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Elastic systems driven in a disordered medium exhibit a depinning transition at zero temperature and a creep
regime at finite temperature and slow drizeWe derive functional renormalization-group equations which
allow us to describe in detail the properties of the slowly moving states in both cases. Since they hold at finite
velocity v, they allow us to remedy some shortcomings of the previous approaches to zero-temperature
depinning. In particular, they enable us to derive the depinning law directly from the equation of motion, with
no artificial prescription or additional physical assumptions, such as a scaling relation among the exponents.
Our approach provides a controlled framework to establish under which conditions the depinning regime is
universal. It explicitly demonstrates that the random potential seen by a moving extended system evolves at
large scale to a random field and yields a self-contained picture for the size of the avalanches associated with
the deterministic motion. At finite temperatufe>0 we find that the effective barriers grow with length scale
as the energy differences between neighboring metastable states, and demonstrate the resulting activated creep
law v ~exp(—Cf #/T) where the exponent is obtained in &=4—D expansion D is the internal dimension
of the interfacgé Our approach also provides quantitatively an interesting scenario for creep motion as it allows
us to identify several intermediate length scales. In particular, we unveil a “depinninglike” regime at scales
larger than the activation scale, with avalanches spreading from the thermal nucleus scale up to the much larger
correlation lengttR,, . We predict thaR,~T~f ~* diverges at small drive and temperature with exponents
o,\ that we determine.

[. INTRODUCTION ings, have been developed. The first one is to perform a
perturbative renormalization-group calculation on the disor-
Understanding the statics and dynamics of elastic systender, and is valid in 4 e dimensions to first order ig. In this
in a random environment is a long-standing problem withfunctional renormalization-grougdFRG) approact® the
important applications for a host of experimental systemswhole correlation function of the disorder is renormalized.
Such problems can be split into two broad categori@s: The occurrence of glassiness is signaled by a nonanalyticity
propagating interfaces such as magnetic domain Wailisg appearing at a finite length scale during the flow, specifically
invasion in porous mediapr epitaxial growtt? (i) periodic  a cusp in the force correlator. This yields nontrivial predic-
systems such as vortex latticesharge-density waveéspr  tions for the roughness exponents of interfatAsother ap-
Wigner crystals of electrorfsin all these systems the basic proach relies on the replica method to study either the mean-
physical ingredients are identical: the elastic forces tend tdield limit (i.e., large number of components to perform a
keep the structure orderedtlat for an interface and periodic Gaussian variational approximation of the physical model.
for lattices, whereas the impurities locally promote the wan- Using this variational approach both for manifditiand for
dering. From the competition between disorder and elasticitperiodic system&:*? correlation functions and thermody-
emerges a complicated energy landscape with many metaamic properties could be obtained. It confirms the existence
stable states. This results in glassy properties such as hystaf glassy properties, with energy fluctuations growing_4s
esis and history dependence of the static configuration. In thehere 6 is a positive exponent. To obtain the glass phase in
dynamics, one expects of course this competition to havéhis method, one must break the replica symmetry. At a
important consequences on the response of the system to guoalitative level, this is in good agreement with the physical
externally applied force. intuition of such systems as being composed of many low-
To study the statics, the standard tools of statistical melying metastable states separated by high barriers. As was
chanics could be applied, leading to a good understanding aflearly shown in the case of periodic manifolds, the correla-
the physical properties. Scaling arguments and simplifiedion functions can be obtained by both the FRG and varia-
models showed that even in the limit of weak disorder, theional approach and are found to be in very reasonable agree-
equilibrium large scale properties of disordered elastic sysment, bridging the gap between the two-methbldsS.Taken
tems are governed by the presence of impurities. In particutogether, these two approaches thus provide a very coherent
lar, below four (interna) dimensions, displacements grow picture for the static¥**%In particular, they allow us to un-
unboundedI{ with the distance, resulting in rough interfaces derstand that although disorder leads to glassy features in
and loss of strict translational order in periodic structdres. both the manifold and the periodic systems, these two types
To go beyond simple scaling arguments and obtain a moref problems belong to quite different universality classes in
detailed description of the system is rather difficult and atother respects, such as the large distance behavior of the
present only main two methods, each with its own shortcomeorrelations-*
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usually called “creep” is extremely slow. Scaling argu-
ments, relying on strong assumptions such as the scaling of
energy barriers and the use of statics properties to describe
7/ FLOW an out of equilibrium system, were used to infer the srhall
V% response. This led to a nonlinear response, characteristic of
DEPINN_ING,/ the creep regime, of the form~exp(—Cf #/T) where u
=(D—2+2{c9/(2—{eq and {¢q is the roughening expo-
nent for the statid-dimensional system.

Obtaining a detailed experimental confirmation of this be-
havior is a nontrivial feat, in reasons of the range in velocity
required. Although in vortex systems these highly nonlinear

=0 flux creep behaviors have been measured ubiquitously, it is
fe f rather difficult to obtain clean determination of the expo-
nents, given the many regimes of lengthscales which charac-

FIG. 1._ Typical force-velocity characteristics, exhibiting pinning terize type-lI superconductofsln some recent measure-
atT=0 with a threshold forcé; and creep aT>0,f<f.. Atlarge  ments, some agreement with the creep law in the Bragg glass
drive, the system flows as if there were no disorder. regime was obtainetf. Probably the most conclusive evi-

dence for the above law was obtained, not in vortex systems,

These properties have drastic consequences for the dput for magnetic interfaces. Quite recently Lemeeleal?
namics of driven systems in the case, important in practicesuccessfully fitted the force-velocity characteristics of a mag-
where an elastic description holdise., when plastic defor- netic domain wall driven on a random substrate by a
mations can be neglectedetermining the response to an stretched exponential form~exp—f~°2° over 11 decades
externally applied force is not only an interesting theoreticalin velocity. This provided evidence not only of the stretched
question, but also one of the most important experimentaéxponential behavior, but of the validity of the exponent as
issues. Indeed, in most systems the velogityersus forcd  well.
characteristics is directly measurable and is simply linked to  Given the phenomenological aspect of these predictions
the transport propertigsoltage-current for vortices, current- and the uncontrolled nature of the assumptions made, both
voltage for charge-density wav€DW) and Wigner crystals, for the creep and for the depinning, it is important to derive
velocity-applied magnetic field for magnetic domain whlls this behavior in a systematic way from the equation of mo-
In the presence of disorder it is natural to expect that, at zergion. Less tools are available than for the statics, and aver-
temperature, the system remains pinned and only polarizesgyes over disorder should be made using dynamical methods.
under the action of a small applied force, i.e., moves until itFortunately, it is still possible to use a functional
locks on a local minimum of the tilted energy landscape. Atrenormalization-group(FRG approach for the dynamical
larger drive, the system follows the foréeand acquires a problem. Such an approach has been useB=ad to study
nonzero asymptotic velocity. In the simplest cases, the depinning?>?° It allowed for a calculation of the depinning
effect of disorder at large velocity is washed out and onexponents, irD =4— . However this approach is still rather
recovers the viscous flow, as in the pure case. In the thermamsatisfactory. The FRG flow used in Refs. 25 and 26 is
dynamic limit, it is believed that there exists a thresholdessentially the static one, the finite velocity being only in-
force f, separating both states, and that a dynamical transivoked to remove—by hand—some ambiguities and to cut off
tion occurs aff . calleddepinning where the velocity is con- the flow, with no real controlled way to show that this is the
tinuously switched on, like an order parameter of a secondeorrect procedure. Furthermore in these approaches it is also
order transition in an equilibrium systefh)eading to av-f necessary to assume, instead of deriving them from the FRG,
characteristics such as the one shown in Fig. 1. some scaling relations in order to obtain the exponents. An-

An estimate off . can be obtained via scaling arguméfts other rather problematic point is that, with no additional in-
or with a criterion for the breakdown of the large velocity put, the method of Ref. 26 would yield three universality
expansiort”*® Beyondf., if one describes the depinning as classes for the depinning: two universality classes depending
a conventional dynamical critical phenomenon, the importanbn the nature of the disordérandom bond versus random
quantities to determine are of course the depinning exponefiield) for manifolds and one for periodic systems, while nu-
B giving the velocityv ~ (f— f,)# and the dynamical expo- merics and physical argumefftssuggested that only two

nentz which relates space and time asr?. (random field and periodicuniversality classes could exist.
An even more challenging question, and experimentally atn addition, since this is also intrinsically @=0 (and v
least as relevant, is the response at finite temperatue. =0) approach, it cannot be used to tackle the creep behav-

In the most naive description, the system can now overcommr.

barriers via thermal activation, leading to a thermally as- We propose here a single theory for describing all the
sisted flow® and a linear response at small force of the formregimes of a moving elastic system, including depinning and
v~e 4Tf, where A is some typical barrier. It was the nonzero temperature regimes. Our FRG equations con-
realized’~% that because of the glassy nature of the statidain from the start the finite velocity and finite temperature.
system, the motion is actually dominated by barriers whichThey thus allow to address questions which are beyond the
divergeas the drivef goes to zero, and thus the flow formula reach of either approximate scaling theoriespyer0 FRG

with finite barriers is incorrect. Well below the threshold flow. For the depinning we are able to determine the condi-
critical force, the barriers are very high and thus the motiontions required for the existence of a universal depinning be-
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havior, as well as computing the depinning expondatsl
estimatingf.). We show in particular that only two univer-
sality classes exidput of the thregfor the depinning since
we explicitly find that random bond systems flow to the
random-field universality class. We can also extract from our
equations the characteristic length scales of the depinning.
The main advantage of our approach is of course to address
the finite T small v regime as well. The method allows to
derivethe creep formula directly and thus allows to confirm u
the assumptions made on the scaling of the energy barriers. RO/R'O ./.o S,
In addition we show that the creep is followed by a depin-
ninglike regime and determine its characteristic length
scales. A short account of some of these results was pre- Yo & (i
sented in Ref. 27.

The paper is organized as follows: in Sec. Il we present f P &
the equation of motion and the types of disorder studied here. _ _ S
Section Ill is devoted to a brief review of scaling arguments  FIG- 2. Top: an interface with height field, abover. We de-
and a summary of useful results from perturbation theoryno,te byr the.(lnternab coordlnates. along the interface ar.ldi)'ghe
presented in Appendix B. Section IV contains the ﬁe|d_h_e|ght coordinates. Bottom: a lattice with reference positR@sid
theoretical formulation of the problem and the associated!!SPlacementsiz from R
renormalization-group flow equations, derived in Appendix
C. The static case is studied in Sec. IV C, focusing on the//Neénu has more than one componentshould be under-
appearance of the cusp. The effect of the temperature is stugtod as a tensdsee Appendix _
ied in detail in Appendixes D and E. In the next sections, we 10 take the quenched disorder into account in such sys-
study the depinningV) and creepVl) regimes. Both sec- tems it is necessary to express the energy of the abqve elastic
tions contain the outline of the derivation and a physicaStructure in the presence of impurities. The coupling to a
discussion. Appendix G is devoted to the effect of a Sma”substrate or to local fields is ea_lsny Wr|tt_en for interface mod-
velocity on the FRG. We conclude in Sec. VII, referring to el_s and is more subtle for lattices. Quite generally the cou-
an extension of our work proposed in Appendix F. In Ap- Pling to disorder leads to an energy
pendix A we fix the notations used throughout the paper.

Hdis:fv(raur) (2.2
II. ELASTICITY AND DISORDER r

Elastic systems are extended objects which “prefer” towhich gives rise to a pinning forde(r,u) = — 4, V(r,u) act-
be flat or well ordered. We are dealing with two different ing on the displacement, . Depending on the microscopic
types of elastic systems which, however, can be treated in therigin of the disorder ternV, the coupling(2.2) leads to
same way. On the one hanidferfaces i.e., surfaces with a quite different physics.
stiffness that makes local distortions energetically expensive, |n the case of interfaces E(R.2) originates from
on the other handatticeswith elastic displacements allowed
about a regularly ordered configuration.

The first type is the easiest to visualize. The interface is Hdiszf V(r,z)p(r,z), (2.3
assumed to have no overhangs and is thus described by a nz
height functionu, defined at each point (see Fig. 2 Its
energy is proportional to its aref 1+ |Vu[? and in the _ e (2—0)
elastic limit|Vu|<1, reduces to pr.z)= Lze 2= 8z uy) (2.4

C ) in terms of the densityp(r,z). One then usually distin-
Helul= Jr§|Vu| (2.1 guishes two cases: either “random bon¢RB) whenV/(r,2)
is short rangérandom exchange for magnetic domain walls
relative to the flau, =0 configuration(notations are defined or “random field” (RF) as discussed below, whexr,z)
in Appendix A. We denote byc the stiffness, or elastic has long-range correlations.
constant. In the case of periodic structures, the dengify) can be

Periodic structures, such as flux-line lattices or chargeexpressed using the set of vectar®f the reciprocal lattice
density wavegCDW), can be described by the same type ofand Eq.(2.2) originates from
elastic Hamiltonian. For each poiifor line) in the elastic
periodic system one can introduce(\ecton displacement
field ug that gives the shift from the reference positRitsee Hais= frW(r)p(r), (2.9
Fig. 2). The elastic energy for small displacements is given
by a quadratic form in the differencasy—ug, between
neighboring point.s gnd thu§ can be wri;ten as Egl) ina P(f)2P02 gir(r=uy). (2.6)
continuum descriptionr( being a generic point in space P
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N =CV2U+F(r,uy) + ¢+ 1, (2.10
where 7 is a friction, f is the external driving force density
and ¢,; a Langevin noise. The correlatiod{ ¢, /)
=2nT6,, 6y defines as usual a temperatdrdor this out
of equilibrium system. The long time behavior of £8.10
at zero drivef=0, reduces to the thermodynamics at tem-
peratureT. In Eq. (2.10 the baré® pinning forceF(r,u) is
Gaussian with zero average and correlator given by(E8§).
We will consider three universality classes foicorrespond-
ing to an interface in a random potent{&B), in a random
field (RF), or a periodic system in a random potentiBP).

