;r f S R

Rc
D zeq

, ~3.6!

where the value ofzeq depends on the statics universali
class.4 Since disorder induces unbounded displacements
system is rough and the temperature is always formally ir
evant inD.2. It is described by aT50 fixed point, char-
acteristic of a glass phase.
ar-
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B. Depinning

An elastic system does not necessarily move under
action of a driving force. The disorder leads to the existen
of a threshold forcef c at T50 as shown in Fig. 1. A simple
dimensional estimate off c can be obtained16 by computing
the sum of the independent pinning forces acting on the L
kin domains (R/Rc)

DAD(0)Rc
D and balancing it with the

driving force acting on the same volumeRDf . This gives

f c;
cr f

Rc
2

. ~3.7!

Another estimate off c comes from the large velocity
expansion18,17 of the equation of motion~2.11! ~from the
criterion f̃ .hv). It coincides with Eq.~3.7!.

For f * f c the system moves with a small velocity, and
has been proposed15 that depinning can be described in th
framework of standard critical phenomena, with the veloc
as an order parameter. This leads to the assumption of
independent critical exponentsz andz, defined in Refs. 26,
25, and 37 through the correlation function in the comovi
frame ~in the stationary state forf→ f c

1)

~ur ,t2u0,0!
25r 2zC~ t/r z!, ~3.8!

C(x)→cst forx→0 andC(x);x2z/z for x→`. The dynami-
cal roughening exponentz close to the thresholda priori
differs from its equilibrium valuezeq. Several related expo
nents can be also introduced such as:~i! the depinning expo-
nentb; ~ii ! the correlation length exponentn describing the
divergence of the lengthj defined from the equal-time
velocity-velocity correlation function. They satisfy

v;~ f 2 f c!
b, ~3.9!

j;~ f 2 f c!
2n. ~3.10!

Numerically38 the motion of the system looks like a dete
ministic succession of avalanches of sizej with characteris-
tic time t;( f 2 f c)

2zn. From the argumentu;vt and the
statistical tilt symmetry26,25~see below!, the exponentsb and
n are usually determined fromz,z by the scaling relations

n5
1

22z
5

b

~z2z!
. ~3.11!

To obtain these exponents analytically, one needs to
form an FRG analysis of the equation of motion. This will b
discussed in more details in Sec. V.

C. Creep

At finite temperatureT.0, motion occurs at any drive
For low temperatures and very small drivef ! f c one expects
the motion to be very slow, and thus, although it is a dyna
cal problem, a qualitative understanding can be obtained
considering thermal activation over barriers determined fr
staticsarguments. An original estimate19 of such barriers led
to linear, albeit activated, response. However, the effe
linked to the glassy nature of the problem were understoo
a qualitative level20–23 using scaling arguments.
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The argument proceeds as follows: systems larger thaRc
have a~static! roughnessw(R);r f(R/Rc)

zeq and hence the
energy has typical fluctuations of order

E~R!;UcS R

Rc
D D2212zeq

~3.12!

with Uc5cRc
D22r f

2 the energy scale of a Larkin domain
Assuming that the energy landscape is characterized b
unique energy scale, and thus that the energy differen
between neighboring metastable states is the same a
energy barrier separating them as schematically show
Fig. 4, one obtains that the barriers height scale with
exponentD2212zeq. Since the motion is very slow, it is
usually argued that the effect of the drive is just to tilt t
energy landscape, and the effective barrier becomes

UcS R

Rc
D D2212zeq

2 f RDr f S R

Rc
D zeq

. ~3.13!

The maximum of Eq. ~3.13!, obtained at Ropt

;Rc( f / f c)
21/(22zeq), gives via Arrhenius law the larges

time spent in the valley by the thermally activated syst
and thus yields the velocity

v;expF2
Uc

T S f

f c
D 2mG , m5

D2212zeq

22zeq
, ~3.14!

known as thecreep motion, characterized by the stretche
exponential with exponentm. Note that the effective barrie
given by the above formula vanishes at a scaleR0

;Rc( f / f c)
21/(22zeq) which diverges as fast asRopt, the typi-

cal size of a thermally activated excitation~see Fig. 5!.
This elegant scaling argument leading to the creep

mula relies, however, on strong assumptions and does
yield any information on the detailed behavior, in particu
on what happens after the thermal jumps. The fact thatstatic
barriers and valleys scale with the same exponent is alre
a nontrivial hypothesis about the structure of the infini
dimensional energy landscape. Refined simulations39–41 of a

FIG. 4. Energy landscape, with many metastable states in
valleys, differing byDE, and barriersU between them.

FIG. 5. Effective barrier and motion by nucleation.
a
s
the
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-

directed polymerD51 in N51 and N52 are consistent
with the ‘‘equal scaling assumption’’ for this particular cas
but a general proof is still lacking. The second, and m
delicate, hypothesis is the validity of the Arrhenius descr
tion: ~i! the system being out of equilibrium, it is not clea
that dynamicalbarriers can be determined purely from th
statics;~ii ! one assumes that the motion is dominated b
typical barrier. These assumptions can turn incorrect
some specific problems. For example, in the case of a p
moving in a one-dimensional random potential, thev-f char-
acteristics at low drive isnot42 of Arrhenius type. Although
this 011 case is peculiar since the particle has no freedom
pass aside impurities~it is dominated atT50 by the highest
slope of the potential and at finiteT by the rare highest bar
riers!, one should also address the question of the distri
tion of barriers in higher dimensions.

IV. DYNAMICAL ACTION AND RENORMALIZATION

A. Formalism and exact relations

Let us now study the equation of motion~2.11! using a
full FRG treatment. This will enable us to describe the ph
ics at all length scales and in particular the depinning a
creep regime.

A natural framework for computing perturbation theory
off-equilibrium systems is the dynamical formalism.43,44 Af-
ter exponentiating the equation of motion~2.10! using are-

sponse field uˆ , the average over thermal noise and disord
can safely be done and yields the simple~‘‘unshifted’’ ! ac-
tion

Suns~u,û!5E
rt

i û rt~h] t2c¹2!urt2hTE
rt

i û rt i û rt2 f E
rt

i û rt

2
1

2Ertt 8
i û rt i û rt 8D~urt2urt 8!. ~4.1!

Disorder and thermal averages^A@u#&5^A@u#&Suns
of any

observableA@u# can be computed with the weighte2Suns.
Furthermore, response functions to an external perturba
hrt added to the right-hand side of Eq.~2.10! are simply
given by correlations with the response field:^A@u# i û rt&
5(d/dhrt)^A@u#&. It can be checked that causality is sat
fied: ^A@$ut8% t8,t ,û# i û rt& vanishes. In the time continuum
the response to a perturbation at timet of an observable
depending onut is ill defined. We choose Ito convention fo
the equation of motion, which ensures that equal-time
sponse functions, and hence any diagram occurring in
turbation theory containing a loop of response functio
vanish. The continuum field theory necessarily breaks do
at small scales and it becomes necessary to cut off the
grals over the modes at largeq, using a large wave vectorL.
A full summary of the notations can be found in Append
A.

It proves more convenient to work in thecomoving frame
@i.e., with Eq.~2.11!#. The corresponding action is

e
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S~u,û!5E
rt

i û rt~h] t2c¹2!urt2hTE
rt

i û rt i û rt2 f̃ E
rt

i û rt

2
1

2Ertt 8
i û rt i û rt 8D@urt2urt 81v~ t2t8!#, ~4.2!

where the fieldu satisfieŝ ] turt&5^] turt&S50. This condi-
tion fixes f̃ [ f 2hv in Eq. ~4.2!. This quantity is the~mac-
roscopic! pinning force, since it shifts the viscous lawf
5hv by the amount off̃ .

Several exact relations can be derived directly from E
~4.2!. For any static fieldhr ~vanishing at infinity!

SS u1
1

c
¹22h,ûD5S~u,û!2E

rt
i û rthr .

Performing the change of variableu→u1(1/c)¹22h gives

E Du Dû urt e2S(u,û)5E Du Dû S urt1
1

c
¹22hr D

3e2S(u,û)1* rti ûrthr.

Applying d/dhr uh50 yields the exact relation

E
t
Rqt5

1

cq2
, ~4.3!

where we denote byRrt the exact response function. Th
symmetry, known as statistical tilt symmetry, ensures t
the elasticity isnot corrected during the renormalization.

Another important relation can be derived from

d

d f
^] turt&Suns

5E
r 8t8

] t^urt iû r 8t8&Suns
. ~4.4!

This leads to the identity between the macroscopic mob
and the slope of thev-f characteristics at any drive and an
temperature:

d

d f
v~ f !5 lim

v→0
2 ivRq50,v . ~4.5!

This exact result can also be checked explicitly in the cas
a particle moving in a one-dimensional environment.45

To extract the physical properties from the action~4.2! it
is necessary to build a perturbative approach in the disor
A particularly simple case46 occurs when the velocity is ver
large. In that case the disorder operator in the action can
formally replaced by

2
1

2Ertt 8
i û rt i û rt 8D@v~ t2t8!# ~4.6!

since one may neglect theurt2urt 8 compared tov(t2t8).
This trick suppresses the nonlinearity and the remaining
tion is quadratic. Furthermore, at large velocity,D@v(t
2t8)# can be replaced byd@v(t2t8)#*D5(1/v)d(t
2t8)*D and the disorder operator transforms into a tempe
ture operator~because it becomes local in timet5t8). The
resulting action is the dynamical action associated to
.

t

y

of

r.

be

c-

-

e

Edwards-Wilkinson equation47 describing the motion of an
elastic system in a purely thermal noise

h] turt5c¹2urt1n rt ~4.7!

with ^n rtn r 8t8&52h(T1Tew)d rr 8d tt8 , Langevin noise46 of
additional temperatureTew5*D/2hv.

Note that atT50 the results at largev coincide with the
perturbative expansion in powers of the disorder. The eq
time correlation function in the driven system with forcef
crosses over from the static 1/q4 Larkin behavior at small
scale to a thermal 1/q2 behavior at larger scale

u2q,tuq,t.5
D~0!

~cq2!2
for q2@

hv
cr f

Tew

cq2
for q2!

hv
cr f

~4.8!

with the sameTew, generated at length scalesr @Acr f

hv
.

B. Renormalization

We renormalize the theory using Wilson’s momentu
shell method. As the cutoffL l5Le2 l is reduced, corre-
sponding to a growing microscopic scaleRl5el /L in real
space, the parameters of the effective action for slow fie
~whose modesq are smaller thanL l) are computed by inte-
gration over the fast part of the fields~whose modesq lie
betweenL l and L). This iterative integration gives rise t
flow equations, better expressed in terms of thereduced
quantities

D̃ l~u!5
SDL l

D

~cL l
2ez l !2

D l~uez l !,

T̃l5
SDL l

D

cL l
2e2z l

Tl ,

l l5
h lv

cL l
2ez l

,

f̃ 05 f 2h0v, ~4.9!

whereSD is the surface of the unit sphere inD dimensions
divided by (2p)D. The exponentz is for the moment arbi-
trary and will be fixed later so that the reduced parame
flow next to appropriate fixed points. In one case~RB! we
will need anl-dependentz, and it is understood that every
where the rescaling factorsez l @appearing, e.g., in Eq.~4.9!#
should then be replaced by exp*0

l dl8 zl8 . The reduced quan

tities D̃,T̃ are homogeneous tou2 andl to u. The parameter
l l , which plays a crucial role below, can simply be e
pressed as the following ratio:

vt~R!

du~R!
5

l~R!

r f
~4.10!



f

to

un

m
e
in

at
u

ra
t o
-

ta
e
l
o
m
e
a

e
-

g
(

on
e

as.
ists
m
r

s

and
on

op-

-
n

g

6248 PRB 62CHAUVE, GIAMARCHI, AND LE DOUSSAL
of the distance~alongu) travelled by the center of mass o
the interface during t(R) and the roughnessdu(R)
5r f(R/Rc)

z. We have definedt(R)5h(R)R2/c as the char-
acteristic relaxation time in the model renormalized up
scaleR.

The details of the renormalization procedure can be fo
in Appendix C. The flow equations read

]D̃~u!5~e22z!D̃~u!1zuD̃8~u!1T̃D̃9~u!

1E
s.0,s8.0

e2s2s8
„D̃9~u!$D̃@~s82s!l#

2D̃@u1~s82s!l#%2D̃8~u2s8l!D̃8~u1sl!

1D̃8@~s81s!l#@D̃8~u2s8l!2D̃8~u1sl!#…,

~4.11!