FIG. 3. Up: RB case, down: RF case. Right: correlator of thePhysical realizations of such disorders would be, respec-

potential, left: correlator of the force.

wherep, the average densify}. The potentiaW is random,
of short range ¢ (e.g., point impurities for a vortex lattice or
a CDW). We call this case “random periodic{RP).

In both cases, using EgR.3)—(2.6) and(2.2) one obtains
for the correlations oV in Eq. (2.2

[V(r,u)—V(r',u)]?’=-26,,R(u—u’), (2.7

whereR(u) is a periodic function with the periodicitg of
the lattice in the periodi¢RP) case?® The & function is cut
off at the microscopic scale; .

tively, a random anisotropy for a magnetic domain wahge
random-field Ising system¥, and vortex lattices or
CDW's 1t

It is also useful to rewrite Eq(2.10 in the comoving
frame at average velocity=(d;u,;). In the remainder of this
paper, we switch ta,,—u,;+vt and thus study the follow-
ing equation of motion:

(dur)=0

~, (211
(9o — VAU =F(r,vt+uy)+ L+ T

wheref=f— yv is the average pinning force amcbelongs

For an interfaceR(u) has the shape shown in Fig. 3. In to aD-dimensional internal space. From now on we special-

that case, the width; of R(u) is typically given by the

ize to an unidimensional displacement fieldas would be

width of the interface or the size of impurities. The force the case for an interface model or a sin@eCDW. This

resulting from such a random bond disorder

correlation&®

F(r,u)F(r',u")=6,,/A(u—u’") (2.8
as shown in Fig. 3 where
A(u)=—R"(u). (2.9

hassimpler case already captures the main physics at small ve-

locity, investigated here. Extensions to many-component
systems will be briefly discussed.

Before giving a quantitative treatment using renormaliza-
tion group, let us review the qualitative arguments which
have been given previously to describe the physics originat-
ing from Eq.(2.10.

Ill. PRELIMINARY ARGUMENTS

The signature of such a RB disorder for the interface is that

JA=0 sinceR’(u) decreases to zero at infinity.

Another type of disorder occurs in the case of interfaces
separating two phases, like, e.g., a domain wall in a disor
dered magnet. A random field couples differently to the tw
phases on the right and left of the interface, thus the energ
resulting from the coupling to disorder involves an integral

in the bulk of the system and not juat the interface posi-

tion. The correlation of the force can still be expressed b

Eqg. (2.8 and A still decreases to zero above a scejeas
shown on Fig. 3. Contrarily to the RB casfA does not
vanish. For a single-component displacement figlthe RF,
of correlator(2.8), is still formally the derivative of a poten-
tial V(r,u)=—f"du’F(r,u’). The correlations of this ficti-
tious potential are of the form(2.7) with R(u)
=~ f4du’ f¥' du’A(u”), and one haR(u)=—|u|fA for
|u|>r; which can be visualized as a random wékhereu
plays the role of “time” and theandom-field strengttf A
= —2R’(») is the “diffusion constant’. Contrarily to the
RB for which R(u) is short rangeR(u) for the RF grows at
largeu as shown on Fig. 3.

(o)

A. Statics

In the absence of drive, Eq2.10 is equivalent to the
equilibrium problem at temperatuie The state of the sys-
tem results from the competition between elasticity, pinning,
¥nd thermal fluctuations. The physics of such problems can
be investigated by a host of meth8ds!®78and here we
only recall the salient points. Temperature does not play an

B'important role as will become clear and we begin with the

T=0 case.
A subsystem of sizeR, with displacementw(R)

=V (ug—Up)?, is submitted to a typical elastic force density
fq=cw(R)/R? and to a typical pinning force densithy,
=\/A(O)/RD. Balancing these quantities, one obtains that
elasticity wins at large scales f@ >4, resulting in a flat
interface witha priori bounded displacements. <4, sys-
tems of sizeR smaller than the Larkin length

2,2\ 1/4-D

corg
A(0)

C

(3.9

In this paper we study the overdamped driven motion of

such elastic systems which obey

wander as predicted by the Larkin model:
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R)A—D/z B. Depinning

W(R)~rf<R— (3.2

An elastic system does not necessarily move under the
action of a driving force. The disorder leads to the existence
At larger scaleR>R;, the system wanders further than the of a threshold forcé. at T=0 as shown in Fig. 1. A simple
correlation lengthr; of the disorder. This simple picture dimensional estimate df, can be obtaing§ by computing
breaks down and the system can be viewed as made of Laghe sum of the independent pinning forces acting on the Lar-
kin domains of sizeR., which are independently pinned. kin domains R/RC)D*/A(O)RCD and balancing it with the

First-order perturbation theory confirms this picture belowgriying force acting on the same volun®®f. This gives
the Larkin length. The static equilibriut@qual-time corre-

lation function atT=0 is (see Appendix B cr,
fo - (3.7
— A(0) 3.3 c
U-a.tllgt= (cq?)?’ 3.3 Another estimate off, comes from the large velocity
expansiof®’ of the equation of motior(2.11) (from the
The wandering computed from E(B.3), criterion = nv). It coincides with Eq(3.7).
For f=f_ the system moves with a small velocity, and it
——— A(0) has been proposé&tithat depinning can be described in the
(Ut~ Uog) "~ & Syrle, (3.4 framework of standard critical phenomena, with the velocity

as an order parameter. This leads to the assumption of two
independent critical exponengsand z, defined in Refs. 26,
25, and 37 through the correlation function in the comoving
frame (in the stationary state fdr—f_)

for D=4- € gives back Eq(3.2), and we recover the scaling
expression3.1) by equating the wandering t&:
cri | (Uy (— g, 2=r2C(/r? (3.9
SA0) (3.5 (Ur t—Ug ) “=T=*C(t/r?), :
' C(x)— cst forx—0 andC(x) ~x?¢'? for x—o. The dynami-
We used thatf[(1—cosq-r)/q']=Apr® P for 2<D<4  cal roughening exponent close to the threshold priori
with Ap_,_ .= — 7?7 2I'[ — €/2]/16~S, /e whene—0". differs from its equilibrium value.,. Several related expo-
The remarkable feature is that Bt=0, straight perturba- nents can be also introduced such @sthe depinning expo-
tion theory®> or the use of replicas or equilibrium nentp; (i) the correlation length exponentdescribing the
dynamics®®3*gives that Eq(3.3) is exactto all ordersin A,  divergence of the lengtté defined from the equal-time
and is identical to the correlation in the Larkin modégh-  velocity-velocity correlation function. They satisfy

deed, the naive perturbation series organizes as if the pinning

R.=

energy were simply expanded in(thus the pinning force is v~(f=fo)%, (3.9
independent ofi with F(r)F(r’)=A(0)5(r—r")], resulting -
in a Gaussian model. E~(f=fo)™" (3.10

In fact, due to the occurrence of multiple minima beyond . 8 . .
) . L Numerically®® the motion of the system looks like a deter-
R., this perturbative result is incorréeat large scale. It can S . . )
ministic succession of avalanches of siwith characteris-

be shown, for example, on discrete systems, that if a con- . ot -z .
figuration u?s which minimizes H[u]=[,[(c/2)(Vu,)? tic time 7~ (f—1f.)~*". From the argument~uv = and the

’ : statistical tilt symmetr§f?®(see below, the exponentg and
+V(r,u,)] is defined on a volume larger thd&,, then the . : .
Hessian 62H/5u, ou,)[u®S] becomes singuldf Such in- v are usually determined fromy,z by the scaling relations

stability appears clearly in a functional renormalization- 1 B
group (FRG) treatment of the problefrwhich proves that y=-—= .
becomes nonanalytic beyond the lengh, as will be dis- 2=¢ (=0
cussed below. It can also be seen within variational or mean-

field treatments using replicishat replica symmetry break-
ing (RSB) is necessary to describe the physics beyond th
Larkin length R.. Using either replicas with RSB or the
FRG it is possible to describe the physics at all scales and to

(3.1

To obtain these exponents analytically, one needs to per-
éorm an FRG analysis of the equation of motion. This will be
discussed in more details in Sec. V.

obtain the correct roughness exponégjdefined by C. Creep
At finite temperatureT>0, motion occurs at any drive.
R~ 5 ‘eq (3.6 For low temperatures and very small drifs&f . one expects
W(R)~Ty R, ' ' the motion to be very slow, and thus, although it is a dynami-

cal problem, a qualitative understanding can be obtained by
where the value of, depends on the statics universality considering thermal activation over barriers determined from
class? Since disorder induces unbounded displacements, thetaticsarguments. An original estimafeof such barriers led
system is rough and the temperature is always formally irrelto linear, albeit activated, response. However, the effects
evant inD>2. It is described by & =0 fixed point, char- linked to the glassy nature of the problem were understood at
acteristic of a glass phase. a qualitative leve~22using scaling arguments.
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directed polymerD=1 in N=1 andN=2 are consistent
with the “equal scaling assumption” for this particular case,
but a general proof is still lacking. The second, and more
delicate, hypothesis is the validity of the Arrhenius descrip-
tion: (i) the system being out of equilibrium, it is not clear
that dynamicalbarriers can be determined purely from the
configuration statics;(ii) one assumes that the motion is dominated by a
teypical barrier. These assumptions can turn incorrect for
some specific problems. For example, in the case of a point
moving in a one-dimensional random potential, thé char-

The argument proceeds as follows: systems largerfgan acteristics at low drive isiot'? of Arrhenius type. Although
have a(statig roughnessv(R)~r(R/R)%a and hence the this 0+ 1 case is peculiar since the particle has no freedom to
energy has typical fluctuations of order pass aside impuritiedt is dominated aff =0 by the highest
slope of the potential and at finifleby the rare highest bar-
riers), one should also address the question of the distribu-
tion of barriers in higher dimensions.

FIG. 4. Energy landscape, with many metastable states in th
valleys, differing byAE, and barrierdJ between them.

(3.12

D—2+2{qq
E(R) UC( Rc)

with U,=cR2~?r? the energy scale of a Larkin domain.
Assuming that the energy landscape is characterized by a
unique energy scale, and thus that the energy differences
between neighboring metastable states is the same as the A. Formalism and exact relations
energy barrier separating them as schematically shown in
Fig. 4, one obtains that the barriers height scale with an i
exponentD —2+2/¢,. Since the motion is very slow, it is
usually argued that the effect of the drive is just to tilt the
energy landscape, and the effective barrier becomes

R\ D—2+2%¢q
o

IV. DYNAMICAL ACTION AND RENORMALIZATION

Let us now study the equation of moti@@.11) using a
FRG treatment. This will enable us to describe the phys-
ics at all length scales and in particular the depinning and
creep regime.
A natural framework for computing perturbation theory in
leq off-equilibrium systems is the dynamical formaligif* Af-
(313  ter exponentiating the equation of moti@10 using are-

sponse field pthe average over thermal noise and disorder

The max_irlr)tir_n of Eq. (3.13, obtained at Rox  can safely be done and yields the simplanshifted”) ac-
~R(f/f;) Y@ ¢ed gives via Arrhenius law the largest tion

time spent in the valley by the thermally activated system
and thus yields the velocity

Ug f|*
v~eX —T K

known as thecreepmotion, characterized by the stretched _ Ef 0,00 A(Upe— Upg)) (4.1)

exponential with exponent. Note that the effective barrier g T '

given by the above formula vanishes at a sc#lg

~R(f/fe) (2~ Led which diverges as fast &y, the typi- _

cal size of a thermally activated excitati¢see Fig. 5. Disorder and thermal averagéA[u])=(A[ul)s _of any
This elegant scaling argument leading to the creep forebservableA[u] can be computed with the weiglef Suns,

mula relies, however, on strong assumptions and does n&urthermore, response functions to an external perturbation

yield any information on the detailed behavior, in particularh,, added to the right-hand side of E(R.10 are simply

on V\_/hat happens after the thermal jumps. The facts*._tm’[c dggiven by correlations with the response fiem[u]ian)
barriers and valleys scale with the same exponent is alrea (818h,)(Alu]). It can be checked that causality is satis-
a nontrivial hypothesis about the structure of the infinite-.. AL~ . . .
: . i . _ fied: (A[{uy }¢r<¢,uliuy) vanishes. In the time continuum,
dimensional energy landscape. Refined simulafititbof a . ;
the response to a perturbation at timef an observable

D2+2¢ Dt depending ony, is ill defined. We choose Ito convention for
R -fR the equation of motion, which ensures that equal-time re-
sponse functions, and hence any diagram occurring in per-
turbation theory containing a loop of response functions,
vanish. The continuum field theory necessarily breaks down
at small scales and it becomes necessary to cut off the inte-
grals over the modes at largeusing a large wave vectav.
A full summary of the notations can be found in Appendix
A.