] ln l522z2E
s.0

e2ssD̃9~sl!,

] ln T̃5e2222z1E
s.0

e2sslD̃-~sl!,

] f̃ 5e2(22z) lcL0
2E

s.0
e2sD̃8~sl!,

wheree542D and] denotes]/] l .
This complicated set of equations require a few co

ments:~i! as for the statics8 it is necessary to renormalize th
whole functionD, instead of just keeping few couplings as
standard field theory,~ii ! the elasticityc is not renormalized
]c50 due to the statistical tilt symmetry;~iii ! our equations
correctly show that no temperature can be generatedv
50 since the fluctuation dissipation theorem holds at eq
librium.

Setting bothT50 andv50 in Eq. ~4.11! gives back the
simplified set of equations used in Refs. 26 and 25~setting
only v50 also yields equations found in Ref. 48!. But com-
pared to the previous FRG approaches of the depinning t
sition, our equations correctly take into account the effec
the velocity on the flow itself~instead of being treated sim
ply as a cutoff as in Ref. 26!. Other attempts49 to incorporate
velocity and temperature in the FRG equations did not ob
the first equation giving the renormalization of the disord
at T.0 andv.0. To be able to tackle the full dynamica
problem and study the depinning and the creep regime,
cannot avoid keeping track of the velocity and of the te
perature in the flow, as will become clear later, since th
yield nontrivial effects which are unreachable by simple sc
ing arguments.

Our flow equations allow in principle to compute th
whole v-f characteristics at low temperature. In the follow
ing we analyze them in the three regimes correspondin
the statics (v50), to the depinning at zero temperatureT
50,f ; f c) and the creep regime (T.0,f ;0).

C. Statics: The cusp

At zero velocity, our approach is a dynamical formulati
of the equilibrium problem. It thus allows to recover th
d

-

i-

n-
f

in
r

ne
-
y
l-

to

known results about the statics, avoiding the use of replic
The standard derivation of the statics using the FRG cons
in writing a replicated Hamiltonian for the elastic syste
pinned in a random potential with correlato
@V(r ,u)2V(r 8,u8)#2522dD(r 2r 8)R(u2u8). After aver-
aging overV the replicated action reads8

S@uW #5
1

2T (
a
E

r
u¹ur

au22
1

2T2 (
ab

E
r
R~ur

a2ur
b!,

~4.12!

where a,b are then replica indices. Performing an FRG
analysis of Eq.~4.12! yields for the flow ofR andT ~remark-
ably independent ofn):

]R̃~u!5~e24z!R̃~u!1zuR̃8~u!1TR̃9~u!1
1

2
R̃9~u!2

2R̃9~0!R̃9~u!, ~4.13!

] ln T̃5e2222z

with R̃l(u)5e24z l@SDL l
D/(cL l

2)2#Rl(uez l) and T̃l

5e22z l(SDL l
D/cL l

2)Tl , which are the same redefinitions a
Eq. ~4.9! where the correlatorD of the force is related toR
by Eq. ~2.9!. It is easy to see that Eq.~4.13! coincides with
our Eq.~4.11! whenv50 which reads

]D̃~u!5~e22z!D̃~u!1zuD̃8~u!1T̃D̃9~u!

1D̃9~u!@D̃~0!2D̃~u!#2D̃8~u!2, ~4.14!

] ln T̃5e2222z.

Thus the two methods give the same results for the static
equal-time physical quantities. The additional informati
conveyed by the flow of the frictionh in the dynamical
formalism is discussed later in Secs. V A and V B.

The temperature in the static system is an irrelevant
erator, since it decreases exponentially fast withl. One thus
commonly restricts to theT50 version of the above equa
tions. In that case, as is obvious from the closed equatio

]D̃9~0!5eD̃9~0!23D̃9~0!2 ~4.15!

the curvatureD9(0),0 ~see Fig. 3! of the correlator, for any
initial condition,blows upat a finite length scale forD,4

l c5
1

e
lnS 11

e

3uD̃09~0!u D ~4.16!

which corresponds to

Rc5el c/L.S e
c2

3SDuD09~0!u D
1/e

;S e
c2r f

2

SDD0~0!
D 1/e

~4.17!

when approximatinguD09(0)u by D0(0)/r f
2 . One thus recov-

ers the Larkin length~3.5!. The blowup of the curvature ofD
corresponds to the generation of acusp singularity: D be-
comes nonanalytic at the origin and acquires forl . l c a non-
zeroD8(01),0. However, the flow equation for the runnin
nonanalytic correlatorstill makes sense. The nonanalyticity



e
,

F

is

at
ar

e
ng
in
A

oc

ll-

ha

s
ly

an

l
e

th

s

rk
th
e
h
ta

ia

-
-

en

le

’’

l

-
p of

the
e

a

e
-

-
ur

udy
i-

an-
s in

w

of

-

e-
ow,

s to

PRB 62 6249CREEP AND DEPINNING IN DISORDERED MEDIA
just signals the occurrence of metastable states. A w
defined fixed point functionR* (u) exists for each of the RB
RF, RP cases when a suitablez is chosen.

In the RP case,z5zeq50 so as to conserve the perioda,
and the fixed point is given by11

D* ~ax!5
ea2

6 S 1

6
2x~12x! D ~4.18!

for xP@0,1).
In the RF case,z5zeq5e/3 so as to conserve the R

strength*D and the fixed point is given by8

x2

2
5y212 ln y, ~4.19!

where y[D* (u)/D* (0), x[uAe/@3D* (0)# and D* (0)
.0.5e1/3(*D0)2/3 @see Eq.~E1!#.

In the RB case, it has been shown8 by numerical integra-
tion of the fixed-point equation thatz5zeq.0.2083e yields
a physical fixed point, for which no analytical expression
available.

Despite the irrelevance of the temperature, this oper
has important transient effects during the flow, even if we
left asymptotically with theT50 cuspy fixed point. It can be
shown ~see Appendix D! that the temperature hinders th
flow from becoming singular at a finite scale. The runni
correlator evolves smoothly towards its cuspy fixed po
and remains analytic, as was also noticed in Ref. 48.
shown in Appendix D, the rounding due to temperature
curs in a boundary layer of width proportional toT̃ around
the origin. This is confirmed by the existence of a we
defined expansion inT @see Eq.~D3!#. This effect is missed
by simple perturbation theory that would naively suggest t

the rounding occurs on a width proportional toAT̃. Indeed
the correlation function is proportional toT and smoothesD
by Dk→Dke2T̃k2

. Although not crucial for the statics thi
rounding has drastic consequences for the creep as ana
in Sec. VI.

Let us return to the differences between the static
dynamical formalisms. Within the static approach~4.13! in
the T→0 limit, despite the occurrence of the cusp atl c , the
RG equation forRl(u) still makes sense afterl c and flows to
a fixed point controlled bye542D. However, the physica
meaning of the cusp is delicate.13 On the other hand, the us
of the dynamical formalism allows to putT50 from the
beginning but adds to the problem a time dimension and
corresponding parameter, the frictionh. In this dynamical
version of the problem, the cusp has strong physical con
quences which are more immediate: afterl c , the cusp gen-
erates infinite corrections to the friction. This feature ma
the onset of a nonzero threshold force at scales larger
the Larkin length and signals that an infinite time is need
to go from one metastable state to another. Metastability t
appears very clearly in the dynamical formulation of the s
ics problem.

A simple physical picture of the cusp in the statics atT
50 was given in Ref. 13. The renormalized potent
Vren(r ,u) at scalesR.Rc develops ‘‘shocks’’@i.e., disconti-
nuities of the force2]uVren(r ,u) of typical magnitude
ll-

or
e

t
s
-

t

zed

d

e

e-

s
an
d
us
t-

l

f disc(R) at random positions#. Let us now extend this de
scription to draw the link with the critical force and to in
clude thermal effects.

The force correlator for smallu2u8 is dominated by the
configurations with a shock present betweenu andu8:

@F ren~r ,u!2F ren~r ,u8!#2 ; f disc~R!2
dp

du
uu2u8u,

~4.20!

wheredp/du denotes the probability to find a shock betwe
u and u1du. Identifying the right-hand side with
R2DuD ren8 (01)(u2u8)u one finds, using the rescalings~4.9!,
that the discontinuity in the force has the following sca
dependence

f disc~R!; f cS R

Rc
D 2(22z)

[ f c
eff~R! ~4.21!

and can thus be identified with an ‘‘effective critical force
f c

eff(R) at scaleR, which will play a role in the following~see
Sec. VI C!. At R5Rc , f c

eff(R) reduces to the true critica
force f c .

The renormalized problem at scaleR being the one of an
interface in a potentialVren(r ,u) with the above characteris
tics, one can now easily understand the result that the cus
D̃ l(u) is rounded on a widthT̃l /x at T.0. Extending the
previous argument, one expects a rounding of a shock if
barrier betweenu andu8 is of orderT. Since near a shock th
potential is linear of slopef disc(R), the barrier isf disc(R)uu
2u8u, and the thermal rounding should thus occur in
boundary layer of widthu given by

f disc~R! u RD;T. ~4.22!

Using the rescalings~4.9!, this is indeed equivalent to th
expressionT̃l /x for the width of the boundary layer in res
caled variables found in Appendix D.

V. DEPINNING

At T50 and v→0, our flow equations give a self
contained picture of the depinning transition. Thanks to o
formalism, the problem is reduced to the mathematical st
of Eq. ~4.11!, which although complicated, requires no add
tional physical assumptions. To focus on the depinning tr
sition, we must analyze the solutions of these equation
the regime of small velocity where, using Eq.~4.9!, l l 50 is
small. We will examine the various regimes in the RG flo
keeping in mind thatl l increases monotonically withl.

Equations~4.11! involve averages over a rangeu;l l and
thus one naturally expects that, at least at the beginning
the flow,D l(u) remains close to thev50 solution. The two
functions will differ in a boundary layer aroundu50 of
width denoted byr l . Although the precise form of the solu
tion for uuu,r l ~e.g., whether the cusp persists atv.0) is
very hard to obtain analytically, fortunately most of our r
sults will not depend on such details. As we discuss bel
the main issue will be to decide whetherr l!l l or not, which
is a well-posed mathematical question.

Let us start by analyzing the flow up to the Larkin scalel c
of the statics, at which the cusp occurs and the correction
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the friction become singular in thev50 flow. Here atv
*0 one enters atl c a regime whereD̃ l is close to its fixed
point ~see Appendix H!. Within the boundary layer, the ef
fect of the velocity is to decrease the singularities of
statics. As shown in Appendix G, the blow up of the curv
ture D̃9(0) is slowed down by the velocity as

]D̃9~0!5eD̃9~0!23D̃9~0!229l2D̃9~0!D̃ iv~0!1O~l4!

and the same is true for the friction

] ln h52D̃9~0!23l2D̃ iv~0!1O~l4!.

If the blurring of the singularity results in a suppression
the cusp, i.e., ifD̃ l remains analytic, one should wond
whether thev.0 flow can reallyremainclose toD* since
the convergence to the fixed point is crucially dependent
the existence of the nonanalyticity and in particular on
term 2D̃8(01)2 in the flow of D̃(0) in Eq. ~4.14!. A hint
thatD̃ l can stabilize for a while atv.0 is obtained by noting
that one has@see Eq.~G2!#

]D̃~0!5~e22z!D̃~0!

2E
s.0

e2sF E
s8.0

e2s8S D̃~ls!2D̃~ls8!

l
D G 2

which has indeed the correct sign to give the same effec
Hence it is natural to expect forl . l c that D̃ l(u) has

reached everywhere a fixed-point form except in the bou
ary layer. The correction to the friction, crucial to determi
the v-f characteristics, reads

] l ln h l52E
s.0

e2ssD̃ l9~sl l ! ~5.1!

and thus depends on the values ofD̃ l(u) for u;l l . To es-
timate this expression, one must know whether the widthr l
of the boundary layer is smaller thanl l or not.

To summarize these preliminary remarks, the flow in
Larkin regime l, l c is similar to thev50 flow andD̃ l * l c

is

close to D* except for uuu,r l . We will now analyze in
details the flow forl . l c under the assumption that

r l!l l . ~5.2!

As mentionned above, the validity of Eq.~5.2! can in prin-
ciple be established by a mathematical or a numerical an
sis of our equations. It turns out that Eq.~5.2! leads to the
most physically reasonable results. The alternative case
be discussed below.

A. Derivation of the depinning law

For l . l c , called thedepinning regime, and relying on Eq.
~5.2!, the flow ofh becomes

] l ln h l.2D* 9~01!. ~5.3!

The friction is renormalized downwards with a nontrivi
exponent2D* 9(01)52(e2z)/3 with z5e/3 for the RF
case@see Eq.~E1!# andz50 for the RP case@see Eq.~E2!#.
e
-

f

n
e

-

e

y-

ill

For the random bond one would naively take the staticzeq.
However, our flow equations show that during the Lark
regime, the form of the disorder correlator evolves to a R
and thusz5e/3 also in this case. This nontrivial effect of th
transformation for the dynamical properties of a RB into
RF is discussed in detail in Sec. V B.