R
_ fRDp.[ —
fR rf(Rc

Uc

D—2+2¢ uazfia g~ V) Uy — Tfia it —ffia
, M:Teq’ (3.14 Sund U, U) " (73 W — 7 " rt!Urt " rt
eq

It proves more convenient to work in tkemoving frame
FIG. 5. Effective barrier and motion by nucleation. [i.e., with Eq.(2.11)]. The corresponding action is
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S(U'C'):f iﬁ,t(nﬁt—cvz)un—nTJ’ iartiart_?J iUy,
rt rt rt

10 .. ,
—Ef iU Al U= Upp Ho(t=t7)], (4.2
rtt

where the fieldu satisfies(d,u,;) =(d;U;1)s=0. This condi-
tion fixesf=f— 7v in Eq. (4.2. This quantity is thedmac-
roscopig pinning force, since it shifts the viscous lafv
= v by the amount of.
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Edwards-Wilkinson equatidf describing the motion of an
elastic system in a purely thermal noise

(4.7)

with (v )=29(T+Tew 8/ 8, Langevin nois® of
additional temperatur&,,,= [A/27v.

Note that afT=0 the results at large coincide with the
perturbative expansion in powers of the disorder. The equal-
time correlation function in the driven system with forte
crosses over from the staticqf/ Larkin behavior at small

_p2
73U =CV U+ vy

Several exact relations can be derived directly from Eqscale to a thermal @ behavior at larger scale

(4.2). For any static fielch, (vanishing at infinity

S

1 “ - -
u+—V2h,u)=S(u,u)—f iugh,.
Cc rt
Performing the change of variable—u+ (1/c)V ~2h gives
- - - 1
DuDuu,e "YW= | DuDu|u,+=V"2h,
C

@~ S+ riiugihy

Applying &/ 6h, |-, yields the exact relation

1
Rgyi=—, 4.3
J; qt qu ( )

where we denote byR,; the exact response function. This
symmetry, known as statistical tilt symmetry, ensures tha

the elasticity isnot corrected during the renormalization.
Another important relation can be derived from

d .
E<(9tu”>5uns: Jr’t'at<urt|urrtr>5uns. (44)

This leads to the identity between the macroscopic mobility
and the slope of the-f characteristics at any drive and any

temperature:

(4.9

d .
Ev(f)= lim —ioRq-o,,-

w—0

This exact result can also be checked explicitly in the case of

a particle moving in a one-dimensional environmént.
To extract the physical properties from the actidr®) it

is necessary to build a perturbative approach in the disorder.

A(O
©) for q2>ﬂ
— | (c))? Cry
U—q,tUq,t= - (4.8
_ew for q2<ﬂ
cg? Cry

[cr
with the sameT,,,, generated at length scales n—vf

B. Renormalization

We renormalize the theory using Wilson's momentum-
shell method. As the cutof\,=Ae™" is reduced, corre-
sponding to a growing microscopic scae=e'/A in real
space, the parameters of the effective action for slow fields
(whose modesg| are smaller tham\,) are computed by inte-

ration over the fast part of the field&vhose modeg lie

etweenA, and A). This iterative integration gives rise to
flow equations, better expressed in terms of teduced
quantities

=cA|2e25' B

__mv
cAZed’

“f’O:f_ oV, (49)

A particularly simple cas€ occurs when the velocity is very where Sy is the surface of the unit sphere b dimensions
large. In that case the disorder operator in the action can bgivided by (27)P. The exponent is for the moment arbi-

formally replaced by

1 A A
—Efm,lurtlun,A[v(t—t’)] (4.9

since one may neglect the,—u,;, compared taw(t—t’').

This trick suppresses the nonlinearity and the remaining a

tion is quadratic. Furthermore, at large velocit|v(t
—t')] can be replaced bydv(t—t')]fA=(1l)5(t

—1") [ A and the disorder operator transforms into a tempera-

ture operator(because it becomes local in timet'). The

resulting action is the dynamical action associated to the

trary and will be fixed later so that the reduced parameters
flow next to appropriate fixed points. In one cd&B) we

will need anl-dependent, and it is understood that every-
where the rescaling factoes' [appearing, e.g., in Eq4.9)]
should then be replaced by eﬁkpl’ . The reduced quan-

Ct_itiesZ,'T’ are homogeneous & and\ to u. The parameter
N\, which plays a crucial role below, can simply be ex-
pressed as the following ratio:

v7(R) B NR)

SuR) g (4.10
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of the distancdalongu) travelled by the center of mass of known results about the statics, avoiding the use of replicas.
the interface during 7(R) and the roughnesséu(R) The standard derivation of the statics using the FRG consists
=r¢(R/R.)‘. We have defined(R) = (R)R?/c as the char- in writing a replicated Hamiltonian for the elastic system
acteristic relaxation time in the model renormalized up topinned in a random potential with correlator
scaleR. [V(r,u)—V(r',u")]?=-26°(r—r")R(u—u’"). After aver-

The details of the renormalization procedure can be foundging overV the replicated action reatls
in Appendix C. The flow equations read

.1 1 .
JA(U)=(e—20)A(u)+ LuR’ (u)+TA"(u) 5[U]=ﬁ§a: fr|vur|2_ﬁ§ er(ur—U?)y
(4.12

where a,b are then replica indices. Performing an FRG
analysis of Eq(4.12 yields for the flow ofR andT (remark-

S TR G EREIN
s>0,s5">0

—ALu+(s'=s)\]}=A"(u=s"N\)A’ (u+s\) ably independent of):
+A'[(s"+S)N][A'(u—S'N)—A"(u+s\)]), . 3 . 3 1.
IR(U)=(e—4¢)R(u)+ {uR’(u)+ TR"(u) + zR"(u)?
(4.11) 2
- —R"(0)R"(u), (4.13
0In)\=2—§—f e SsA”(s\),
s>0 ~
diNT=e—-2-2¢
(ﬂn'-vl-:e_z_zg_l_f eiSS)\ZW(SA), with §|(U):ei4§|[sDA|D/(CA|2)2]R|(Uegl) and :I"|
$>0 =e 2(S,APICA?)T,, which are the same redefinitions as
Eq. (4.9 where the correlatoA of the force is related t&®
~ (o s by Eq.(2.9). It is easy to see that E¢4.13 coincides with
—e(2-0IaA2 SR/
gf=e CA0L>OG A'(sM), our Eq.(4.11) whenv=0 which reads
wheree=4—D andd denotess/dl. IA(U)=(e—20)A(u)+ Lud’(u)+TA"(u)
This complicated set of equations require a few com- _ _ 5 _
ments:(i) as for the statidsit is necessary to renormalize the +A"(W[A0)—A(W)]-A'(v)?, (4.19
whole functionA, instead of just keeping few couplings as in
standard field theoryji) the elasticityc is not renormalized anT=e—2-2¢.

dc=0 due to the statistical tilt symmetryiji) our equations . .
correctly show that no temperature can be generated at Thus the two melthods give 'ghe same resullt.s for the stath and
.equal-time physical quantities. The additional information

”—b(r)iusnlqn.ce the fluctuation dissipation theorem holds at equ'i:onveyed _by _the flow of thg frictiony in the dynamical
Setting bothT=0 andv =0 in Eq. (4.11) gives back the formalism is dlscussgd later |n'Secs. VA. and V B.

simplified set of equations used in Refs. 26 and(&&iting The temperature in the static system Is an_lrrelevant op-

only v =0 also yields equations found in Ref.)48ut com- erator, since it Qecreases exponen_tlally fast witBne thus

pared to the previous FRG approaches of the depinning traﬁ:.-ommonly restricts to Fhé__(.) version of the above equa-

sition, our equations correctly take into account the effect O1t|ons. In that case, as is obvious from the closed equation

the velocity on the flow itselfinstead of being treated sim- o PP o ~ o AND

ply as a cutoff as in Ref. 360ther attempf® to incorporate dA"(0)=€A"(0)=347(0) (4.19

velocity and temperature in the FRG equations did not obtairthe curvaturel”(0)<0 (see Fig. 3 of the correlator, for any

the first equation giving the renormalization of the disorderinitial condition, blows upat a finite length scale fdb <4

at T>0 andv>0. To be able to tackle the full dynamical

problem and study the depinning and the creep regime, one

cannot avoid keeping track of the velocity and of the tem- 'C:Zm( 1+ m) (4.16

perature in the flow, as will become clear later, since they 0

yield nontrivial effects which are unreachable by simple scalwhich corresponds to

ing arguments.

Our flow equations allow in principle to compute the R oAz e 2 l’l(e c’r? )1/6
whole v-f characteristics at low temperature. In the follow- ¢ 3Sp|A%(0)] SpAo(0)
ing we analyze them in the three regimes corresponding to (4.17)
the statics ¢{=0), to the depinning at zero temperatuie ( L " 2
~0f~*,) and the creep regimer&0.f~0). when approximatingA(0)| by Ay(0)/rf. One thus recov-

ers the Larkin lengtli3.5). The blowup of the curvature df
corresponds to the generation ofcasp singularity: A be-
comes nonanalytic at the origin and acquireslfst . a non-
At zero velocity, our approach is a dynamical formulation zeroA’(0")<0. However, the flow equation for the running
of the equilibrium problem. It thus allows to recover the nonanalytic correlatostill makes sense€The nonanalyticity

C. Statics: The cusp
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just. sign.als the_ occurrence of mgtastable states. A wellf , (R) at random positiors Let us now extend this de-
defined fixed point functioR* (u) exists for each of the RB, scription to draw the link with the critical force and to in-

RF, RP cases when a suitaldlés chosen. clude thermal effects.
In the RP case;={4=0 s0 as to conserve the periad The force correlator for smail—u’ is dominated by the
and the fixed point is given By configurations with a shock present betweeandu’:

d
(418 Foad 10 Frad 1) 2~ fasd R fu=u'],
(4.20

whered p/du denotes the probability to find a shock between
u and u-+du. Identifying the right-hand side with
R™P|A/(07)(u—u")| one finds, using the rescalings.9),

ea’(1
A*(ax)=?<6—x(1—x)

for xe[0,1).
In the RF case{={.~¢€/3 so as to conserve the RF
strengthf A and the fixed point is given By

2 that the discontinuity in the force has the following scale
S =y-1- Iny, (4.19  dependence
-(2-0
where y=A*(u)/A*(0), x=u\e/[3A*(0)] and A*(0) fdis&R)Nfc(R_c) =fe(R) (4.2

=0.5¢"3(f A)?? [see Eq(ED)].

In the RB case, it has been shdiy numerical integra- and can thus be identified with an “effective critical force”
tion of the fixed-point equation that= {,=0.2083¢ yields fsﬁ(R) at scaleR, which will play a role in the followingsee
a physical fixed point, for which no analytical expression isSec. VI Q. At R=R_, fﬁﬁ(R) reduces to the true critical
available. force f..

Despite the irrelevance of the temperature, this operator The renormalized problem at scdiebeing the one of an
has important transient effects during the flow, even if we arénterface in a potentiaV/,(r,u) with the above characteris-
left asymptotically with thel =0 cuspy fixed point. It can be tics, one can now easily understand the result that the cusp of
shown (see Appendix D that the temperature hinders the X (y) is rounded on a widtfi,/y at T>0. Extending the
flow from becoming singular at a finite scale. The runningprevious argument, one expects a rounding of a shock if the
correlator evolves smoothly towards its cuspy fixed pointharrier betweem andu’ is of orderT. Since near a shock the
and remains analytic, as was also noticed in Ref. 48. Agotential is linear of slopd<(R), the barrier isf4s{R)|u
shown in Appendix D, the rounding due to temperature 0c-_ | and the thermal rounding should thus occur in a
curs in a boundary layer of width proportional Toaround  boundary layer of widthu given by
the origin. This is confirmed by the existence of a well-
defined expansion iff [see Eq(D3)]. This effect is missed faisd R) URP~T. (4.22
by simple perturbation theory that would naively suggest thabsing the rescaling¢4.9), this is indeed equivalent to the
the rounding occurs on a width proportional {E Indeed
the correlation function is proportional and smoothea

by AKHAKe‘T"Z. Although not crucial for the statics this
rounding has drastic consequences for the creep as analyzed
in Sec. VL.

Let us return to the differences between the static and At T=0 and v—0, our flow equations give a self-
dynamical formalisms. Within the static approa@hl3 in contained picture of the depinning transition. Thanks to our
the T—0 limit, despite the occurrence of the cusdatthe  formalism, the problem is reduced to the mathematical study
RG equation folR|(u) still makes sense aftég and flows to  of Eq. (4.11), which although complicated, requires no addi-
a fixed point controlled by=4—D. However, the physical tional physical assumptions. To focus on the depinning tran-
meaning of the cusp is delicat2On the other hand, the use sition, we must analyze the solutions of these equations in
of the dynamical formalism allows to put=0 from the the regime of small velocity where, using E4.9), \|—¢ is
beginning but adds to the problem a time dimension and themall. We will examine the various regimes in the RG flow
corresponding parameter, the friction In this dynamical keeping in mind thal, increases monotonically with
version of the problem, the cusp has strong physical conse- Equationg4.11) involve averages over a range-\; and
guences which are more immediate: aftgr the cusp gen- thus one naturally expects that, at least at the beginning of
erates infinite corrections to the friction. This feature marksthe flow, A,(u) remains close to the=0 solution. The two
the onset of a nonzero threshold force at scales larger thaanctions will differ in a boundary layer around=0 of
the Larkin length and signals that an infinite time is neededvidth denoted by, . Although the precise form of the solu-
to go from one metastable state to another. Metastability thugon for |u|<p, (e.g., whether the cusp persistsvat0) is
appears very clearly in the dynamical formulation of the statvery hard to obtain analytically, fortunately most of our re-
ics problem. sults will not depend on such details. As we discuss below,

A simple physical picture of the cusp in the staticsTat the main issue will be to decide whethgr\, or not, which
=0 was given in Ref. 13. The renormalized potentialis a well-posed mathematical question.