Sincel l keeps on growing in the depinning regime, th
assumption thatD̃ l(u) can be replaced byD* will cease to
be valid. This occurs whenl l reaches the ranger f( l ) of
D̃ l(u), correlation length of the running disorder. This d
fines a scalel V5 ln LRV given by l l V

5r f( l V). Above this
scale, one enters a regime where the corrections due to
order are simply washed out by the velocity, since the in
grals overs,s8 in Eq. ~4.11! average completely over th
details ofD̃ l(u). One thus enters theEdwards Wilkinson re-
gime. Perturbation theory~4.8! shows that the interface is fla
for these large scales forD.2, the disorder leading only46 to
the effective temperatureTew.

The family of systems indexed by 0< l ,` have all the
same velocityv and the same sloped f /dv(v). However,
they have lesser and lesser singular behaviorf (v). We can
thus iterate the FRG flow up to a point where the theory c
solved perturbatively~e.g., abovel V). For the depinning, one
can simply use the fact that the renormalized action al
5` is Gaussian and its frictionh` is, from Eq.~4.5! equal
to the sloped f /dv of the depinning characteristics. Using th
flow of l l in Eq. ~4.11!, the expressions forl l V

,l l c
with Eqs.

~4.9! and ~H2! lead to

l l V

l l c

'H exp@~22z!b~ l V2 l c!#

Fc

h l c
v

~5.4!

with

b512D* 9~01!/~22z! ~5.5!

which will turn to be the depinning exponent and we ha
defined a characteristic forceFc5cr f /Rc

2 . Note thatFc is
not exactly the critical forcef c . Solving Eq.~5.4! gives

RV

Rc
'S Fc

h l c
v D 1/(22z)b

, ~5.6!

h l V

h l c

'S h l c
v

Fc
D 1/b21

. ~5.7!

Since the system atl V is nearly pure, one hash l V
'h` and,

integrating overv the derivatived f /dv5h`'h l V
, one gets

h l c
v

Fc
5S f 2 f ~v501!

Fc
D b

~5.8!

which shows that the depinning is characterized by an ex
nent b and a pinning forcef c5 f (v501) ~yet to be deter-
mined!.

The flow of f̃ l allows to fix the value off c . Instead of just
computingf c we also show that the integration of the flow
f̃ l provides a second way to derive the depinning law~5.8!.
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Indeed, as discussed below, in our formalism the term p
portional to v which was problematic in the previou
approaches25 cancels naturally.

In the theory renormalized up tol V , the short scale cutof
is RV and one can use first-order perturbation theory. O
has@see Eqs.~B7! and ~B11!#

f̃ l V
52E

t
D l V

8 ~vt !R0t
l V . ~5.9!

Since in the renormalized theory the disorder is close toD*
@with the rescalings~4.9!#, and the friction hidden in the
response function is such thatl l V

matches the range ofD̃ l V
,

the velocity disappears from Eq.~5.9! which gives

f̃ l V
.e2(22z)( l V2 l c)Ae, ~5.10!

whereA is some constant and the onlyv-dependent quantity
is l V . To connectf̃ l V

to the initial parameters, one has

integrate the flowf̃ l V
2 f̃ 05*0

l Vdl ] l f̃ l . Expanding] l f̃ l in Eq.

~4.11! at small velocity and usingD̃8(sl)5D̃8(01)
1slD̃9(sl)1O(l2) one recognizes in the second term t
correction toh. Thus for l c, l , l V one has

] l f̃ l.e2(22z) lcL0
2D* 8~01!2v] lh l , ~5.11!

where we dropped the subdominant terms in velocity. T
integration of the flow gives

f̃ l V
2 f̃ 0.2 f c~12e2(22z)( l V2 l c)!2v~h l V

2h0!,
~5.12!

where we definedf c5cL0
2e2(22z) l cuD* 8(01)u/(22z). In-

jecting f̃ 05 f 2h0v and Eq.~5.10!, we note that quite re-
markably theh0v cancel each other. We are left with

f 2 f c.e2(22z)( l V2 l c)~Ae2 f c!1h l V
v. ~5.13!

We already know from Eq.~5.7! that h l V
;v1/b21 and from

Eq. ~5.6! el V;v1/(22z)b thus both terms on the right-han
side of Eq.~5.13! scale likev1/b. This leads to the following
result to lowest order ine:

f c.5
e

2

cr f

Rc
2

RF

e

12

ca

Rc
2

RP,

~5.14!

v;~ f 2 f c!
b, ~5.15!

b5H 12
e

9
RF

12
e

6
RP,

~5.16!

where we used the fact thatz5e/3 ~RF or RB! or z50 ~RP!
and the link betweenx5uD* 8(01)u and r f ~RF! or a ~RP!
-

e

e

stated in Appendix H. In addition, we assumed thath l c
has a

regular behavior whenv→0, a nontrivial point which we
discuss in Sec. V C.

B. Discussion

The approach of the previous Sec. V A allows us to obt
the characteristics of theT50 depinning. We extract the
depinning exponentb, the pinning forcef c and the charac-
teristic length scales from the equation of motion witho
any additional physical hypothesis or scaling relation. A
though the depinning problem, the exponentb, and the criti-
cal force were determined in previous studies,25,26 our
method is an improvement in several ways.

To get the depinning exponent and critical force, tw
main derivations exist in the literature. One of them exten
the static FRG formalism to the out of equilibrium depinnin
problem at zero temperature,25 using an ‘‘expansion’’ around
an unknown mean-field solution.15 Instead of directly look-
ing at the renormalized correlator of the disorder, the meth
obliges one to deal with the time correlation of the forc
C@v(t2t8)# in Ref. 25. This procedure does not allow for
precise enough calculation of thev-f characteristics to dem
onstrate the cancellation of theh0v term @in our Eqs.~5.12!,
and ~5.13!#. In order to obtain a depinning exponentb dif-
ferent from its ‘‘mean-field’’ valueb51, it is necessary in
Ref. 25 to neglectby handin the smallv limit a term pro-
portional to v against a term proportional tov1/b with b
,1. Our method, that directly uses averaging over the d
order and properly takes into account the velocity in the fl
of the renormalized action, allows one to show explicitly t
needed cancellation.

The other analytical study26,50 of depinning does not con
sider the renormalization before the Larkin length and
sumes that the singularity is fully developed beyond t
length scale. This amounts to taking as a starting point
equation of motionat zero velocitywith a cuspy correlator
for the force, and the Larkin length as the microscopic cuto
Since the anomalous exponent of the friction is2D* 9(0)
which is ill defined for a cuspy correlator, one is forced
this method to argue that it should be replaced b
2D* 9(01) which is finite. This prescription and scaling re
lations linking the roughness, the depinning, and the ti
exponent 22D* 9(01), allows us to extract the depinnin
exponent. In our method, the ambiguities that existed in R
26 to write the flow ofh beyond l c when using the zero
velocity equations, and the trick 0→01 becomes a well-
defined mathematical property of our finite velocity R
equations: if Eq.~5.2! is confirmed, our approach directl
shows that the2D* 9(01) prescription is the correct one an
allows us toprove directly the scaling relations, instead o
assumingthem, to obtain the exponent.

Furthermore, the occurrence of the asymptotic Edwa
Wilkinson regime in Ref. 26 has to be put by hand as a cu
the v50 RG flow. The important correlation lengthRV ~de-
notedLV in Ref. 26! at which this regime takes place is thu
not well under control and has to be estimated from dim
sional analysis. In our case the depinning regime is natur
cut when ourl, which tells how fast the system runs on th
disorder, reaches the range of the flowing correlator. T
scaleRV at which it occurs, and above which the nonlinea
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ties are washed out, can clearly be identified with the co
lation length of the moving interface~or more precisely, of
the velocity-velocity correlation!. The physical interpretation
of Eq. ~5.6!, i.e.,

RV;RcS f c

hv D 1/(z2z)

, ~5.17!

with z522(e2z)/3 is the following: RV is the scale at
which ‘‘avalanches’’ occur in the driven deterministic sy
tem. The motion proceeds in a succession of such proce
where pieces of interface of typical sizeRV depin over a
distancer f(RV /Rc)

z during a timer f(RV /Rc)
z/v.

In addition to providing a clean derivation of the depi
ning exponents and of the critical force, our equations c
tain new physics that was unreachable by the previous m
ods.

Although in principle one would expect three universal
classes~RF, RB, RP! for the depinning exponent, it wa
conjectured by Narayan and Fisher37 that the roughness ex
ponent of the system at the depinning transition for RB or
is equal to the roughness exponent of the static RF casz
5e/3. This resultcannot be obtained by the approach o
Narayan and Fisher or that of Nattermannet al. since these
authors did not include the velocity in their RG analysis, a
simply treated the smallv limit as v50. On the contrary, our
flow equations for the correlator shows directly that a R
disorder does indeed evolve during the flow towards a
disorder, leaving only two different universality classes~RF,
RP! for the dynamics against three for the statics~RB, RF,
RP!. Such evolution is shown on Fig. 6, where an initial R
becomesdynamicallya RF. In Appendix G we show that th
correction to*D, which measures the RF strength of t
disorder, grows as

FIG. 6. The evolution of a random bond to a random-field c
relator obtained by numerical integration of the flow. The init
condition l 50 of the flow is a RB@D(u) shown as a full line on
u>0#. Following Eq.~4.11!, the running correlator transforms int
a RF as shown on the snapshot ofD l(u) near l c ~dashed line!, as
can be seen by comparing with the characteristic shapes of RB
shown in Fig. 3.
-

es,

-
h-

F
,

d

F

]E D̃52l2E D̃92 1O~l4!

where we have usedz5e/3. This ensures that a moving sy
tem, even atarbitrary small velocity, sees an effectiveran-
dom fieldat large scale.

C. Open questions

Our FRG equations prompt for several remarks and qu
tions. In the previous sections, we have examined the co
quences of the property~5.2! and established in that case th
the values of the exponents were the ones proposed in R
25, 26, and 37. Although we consider it as unlikely, we ha
not been able to rule out the possibility that eitherr l;l l ~or
even worse,r l.l l) and thus we should examine the cons
quences of a violation of property~5.2!. If r l;l l , it is not
excludeda priori that there exists another ‘‘fixed-point’’ be
havior ~e.g., with a scaling function ofu/l l). However, in
that case, the exponents should differ from the standard o
@unless some hidden and rather mysterious sum rule wo
fix the value of the integral in Eq.~5.1!#. In the absence of an
identified fixed point, it is not clear whether universali
would hold. Again this crucial point~5.2! can be definitely
answered by an appropriate integration of Eq.~4.11!. Thus
the present approach, which clearly takesv into account,
identifies as Eq.~5.2! the condition under which the trick
used in Refs. 25 and 26 gives the correct exponents.

Another intriguing point concerns the continuity betwe
the v50 and thev→0 problems. Indeed, to derive the d
pinning law ~5.14! we have assumed thath l c

remains finite

as v→0. However, we should recall that in the nondrive
case (v50 andf 50), h l diverges atl c and thush l c

5`.51 If

there is any continuity in the RG flow asv→0 then h l c
→` in this limit. In that case the consequence would be@see
Eq. ~5.8!# a modification of the exponentb→b/(12a) if
h l c

;v2a ~or weaker logarithmic multiplicative corrections!.
We would then find for the depinning a different result fro
the conventional one. Since we are unable to solve ana
cally accurately enough the equation forh around l c , one
should resort to a numerical solution of our flow Eqs.~4.11!
to resolve this question. Using Eq.~4.11! it is necessary to
check thath l c

does not diverge asv→0 like a power ofv so
as to recover the standard depinning exponent~5.5!. The
question is of particular importance since, if really a finit
scale behavior, occurring nearRc , would control the macro-
scopic asymptotic behavior, then again one could won
whether universality would hold.

Therefore the description of depinning in terms of a sta
dard critical phenomenon may be risky. Indeed as clea
appears in our FRG approach, since the fixed point atv50 is
characterized by awhole functionD* ~i.e., an infinite num-
ber of marginal directions inD54) rather than a single cou
pling constant~as in usual critical phenomena! the effect of
an additional relevant perturbation, here the velocity, can
more complex due the feedback ofv itself on the shape of
the function during the flow. This is particularly clear in th
RB case which dynamically tranforms into RF.

-

F
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VI. CREEP

We now deal with the nonzero-temperature case. The
tem can jump over any energy barrier and overcome
pinning forces, thus itmoveswith v.0 for any drive f .0
and never gets pinned. Let us now show how our Eqs.~4.11!
allow us to investigate thecreepregime that occurs when th
system moves very slowly withf ! f c , at low temperature.