V,e(r,u) at scaleR>R, develops “shocks’]i.e., disconti- Let us start by analyzing the flow up to the Larkin sdale
nuities of the force—d,V,(r,u) of typical magnitude of the statics, at which the cusp occurs and the corrections to

expressiori; / y for the width of the boundary layer in res-
caled variables found in Appendix D.

V. DEPINNING
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the friction become singular in the=0 flow. Here atv For the random bond one would naively take the stéic

=0 one enters af, a regime where\, is close to its fixed However, our flow equations show that during the Larkin
point (see Appendix M Within the boundary layer, the ef- regime, the form of the disorder correlator evolves to a RF,
fect of the velocity is to decrease the singularities of theand thus= €/3 also in this case. This nontrivial effect of the

statics. As shown in Appendix G, the blow up of the curva-transformation for the dynamical properties of a RB into a

ture A”(0) is slowed down by the velocity as RF is discussed in detail in Sec. VB. _
Since\, keeps on growing in the depinning regime, the
dA"(0)=€eA"(0)—3A"(0)2—9NZA"(0)AY(0) + O\ %) assumption thal\,(u) can be replaced by* will cease to
be valid. This occurs when, reaches the range(l) of
Z|(u), correlation length of the running disorder. This de-
aln n=—RK"(0)—3\2ZAV(0)+ O(\%). fines a scaldy=In ARy given by \; =r¢(ly). Above this
scale, one enters a regime where the corrections due to dis-
If the blurring of the singularity results in a suppression oforder are simply washed out by the velocity, since the inte-
the cusp, i.e., ifA, remains analytic, one should wonder grals overs,s’ in Eq. (4.11) average completely over the
whether thev=0 flow can reallyremainclose toA* since  details ofA,(u). One thus enters tHedwards Wilkinson re-
the convergence to the fixed point is crucially dependent ogime Perturbation theor{#.8) shows that the interface is flat
the existence of the nonanalyticity and in particular on thefor these large scales fér>2, the disorder leading orfi§to
term —A’(07)? in the flow of A(0) in Eq. (4.14. A hint  the effective temperaturg,,,.

and the same is true for the friction

thatAA, can stabilize for a while at>0 is obtained by noting The family of systems indexed by<0l < have all the
that one hagsee Eq(G2)] same velocityv and the same slopdf/dv(v). However,
they have lesser and lesser singular behaffop). We can

IA(0)=(e—27)A(0) thus iterate the FRG flow up to a point where the theory can

solved perturbativelye.g., abové,). For the depinning, one
L g A(Ns)—A(NS') can simply use the fact that the renormalized actiorl at
- L>oe J'S,>Oe U =oo is Gaussian and its frictiom., is, from Eq.(4.5 equal
to the slopal f/dv of the depinning characteristics. Using the
which has indeed the correct sign to give the same effect. flow of \, in Eq. (4.11), the expressions fc)r,v,)\|C with Egs.
Hence it is natural to expect fdr>1, that A;(u) has (4.9 and(H2) lead to
reached everywhere a fixed-point form except in the bound-

2

ary layer. The correction to the friction, crucial to determine exf (2= B(ly=1¢)]
thev-f characteristics, reads j,wv Fe (5.4)
N .
- e mu
dIn 77|:_J e °sA|(s\)) (5.1 .
s>0 with
and thus depends on the valuesifu) for u~\,. To es- B=1—A*"(0")/(2—¢) (5.5

timate this expression, one must know whether the wijglth . . _
of the boundary layer is smaller than or not. which will turn to be the depinning exponent and we have

To summarize these preliminary remarks, the flow in thed€fined a characteristic ford‘ec:crf'/Rg. Note thatF. is
Larkin regime K| is similar to thep =0 flow andZ|>| is not exactly the critical forcé.. Solving Eq.(5.4) gives
~'c

close toA* except for|u|<p,. We will now analyze in Ry Fo |\ Y208
details the flow foll >1. under the assumption that R\ 70 , (5.6
C
PI<<\. (5.2 _
_ 5 o m, [my\"!
As mentionned above, the validity of E€b.2) can in prin- —~\F (5.7
ciple be established by a mathematical or a numerical analy- (B ¢

sis of our equations. It turns out that E&.2) leads to the
most physically reasonable results. The alternative case wi
be discussed below.

ﬁince the system dt, is nearly pure, one ha13|v~ 7. and,
Integrating ovew the derivatived f/dv = 7..~ 7,, One gets

A. Derivation of the depinning law v _ ( f—f(v=0")\" (5.9
Forl>1, called thedepinning regimeand relying on Eq. Fe Fe
(5.2, the flow of » becomes which shows that the depinning is characterized by an expo-
nent 8 and a pinning forcd .=f(v=0") (yet to be deter-

aIn my=—A*"(0"). (53 mineg.

The friction is renormalized downwards with a nontrivial ~ The flow off; allows to fix the value of ;. Instead of just
exponent—A*"(07)=—(e—¢)/3 with {=¢/3 for the RF  computingf. we also show that the integration of the flow of

case[see Eq(E1)] and{=0 for the RP casgsee Eq(E2)]. T, provides a second way to derive the depinning [&v8).
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Indeed, as discussed below, in our formalism the term prostated in Appendix H. In addition, we assumed thethas a
portional to v which was problematic in the previous regular behavior whem—0, a nontrivial point which we
approachés cancels naturally. discuss in Sec. V C.

In the theory renormalized up tg, the short scale cutoff
is Ry and one can use first-order perturbation theory. One _ )
has[see Eqs(B7) and (B11)] B. Discussion

The approach of the previous Sec. V A allows us to obtain
the characteristics of th&@ =0 depinning. We extract the
depinning exponeng, the pinning forcef, and the charac-
teristic length scales from the equation of motion without
Since in the renormalized theory the disorder is closA®o any additional physical hypothesis or scaling relation. Al-
[with the rescalingg4.9)], and the friction hidden in the though the depinning problem, the expongntand the criti-
response function is such thi{, matches the range (Eﬁlv, cal force were determined in previous studie€® our

Ti,=- ftA,’v(vt)Rl)\{. (5.9

the velocity disappears from E¢.9) which gives method is an improvement in several ways.
To get the depinning exponent and critical force, two
T, =~ 2= 00v-loa¢ (5.10 main derivations exist in the literature. One of them extends
\% ! '

the static FRG formalism to the out of equilibrium depinning

whereA is some constant and the onlydependent quantity Problem at zero temperatu%%ugng an “expansion” around
is 1. To connect, to the initial parameters. one has to & unknown mean-field solutidf.Instead of directly look-

v v | - P " ing at the renormalized correlator of the disorder, the method
integrate the flow,v—fozfo"dl a,f,. Expandings,f, in Eq.  obliges one to deal with the time correlation of the force,
(411 at small velocity and usingZ’(s)\)=Z’(O+) C[v(t—t’)] in Ref. 25. 'I_'h|s procedure does.nqt allow for a
precise enough calculation of thef characteristics to dem-
onstrate the cancellation of thgu term[in our Eqs.(5.12),
and(5.13]. In order to obtain a depinning exponeftdif-
~ o ferent from its “mean-field” valueB=1, it is necessary in
— 2=l 2 reaty '
afi=e CAQA*"(07)—vaym, (51D Ref. 25 to neglecby handin the smallv limit a term pro-

. - . 1/ .
where we dropped the subdominant terms in velocity. Theortional tov against a term proportional to # with g

+sAA”(s\) +O(\?) one recognizes in the second term the
correction toz. Thus forl .<I<l,, one has

integration of the flow gives <1. Our method, that directly uses averaging_ov_er the dis-
order and properly takes into account the velocity in the flow
T —Fo=—f(l—e @001y — (5 —p0), of the renormalized action, allows one to show explicitly the
v v 51 needed cancellation.
(5.12 The other analytical stud$*° of depinning does not con-

where we defined. —cAe” " 9 Ax ' (07)|/(2-2). In- ot I TorOTmEEaon Dot e raloned beyon (hie

sumes that the singularity is fully developed beyond this

length scale. This amounts to taking as a starting point the

equation of motionat zero velocitywith a cuspy correlator
e 2O (A f )4 _ _ for the force, and the Larkin length as the microscopic cutoff.

f-fe=e (Ae=To)+mp (.13 Since the anomalous exponent of the friction—g\*”(0)
We already know from Eq(5.7) that 7, ~v*#~1 and from which is ill defined for a cuspy correlator, one is forced in
v . .
Eq. (5.6 eV~pM(2=98 thus both terms on the right-hand this method to argue that it should be replaced by

. ) . . —A*"(0™) which is finite. This prescription and scaling re-
side of Eq.(5.13 scale_hkevl’ﬁ. This leads to the following Iations( Iin)king the roughness tphe deBinning and thg time
result to lowest order ir: ’ '

exponent 2= A*”(0%), allows us to extract the depinning
exponent. In our method, the ambiguities that existed in Ref.

jecting fo=f— 7ov and Eq.(5.10, we note that quite re-
markably thenqu cancel each othetWe are left with

€°t RE 26 to write the flow ofy beyondl, when using the zero
2 R? velocity equations, and the trick-80" becomes a well-
fo= (5.19 defined mathematical property of our finite velocity RG
€ca RP equations: if Eq.(5.2) is confirmed, our approach directly
12 R? ' shows that the- A*”(0") prescription is the correct one and

allows us toprove directly the scaling relations, instead of
v~(f—f)P, (5.15 assuminghem, to obtain the exponent.
Furthermore, the occurrence of the asymptotic Edwards
Wilkinson regime in Ref. 26 has to be put by hand as a cut in

1-— < RF thev=0 RG flow. The important correlation lengiy, (de-
B= 9 (5.16 notedLy in Ref. 26 at which this regime takes place is thus
€ ' not well under control and has to be estimated from dimen-
1- 6 RP, sional analysis. In our case the depinning regime is naturally

cut when our, which tells how fast the system runs on the
where we used the fact that €/3 (RF or RB or /=0 (RP) disorder, reaches the range of the flowing correlator. The
and the link betweery=|A*’(0")| andr; (RF) or a (RP)  scaleRy at which it occurs, and above which the nonlineari-
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aJ Z=2>\2f A2+ O\

where we have usegk €/3. This ensures that a moving sys-
tem, even atrbitrary small velocity, sees an effectivean-
dom fieldat large scale.

C. Open questions

Our FRG equations prompt for several remarks and ques-
tions. In the previous sections, we have examined the conse-
guences of the propert$.2) and established in that case that
the values of the exponents were the ones proposed in Refs.
25, 26, and 37. Although we consider it as unlikely, we have
not been able to rule out the possibility that eitper \| (or
FIG. 6. The evolution of a random bond to a random-field Cor_even worsep,>A,) and thus we should examine the conse-

relator obtained by numerical integration of the flow. The initial quences of a V'_Olat'on of proper(\‘ﬁ.Z). It p‘|‘~.7\| , 1t IS TOt
condition| =0 of the flow is a RB[A(u) shown as a full line on excludeda priori that there exists another “fixed-point” be-

u=0]. Following Eq.(4.11), the running correlator transforms into havior (e.g., with a scaling function afi/\|). However, in

a RF as shown on the snapshotfu) nearl, (dashed ling as  that case, the exponents should differ from the standard ones

can be seen by comparing with the characteristic shapes of RB/REINIess some hidden and rather mysterious sum rule would

shown in Fig. 3. fix the value of the integral in Ed5.1)]. In the absence of an
identified fixed point, it is not clear whether universality

ties are washed out, can clearly be identified with the corre/VOU!d hold. Again this crucial poin{5.2) can be definitely

lation length of the moving interfac@r more precisely, of answered by an appropriate integration of B411. Thus

e ) . o . the present approach, which clearly takesnto account,
tol}eE\ael(cl)__)cg)y \i/(:;Iocny correlation The physical interpretation identifies as Eq(5.2) the condition under which the trick

used in Refs. 25 and 26 gives the correct exponents.
Another intriguing point concerns the continuity between
fo |\ V@0 thev=0 and thev—0 problems. Indeed, to derive the de-
Ry~ RC(—> , (5.17 pinning law (5.14) we have assumed tha;'qC remains finite

v
7 asv—0. However, we should recall that in the nondriven
. . . _ case (=0 andf=0), 7 diverges at. and thusy =" If
with z=2—(e—¢)/3 is the following: Ry is the scale at iphere is any continuity in the RG flow as—0 then 7,
C

which “avalanches” r in the driven rministi - e
ches occu the driven dete stic sys — oo in this limit. In that case the consequence would $&e

tem. The motion proceeds in a succession of such process e .
where pieces of interface of typical si®, depin over a egq' (5;8)0[] a modification qf th_e expo_ne.rﬁﬁ,B/(l—a). i
distancer (R, /Ro)¢ during a timer (R, /R.)/v. m oo (or wee.lker Ioganthmlg m.ultlphcr.:ltlve corrections