A. Derivation from FRG

As for the depinning, we are interested in infinitesim
velocities. The barel0 is thus very small. The main differ
ence compared to Sec. V A is that the temperature is n
finite as well. The main effect ofT is to round the cusp in the
flow. Since we are interested in extremely small velociti
we will considerl0 as the smallest quantity to start with.
nonzero temperature thus gives rise to a new regime in
RG flow, where the rounding of the cusp is due to tempe
ture and not to velocity. This leads to the following regim
in the FRG flow shown in Fig. 7. We will examine the var
ous regimes in the RG flow keeping in mind that again,l l
increases monotonically withl.

Just as in the previous case, we expect aLarkin regimefor
0, l , l c with small corrections. Abovel c the disorder
reaches a regime where scaling is imposed by the temp
ture. Indeed sincel l c

!T̃l c
/x one can forget about the veloc

ity and the FRG equations are very similar to thev50 and
T.0 case. In Appendix D we show that the temperat
rounds the cusp on a boundary layeru;T̃l /x and we obtain
the explicit scaling form~D1!,

D̃ l~u!.D̃ l~0!2T̃l f ~ux/T̃l !

f ~x!5A11x221,

x5uD* 8~01!u, ~6.1!

which in the statics holds at all scales larger than a scal
order l c . Here, because we focus onv→0, the scanning
scalel l c

is smaller than the width of the boundary layer, a
the flow of the friction reads in this regime,

] ln h l.2D̃ l9~0!.
x2

T̃l

. ~6.2!

The temperature being irrelevant by power counting, the
tial flow of T̃ is

] ln T̃52u ~6.3!

since the anomalous correction toT̃ vanishes asl→0. Here
and in the following,u5D2212zeq denotes the energ
fluctuation exponent of thestaticproblem. Together with Eq
~6.2! it shows that the friction grows extremely fast, lik
expeul. This is thethermal regimewhere motion only occurs
via thermal activation over barriers. The velocity is so sm

FIG. 7. Characteristic scales and regimes for creep motion.
s-
e

l

w

,

e
-

ra-

e

of

i-

ll

that the center-of-mass motion is unimportant and the te
perature essentially flows as in thev50 problem. We have
determined the flow in its initial stages, and we now det
mine the scale at which this behavior ceases to hold.

The flow Eq.~C6! for h l together with the scaling func
tion ~6.1! for D̃ for u;T̃l /x shows that Eq.~6.2! holds only
until the new scalel T5 ln L RT defined as

l l T
;Tl T

/x. ~6.4!

For l , l T the temperature remains the main source of rou
ing of the cusp. Above that scale one must take the velo
into account.

In fact, this simple picture is not complete since, befo
reachingl T another phenomenon occurs, leading to anot
length scale. In the thermal regime the correction toT̃ due to
disorder competes with the simple exponential decay and
~6.3! breaks down. This physically expresses that motion i
disordered landscape generates a thermal noise~provided
some thermal noise is already present!. Using Eq.~6.1!, one
has] ln T̃'2u16x4l2/T̃3 at smalll. Thus the correction to
T̃ reverts at a scalel s5 ln L Rs such thatls;T̃l s

3/2/x2. Note

that l s, l T . Above l s the temperature does not decrease a
more due to heating by motion. One can show using
~4.11! that T̃ saturates and does not vary much until the sc
l T . We call this intermediate regimel s, l , l T thesaturation
regime. We checked it using a numerical integration of t
flow in this regime with the scaling form of the disorde
~6.1!. Analytically, if we suppose that afterl s , the correction
of T̃ due to disorder dominates2u, then one would have in
this regime an invariant of the flow] l(T̃l

226x2l l
2)'0. If

this were true, it is clear that the flow couldneverrealize the
conditionl l;Tl /x, possibility that is excluded on physica
basis and by the numerics shown in Fig. 8.

Despite the saturation of the temperature, Eq.~6.2! re-
mains true afterl s . Thus the friction andl keep on growing
and one finally reaches the scalel T at which the scanning
lengthl l crosses the boundary layer widthT̃l /x.

Above l T , a rigorous analytical analysis of Eq.~4.11!
becomes difficult. We, however, expect, since the veloc
controls now the boundary layer, a regime similar to t

FIG. 8. The integration of the flow using Eq.~6.1! after l c and

reduced variablesxl[xl l /T̃l and yl[x4l l
2/T̃l

3 . The dotted lines
indicate the set of points where] lxl50 or ] l yl50. Some trajecto-
ries are displayed, with an arrow showing the direction of grow
l. The initial conditions for creep are close to the origin, and clo
to thex axis.
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depinning regime atT50 to occur. Using the same argu
ments than for the depinning, one obtains in that regime

] ln h52D* 9~01!, ~6.5!

] ln T̃522D22z, ~6.6!

leading again to a decrease of the temperature, even slig
accelerated by a negativeO(e4/3) exponent. Let us calll d the
depinning scaleat which one enters such a depinning r
gime. From the above discussion it is very reasonable
expect that one goes directly from the saturation to the
pinning regime, i.e.,l d2 l T;cst. However, we cannot strictl
rule out the possibility of an intermediate regime~divergent
l d2 l T whenv→0) during which the correction to the fric
tion goes smoothly from positive~as in the thermal and satu
ration regimes! to negative values~depinning regime!.
Again, it would be useful to settle this point through a n
merical solution of our flow equations. Note that in the R
and RP cases, the exponentz and the fixed pointD* in Eq.
~6.5! are the same as in the statics. However, in the RB c
we have used al-dependentz which crosses over betwee
zeq for l , l T and z5e/3 for l . l d corresponding to the
change from RB to RF fixed pointsD* .

In the depinning regime, motion now proceeds in a sim
lar way than for the one studied in Sec. V. Here again
large enough scale, velocity will wash out the disorder
l . l V with l V determined byl l;r f( l ). One then enters the
Edwards-Wilkinson regime.

Let us now compute from the flow~4.11! the length scales
defined above~see Fig. 7!. In the thermal regimel c, l , l s
one can computel l s

/l l c
either by integrating its flow or by

equating the boundary values to their expression. This g

l l s

l l c

'5 expF ~22zeq!~ l s2 l c!1
Uc

T
~eu( l s2 l c)21!G

S T

Uc
D 3/2 f c

h l c
v

e2(3/2)u( l s2 l c)

where we definedf c[e(cr f /Rc
2) and Uc[e2Rc

D(cr f
2/Rc

2).
Expressing the scales as a function of the velocity leads

S Rs

Rc
D u

'
T

Uc
lnF S T

Uc
D 3/2 f c

h l c
vG , ~6.7!

h l s

h l c

'
f c

h l c
v S Uc

T D 1/m

lnF S T

Uc
D 3/2 f c

h l c
vG23/221/m

~6.8!

with m[u/(22zeq).
In the saturation regimel s, l , l T we proceed in the sam

manner and obtain

l l T

l l s

'5 expF S 22zeq2
x2

T̃l s
D ~ l T2 l s!G

S Uc

T D 1/2

e(u/2)(l s2 l c)

.

Thus
tly

-
to
e-

-

e,

-
t
r

es

RT

Rs
'1, ~6.9!

h l T

h l s

' lnF S T

Uc
D 3/2 f c

h l c
vG1/2

. ~6.10!

Assumingl d; l T , the depinning regimel d, l , l V follows
directly and

l l V

l l d

'H exp@~22z!b~ l V2 l d!#

1

e

Uc

T
eu( l s2 l c)

leads to

RV

Rd
'X1e lnF S T

Uc
D 3/2 f c

h l c
vGC1/(22z)b

, ~6.11!

h l V

h l d

'X1e lnF S T

Uc
D 3/2 f c

h l c
vGC121/b

~6.12!

with b[@22z2D* 9(01)#/(22z) the depinning exponen
~andz the dynamical roughness exponent!.

We are now in a position to compute the characteris
f (v). We fix a small velocityv and solve the flow equation
for l l , D̃ l , and T̃l up to l V . This allows us to relatef̃ l V

to

the unknownf̃ 0. We can now use the fact that at the sca
l V , the disorder is essentially washed out and a perturba
calculation off̃ l V

' f̃ `50 is possible. Solving backwards w

determinef̃ 0, which is simplyf 2hv wheref is the real force
applied on the system andh5h0 the bare friction.

The correction tof̃ cannot be neglected during the depi
ning regime, thus, usingf̃ 05 f 2h0v, f̃ `50 and expressing
*0

`dl ] l f̃ l one has

f 2h0v'2E
0

`

dl ] l f̃ l'
cL0

2x

22z
e2(22zeq) l d. ~6.13!

In the thermal regime there is essentially no correction to
flow of f̃ . Thus Eq.~6.13! is controlled by the depinning
regime and one should integrate essentially betweenl d and
l V . In fact, due to the exponentially decreasing behavior
the integrand in Eq.~6.13! the whole integral depends in fac
only on the behaviorat the scalel d . Assuming thatl d; l T ,
using Eqs.~6.7! and ~6.9!, one sees thate2(22zeq) l d!v for
v→0 and thus one obtains

hv
f c

'expF2
Uc

T S f

f c
D 2mG , ~6.14!

m5
D2212zeq

22zeq
. ~6.15!

The prefactor in front of the exponential cannot be obtain
reliably at this order. Note that for the creep, contrarily to t
depinning, the possible divergence ofh l c

when v→0 ~and

T→0) does not affect the argument of the exponential
only the prefactor.
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B. Alternative method and open questions

For the depinning it was possible to recover the depinn

law using both the integration of the flow off̃ and of the
friction h and the relation~4.5!. Although one can also use
in principle, this method for the creep it gives poor results

this case. Indeed, contrarily to the derivation involvingf̃ one
needs here the flow ofh in all regimes including the depin
ning regimel . l d , whereh is still renormalized. Since the
renormalization ofh goes from large positive growth~first
like expeul, then exponentially! in the thermal/saturation re
gime to negative in the depinning regime~where the system
accelerates with subdiffusivez,2) a precise knowledge o
the behavior aroundl T would be needed. Unfortunately, th
lack of precise analytical methods available aboveRT pre-
vents us from computing precisely such a crossover. A cr
estimate of the flow can thus only give a bound of the ex
result. If we use~e.g., in the RF or RP cases! the estimates of
each regime, and the perturbative estimate ofh l V

in the

theory at l V : h`.h l V
1* tD l V

9 (vt)tR0t
l V;e2(22z)( l V2 l c)e ~it

will appear thath l V
diverges faster thane2(22z)( l V2 l c) when

v→0). The product of Eqs.~6.8!, ~6.10!, and~6.12! is equal
to (1/h l c

)(d f /dv). Integrated from 0 tov, it yields

h l c
v

f c
'expH 2FUc

T S f

e1/b21f c
D 2mG 1/„11m(1/b21)…J .

~6.16!

One would thus find, using theh method, a non-Arrhenius
law for the creep regime. Even if one cannot, strictly spe
ing, exclude this result, as discussed above it is most lik
an artifact of the approximate integration of the flow, a
only a lower bound of the barrier height. Indeed compared

the integration of the flow off̃ , this procedure is much mor
sensitive to the neglect of the crossoverl T, l , l d . A more
precise integration of the flow would very likely show
compensation between the latent growth of the friction d
ing the decrease of] ln h ~for l T, l , l d) and the reduction of
the friction occurring in the depinning regimel d, l , l V .
Note that ifd f /dv were equal toh l T

then, one would recove
Eq. ~6.14!. It would be useful to check explicitly on a nu
merical integration of the flow that such a cancellation do
occur and verify that theh method confirms also the resu
~6.14!.

We also note that the precise determination of the len
scales forR.RT depend on obtaining an accurate solution
the RG flow equations. In the previous section, we ha
obtained the formulas~6.9! and ~6.11! under some assump
tions about the mathematical form of the solutions of
flow in the region wherel l andTl̃ cross. These assumption
discussed in the previous section, should be checked fur
e.g., via numerical integration. Although this should not
fect the creep exponent derived above, the precise dete
nation of these length scales is important to ascertain
exact value of the scaleRV ~i.e., the avalanche scale dis
cussed below!.
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C. Discussion

Since our flow Eqs.~4.11! include finite temperature an
velocity, they allow us to treat the regime of slow motion
finite temperature, directly from Eq.~2.10!. As for the depin-
ning, we derive directly from the equation of motion th
force-velocity law and we obtain interesting physics.

The first important result is, of course, the creep form
itself @Eq. ~6.14!#. Our method allows one to prove the ma
physical assumptions, reviewed in Sec. III 3, needed for
phenomenological estimate, namely:~i! the equal scaling of
the barriers and the valleys;~ii ! the fact that velocity is domi-
nated by activation over the barriers correctly described
an Arrhenius law. In our derivation such law comes direc
from the integration of the flow equations in the therm
regime;~iii ! the fact that one can use the static exponents
the calculation of the barriers. This appears directly in
formula ~6.14! but can also be seen from the fact that in t
thermal regime the velocity can essentially be ignored in
flow equations. We also recover the characteristic len
scale predicted by the phenomenological estimate. Ind
one can identify the scale ~6.7! and ~6.9! RT
;Rc( f / f c)

21/(22zeq) as theRopt of Sec. III 3.
Our equations allow us to obtain additional physics in t

very slow velocity regime. In particular, we see that the sl
motion consists of two separate regimes. At small len
scalesR,RT the motion is controlled by thermal activatio
over barriers as would occur atv50. This is the regime
described by the phenomenological theory of the cre
Qualitatively, the main interesting result obtained here is t
the thermally activated regime is followed by a depinni
regime, as shown by our equations. This leads to the follo
ing physical picture: at the lengthRT , bundles can depin
through thermal activation. When they depin they start
avalanchelike process, reminiscent of theT50 depinning, up
to a scaleRV . The propagation of the avalanche proceeds
larger scales in a deterministic way. Thus one is left with
depinninglike motion, and the size of the avalanches is
termined by the natural cut of the RG (l5r f), i.e., the scale
at which the propagating avalanche motion is overcome
the regular motion of the center of mass. One recovers qu
tatively and quantitatively some features of theT50 case at
intermediate scale. The typical nucleus jumps over an ene
barrier Ub;Uc(RT /Rc)

u resulting in v;exp
2(Uc /T)(f/fc)

2m. This jump of a region of sizeRT initiates
an avalanche spreading over a much larger sizeRV which we
find to be@see Eqs.~6.7!, ~6.9!, and~6.11!#

RV

Rc
;S Uc

T D n/bS RT

Rc
D 11un/b

~6.17!

with n5b/(z2z)51/(22z) and z522(e2z)/3 the criti-
cal exponents of the depinning, andu the energy exponent o
the statics. Note that the correlation lengthRV diverges at
small drive and temperature asRV;T2s f 2l with s5n/b
51/(z2z) andl51/(22zeq)1m/(z2z).

To push the analogy further one can consider that
avalanches at length scalesR.RT are similar to the ones
occurring in a regularT50 depinning phenomenon due to a
excess driving force (f 2 f c)eff . Considering a minimal block
size RT instead ofRc for this ‘‘creepy’’ depinning,RV /RT

;( f 2 f c)eff
2n , one obtains for this effective excess force
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heffv

f c
eff

;S f 2 f c

f c
D

eff

b

;
T

Ub
~6.18!

linking the creepy motion atT.0 and the threshold depin
ning atT50. As explained before, there might be an unc
tainty in the value of the avalanche exponent, which could
changed by a quantity ofO(e). To confirm Eq.~6.17!, one
would need to further check the precise behavior of the
lution of the RG equations forR.RT .

One can understand qualitatively that the problem at s
R.RT looks like depinning according to Eq.~6.18!. The
tilted barrier ~see Sec. III 3! E(R, f )5Uc(R/Rc)

u

2 f RDr f(R/Rc)
zeq to be overcome in order to move a regio

of sizeR ~all barriers corresponding to smaller scales hav
been eliminated!, vanishes at52 R0( f )*RT . For the T50
depinning problem, one can define a scale dependent e
tive threshold force f c

eff(R); f c(R/Rc)
2(22zeq) such that

E(R, f c
eff)50 ~also defined in Sec. IV C!, which corresponds

to the force needed to depin scales larger thanR @the true
threshold f c5 f c

eff(Rc) being controlled in that case by th
Larkin length#. A possible scaling derivation of Eq.~6.18! is
obtained by noting that atT.0, nonactivatedmotion at scale
R occurs when the tilted barrierE(R, f ) is of the order ofT.
This yields aT-dependent effective threshold force such th

f c
eff~R!2 f c

eff~R,T!

f c
eff~R!

;
T

Uc~R/Rc!
u

. ~6.19!

At R5R0( f ), one hasf 5 f c
eff(R) and Eq.~6.19! is identical

to Eq. ~6.18! to zeroth order ine ~i.e., b51). In fact, to
apply the above static barrier argument, it might be bette
work in the comoving frame where the velocity of the inte
face vanishes. This amounts to replacingf by f 2hv in the
previous argument, andE@R0( f ), f #50,E@R0( f ), f 2hv#
5T gives back Eq.~6.18!.

The crossover between thermally activated processes
depinninglike motion can also be recovered by noting t
the conditionl l;T̃l /x which appears in the FRG flow ca
be rewritten as@using Eqs.~4.9! and ~4.10!#

f c
eff~R! vt~R! RD;T, ~6.20!

where the left-hand side is a natural energy scale involve
the depinning due to driving effect of the center of mass. I
is much larger thanT, depinning effects dominate, while if i
is smaller, the dynamics is activated.

Finally many open questions still remain. Technically
would be interesting to reconciliate the two methods ba
on h and f̃ which proved to be equivalent for the study
depinning. In fact, although the two methods should forma
agree, the comparison at a given order in the RG is m
subtle. Indeed (d/dv)d f̃ 52dh, by integration overl be-
tween 0 and̀ and derivation with respect tov, gives back
h`5d f /dv provided thatf̃ `50. However, one should no
tice that in (d/dv)d f̃ 52dh, the derivative is understood a
fixed parametersat the given scale. The occurrence of this
hidden dependence in the velocity in the running parame
makes the equivalence between both approaches deli
However, the additional term is of higher order in disord
Thus, as pointed out above, it is very likely that a care
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integration of the flow ofh should resolve this discrepancy
but this remains to be explicitly checked.

As for theT50 depinning, the existence of thedepinning
regime at l d depends on the precise form of the bounda
layer in the presence of a velocity. Note that the alternat
scenario discussed in Sec. V C, e.g., whether or not the
pinning regime is universal, would not affect the creep e
ponents, but only the subleading corrections.

VII. CONCLUSION

We examine in this paper the dynamics of disorde
elastic systems such as interfaces or periodic structu
driven by an external force. We take into account both
effect of a finite temperature and of a finite velocity to deri
the general renormalization-group equations describing s
systems. We extract the main features of the analytical s
tion to these equations both in the case of theT50 depin-
ning ~shown on Fig. 1! and in the ‘‘creep’’ regime~small
applied forcef and finite temperature!.

Our RG equations, when properly analyzed, allow us
recover the depinning lawv;( f 2 f c)

b and the depinning
exponentb also obtained by other methods. However, co
trarily to previous approaches that needed additional phys
assumptions, such as scaling relations among exponen
by hand regularization, our approach is self-contained,
quantities being derived directly from the equation of m
tion. It thus provides a coherent framework to solve the d
ficulties and ambiguities encountered in the previous ana
cal studies.25,26In addition, our method allows us to establis
the universality classes for driven systems. It showsexplic-
itly that a random-bond-type disorder gives rise close t
random-field critical behavior at the depinning. Thus the d
namics is characterized by only two universality classes@ran-
dom field ~RF! for interfaces and random periodic~RP! for
periodic systems# instead of three. Since this phenomenon
an intrinsically dynamical one, it was out of the reach of t
previous analytical approaches that usedv50 flow equa-
tions together with additional physical prescriptions usin
e.g., the velocity as a cutoff on thev50 RG flow.

Of course one of the great advantages of the present s
RG equations is to allow for the precise study of the sm
applied force regime at finiteT, for which, up to now, only
phenomenological scaling arguments could be given. O
FRG study confirms the existence of a creep law at sm
applied force

hv
f c

'expF2
Uc

T S f

f c
D 2mG ~7.1!

with a creep exponent related to the static onesm5(D22
12zeq)/(22zeq), wherezeq is the statics roughening expo
nent. It provides a framework to demonstrate, directly fro
the equation of motion, the main assumptions used in
phenomenological scaling derivation of the creep, name
~i! the existence of a single scaling for both the barriers a
the minima of the energy landscape of the disordered sys
~ii ! the fact that the motion is characterized by an activat
~Arrhenius! law over a typical barrier.

In addition, our study unveils a ‘‘depinninglike regime
within the creep phenomena, not addressed previously, e
at the qualitative level since the phenomenological creep
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guments did not address what happensafter the thermally
activated jump of the optimal nucleus. Although the veloc
is dominated by the time spent to thermally jump over
barriers, our equations show that the smallf behavior con-
sists in fact oftwo different regimes. Up to a sizeRT motion
can only occur through thermal activation over barriers. T
is the regime described by the phenomenological approac
the creep. The optimal nucleus of the scaling estimate
given directly by the RG derivation asRT;(1/f )1/(22zeq).
Remarkably, another interesting regime exists above
length scale~see Fig. 9!. It emerges directly from our RG
equations and can be given the following simple physi
interpretation. In some regions of the system, bundles of
RT depin due to thermal activation. These small events t
trigger much larger ones, and the motion aboveRT proceeds
in a deterministic way, much as theT50 depinning. In par-
ticular, once the initial bundle depins it triggers an avalanc
up to a size RV which is given by RV /RT
;(Uc /T)n/b(RT /Rc)

un/b whereu, b, andn are the energy,
depinning, and correlation length exponents, respectively

The present study also raises several interesting ques
which deserve further investigation; some of them rely
being able to obtain a more accurate solution of our fl
equations. We have shown explicitly how to recover fro
our equations the conventional depinning law~and the scal-
ing creep exponents!. It rested on a mathematical propert
likely to hold, but not yet rigorously established, of the s
lution for the flow of the correlator of the disorder. Suc
behavior should be checked in detail. The equations be
quite complicated, a numerical solution, albeit delica
seems to be appropriate. If the constraint~5.2! on the flow
defined in Sec. V B were found to be violated, then the c
ventional picture of the depinning would very likely fail, a
we have analyzed in detail. A similar question arises c
cerning the flow of the frictionh as discussed in Sec. VI C

FIG. 9. Schematic picture of the creep process emerging f
the present study: while thermally activated motion occurs betw
scalesRc ~Larkin length! andRT ~thermal nucleus size!, depinning-
like motion occurs up to the avalanche sizeRV .
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If the solution of the flow is found to depend on the prec
behavior at the Larkin lengthRc , it is likely that even uni-
versality could be questioned. These issues area priori less
important for the first, thermally activated, part of the cre
regime, but because of the existence of a second, depinn
like regime, they would also have consequences for cre
Again, these questions depend on the precise form of
flow and can be answered unambiguously by a deta
enough analysis of our equations. It would also be of gr
interest to develop a more detailed physical picture of
crossover between thermally activated and depinning
motion since we found that both occur within the creep p
nomenon.

Several applications and extensions of our work can
envisioned. First, extensions to many-dimensional displa
ment field~of dimensionN.1), given in Appendix F, would
be interesting to study within the methods used here. O
could check whether the approximation used in Ref.
yields the correct result for theN.1 depinning. Second, the
effect of additional KPZ nonlinearities could be investigate
In particular one could check the usual argument wh
yields that KPZ terms are unimportant for the depinning31

since their coupling constant is proportionnal to the~small!
velocity. Also, extensions to other types of disorder, such
correlated disorder,54 are possible. Finally, it should allow
one to describe in a systematic way the thermal rounding
the depinning, i.e., the study of thev-f characteristics forf
close to the threshold and smallT. If one assumes that on
can simply carry naive perturbation theory inT around the
T50 solution of the RG flow nearf c ~i.e., only keeping the
contribution beyondl V), one is led in Eq.~5.13! to an addi-
tional term proportional toT/v2, which readily yields the
value for the thermal rounding exponentr5112b proposed
in Ref. 49~i.e., a scaling form nearf 5 f c and smallT for the
velocity v;Tb/rF@( f 2 f c)/T

1/r#). Although this exponent
seems to be consistent with starting valuesl!T, its validity
could be further checked by solving our RG flow equatio
at smallT.
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APPENDIX A: NOTATIONS

Here are some notations and conventions and diagr
matics we use in the text. The surface of the unit sphere iD
dimensions divided by (2p)D is denoted by SD
52(4p)2D/2/G(D/2). The thermal average of any obser
ableA is ^A&, the disorder average isĀ, and the average with
the dynamical actionS@u,û# is denoted bŷ A&S5^A&. The
Fourier transform of a functionhrt of (r ,t) is hqv

5* rte
2 iq•r 1 ivthrt where * rt[*dr dt, and the inversion

reads hrt5*qveiq•r 2 ivthq,v , where *q[*@dDq/(2p)D#,
*v[*(dv/2p). The Fourier transform of the correlato
D(u) is Dk5*du e2 ik•uD(u) in general or Dk

5*0
adu e2 ikuD(u) in the periodic case. One has thusD(u)

5*keik•uDk , where*k[*(dk/2p) or (1/a)(k in the peri-
odic case. Note thatDk is a real and even function ofk.