In addition to providing a clean derivation of the depin- We would then find for the depinning a different result from-
ning exponents and of the critical force, our equations conth€ conventional one. Since we are unable to solve analyti-
tain new physics that was unreachable by the previous met¢2lly accurately enough the equation fgraroundl., one
ods. should resort to a numerical solution of our flow E¢&11)

Although in principle one would expect three universality {0 resolve this question. Using E(.11) it is necessary to
classes(RF, RB, RB for the depinning exponent, it was check that77,c does not diverge as— 0 like a power ofv so
conjectured by Narayan and Fisflethat the roughness ex- as to recover the standard depinning expon@&). The
ponent of the system at the depinning transition for RB or RFjuestion is of particular importance since, if really a finite-
is equal to the roughness exponent of the static RF dase, scale behavior, occurring neRg, would control the macro-
=¢€/3. This resultcannot be obtained by the approach of scopic asymptotic behavior, then again one could wonder
Narayan and Fisher or that of Nattermagtnal. since these whether universality would hold.
authors did not include the velocity in their RG analysis, and Therefore the description of depinning in terms of a stan-
simply treated the smadl limit asv =0. On the contrary, our dard critical phenomenon may be risky. Indeed as clearly
flow equations for the correlator shows directly that a RBappears in our FRG approach, since the fixed pointad is
disorder does indeed evolve during the flow towards a REharacterized by ahole functionA* (i.e., an infinite num-
disorder, leaving only two different universality clasgBs,  ber of marginal directions iD =4) rather than a single cou-
RP) for the dynamics against three for the statiBB, RF,  pling constantas in usual critical phenomenthe effect of
RP). Such evolution is shown on Fig. 6, where an initial RB an additional relevant perturbation, here the velocity, can be
becomeslynamicallya RF. In Appendix G we show that the more complex due the feedback wfitself on the shape of
correction tofA, which measures the RF strength of thethe function during the flow. This is particularly clear in the
disorder, grows as RB case which dynamically tranforms into RF.
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Larkin thermal saturation i depinning Edwards-Wilkinson

0 L I Iy I Iy 1

(o §

y=?\,2 /T3

FIG. 7. Characteristic scales and regimes for creep motion. ~601

VI. CREEP /
We now deal with the nonzero-temperature case. The sys- o
tem can jump over any energy barrier and overcome the
pinning forces, thus imoveswith v >0 for any drivef>0
and never gets pinned. Let us now show how our E44.1)
allow us to investigate thereepregime that occurs when the
system moves very slowly with<f., at low temperature.

x=A/T

~0.6 ~0.8

FIG. 8. The integration of the flow using E¢6.1) afterl. and
reduced variables,= x\,/T, andy,=x*\?/T:. The dotted lines
indicate the set of points whergx,=0 or d;y,=0. Some trajecto-
ries are displayed, with an arrow showing the direction of growing

As for the depinning, we are interested in infinitesimal| The initial conditions for creep are close to the origin, and closer
velocities. The barea j is thus very small. The main differ- g thex axis.

ence compared to Sec. V A is that the temperature is now

finite as well. The main effect dF is to round the cusp in the  that the center-of-mass motion is unimportant and the tem-
we will considerh, as the smallest quantity to start with. A getermined the flow in its initial stages, and we now deter-
nonzero temperature thus gives rise to a new regime in thgyine the scale at which this behavior ceases to hold.

RG flow, where the rounding of the cusp is due to tempera- The flow Eq.(C6) for 7, together with the scaling func-

ture and not to velocity. This leads to the following regimes.. < =
in the FRG flow shown in Fig. 7. We will examine the vari- tion (6.1) for A for u~T, /y shows that Eq(6.2) holds only

A. Derivation from FRG

ous regimes in the RG flow keeping in mind that agaip,
increases monotonically with

Just as in the previous case, we expelcaekin regimefor
0<I<l, with small corrections. Above. the disorder
reaches a regime where scaling is imposed by the temper

ture. Indeed sincﬁ|c<:I",C/X one can forget about the veloc-
ity and the FRG equations are very similar to the 0 and

until the new scalé=In A R; defined as

)\|T"“T|T/X. (64)
For| <l the temperature remains the main source of round-
ing of the cusp. Above that scale one must take the velocity
into account.

In fact, this simple picture is not complete since, before

T>0 case. In Appendix D we show that the temperaturgeachingl; another phenomenon occurs, leading to another

rounds the cusp on a boundary layer T,/ x and we obtain
the explicit scaling form(D1),

Aj(w)=2,(0)=T,f(ux/T))
f(x)=y1+x°—1,

x=1A4%"(07)], (6.1)

L . t
which in the statics holds at all scales larger than a scale orﬂ

order .. Here, because we focus aen—0, the scanning
scale)\|C is smaller than the width of the boundary layer, and

the flow of the friction reads in this regime,

2
aIn m:—Z;'(O):_fr—.
|

(6.2

length scale. In the thermal regime the correctioft tdue to
disorder competes with the simple exponential decay and Eq.
(6.3 breaks down. This physically expresses that motion in a
disordered landscape generates a thermal n@sevided
some thermal noise is already presehising Eq.(6.1), one

hasd In T~— 6+6y*\%T2 at small\. Thus the correction to

T reverts at a scale,=In AR such that\g~T'%x. Note

atl <I;. Abovel, the temperature does not decrease any
ore due to heating by motion. One can show using Eq.

(4.1 thatT saturates and does not vary much until the scale
I+. We call this intermediate regimeg<I<I the saturation
regime We checked it using a numerical integration of the
flow in this regime with the scaling form of the disorder
(6.1). Analytically, if we suppose that aftég, the correction

of T due to disorder dominates #, then one would have in

The temperature being irelevant by power counting, the inithis regime an invariant of the flow(Tf—6x°\f)~0. If

tial flow of T is

dlnT=-6 (6.3
since the anomalous correction Tovanishes aa —0. Here
and in the following, #=D—2+2{., denotes the energy
fluctuation exponent of thetatic problem. Together with Eq.
(6.2 it shows that the friction grows extremely fast, like
expe?. This is thethermal regimenhere motion only occurs

this were true, it is clear that the flow coubéverrealize the
condition\|~T,/x, possibility that is excluded on physical
basis and by the numerics shown in Fig. 8.

Despite the saturation of the temperature, Ej2) re-
mains true aftetg. Thus the friction and. keep on growing
and one finally reaches the scdleat which the scanning

length\, crosses the boundary layer width/ x.

Above |1, a rigorous analytical analysis of E.11)
becomes difficult. We, however, expect, since the velocity

via thermal activation over barriers. The velocity is so smallcontrols now the boundary layer, a regime similar to the
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depinning regime af =0 to occur. Using the same argu- Rt
ments than for the depinning, one obtains in that regime ==L (6.9
S
dlnp=—A*"(0"), (6.5 m, T\%2 §, 112
_ —=In U_ (6.1@
dlnT=2-D-2¢, (6.6) YN c/ MY

leading again to a decrease of the temperature, even slightly Assuminglq~Iy, the depinning regimg,<I<lIy follows
accelerated by a negativ®(e*®) exponent. Let us call,the  directly and
depinning scaleat which one enters such a depinning re-

gime. From the above discussion it is very reasonable to N exd (2= 0B(v=1d)]

expect that one goes directly from the saturation to the de- Vi1 Ue oe—1)

pinning regime, i.ely—I+~cst. However, we cannot strictly My P Ters e

rule out the possibility of an intermediate regirftBvergent

l4— I+ whenv—0) during which the correction to the fric- leads to

tion goes smoothly from positiv@s in the thermal and satu- R 1 T3 ¢ 1\we-08

ration regimep to negative values(depinning regimg _Vg(_m <_> _c ) (6.1
Again, it would be useful to settle this point through a nu- Ry \e [\Ue) mo ’

merical solution of our flow equations. Note that in the RF

and RP cases, the exponégnand the fixed poiniA* in Eqg. 7, (1 T\%¥2 f, ]\t-Ve

(6.5 are the same as in the statics. However, in the RB case, — —In{(u—) — (6.12
we have used &dependent which crosses over between g \€ o/ v

{eq fOr I<ly and = 6/3 for I>'Id *corresponding to the ith B=[2-¢—A*"(0%)]/(2—¢) the depinning exponent
change from RB to RF fixed points*. _ ~(and{ the dynamical roughness exponent
In the depinning regime, motion now proceeds in a simi- e are now in a position to compute the characteristics

:ar way thanh for tlhe onle ?‘ttUdi‘?”d in iec- tVt-hH%r'e againf ak(y). We fix a small velocity and solve the flow equations
arge enough scale, velocity will wash out the disorder for = = . ~

[>1,, with |\, determined by\,~r¢(1). One then enters the forh. A, aDdT' up toly. This allows us to reIaté|V o
Edwards-Wilkinson regime. the unknownf,. We can now use the fact that at the scale

Let us now compute from the flow.11) the length scales |y, the disorder is essentially washed out and a perturbative
defined abovesee Fig. 7. In the thermal regimé;<I<ls  calculation off; ~..=0 is possible. Solving backwards we

one can computa, /X, either by integrating its flow or by determinef 5, which is simplyf — zv wheref is the real force
equating the boundary values to their expression. This givegyplied on the system ang= 7, the bare friction.

The correction tdf cannot be neglected during the depin-

U ~ ~
\ eXF{(Z—{eq)(|S—|C)+ ?C(ee('s"c)—l) ning regime, thus, usingy,=f— 7ov, ..=0 and expressing
)\_5% T3 ¢ Jodl g,f; one has
Ie (_) C o= (32)(05~10) 2
Uc myu cAox

f— NV~ — f dl (9|’f|“ 2 7 e_(z_geQ'd. (613)

0 —
where we defined .= e(cr;/R?) and U.=e’R2(cr#/R?). _ _ _ _
Expressing the scales as a function of the velocity leads toln the thermal regime there is essentially no correction to the

flow of f. Thus Eq.(6.13 is controlled by the depinning

Rs\’ T | T\¥ f, 6 regime and one should integrate essentially betwgeand
R, U. : U, npol 6.7 ly. In fact, due to the exponentially decreasing behavior of
¢ the integrand in Eq(6.13 the whole integral depends in fact
o only on the behavioat the scald 4. Assuming that 4~1I+,
1/ 3/2 3/2—-1/,
ﬂ% fe (E) Mm (l) fe a 6.9 using Egs.(6.7) and (6.9), one sees thag™ (2~ ¢ed'a<y for
m, mo\ T U/ mp v—0 and thus one obtains
with u=6/(2—{eq)- mw U/ f\7#
In the saturation regime<|<I; we proceed in the same T, TR ) (6.1
manner and obtain
D-2+2¢
X ey (6.15
A ex 2_é”eq_—w— (I+=1s) e
'T~ T, The prefactor in front of the exponential cannot be obtained
)\,s U, 12 ' reliably at this order. Note that for the creep, contrarily to the
( ) el (s=1c) depinning, the possible divergence gf whenv—0 (and

T—0) does not affect the argument of the exponential but
Thus only the prefactor.
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B. Alternative method and open questions C. Discussion

For the depinning it was possible to recover the depinning Since our flow Eqs(4.11) include finite temperature and
law using both the integration of the flow &fand of the Velocity, they allow us to treat the regime of slow motion at
friction # and the relatior(4.5). Although one can also use, fnite temperature, directly from E€2.10. As for the depin-
in principle, this method for the creep it gives poor results in"i"g: We derive directly from the equation of motion the

. . o ~ force-velocity law and we obtain interesting physics.
this case. Indeed, contrarily to the derivation involvingne y g pny

- ; ) ) - The first important result is, of course, the creep formula
needs here the flow of in all regimes including the depin-  jise|f [Eq. (6.14]. Our method allows one to prove the main

ning regimel >14, wherez is still renormalized. Since the physical assumptions, reviewed in Sec. Il 3, needed for the
renormalization ofy goes from large positive growttfirst  phenomenological estimate, namefi): the equal scaling of
like expe”, then exponentiallyin the thermal/saturation re- the barriers and the valley&i) the fact that velocity is domi-
gime to negative in the depinning regirfighere the system nated by activation over the barriers correctly described by
accelerates with subdiffusive<2) a precise knowledge of an Arrhenius law. In our derivation such law comes directly
the behavior arountl would be needed. Unfortunately, the from the integration of the flow equations in the thermal
lack of precise analytical methods available ab&epre-  regime;(iii) the fact that one can use the static exponents in
vents us from computing precisely such a crossover. A crudéhe calculation of the barriers. This appears directly in the
estimate of the flow can thus only give a bound of the exacformula (6.14 but can also be seen from the fact that in the
result. If we usde.g., in the RF or RP casethe estimates of thermal regime the velocity can essentially be ignored in the

each regime, and the perturbative estimatezof in the flow equat_ions. We also recover the_characj[eristic length
v scale predicted by the phenomenological estimate. Indeed,

. ~ " lv__ A== —le . : )
theory atly: 7.=mn,+ ] (W)tRy~e @ 90ve (it (10" an identify the scale(6.7 and (6.9 Ry

will appear thaty, , diverges faster thaa™ >~ 9(v=ld when  ~R(f/f;) Y %d as theR,y of Sec. Ill 3.
v—0). The product of Eq96.8), (6.10, and(6.12 is equal Our equations allow us to obtain additional physics in the
to (1/7, )(df/dv). Integrated from O tw, it yields very slow velocity regime. In particular, we see that the slow

motion consists of two separate regimes. At small length
scalesR<R; the motion is controlled by thermal activation

— 1A+ p(UB-1)) over barriers as would occur at=0. This is the regime
U ~expl — E f described by the phenomenological theory of the creep.
fe T | eVB-1f, Qualitatively, the main interesting result obtained here is that

(6.16 the thermally activated regime is followed by a depinning
regime, as shown by our equations. This leads to the follow-
ing physical picture: at the lengtRy, bundles can depin

One would thus find, using the method, a non-Arrhenius through thermal activation. When they depin they start an

law for the creep regime. Even if one cannot, strictly speakavalanchelike process, reminiscent of e 0 depinning, up

ing, exclude this result, as discussed above it is most likelyo a scaleRy . The propagation of the avalanche proceeds on

an artifact of the approximate integration of the flow, andlarger scales in a deterministic way. Thus one is left with a

only a lower bound of the barrier height. Indeed compared tglepinninglike motion, and the size of the avalanches is de-

the integration of the flow of, this procedure is much more t€rmined by the natural cut of the RG& €r4), i.e., the scale
sensitive to the neglect of the crossover | <I,. A more at which the propagating avalanche motion is overcome by

precise integration of the flow would very likely show a the regular motion of the center of mass. One recovers quali-

compensation between the latent growth of the friction dur-f[at'ver and quantitatively some features of the 0 case at

ing the decrease @fin # (for | 1<I<l4) and the reduction of g]ter_medlabe icSIe.RTr}%tyﬁplcal nuclﬁgs Jumps overNan energy
the friction occurring in the depinning regimg<I<ly, . arrier b~ Ue(Rr/Rc) resutting In_— v=exp

Note that ifd f/dv were equal top,_ then, one would recover —(Ue/M)(f/) . This_jump of a region of SiZiRT injtiates
T . an avalanche spreading over a much larger Rizavhich we
Eq. (6.14. It would be useful to check explicitly on a nu- g4 o be[see Eqs(6.7), (6.9), and (6.1D]

merical integration of the flow that such a cancellation does
occur and verify that they method confirms also the result Ry [U.\"#
(6.14). ﬁ~<?) R
We also note that the precise determination of the length ¢ ¢
scales folR> Ry depend on obtaining an accurate solution ofwith v=8/(z—{)=1/(2—¢) and z=2—(e—{)/3 the criti-
the RG flow equations. In the previous section, we havesal exponents of the depinning, addhe energy exponent of
obtained the formulags.9) and(6.11) under some assump- the statics. Note that the correlation lend®y diverges at
tions about the mathematical form of the solutions of thesmall drive and temperature &,~T “f  with o=/
flow in the region whera, andT, cross. These assumptions, =1/(z—{) and\=1/(2— {eg) + p/(z—2).
discussed in the previous section, should be checked further, To push the analogy further one can consider that the
e.g., via numerical integration. Although this should not af-avalanches at length scal&s>R; are similar to the ones
fect the creep exponent derived above, the precise deternccurring in a regulaf =0 depinning phenomenon due to an
nation of these length scales is important to ascertain thexcess driving forcef(—f.)¢s. Considering a minimal block
exact value of the scal®y (i.e., the avalanche scale dis- size Ry instead ofR, for this “creepy” depinning,Ry /Ry
cussed beloy ~(f—"f¢)a , ONe obtains for this effective excess force

Ry| 108
) (6.17
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nev [f—T\F T integration of the flow ofy should resolve this discrepancy,
eeﬁ ~(f—°> ~ U (6.189  but this remains to be explicitly checked.
fe C /eff b As for theT=0 depinning, the existence of tldepinning

linking the creepy motion at>0 and the threshold depin- €dimeat Iy depends on the precise form of the boundary
ning atT=0. As explained before, there might be an uncerJlayer in the_ presence of a velocity. Note that the alternative
tainty in the value of the avalanche exponent, which could b&cenario discussed in Sec. V C, e.g., whether or not the de-
changed by a quantity aP(e). To confirm Eq.(6.17), one pinning regime is universal, vyould not a_ffect the creep ex-
would need to further check the precise behavior of the soP@nents, but only the subleading corrections.
lution of the RG equations foR>R.
One can understand qualitatively that the problem at scale VIl. CONCLUSION
R>Ry looks like depinning according to E6.18. Thae We examine in this paper the dynamics of disordered
t'ltedD barnerg (see Sec. B E(RT)=U(R/R:)"  glastic systems such as interfaces or periodic structures,
— fR7r¢(R/Rc)*ea to be overcome in order to move a region gyiven by an external force. We take into account both the
of sizeR (all barriers corresponding to smaller scales havingggfect of a finite temperature and of a finite velocity to derive
been eliminatel] vanishes at Ro(f)=Rr. For theT=0  he general renormalization-group equations describing such
depinning problem, one can define a:c,c:zaile dependent effegysiems. We extract the main features of the analytical solu-
tive threshold forcefg"(R)~fc(R/R;)~*~¢d such that tion to these equations both in the case of TheO depin-
E(R,fe")=0 (also defined in Sec. IV GCwhich corresponds  ning (shown on Fig. 1 and in the “creep” regime(small
to the force needed to depin scales larger tRefthe true  applied forcef and finite temperatuye
thresholdfczfgﬁ(Rc) being controlled in that case by the Our RG equations, when properly analyzed, allow us to
Larkin length. A possible scaling derivation of E¢6.18 is  recover the depinning law ~ (f—f.)# and the depinning
obtained by noting that at>0, nonactivatednotion at scale  exponentg also obtained by other methods. However, con-
R occurs when the tilted barriéf(R, f) is of the order ofT. trarily to previous approaches that needed additional physical
This yields aT-dependent effective threshold force such thatassumptions, such as scaling relations among exponents or
by hand regularization, our approach is self-contained, all
(R - fE(R,T) T quantities being derived directly from the equation of mo-
fef(R) - U (RIR,)?" (6.19 tion. It thus provides a coherent framework to solve the dif-
¢ ¢ ¢ ficulties and ambiguities encountered in the previous analyti-
At R=Ry(f), one hasf=f&(R) and Eq.(6.19 is identical  cal studieg>?°In addition, our method allows us to establish
to Eqg. (6.18 to zeroth order ine (i.e., B=1). In fact, to  the universality classes for driven systems. It shexplic-
apply the above static barrier argument, it might be better tdtly that a random-bond-type disorder gives rise close to a
work in the comoving frame where the velocity of the inter- random-field critical behavior at the depinning. Thus the dy-
face vanishes. This amounts to replacingy f— »v in the  namics is characterized by only two universality clagsas-
previous argument, andE[Ry(f),f]=0,E[Ry(f),f—7v]  dom field (RF) for interfaces and random periodi&P) for
=T gives back Eq(6.18. periodic systemkinstead of three. Since this phenomenon is
The crossover between thermally activated processes ar@h intrinsically dynamical one, it was out of the reach of the
depinninglike motion can also be recovered by noting thaprevious analytical approaches that used0 flow equa-
the condition\,~T,/x which appears in the FRG flow can tions together with additional physical prescriptions using,

be rewritten agusing Eqs.(4.9) and (4.10] e.g., the velocity as a cutoff on the=0 RG flow.
Of course one of the great advantages of the present set of
f"(R) v 7(R) RP~T, (6.20 RG equations is to allow for the precise study of the small

o ) _applied force regime at finit&, for which, up to now, only

the depinning due to driving effect of the center of mass. If itERG study confirms the existence of a creep law at small
is much larger thaff, depinning effects dominate, while if it g5pjied force

is smaller, the dynamics is activated.
Finally many open questions still remain. Technically it nv F{ UC( f )“

would be interesting to reconciliate the two methods based f—c~ex T E

on 7 andf which proved to be equivalent for the study of
7 P g y with a creep exponent related to the static opes(D —2

depinning. In fact, although the two methods should formally h is th . heni
caree, he comparison at a ien order n the G i morg 24 0 L, Wty .0 s ufenin oo,
subtle. Indeed d/dv) 8f=— &7, by integration over be- P ! y

L . ) the equation of motion, the main assumptions used in the
tween 0 ande and denvaluon with respect to, gives back phenomenological scaling derivation of the creep, namely:
1..=df/dv provided thatf..=0. However, one should no- (j) the existence of a single scaling for both the barriers and
tice that in @/dv) 6f = — 87, the derivative is understood at the minima of the energy landscape of the disordered system;
fixed parametersat the given scaleThe occurrence of this (ii) the fact that the motion is characterized by an activation
hidden dependence in the velocity in the running parameter@rrheniug law over a typical barrier.
makes the equivalence between both approaches delicate. In addition, our study unveils a “depinninglike regime”
However, the additional term is of higher order in disorder.within the creep phenomena, not addressed previously, even
Thus, as pointed out above, it is very likely that a carefulat the qualitative level since the phenomenological creep ar-

(7.1




PRB 62 CREEP AND DEPINNING IN DISORDERED MEDIA 6257

If the solution of the flow is found to depend on the precise
behavior at the Larkin lengtR., it is likely that even uni-
versality could be questioned. These issuesaapeiori less
important for the first, thermally activated, part of the creep
regime, but because of the existence of a second, depinning-
like regime, they would also have consequences for creep.
Again, these questions depend on the precise form of the
flow and can be answered unambiguously by a detailed
enough analysis of our equations. It would also be of great
R interest to develop a more detailed physical picture of the
4 crossover between thermally activated and depinninglike
motion since we found that both occur within the creep phe-
nomenon.

Several applications and extensions of our work can be
envisioned. First, extensions to many-dimensional displace-
ment field(of dimensionN>1), given in Appendix F, would
be interesting to study within the methods used here. One
could check whether the approximation used in Ref. 53
yields the correct result for thd>1 depinning. Second, the
effect of additional KPZ nonlinearities could be investigated.
In particular one could check the usual argument which
lﬁ/ields that KPZ terms are unimportant for the depinfiing
ﬁince their coupling constant is proportionnal to tkenall)
velocity. Also, extensions to other types of disorder, such as
correlated disordeY: are possible. Finally, it should allow
one to describe in a systematic way the thermal rounding of

guments did not address what happerfter the thermally the depinning, i.e., the study of thef characteristics fof
activated jump of the optimal nucleus. Although the velocityclose to the threshold and small If one assumes that one
is dominated by the time spent to thermally jump over thec@n simply carry naive perturbation theory Tharound the
barriers, our equations show that the snfaiehavior con- T=0 solution of the RG flow neai (i.e., only keeping the
sists in fact oftwo different regimesUp to a sizeR; motion ~ contribution beyondy), one is led in Eq(5.13 to an addi-
can only occur through thermal activation over barriers. Thigional term proportional toT/v?, which readily yields the
is the regime described by the phenomenological approach talue for the thermal rounding expongnt 1+ 23 proposed
the creep. The optimal nucleus of the scaling estimate i Ref. 49(i.e., a scaling form nedfr= f. and smallT for the
given directly by the RG derivation aR;~ (1/f)Y(2~¢ed.  velocity v~TFP®[(f—f,)/T]). Although this exponent
Remarkably, another interesting regime exists above thi§eems to be consistent with starting valuesT, its validity
length scale(see Fig. 9. It emerges directly from our RG could be further checked by solving our RG flow equations
equations and can be given the following simple physicaPt smallT.

interpretation. In some regions of the system, bundles of size

Rt depin due to thermal activation. These small events then ACKNOWLEDGMENT

trigger much larger ones, and the motion ab&4eproceeds . .
9 9 One of us(T.G.) would like to thank the Newton Institute

in a deterministic waymuch as théf =0 depinning. In par- . -
ticular, once the initial bundle depins it triggers an avalanchécamb”dge for support and hospitality.

up to a size Ry which is given by Ry/Ry
~(UJT)B(R;IR,) ?'# where 6, B, andv are the energy, APPENDIX A: NOTATIONS
depinning, and correlation length exponents, respectively. Here are some notations and conventions and diagram-

The present study also raises several interesting qUEStiORS tics we use in the text. The surface of the unit spheg in
which deserve further investigation; some of them rely ONyimensions divided by (2)° is denoted by Sp

being.able to obtain a more accurate solution of our fIOW:2(4W)—D/z/F(D/2)_ The thermal average of any observ-
equations. We have shown explicitly how to recover from . . — .
our equations the conventional depinning léamd the scal- ableAis (A), the dlsorderAaverage,Is and the average with
ing creep exponentslt rested on a mathematical property, the dynamical actior${u,u] is denoted byA)s=(A). The
likely to hold, but not yet rigorously established, of the so-Fourier transform of a functionh,, of (r,t) is hg,
lution for the flow of the correlator of the disorder. Such =/& '9"""'“'h, where [=/drdt, and the inversion
behavior should be checked in detail. The equations beingeads hy=fq,e'9""'“'hy ,,, where [,=[[dq/(2m)"],
quite complicated, a numerical solution, albeit delicate,),=/(dw/2m). The Fourier transform of the correlator
seems to be appropriate. If the constra®®) on the flow A(u) is A,=fdue "“A(u) in general or A,
defined in Sec. V B were found to be violated, then the con= f§du e '*"A(u) in the periodic case. One has thigu)
ventional picture of the depinning would very likely fail, as = [ ,e'“YA,, where[,=[(dx/27) or (1/a)=, in the peri-
we have analyzed in detail. A similar question arises conedic case. Note thak . is a real and even function of.
cerning the flow of the frictiony as discussed in Sec. VI C. The graphs are made of the following unitee Fig. 10