The graphs are made of the following units~see Fig. 10!:

m
n
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a full line between points (r ,t) and (r 8,t8) is a correlation
^urtur 8t8&S , an oriented line with an arrow from point
(r 8,t8) to point (r ,t) is a responsêurt iû r 8t8&S ~the arrow
means thatt.t8, for the function does not vanish by causa
ity!. The vertex is represented as a dashed line linking po
(r ,t) and (r ,t8). The dashed line means that both points ha
the same positionr. From each point emerges aû field. No
arrow is needed for the full line or for the dashed line, sin
they are symmetric with respect to the exchange of their
points. The correlation being proportional toT vanishes at
T50. The graphs renormalizing the disorder~see Fig. 13!
are made of vertices and responses, and they possess
external i û lines. It can be easily seen that arrows are
more necessary since the two externalû lines provide an
orientation to all the responses of the graph. Indeed, du
causality, each of the externalû is root of a tree, whose
branches are response functions, which are oriented in
direction of the root.

APPENDIX B: PERTURBATION THEORY

We derive here the direct perturbation theory atT.0
without the use of the MSR formalism. To organize the p
turbation series, let us multiply the nonlinear part of t
equation of motionF(r ,vt1urt) by a fictitious small param-
etera, which will be fixed to one at the end of the calcul
tion. Directly on

H ^urt&50

~h] t2c¹2!urt5aF~r ,vt1urt !1 f̃ 1z rt1hrt

~B1!

we can formally expand u5(n>0anu(n), f 2hv[ f̃

5(n>0anf̃ (n), solve recursively the system~B1!, even at
nonzero temperature, and compute thea expansion of every
observable. Note that we added a sourcehrt ~with no con-
stant uniform part! so as to compute the response functio
As the force is Gaussian, the expansion of disorder avera
quantities is in powers ofa2, and is in fact an expansion i
powers ofD. We denote byCr 2r 8,t2t85^urtur 8t8& the exact
correlation and byRr 2r 8,t2t85^dur ,t /dhr 8,t8& the exact re-
sponse functions.

The first iterative steps aref̃ (0)5 f̃ (1)50 and

~h] t2c¹2!urt
(0)5z rt1hrt ,

~h] t2c¹2!urt
(1)5F~r ,vt1urt

(0)!,

~h] t2c¹2!urt
(2)5]uF~r ,vt1urt

(0)!urt
(1)1 f̃ (2).

FIG. 10. Conventions for the diagrammatics. The correlat
function uu, which vanishes atT50, is a full line with no arrow.

The reponse uiû is a full oriented line. The vertex

2
1
2 i û rt i û rt 8D@urt2urt 81v(t2t8)# is naturally split in two half

vertices corresponding to the points (r ,t) and (r ,t8), and the dashed
line means that both points have the same position. AtT50 the
correlation vanishes.
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These are sufficient to compute to first order inD the force,
the correlation, and response.

In the absence of disorder the system moves with a lin
characteristicsf 5hv and one has the following correlatio
and response:

Cqv5
2hT

~cq2!21~hv!2
, Cqt5T

e2cq2utu/h

cq2
, ~B2!

Rqv5
1

cq22 ihv
, Rqt5

u~ t !

h
e2cq2t/h ~B3!

related by the fluctuation-dissipation theorem~FDT! TRrt
52u(t)] tCrt . Note thatR and C do not verify FDT at v
.0.

To first order inD one obtains atT50

f 2hv52E
kq

ikDk

cq22 ikhv
, ~B4!

Cq,v5

1

v
Dk52v/v

~cq2!21~hv!2
, ~B5!

Rq,v5Rq,v1
1

~cq2!21~hv!2Et
D9~vt !R0t~12eivt!.

~B6!

These results can be extended to any temperatureT:

f 2hv52D1~v50!, ~B7!

Cq,v5Cq,v1Rq,vD0~v!R2q,2v

1Rq,v@D2~v50!2D2~v!#Cq,v1H.c., ~B8!

Rq,v5Rq,v1Rq,v@D2~v50!2D2~v!#Rq,v , ~B9!

where we have introduced the effective vertices, nonloca
time, smoothed by the temperature~see Fig. 11!,

D0~ t !5E
k
Dkeikvt1( ik)2(C002C0t), ~B10!

D1~ t !5E
k
ikDkeikvt1( ik)2(C002C0t)R0t , ~B11!

D2~ t !5E
k
~ ik!2Dkeikvt1( ik)2(C002C0t)R0t ~B12!

We now want to compute the corrections to the para
etersc, h, f̃ , T, D(u) so thatv, Cqv , Rqv remain unchanged
while the physical~ultraviolet! cutoff L on theq integrations
is reduced. To first order inD andT, one obtains

]c50, ~B13!

]h52E
t
tR0t

.D9~vt !, ~B14!

n
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] f̃ 5E
t
R0t

.D8~vt !, ~B15!

]T5
1

hEt.0
tC0t

.] tD9~vt !, ~B16!

]D~u!5C00
. D9~u! ~B17!

with ][2L(d/dL) and Rrt
. ,Crt

. are the on-shell Gaussia
response and correlation functions, i.e., with modesq lying
only betweenL2dL andL.

A completely different way for obtaining the perturbatio
expansion is presented in Refs. 55 and 4, as a first attem
include thermal fluctuations in the large-velocity expans
of Ref. 18. It consists in splitting the displacement field in
a T50 part and a thermal part. This procedure is proba
only true to first order inT and not controlled at higherT.
Instead, the method presented here is really an expansio
disorder at anyT.

Although the calculation can in principle be pushed
second order, the method is too cumbersome to do it in p
tice ~see, however, Ref. 56 atT50). It is easier to use the
formalism of dynamical field theory as shown in Append
C.

APPENDIX C: DERIVATION OF THE FLOW AT FINITE
VELOCITY AND FINITE TEMPERATURE

Here we give the details of the renormalization proced
used for the moving system. We use the MSR formali
with action S@u,û# given by Eq.~4.2!. Having shifted the
field urt so that its average vanishes^urt&50, we can do
perturbation theory with the Gaussian part

S0@u,û#5E
rt

@ i û rt~h] t2c¹2!urt2hTiûrt i û rt # ~C1!

FIG. 11. Computation of the correlation~top! and response~bot-
tom! functions to first order in perturbation theory. AtT.0, the
tadpoles and self-contractions of the vertices contain an arbit
number of correlations.
to
n

y

in

c-

e

of the action. The Gaussian correlationCrt and responseRrt
functions were defined in Appendix B.

The interaction part of the action contains the disord
correlator and also the pinning forcef̃ 5O(D):

Si@u,û#52 f̃ E
rt

i û rt2
1

2Ertt 8
i û rt i û rtD@urt2urt 8

1v~ t2t8!#. ~C2!

The effective action for slow fieldsu,û is given by the fol-
lowing cumulant expansion where the averages are c
puted within the Gaussian partS0 over the fast fieldsu.,û.

S,@u,û#5S0@u,û#1^Si@u1u.,û1û.#&

2
1

2
^Si@u1u.,û1û.#2&c1O~Si

3!. ~C3!

We now turn to the computation of the first- and secon
order terms.

1. First order

To first order, the corrections arise from the graph sho
in Fig. 12. They read

^Si@u1u.,û1û.#&52 f̃ E
rt

i û rt

2E
rtt 8k

~ ik!Dk@u#~r ,t,t8!R0t2t8
. i û rt

2
1

2Ertt 8k
Dk@u#~r ,t,t8!i û rt i û rt 8

~C4!

with the shorthand notation

Dk@u#~r ,t,t8![Dkeik[urt2urt 81v(t2t8)]e( ik)2(C00
.

2C
0t2t8
.

).

The term~C4! appears to be the sum of ai ûF@u# term and a
i û i ûG@u# term. Let us begin to deal with the first type.
short time expansion ofeik(urt2urt 8) yields the following op-
erators:

2S E
rt

i û rt D E
kt

ikDkeikvte( ik)2(C00
.

2C0t
.)R0t

. ~C5!

which is a correction tof̃ and

2S E
rt

i û rt] turt D E
kt

~ ik!2Dke( ik)2(C00
.

2C0t
.)tR0t

. ~C6!

which is a correction toh. The elasticity operatori û¹2u is
not corrected andno higher gradients likei û¹nu are gener-
ated in the equation of motion. Note also that to this ord
no KPZ termi û(¹u)2 is generated.46

ry

FIG. 12. First-order RG corrections. The internal lines ca
fast fields.
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The i û i ûG@u# term can be rewritten as the sum of

2
1

2Ertt 8
i û rt i û rt 8E

k
Dke( ik)2C00

.

eik[urt2urt 81v(t2t8)]

which has the form of a disorder correlator and yields
correction toD(u), and an operator quasilocal in time

E
rtt 8

i û rt i û rt 8

3E
k
Dke( ik)2C00

.
1 ik[urt2urt 81v(t2t8)]S 12ek2C

0t2t8
.

2
D

~C7!

which yields a correction to the* rt i û rt i û rt term. The projec-
tion of Eq. ~C7! on this thermal noise operator is

S E
rt

i û rt i û rt D E
kt

Dke( ik)2C00
.

eikvtS 12ek2C0t
.

2
D . ~C8!

To obtain the correction to the temperatureT, one uses
dT/T5dhT/hT2dh/h. An integration by parts of Eq
~C6!, thanks to FDT for the ‘‘pure’’R andC, yieldsdT/T.

To summarize,

dc50,

d f̃ 5E
kt

ikDke( ik)2(C00
.

2C0t
.)eikvtR0t

. ,

dh52E
kt.0

~ ik!2Dke( ik)2(C00
.

2C0t
.)eikvttR0t

. ,

dD~u!5E
k
Dke( ik)2C00

.

eiku,

hdT5E
kt.0

ikvtDke( ik)2C00
.

eikvt~12ek2C0t
.

!.

The correctiond f̃ has the same form as the perturbati
expression forf̃ , with opposite sign and shell-restricted fun
tions C,R. Note thatdh52(d/dv)d f̃ .

In the infinitesimal shell limit, the shell-restricted func
tions C.,R. which are evaluated atr 50, are of orderdl.
The differential flow is thus given by Eq.~4.11!.

2. Second order

The fast-modes averagêSi
2&c can be decomposed int

one term withf̃ in factor plus the rest which does not conta
f̃ . The former vanishes for the following reason: the contr
tion of the f̃ * rt i û rt with the ur 8t1

or ur 8t2
contained in the

vertex operator involves a fast responseRr i2r ,t
. . But * rRrt

.

50, since its modes live in the shell. The latter is the co
nected average of two disorder vertices. We now extr
from it a correction to the disorder, i.e., a term which has
a

-

-
ct
e

form 2 1
2 * rtt 8i û rt i û rt 8dD@urt2urt 81v(t2t8)#. The corre-

sponding diagrams are represented in Fig. 13.
Each diagram has two externali û rt i û r 8t8 legs, to which

corresponds a functional half vertex ofurt andur 8t8 , respec-
tively. Calling t,t8 the ~positive! time arguments of both
response functions, denotingU5urt2ur 8t81v(t2t8), the
diagrams have the following analytical expressions, in
grated overr ,r 8,t,t8,r,t,t8:

a52 i û rt i û r 8t8d r 82r 8D9~U !D@U1v~t82t!#Rrt
. Rrt8

. ,

b52 i û rt i û r 8t8d r 82r 2rD8~U1vt8!D8~U2vt!Rrt
. R2rt8

. ,

c5 i û rt i û r 8t8d r 82rD9~U !D@v~t82t!#Rrt
. Rrt8

. ,

d5 i û rt i û r 8t8d r 82r 2rD8~U1vt8!D8

3@2v~t81t!#Rrt
. R2rt8

. .

After another short distance expansion ofb andd, noting that
*rR6rt

. Rrt8
.

5*qR7qt
. Rqt8

.
5SDLDe2cL2(t81t)/hdl /h2, a

proper symmetry counting yields the term of orderD2 of Eq.
~4.11!. The results obtained here are consistent with
analysis of Ref. 57.

APPENDIX D: INTERESTING RESULTS IN THE
NONDRIVEN CASE AT FINITE TEMPERATURE

We give here a detailed analysis of the function
renormalization-group flow atT.0 and zero velocity. The
temperature is an irrelevant operator and flows exponenti
fast to zero. We show, however, that the temperature rou
the cusp in a region of size proportional toT around the
origin and that in this boundary layer, the disorder correla
takes asuperuniversal~to lowest order ine) scaling form. In
addition, we show how to carry a systematic expansion
low T. As temperature decreases, the correlator of the di
der becomes more and more pinched, and eventually rea

FIG. 13. Diagrams needed to compute the second-order co
tions atT50, and at anyT in Wilson’s scheme. Each of the two

external lines~corresponding to aû field! is connected to atree of
response functions~the lines! due to causality, and provides a
orientation to these lines: we drew the arrows just for clarity.
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its zero-temperature cuspy fixed point at infinity.
We show that during the renormalization atv50 with a

flowing temperatureTl→0, the cusp forms only asymptot
cally (l→`), andD(u) has the following scaling form in the
boundary layeruuu;Tl /x:

D l~u!.D l~0!2Tl f ~ux/Tl ! ~D1!

with f (x)5A11x221 and wherex5uD* 8(01)u measures
the cusp.

Furthermore, we show that the following expansion
temperature for the solution of the FRG flow holds:

@D~u!2D~0!2T#25 (
n>2

Tnf n~u/T! ~D2!

thus we obtained a fairly complete picture of the solution

1. Curvature

The flow equation of the value at zero of the disord
correlator is

] lD l~0!5~e22z!D l~0!1TlD l9~0!. ~D3!

Since D l→D* , the convergence ofD l(0) towardsD* (0)
implies thatTlD l9(0) also converges. From the fixed-poi
equation

~e23z!D* ~u!1z@uD* ~u!#85
1

2
@D* ~u!2D* ~0!#29

one has simply (e22z)D* (0)5D* 8(01)2, and thus

2TlD l9~0!→D* 8~01!2. ~D4!

2. Scaling function in the boundary layer

We show here that the assumption that the curvatur
zero ofD l diverges like a power of the inverse temperatu
implies thatall the derivatives at zero also diverge and th
there exists a well defined and particularly simple scal
function in the boundary layer around zero. Precisely,
any functionTl decreasing to zero and a functionD l(u) such
that

] lD l~u!5~e22z!D l~u!1zuD l8~u!1TlD l9~u!

1D l9~u!@D l~0!2D l~u!#2D l8~u!2 ~D5!

if D l9(0);2(x2/Tl)
a for somea.0 andx, then, defining

the functionsf l(x)5(1/Tl)@D l(0)2D l(xTl
(a11)/2x2a)#, we

obtain that all derivatives off l at x50 converge to the cor
responding derivatives off (x)5A11x221, and thatf is the
only fixed possible fixed point forf l .

A simple way to see the convergence to the scaling fu
tion f is to write the flow off l

TlD l9~0!1
1

2
x2aTl

12a~11 f l !
295Tl S ] l f l22 f l1

a11

2
f l8D

and eliminate at largel the right-hand side term which i
subdominant~higher order inTl) for a.0, sinceT has been
absorbed in the variablex of f l . We have used thatu52
2e12z. Hence the fixed point equation forf l is
r

at

t
g
r

-

1

2
~11 f !2951

which has the solutionf (x) above since we know thatf (0)
50, f 9(0)51 and f (4)(0)523 is easily checked.

This is confirmed by the study of the flow equations f
the successive derivativesan5D (2n)(0):

]an5@e12~n21!z#an1Tan11

2
1

2 (
k51

n S 2~n11!

2k Dakan112k . ~D6!

From a trivial recurrence, the hypothesisD l9(0)
;2(x2/Tl)

a implies thatTn(a11)21an converges for anyn.
Moreover the limit cn5 lim l→`Tn(a11)21x22naan can be
obtained from Eq.~D6! and is cn5@1.3•••(2n21)#2/(2n
21)5 f (2n)(0).

To fix the value ofa @a51 as strongly suggested by Eq
~D4!#, we checked that the only values ofb.0,g.0 such
that gl(x)5(1/Tl

g)@D* (Tl
bx)2D l(Tl

bx)# has a meaningful
fixed point are (b,g)5(1,1). For these values, the fixe
point is g(x)5D* 8(01)x1A11@D* 8(01)x#2.

3. Next order in T

The procedure which gives us the leading behavior in
boundary layer controlled by temperature can be exten
analytically with arbitrary accuracy in an expansion to a
order inT. We study

] lD l~u!5~e22z!D l~u!1zuD l8~u!1TlD l9~u!

2D l9~u!@D l~u!D l~0!#2D l8~u!2,

] l ln Tl52u

with u522e12z. For numerical purposes or for the fo
lowing analytical computation, it is useful to switch to th
functiony(u)5@D(u)2D(0)2T#2 which remains quadratic
at the origin whenT→0, since y(u)5T21uTD9(0)uu2

1O(u4) for T.0 andy(u)5D8(01)2u21O(u4) for T50.
This function flows as

] l y52~e22z!y1zuy81Ay@y92y9~0!24T#.

We can replace the scalel dependence ofyl(u) by a T de-
pendence sinceT and l are linked byTl5T0e2u l . The func-
tion yT(u) can be expanded in

yT~u!5 (
n>2

Tnf nS u

TD .

The expansion begins atn52 sinceyT(0)[T2 and we have

f 2~0!51, f n.2~0!50.

The equation for thef n’s reads

(
n>2

Tn$@2~e22z!1nu# f n1~z2u!x fn8%

5A(
n>2

Tnf nS 4T2 (
n>2

Tn22@ f n92 f n9~0!# D .
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One can solve this equation order by order inT. It is useful
to divide D and T by x2 and u by x. With these rescaled
quantities, we have simply

yTl
9 ~0!522TlD l9~0!→2

and thusf 29(0)52. If we knew the full behavior ofyT9(0),
i.e., thef n9(0)’s, we could completely solve the system. He
we get

f 2~x!511x2,

f 3~x!54S 12
e2z

3 D SA11x2212
x2

2 D2@42~e2z!#

3x~asinhx2x!2
e2z

3
x2A11x21 f 39~0!

x2

2
,

where we wrotef 3(x) such that the three first lines are fun
tions which vanish and have zero curvature at zero. Note
while f 2(x) is universal, the last termf 3(x) contains un un-
known integration constantf 39(0) which presumably depend
on the initial condition of the flow and is thus not univers
Indeed we observed a nonuniversalf 39(0) in a numerical
integration of the flow ofyT(u).

The procedure can be carried to any order inT and all the
f n’s are accessible. The unknown coefficients of the exp
sion

22TlD l9~0!521 (
n.0

Tnf n129 ~0!

are similarly nonuniversal.
Both Secs. D 1 and D 2 thus provide a rather convinc

and consistent picture for the solution of theT.0, v50
FRG equations~awaiting a mathematical proof!.

APPENDIX E: ANALYTICAL SOLUTIONS AT FIXED
TEMPERATURE

We present here the analytical solutions of the fixed-po
equations for RF and RP at fixedT. Thanks to the exac
expression of these fixed points, we are able to check
scaling form derived in Appendix D within an ‘‘adiabatic
hypothesis where the running correlator atl is identified with
the fixed point atT5Tl . Our families of fixed temperature
fixed points~FTFP! give back the known fixed points atT
50 in both the RF~Ref. 8! and the RP~Ref. 11! cases.
However, even if we obtain the sameform ~E6! for the RF
T50 fixed point as in Ref. 8, we disagree with the scaling
e.

1. Random field

We look for a fixed point of

] lD l~u!5~e23z!D l~u!1z@uD l~u!#8 ~E1!

2
1

2
@D l~u!2D l~0!2T#29 ~E2!

with fixed T and initial random-field condition*D0.0.
Since] l ln *duDl(u)5e23z, a meaningful fixed point can b
,

at

.

n-

g

t

e

obtained only forz5e/3. Fixing the RF strength*D0 to one,
we are led to the following problem: for anyT>0, find the
fixed temperature fixed-point function~FTFP! D(T,u) such
that

e

3
@uD~u!#85

1

2
@D~u!2D~0!2T#29, ~E3!

E du D~u!51. ~E4!

Integrating Eq.~E3! from 0 to` yieldsTD8(01)50, hence
the FTFP has a cusp forT50 and no cusp forTÞ0.

At T50, integrating Eq.~E3! from 0 tou and dividing by
D(u) yields (e/3)u5D8(u)2D(0)D8(u)/D(u). Then, inte-
grating again from 0 tou yields theT50 FTFP, by imposing
Eq. ~E4!

D~T50,u!5S e

3S E yD 2D 1/3

yF S e

3E yD 1/3

uG , ~E5!

where the functiony(x) is implicitly defined by8

x2

2
5y~x!212 ln y~x!. ~E6!

Sincey(0)51 one has

D~0,0!5S e

3S 2A2E
0

1
Ay212 ln yD 2D 1/3

. ~E7!

It is easy to compute the number*y5*2`
` dx y(x)

52*0
1dy x(y)52A2*0

1dy Ay212 ln y.1.55. Note the be-
havior near 0 given by y(x)512uxu1x2/32ux3u/36
1O(x4) thus]u

2D(0,01)52e/9. Note also the Gaussian de

crease of correlations at infinityy(x);e212x2/2.
An intriguing fact is the scaling of theT50 fixed point

with e: its nth derivative at 01 scales like

]u
nD~T50,u501!;e (11n)/3. ~E8!

At T.0, there is no cusp@]uD(T.0,01)50# and the
same double integration of Eq.~E3! yields

D~T,u!5D~T,0!y~T,uAe/@3D~0!# ! ~E9!

with y(T,x) implicitly defined by

x2

2
5y212S 11

T

D~0! D ln y. ~E10!

The value ofD(T,0) is determined by condition~E4!. Using
* dx y(x)5*dy x(y), this condition reads

A24D~T,0!3

e E
0

1

dyAy212S 11
T

D~T,0! D ln y51.

~E11!

This equation admits a unique solutionD(T,0).0 for any
T.0. Then there exists a unique FTFPD(T,u) for eachT
.0. Some of them are displayed in Fig. 14. Note thatT
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50 in Eqs.~E10! and~E11! gives back theT50 nonanalytic
fixed pointD(T50,u) Eq. ~E5!. Hence the set of FTFP has
nice T→0 limit, even if there is a qualitative difference be
tween the cuspyT50 FTFP and the analyticT.0 FTFP’s.

As is obvious from their analytical expression, or fro
Fig. 14, limT→0D(T,u)5D(0,u): theT50 nonanalytic fixed
point is approached smoothly by the set of analytic fixedT
fixed points. WhenT approaches zero, the curvature of t
FTFP’s at the origin goes to2` like

lim
T→0

2TD9~T,0!5
e

3
D~0,0! ~E12!

with D(0,0) given by Eq.~E7!.
We also checked that theD(T,u) converge whenT→0 to

the zero-temperature fixed point with the predicted sca
form ~D1!

D~T,0!2DS T,T
x

x D
T

→
T→0

A11x221, ~E13!

wherex5u]uD(0,01)u is given by theT50 FTFP equation
x25(e/3)D(0,0).

Some of the RF fixedT fixed points are shown on th
right-bottom quarter of Fig. 14, including the cuspy~highest!

FIG. 14. Fixed points at fixed temperatureD(T,u). Bottom: RF
case, the solutionD(T,u) to the reduced Eqs.~E14! and ~E15!
exists for anyT. Right bottom: plot of the RF FTFP’s forT
P$0,0.1,0.2,0.5,1%, these temperatures are located on the absci
of the left bottom plot. On the left, plot of2T]u

2D(T,u50) versus
T. Top: RP case, the one-periodic nontrivial solutionD(T,u) to Eq.
~E16! exists for 0<T,(2p)22. Right bottom: plot of the RP
FTFP’s for TP$0,0.005,0.01,0.015,0.02%; these temperatures ar
located on the abscissas of the left top plot. The FTFP’s are ana
for T.0 but tend to the cuspyD(T50,u) asT→0. The curve on
the left shows2T]u

2D(T,u50) as a function ofT. It is not a
straight line.
g

T50 fixed point. Absorbinge in T andD, we chose to plot
the nontrivial solution to the most reduced problem,

1

3
@uD~u!#85

1

2
@D~u!2D~0!2T#29, ~E14!

E du D~u!51. ~E15!

To restoree and *D, one simply has to note that the ‘‘di
mensions’’ areT[D[e1/3(*D)2/3 andu[e21/3(*D)1/3. The
left-bottom of Fig. 14 shows2TD9(T,0) as a function ofT.
This combination has a finite limit (.0.17) whenT→0.

2. Random periodic

In the random periodic case, the conservation of the
riod a of D requires z50. After a suitable rescaling,u
→u/a, D→D/(ea2) andT→T/(ea2), the fixed-point equa-
tion reads for the one-periodic functionD(u)

D~u!5
1

2
@D~u!2D~0!2T#29 ~E16!

and is easily solved by quadrature, by analogy with a pa
cle’s positionX(u)5@D(u)2D(0)2T#2 at time u in a po-
tential V(X)54X3/2/322@D(0)1T#X verifying X9(u)
52V8@X(u)#. The quadrature leads to the reciprocal fun
tion u(X), parametrized byD(0) and T, as a sum of two
elliptic functions. Then, imposing the solutionD(u) be one-
periodic fixesD(0) as a function ofT.