FIG. 9. Schematic picture of the creep process emerging fro
the present study: while thermally activated motion occurs betwee
scalesR; (Larkin length andRy (thermal nucleus sizedepinning-
like motion occurs up to the avalanche sRg.
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u—— —"""u & j These are sufficient to compute to first ordetirthe force,
A === the correlation, and response.
U—=e——1u In the absence of disorder the system moves with a linear

FIG. 10. Conventions for the diagrammatics. The correlationCharaCteriStiCSf: nv and one has the following correlation
function uu, which vanishes aT=0, is a full line with no arrow, and response:
The reponse uit is a full oriented line. The vertex

I —co?tl/n
—%iu,tiun,A[un—uw+v(t—t’)] is naturally split in two half C :L, t:Te—’ (B2)
vertices corresponding to the pointst) and (,t’), and the dashed o (cq?)%+ (nw)? a co?
line means that both points have the same positionTA©D the
correlation vanishes. 1 o(t)

Rew=—3——: Rg=——e ™" (83
a full line between pointsr(t) and ¢',t') is a correlation CQ"—lnw Y
<u,”u,r’t’>3’ an onent.ed line with an arow from point 4| ated by the fluctuation-dissipation theord®DT) TR
(r',t") to point (r,t) is a responsguyiu,y/)s (the arrow  — _ gt)5,C,,. Note thatR andC do not verify FDT atv

means that>t', for the function does not vanish by causal- ~ g
ity). The vertex is represented as a dashed line linking points T first order inA one obtains aT=0
(r,t) and (,t"). The dashed line means that both points have

the same position. From each point emergesﬂaﬁeld. No kA,

arrow is needed for the full line or for the dashed line, since f—mv= —f S (B4)
they are symmetric with respect to the exchange of their end R I

points. The correlation being proportional Tovanishes at

T=0. The graphs renormalizing the disordeee Fig. 13 EA

are made of vertices and responses, and they possess two o -V K=ol (B5)
externaliu lines. It can be easily seen that arrows are no q.0 (cq2)2+(77w)2’

more necessary since the two exterpalines provide an

orientation to all the responses of the graph. Indeed, due to _
causality, each of the external is root of a tree, whose Rq,w:Rq,w"'mﬁﬁ"(vt)%t(l—em)-
branches are response functions, which are oriented in the q K (B6)

direction of the root.
These results can be extended to any temperdture

APPENDIX B: PERTURBATION THEORY

f—nyv=-—Dy(w=0), B7
We derive here the direct perturbation theoryTatO 7 ! : &7
without the use of the MSR formalism. To organize the per- Cq.0=CqotRgwDo(®)R_q
turbation series, let us multiply the nonlinear part of the
equation of motiorF (r,vt+uy,,) by a fictitious small param- + Ry o[ D2(w=0)=Dy(w)]Cqy ,+H.C., (BY)
eter o, which will be fixed to one at the end of the calcula-
tion. Directly on Rg,0=Rg0T Rgu[Po(@=0)=Dy(w)]Ry . (B9
(U)=0 where we have introduced the effective vertices, nonlocal in

_ (81) time, smoothed by the temperatusee Fig. 11
(99— cV?) Uy =aF(r,vt+u,)+ T+ +hy

we can formally expand u=3,_qa"u™ f—pu=Tf Do(t):f A €<t (9%(CooCan), (B10)
=3,-02"f(M, solve recursively the systerfB1), even at )

nonzero temperature, and compute ghexpansion of every

observable. Note that we added a sounge(with no con- Dl(t)=J i KA & 0t i0%CooCdRy | (B1D)
stant uniform pajtso as to compute the response function. K

As the force is Gaussian, the expansion of disorder averaged

quantities is in powers of?, and is in fact an expansion in Dz(t)=J (i1)2A ei,<vt+(i,<)2(c00—cm)Rot (B12)
powers ofA. We denote by, _,,;_=(u,U, /) the exact K “

correlation and byR,_,, ;_=(éu, {/6h, ;) the exact re- We now want to compute the corrections to the param-
sponse functions. etersc, », T, T, A(u) so thaw, Cy,,, Ry, remain unchanged

The first iterative steps aé®?=f1)=0 and while the physicalultraviolet cutoff A on theq integrations
is reduced. To first order iA andT, one obtains
(70— CVZ)U§?)= St hee,
gc=0, (B13)
(98— cVHUP =F(r,vt+ul®),

_ — >aAn
(na—cV2u@= g, F(rut+u@uB+TO. & fttROtA (v), (B14)
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+ é_ ;_%_% FIG. 12. First-order RG corrections. The internal lines carry
fast fields.

of the action. The Gaussian correlati@Gp and responsg,;
functions were defined in Appendix B.
+ Rt The interaction part of the action contains the disorder

correlator and also the pinning forée= O(A):

- ~ [ .~ 1 A A
Si[uvu]:_ff 'urt_zf iU U AU — Uy
——— = <+ a&k " w

+o(t—t)] (C2)

The effective action for slow fields,u is given by the fol-
+ T lowing cumulant expansion where the averages are com-

puted within the Gaussian pa8 over the fast fieldsi™,u”~

FIG. 11. Computation of the correlatidtop) and responséot-
tom) functions to first order in perturbation theory. At>0, the S_[u,u]=Sy[u,u]+(S[u+u~,u+u7])
tadpoles and self-contractions of the vertices contain an arbitrary
number of correlations.

- %<3[u+u>,a+a>]2>c+ os?). (C3)

of= fR&A’(vt), (B15)  We now turn to the computation of the first- and second-
t order terms.
1 - 1. First order
IT= ;fbotcmatA (v), (B16) To first order, the corrections arise from the graph shown
in Fig. 12. They read
IA(U)=CgoA"(u) (B17)

(Si[u+u>,ﬂ+l]>])=—~ff it

with 9=—A(d/dA) andR;; ,C; are the on-shell Gaussian rt

response and correlation functions, i.e., with modédging .

only betweenA —dA andA. —f (i<)AJul(r,t,t )Ry, ity
A completely different way for obtaining the perturbation rt’x

expansion is presented in Refs. 55 and 4, as a first attempt to .

include thermal fluctuations in the large-velocity expansion - ff CAJul(r,tt)iugiug

of Ref. 18. It consists in splitting the displacement field into rx

a T=0 part and a thermal part. This procedure is probably (C9

only true to first order inT and not controlled at high€f.  \yith the shorthand notation

Instead, the method presented here is really an expansion in

disorder at anyl. A Jul(r,t,t)=A, iU~ U +o(t=t)] g(12(Coo~Coy ).
Although the calculation can in principle be pushed to

second order, the method is too cumbersome to do it in practhe term(C4) appears to be the sum of@7Tu] term and a

tice (see, however, Ref. 56 dt=0). It is easier to use the iuiug[u] term. Let us begin to deal with the first type. A

formalism of dynamical field theory as shown in Appendix short time expansion a#<(Urt~Urt") yields the following op-

C. erators:

A . ; CN2(aZ >
APPENDIX C: DERIVATION OF THE FLOW AT FINITE —(J '“”)f i kA e Vel (CoCadRy,  (C5)
VELOCITY AND FINITE TEMPERATURE rt wt

Here we give the details of the renormalization proceduréVhich is a correction td and

used for the mgving system. We use the MSR formalism . - 2> s

with action Su,u] given by Eq.(4.2). Having shifted the —(L'Urtf?tun> Lt(lK) A el oo™ ColtRy,  (CB)
field u,, so that its average vanishés,;)=0, we can do

perturbation theory with the Gaussian part which is a correction tay. The elasticity operataiti V2u is

not corrected ancho higher gradients likéuV"u are gener-
ated in the equation of motion. Note also that to this order,

u,u]= | [0y (nd—cV3u,— nTiugiu (o) A
Sofu.u] th[ e Jur = 7T ] (C) no KPZ termiu(Vu)? is generated®
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Theitiug[u] term can be rewritten as the sum of

1 ~ A ) )
__j iurtiurt’f AKe(|K)2CgoeIK[Un—Un/+l}(t—t/)]
2 )t K

which has the form of a disorder correlator and yields a

correction toA(u), and an operator quasilocal in time

fttriu”iu”’
;

> 1—eK2C(tht’
XJAKe(iK)Zcooﬂk[un—u,t,+v(t—t’)] - -
K

2
(C7)

which yields a correction to thgiuiu,, term. The projec-
tion of Eq.(C7) on this thermal noise operator is

A A SN2 :I._ekzcgl
(j iuniurt)f A, e Coglrvt) — |
rt Kt 2

To obtain the correction to the temperatureone uses

(C8)

STIT=67TInT—6n/7n. An integration by parts of EQq.

(C6), thanks to FDT for the “pure”R andC, yields 6T/T.
To summarize,

Sf= f tiKAKe(iK)Z(cgo—ca)eiKutht,
K
57’: _ f (I K)ZAKe(iK)z(CgO_Cgt)ei KUttRa,
kt>0
5A(u)=f A 01 Cogl ey,
K

poT= f i kutA (%) Cooglxvt(1— ex“Cor).,
kt>0

The correctionsf has the same form as the perturbative [ R>
P
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FIG. 13. Diagrams needed to compute the second-order correc-
tions atT=0, and at anyT in Wilson’s scheme. Each of the two
external linegcorresponding to a field) is connected to &ree of
response functiongthe lineg due to causality, and provides an
orientation to these lines: we drew the arrows just for clarity.

form — [ . iUpniU, SA[Uy— Uy +o(t—t')]. The corre-
sponding diagrams are represented in Fig. 13.

Each diagram has two externial,, iU,/ legs, to which
corresponds a functional half vertexwf andu, ., , respec-
tively. Calling 7,7' the (positive time arguments of both
response functions, denotind=u,—u,,;+v(t—t"), the
diagrams have the following analytical expressions, inte-
grated over,r' t,t',p,7,7’:

a=—ilyily 8 A"(U)A[U+o (7' —7) IR R,

>
—p7

r

b=—ilnil; 8- ,A"(U+v7)A (U-v7)R; R
c=ilnity 8 A"(U)AL(7' =D IR;R

d=ilUpil 8 A" (U+v7")A’
X[—v(7'+ T)]R;TR:O ;.

T

After another short distance expansiorbaindd, noting that
R> :quf R> :SDADechZ(T,‘FT)/??dI /7]2’ a

Tpr pq-’ +qr qr’

eXprESSion fOTf, with OppOSite Sign and shell-restricted func- proper symmetry Counting y|e|ds the term of Or(zb-)rof Eq

tions C,R. Note thatdy= — (d/dv) 5F.

(4.11). The results obtained here are consistent with the

In the infinitesimal shell limit, the shell-restricted func- analysis of Ref. 57.

tions C”,R~ which are evaluated at=0, are of orded|.
The differential flow is thus given by Ed4.11).

2. Second order

APPENDIX D: INTERESTING RESULTS IN THE
NONDRIVEN CASE AT FINITE TEMPERATURE

We give here a detailed analysis of the functional

The fast-modes average). can be decomposed into renormalization-group flow at>0 and zero velocity. The
one term withf in factor plus the rest which does not contain temperature is an irrelevant operator and flows exponentially

F. The former vanishes for the following reason: the contrac{ast to zero. We show, however, that the temperature rounds
the cusp in a region of size proportional Toaround the

tion of the f [ iur with the Urre, OF Urrg, contained in the origin and that in this boundary layer, the disorder correlator
vertex operator involves a fast resporRg_, . But [\R  takes asuperuniversalto lowest order ire) scaling form. In

=0, since its modes live in the shell. The latter is the con-addition, we show how to carry a systematic expansion at
nected average of two disorder vertices. We now extraclow T. As temperature decreases, the correlator of the disor-
from it a correction to the disorder, i.e., a term which has theder becomes more and more pinched, and eventually reaches
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its zero-temperature cuspy fixed point at infinity. 1 ,
We show that during the renormalizationwat0 with a §(1+f)2 =1
flowing temperaturd;— 0, the cusp forms only asymptoti-
cally (I—c), andA(u) has the following scaling form in the Which has the solutiori(x) above since we know thd{0)

boundary layetu|~T,/x: =0, f"(0)=1 andf?(0)=—3 is easily checked.
This is confirmed by the study of the flow equations for
A(u)=A(0)=Tf(ux/T)) (D1)  the successive derivatives=A?"(0):
with f(x)=\1+x?-1 and wherey=|A*'(0")| measures dap=[e+2(n—1){]a,+Tan:1
the cusp.
Furthermore, we show that the following expansion in 10 2(n+1)

temperature for the solution of the FRG flow holds: T2 & ( ok |A@n+1k- (D6)
A(U) —A(0)—T1P= ™ (u/T D2 From a trivial recurrence, the hypothesis\|'(0)
[A(w)~4(0)~T] n;z (W) (b2) ~—(x%T))“ implies thatT"**1)~13_ converges for any.

Moreover the limitc,=lim,_,T"@*1)~1)~21eg can be
obtained from Eq(D6) and isc,=[1.3---(2n—1)]%/(2n
—1)=£("(0).
To fix the value ofa [a=1 as strongly suggested by Eq.
The flow equation of the value at zero of the disorder(D4)], we checked that the only values £>0,y>0 such
correlator is that g,(x) = (LT[A* (TPx)—A,(TPx)] has a meaningful
. fixed point are B,y)=(1,1). For these values, the fixed
(9|A|(0)—(E_2§)A|(0)+T| I(O) (D3) point ng(X)ZA*,(O+)X+ 1+[A* r(o+)x]2_
Since A|—A*, the convergence oA (0) towardsA*(0)
implies thatT,A['(0) also converges. From the fixed-point 3. Next order in T
equation

thus we obtained a fairly complete picture of the solution.