The result is

~i! for T>(2p)22, the only solution isD(u)[0.
~ii ! For 0,T,(2p)22, another solution arises, which re

sembles a cosinus function of linearly vanishing amplitu
when T→(2p)22. This nontrivial solution has no cusp bu
becomes pinched asT decreases@growing curvatureuD9(0)u
and higher harmonics#. As can be seen on the analytical e

pression~not given here!, 2TD9(0) →T→0
1/36. In particular,

it remains finite when the temperature vanishes.
~iii ! Eventually for T→0, the nontrivial solution uni-

formly tends to the zero-temperature fixed point

D~u!5
1

6 S 1

6
2u~12u! D . ~E17!

The temperature (2p)22 in our units isexactlythe critical
temperatureTg of the random-fieldXY model58 and the fixed
points nearTg

2 reproduce the line of fixed points of thi
problem ~since we worked to second order, it is only a
approximation!. Indeed inD52, the naive dimension of the
temperature is zero and our FTFP has a direct physical m
ing. Note that another random gradient term becomes
evant in D52 but does not feed back on the flow o
D(u).58,59

We can now use the exact FTFP’s to check that an a
batic hypothesis is consistent with the scaling form~D1!.
Indeed, one can numerically check that the correlator wit
flowing temperature has the FTFP’s have the scaling~D1! as
T→0. To conclude about the problem with a flowing tem

as

tic
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peratureTl→0, it appears from these observations that
cusp occurs at finite scale forT0.0. The cusp forms only
asymptotically (l→`), with

lim
l→`

2TlD l9~0!5D~0,0! ~E18!

given by Eq.~E7! and it obeys a scaling form in the boun
ary layeruuu,Tl /x,

D l~u!.D l~0!2Tl f ~ux/Tl !, f ~x!5A11x221.
~E19!

We note that the precise form of the flow of the temperat
~i.e., the value ofu) only affects subdominant behavior@i.e.,
the functionf 3(x) in Sec.~D 3!#.

APPENDIX F: MULTIDIMENSIONAL CASE

We give here a possible extension of the FRG to a m
tidimensional displacement field. This study generalizes
approach of Ref. 53 by including the effect ofv.0 andT
.0 in the flow. For periodic structures, a similar study of t
multidimensional displacement field was shown in Ref. 57
yield interesting effects.

In a D1N-dimensional space, we distinguish between
internal or longitudinal space of dimensionD, to which r
belongs, and thetransversespace of dimensionN, to whichu
belongs. The elastic energy of an interface without ov
hangs defined by a height functionur is quadratic in¹u of
the form 1

2 * rci j
mn(]mur

i )(]nur
j ).

The disorder: the random bond~RB! case correspond
to a random potential V(r ,u), with correlations
@V(r ,u)2V(r 8,u8)#2522dD(r 2r 8)R(u2u8). Function
R(u) is even, vanishes atu50 and goes to a negative con
stant foruuu@r f . The random-field~RF! case corresponds t
a force Fi(r ,u) with correlationsFi(r ,u)F j (r 8,u8)5dD(r
2r 8)D i j (u2u8), where theD i j (u) vanish for uuu@r f . A
RB gives rise to a RF viaFi52] iV and the correlators ar
related byD i j (u)52] i j R(u). Note th at this type of cor-
relator deriving from a RB has*dNu D i j (u)50. Finally, the
random periodic case~RP! occurs whenu is defined up to a
discrete set of translations forming a lattice of pointsP, e.g.,
whenu is a phase, defined up to 2p shifts. In this case, the
disorder is periodic and one hasD i j (u)5D i j (u1P) for any
P of the lattice@or R(u)5R(u1P)#.

The overdamped dynamics is given by

h j
i ] turt

j 5cj
imn]mnurt

j 1Fi~r ,urt !1z rt
i 1 f i1hrt

i ,

whereh is the friction tensor andz a Langevin noise, with
correlations^z rt

i z r 8t8
j &52(hT) i j d(r 2r 8)d(t2t8). The ten-

sorT stands for the temperature~s! of this out of equilibrium
system. We added a driving forcef i perpendicular to the
interface and a source fieldhrt

i , as an external excitation.
Without assuming any symmetry, letCrt

i j and Rrt
i j be the

Gaussian correlation and response functions. We obtain
the same procedure as for theN51 case the following first-
order corrections due to disorder

dcmn
i j 50,
o

e

l-
e

o

e

r-

by

d f̃ i5E
kt

eik•(C002C0t)• ik1 ik•vtDk
ikik lRt

lk ,

dh i j 52E
kt

eik•(C002C0t)• ik1 ik•vtDk
ikik l tRt

lkik j ,

d~hT! i j 5
1

2Ekt
eik•vt~eik•(C002C0t)• ik2eik•C00• ik!Dk

i j ,

dD i j ~u!5E
k
Dk

i j eik•C00• ik1 ik•u.

Using (Dk
ab)* 5D2k

ab , D2k
ab 5Dk

ba , we write the on-shell
corrections as~with the matrix productA•B5AagBgb)

dcmn
i j 50,

d f̃ 52E
k
ik•E

t
R0t

.
•D2keik•vt,

dh52E
k
ik•E

t
tR0t

.
•D2keik•vtik,

d~2h•T!52E
k
ik•E

t
C0t

.
• ikDkeik•vt,

dDk5 ik•C00
.
• ikDk .

The second-order correction toD reads

dD i j ~u!5E
qtt8

Rqt
.mkRqt8

.m8 l
„$Dkl@v~t82t!#2Dkl@u1v~t8

2t!#%]m]m8D i j ~u!2]mD i l ~u1vt!]m8Dk j~u

2vt8!2]mD i l ~u1vt!]m8D jk@v~t81t!#

1]mD i l @v~t81t!#]m8Dk j~u2vt8!….

Note that each of the first three terms are symmetric un
i↔ j ,u↔2u and that the fourth is exchanged with the fif
under this symmetry. ThenD remains a correlator.

Of course this second-order correction toD gives back the
expression already computed for aD11 interface ifN51.
At zero velocity, one gets the second derivative of the fl
equation of Balents and Fisher.9 If we assume thatD(u)
depends only on the component ofu parallel to the velocity
and sendv to zero, then our expression reduces to the eq
tions of Ertas and Kardar.53

To simplify the analysis, let us rely on the assumed sy
metries of the system. If we suppose that the initial probl
is rotationally invariant, i.e., hasO(N) symmetry, then the
elasticity tensorc, the friction tensorh, and the temperature
tensorT are only scalars and the force-force correlatorD is
covariant, i.e., for any R such that R †

•R51,
R †

•D(u)•R5D(R•u).
During the flow, we expect from physical grounds that t

running terms of the action will conserve their symmetr
but the velocityv which is fixed once for all selects a pa
ticular direction in transverse space. The interesting sym
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tries are given by the little group of the velocity, i.e., th
transformationsR such thatR †

•R51 andR•v5v. Then
one may decompose the tensors on a basis involvingv @one
has only two frictions, temperatures, response, and corr
tion functions and five60 D i ’s, functions of (u2,v2,u.v)#.

Unfortunately, the full problem cannot be easily deco
pled, even with the simplifications pointed out above.
closed equation, e.g., for the correlator restricted to displa
ments aligned with the velocityD(uiv), has been found, an
the problem even at zero temperature seems involved.
simplification used in Ref. 53 consists in assuming thatD
does not depend on the transverse coordinates. This ass
tion reduces the problem to theN51 case, and it would be
interesting to solve at finiteT the behavior of transverse co
ordinates along the lines of our analysis.

APPENDIX G: THE FLOW OF THE DISORDER
CORRELATOR AT SMALL VELOCITY

The effect of a small velocity on the FRG flow is main
restricted to the boundary layer of widthr l about the origin.
Analytically, it is rather difficult to give an estimate ofr l or
to decide howD̃ l(u) precisely behaves in the boundary lay
uuu;r l . It is, however, possible to simplify the formidab
second-order correction to the disorder correlator, displa
in Eq. ~4.13!, and to obtain analytically several results, gi
ing some hints about this behavior.

The O(D̃2) term in Eq. ~4.11! is written under a form
involving two integrations overs,s8, reflecting the presenc
of two response functions integrated over time. After so
integrations by part, theO(D̃2) term becomes61

D̃9~u!E
s.0

e2sS D̃~ls!2
D̃~u1ls!1D̃~u2ls!

2
D

1E
s.0

e2s
D̃~u1ls!2D̃~u!

l E
s.0

e2s
D̃~u2ls!2D̃~u!

l

2E
s.0

e2sD̃8~ls!
D̃~u1ls!1D̃~u2ls!22D̃~u!

l
. ~G1!

Integrated overu, this correction becomes

E
0

`

du D̃8~u!E
s.0

e2s~22s!
D̃~u1ls!2D̃~u2ls!

l
.

For any noncrazy functionD, this expression is positive
Assuming thatD has no cusp, it can be safely expanded a
we can check that it is of orderl2:

]E D̃5~e23z!E D̃12l2E D̃921O~l4!.

Thus at vÞ0, the integral ofD̃ grows during the flow,
whereas it wasconservedin the statics.

Using Eq.~G1!, one can also compare the flow ofD̃ l at
small velocity to the cuspyv50 flow. In particular, one
observes that the effect of the velocity is to reduce
blowup of the curvatureD̃9(0):
la-

-

e-

he

p-

d

e

d

e

]D̃9~0!5eD̃9~0!2D̃9~0!E
s.0

e2s
D̃~ls!2D̃~0!

l2

2E
s.0

e2sS D̃8~ls!

l
D 2

5eD̃9~0!23D̃9~0!229l2D̃9~0!D̃ iv~0!1O~l4!

@note thatD̃9(0),0 whereasD̃ iv(0).0#. The flow of the
friction is similarly slowed down:

] ln h5E
s.0

e2s~22s!
D̃~ls!2D̃~0!

l2

52D̃9~0!23l2D̃ iv~0!1O~l4!.

The term2D̃8(01)2 in the v50 flow of D̃(0) in Eq.
~4.14! at v50 is replaced atv.0 by

]D̃~0!5~e22z!D̃~0!1S E
s.0

e2s
D̃~ls!

l D 2

2E
s.0

e2sS D̃~ls!

l
D 2

~G2!

which has the right sign~using Cauchy inequality! to slow
down the exponential growth ofD̃ l(0).

Obtaining a numerical integration of the flow is a high
nontrivial quest,61 since all the interesting properties occ
close to the origin yielding unaccurate results in real spa
In Fourier space, the number of harmonics to be retaine
huge if one wants to focus on the quasicuspy behavior (Dk*
;k22 at the cuspy fixed point!. However, we obtained, a
least at the beginning of the flow~up to l c) with small initial
velocity, the curve shown in Fig. 6. The initial condition wa
a RB disorder~full line!. It is obvious on the snapshot~dot-
ted line! close tol c that the flow transformed the RB into
RF.

APPENDIX H: BEFORE THE LARKIN LENGTH

We show here that at the scalel c , D̃ l(u) is very close to
the static zero-temperature fixed pointD* (u). This can be
checked numerically, even in the presence of a small te
perature and small velocity. Analytically, one cannot obta
an exact integration of the flow, but we can compareD̃ l(u)
to the knownD* (u) by the following arguments.

Let us take, e.g., the RF case for whichz5e/3. For weak
disorder one obtains from the integration of Eq.~4.17!

ez l c5S 11
e

3uD̃09~0!u D
1/3

.r fS e

E D̃D 1/3

, ~H1!

where we have useduD̃09(0)u.D̃0(0)/r f
2.*D̃/r f

3 . We prove

in Appendix E thatx5uD* 8(01)u verifies x.e2/3(*D̃)1/3

and that D* (0)'e1/3(*D̃)2/3. Thus the range r f*
'D* (0)/uD8* (01)u of D* verifies
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r f* 'r fe
2z l c'x/e. ~H2!

To determine the range ofD̃ l c
(u) we use the fact that at th

beginning of the flow one can neglect the nonlinear term
the flow Eq. ~4.11!. We are left with D̃ l(u)
5e(e22z) lD̃0(uez l) and thus the range ofD̃ l c

(u) is simply

r f~ l c!.r fe
2z l c. ~H3!
f

r,

,

fo
m
t-

be

E

he
n

A comparison of Eqs.~H2! and ~H3! shows that the two
ranges are similar. Furthermore, in the RF case*D is con-
served by the flow atv50, and thus the similarity of range

shows that the shape ofD̃ l c
is close to the shape ofD* ~same

integral, same range!. Similarly in the RP case it is also tru

that D̃ l c
resemblesD* , but nowx5ea/6 as can be seen o

the fixed pointD* (u)5(e/6)@a2/62u(a2u)#.
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