1. Curvature

The procedure which gives us the leading behavior in the
1 ., boundary layer controlled by temperature can be extended
(e—3§)A*(u)+§[uA*(u)]’=§[A*(u)—A*(O)]2 analytically with arbitrary accuracy in an expansion to any
order inT. We study

H _ * —A*1(nT)2
one has simply §—2¢)A*(0)=A*'(0")4, and thus A (U= (= 20)A (W) + LUA! (U)+ T/ A (W)

_ 4 _LA*! +3\2
TIAT(0)=ATH(OT)". oo — AWIA(WA0)] - Al (W,

2. Scaling function in the boundary layer ainT,=—10

We show here th.at the assumption .that the curvature gt 9=2—e+2¢. For numerical purposes or for the fol-
zero of A, diverges like a power of the inverse temperature|qing analytical computation, it is useful to switch to the
implies thatall the derivatives at zero also diverge and thatfunctiony(u)=[A(u)—A(O)—T]2 which remains quadratic
there exists a well defined and particularly simple scaling; e origin whenT—0, since y(u)=T2+|TA"(0)|u?

function in the boundary layer around zero. Precisely, f0r+ O(u?) for T>0 andy(u)=A’(0")2u?+ O(u?) for T=0
any functionT, decreasing to zero and a functidp(u) such This function flows as ’

that
dy=2(e=20)y+Luy +\yly"—y"(0)—4T].
, L We can replace the scaladependence of,(u) by aT de-
FAT(WA(0) = A (W)]=Af (u) (D5)  pendence sinc& and| are linked byT,=Toe~ . The func-
if A/(0)~—(x?T,)“ for somea>0 andy, then, defining tion yr(u) can be expanded in
the functionsf,(x)=(1/T)[A,(0)— A, (xT{** D2y~ )], we

AA (W) =(e=20)Ay(U)+ LuA| (u)+T A (u)

obtain that all derivatives of; at x=0 converge to the cor- yr(u)= 2 T“fn<g).

responding derivatives df(x) = J1+x?—1, and thaf is the n=2 T

only fixed possible fixed point fof; . The expansion begins at=2 sincey+(0)=T? and we have
A simple way to see the convergence to the scaling func-

tion f is to write the flow off, fo(0)=1, f,=,(0)=0.

a+1l

The equation for thé,’'s reads
f!
1)

1 17 "
T|A|”(0)+§X2aT| a(1+f|)2 =T| (9|f|_2f|+

TY[2(e—20)+nO]f,+ ({— O)xf]
and eliminate at largé the right-hand side term which is ng'z {[2(e=20) Mo+ (£~ Oxto}
subdominanthigher order inT;) for >0, sinceT has been

absorbed in the variable of f;. We have used tha#=2 _ /ngz Tnfn<4-|—_ E T”*Z[fﬁ—fﬁ(O)] _

—e+2/. Hence the fixed point equation fdy is n=2
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One can solve this equation order by ordefTint is useful  obtained only forf = €/3. Fixing the RF strengtiiA to one,
to divide A and T by x? andu by y. With these rescaled we are led to the following problem: for ariy=0, find the

guantities, we have simply fixed temperature fixed-point functid®TFP A(T,u) such
that
y7,(0)=—2T|A{(0)—2
€ 1
and thusf4(0)=2. If we knew the full behavior of/}(0), zlua(w]'= E[A(U)—A(O)—T]Z", (E3
i.e., thef;(0)’s, we could completely solve the system. Here,
we get
f dulA(u)=1. (E9)
fo(x)=1+Xx,
Integrating Eq(E3) from 0 to yieldsTA’(0")=0, hence
_ rane R the FTFP has a cusp far=0 and no cusp foff #0.
fs00= 4( ! ) THx—1 ) [4=(e=0)] At T=0, integrating Eq(E3) from 0 tou and dividing by

) A(u) yields (e/3)u=A"(u)—A(0)A’(u)/A(u). Then, inte-

S e~¢, 5 e s X grating again from O ta yields theT=0 FTFP, by imposing
X X(asink—x) 3 X V1+x°+15(0) > Eq. (E4)

where we wrotd 3(x) such that the three first lines are func- € Wre 13
tions which vanish and have zero curvature at zero. Note that A(T=0U)=| —3 y[(SJ y) ul, (E5
while f,(x) is universal, the last terrfy(x) contains un un- 3( f y)
known integration constarif(0) which presumably depends
on the initial condition of the flow and is thus not universal. where the functiory(x) is implicitly defined by
Indeed we observed a nonuniverdg(0) in a numerical 5
integration of the flow ofy(u). A .

The procedure can be carried to any ordef iand all the 2 yo) = 1=Iny(). (E6)
f,'s are accessible. The unknown coefficients of the expan.
S|on Sincey(0)=1 one has

€ 1/3
—2T|A[(0)=2+ X, T"f},,(0) A(0,0= (E7)
n>0

1 2
S(Z\EJ Vy—1—In y)
are similarly nonuniversal. 0

Both Secs. D 1 and D 2 thus provide a rather convincingt is easy to compute the numbefy=["_dx y(x)
and consistent picture for the solution of the-0, v=0 zzfgdy X(y)zgﬁfédy Jy—1-Iny=1.55. Note the be-
FRG equationgawaiting a mathematical proof havior near 0 given byy(x)=1—|x|+x%3—|x%/36

+O(x* thus ﬁﬁA(0,0*)zZe/Q. Note also the Gaussian de-

crease of correlations at infinity(x) ~e~ %72,
An intriguing fact is the scaling of th&=0 fixed point

We present here the analytical solutions of the fixed-poinVith €: its nth derivative at 0 scales like
equations for RF and RP at fixedl Thanks to the exact AT Ay (1403
expression of these fixed points, we are able to check the JA(T=0u=0")~e€ ' (E8)
scaling form derived in Appendix D within an “adiabatic”
hypothesis where the running correlatot &t identified with
the fixed point afT=T,. Our families of fixed temperature
fixed points(FTFP give back the known fixed points at _ Craarmi
=0 in both the RF(Ref. § and the RP(Ref. 11 cases. AT W=AT0y(T.uve[3A(0))) E9
However, even if we obtain the sarfiem (E6) for the RF  with y(T,x) implicitly defined by
T=0 fixed point as in Ref. 8, we disagree with the scaling in
€.

APPENDIX E: ANALYTICAL SOLUTIONS AT FIXED
TEMPERATURE

At T>0, there is no cuspd,A(T>0,0")=0] and the
same double integration of E¢E3) yields

X2— 1 1+
?—y

@

1. Random field The value ofA(T,0) is determined by conditiofE4). Using

We look for a fixed point of Jdx y(x)=[dy x(y), this condition reads
A (U)=(e=3A|(u)+[ud(w)]’ (ED [24A(T 0)3
. f dy\/y 1- A(TO))Iny 1.
= 5[AW) =40 - T (E2 (E13

This equation admits a unique solutid{T,0)>0 for any
with fixed T and initial random-field conditionfA;>0.  T>0. Then there exists a unique FTRRT,u) for eachT
Sinced,In [duA (u)=€e—3¢, a meaningful fixed point can be >0. Some of them are displayed in Fig. 14. Note tfat



PRB 62

-TA'(0)
1/36 A(4)
1/36
U
— T
0 12 )’
~TA'(0)
Au
) A
01 “
()H T T T

FIG. 14. Fixed points at fixed temperatukéT,u). Bottom: RF
case, the solutiol\(T,u) to the reduced EqsE14 and (E15
exists for anyT. Right bottom: plot of the RF FTFP’s foll

€{0,0.1,0.2,0.5,}1, these temperatures are located on the absciss

of the left bottom plot. On the left, plot o#T&ﬁA(T,u=O) Versus
T. Top: RP case, the one-periodic nontrivial solutib{ir,u) to Eq.
(E16) exists for O<T<(2w) 2. Right bottom: plot of the RP
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T=0 fixed point. Absorbings in T andA, we chose to plot
the nontrivial solution to the most reduced problem,

1 1 ,
FLUAW]"=S[AW)—A0) =TI, (E14

f duA(u)=1. (E15
To restoree and fA, one simply has to note that the “di-
mensions” areT=A=e3(fA)?® andu= e 3(JA)Y. The
left-bottom of Fig. 14 shows-TA”(T,0) as a function off.
This combination has a finite limit=0.17) whenT—0.

2. Random periodic

In the random periodic case, the conservation of the pe-
riod a of A requires{=0. After a suitable rescaling,
—ula, A—Al(ea?) andT—T/(ea?), the fixed-point equa-
tion reads for the one-periodic functian(u)

A(U)=%[A(u)—A(0)—T]Z" (E16)

£nd is easily solved by quadrature, by analogy with a parti-

cle’s positionX(u)=[A(u)—A(0)—T]? at timeu in a po-
tential V(X)=4X¥%3—2[A(0)+T]X verifying X"(u)
=—V'[X(u)]. The quadrature leads to the reciprocal func-

FTFP's for T<{0,0.005,0.01,0.015,0.p2these temperatures are tion u(X), parametrized byA(0) andT, as a sum of two
located on the abscissas of the left top plot. The FTFP’s are analytielliptic functions. Then, imposing the solutian(u) be one-

for T>0 but tend to the cusp(T=0,u) asT—0. The curve on
the left shows—Tc?ﬁA(T,u=0) as a function ofT. It is not a
straight line.

=0in Egs.(E10 and(E11) gives back thd =0 nonanalytic

periodic fixesA(0) as a function of.
The result is

(i) for T=(27) 2, the only solution isA (u)=0.
(i) For 0<T<(2) 2, another solution arises, which re-

fixed pointA(T=0,u) Eq.(E5). Hence the set of FTFP has a sembles a cosinus function of linearly vanishing amplitude
nice T—0 limit, even if there is a qualitative difference be- WhenT— (2) 2 This nontrivial solution has no cusp but
tween the cuspf=0 FTFP and the analyti>0 FTFP’s. becomes pinched asdecreasefgrowing curvaturgA”(0)|

As is obvious from their analytical expression, or from and higher harmonigsAs can be seen on the analytical ex-
Fig. 14, limr_oA(T,u)=A(0,u): theT=0 nonanalytic fixed pression(not given herg —TA"(0) — 1/36. In particular,
point is approached smoothly by the set of analytic fiXed it remains finite when the temperature vanishes.

fixed points. WhenT approaches zero, the curvature of the

FTFP’s at the origin goes te « like

lim — TA"(T,0) = %A(0,0) (E12

T—0

with A(0,0) given by Eq(E7).
We also checked that th®e(T,u) converge whe —0 to

the zero-temperature fixed point with the predicted scalin

form (D1)

X
A(T,0) —A( T,T—) .

0
T X — \/1+X2_1,

(E13

where y=|4,A(0,0%)| is given by theT=0 FTFP equation
x%=(€l3)A(0,0).

Some of the RF fixed fixed points are shown on the
right-bottom quarter of Fig. 14, including the cusfhyghes}

(i) Eventually for T—0, the nontrivial solution uni-
formly tends to the zero-temperature fixed point

1/1
A(u)=€(g—u(1—u)). (E17)

The temperature (2) ~2 in our units isexactlythe critical
temperaturd of the random-field&X'Y modeP® and the fixed

%oints nearT, reproduce the line of fixed points of this

roblem (since we worked to second order, it is only an
approximation. Indeed inD =2, the naive dimension of the
temperature is zero and our FTFP has a direct physical mean-
ing. Note that another random gradient term becomes rel-
evant in D=2 but does not feed back on the flow of
A(U) .58,59

We can now use the exact FTFP’s to check that an adia-

batic hypothesis is consistent with the scaling fo(Di).
Indeed, one can numerically check that the correlator with a
flowing temperature has the FTFP’s have the scalihd as
T—0. To conclude about the problem with a flowing tem-
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peratureT,—0, it appears from these observations that no i - (CogCap) -1kt ikt A iK: I olk
cusp occurs at finite scale f@,>0. The cusp forms only of'= J £ TR AT R
asymptotically (— ), with “

lim —T,A](0)=A(0,0) (E18 Snl= —f g« (Coo~ Cop) intin-vipTK] It RIK] 4]
| >0 Kt
given by Eq.(E7) and it obeys a scaling form in the bound- o1 . . . A S
ary layer|u|<T/x 8(nT)" :_J' gl vt(gix (Coo=Coy)-ix_ gix-Cooix) Al
! 2 Kt
A(W=A(0)=Tf(ux/T)), f)=y1+x*—1. ) . L
(Elg) 5AIJ(U)=f AEeIK~C00~IK+IK-U'
We note that the precise form of the flow of the temperature _ Wbk naB Ao A pa _
(i.e., the value o) only affects subdominant behavigre., Using (A7)* =A%, AT =A", we write the on-shell
the functionf(x) in Sec.(D 3)]. corrections agwith the matrix producA-B=A,,,B, )
écy,=0,

APPENDIX F: MULTIDIMENSIONAL CASE

We give here a possible extension of the FRG to a mul- §F= _J' ik IR>'A el x-ut
tidimensional displacement field. This study generalizes the P p o ’
approach of Ref. 53 by including the effect 0 andT

>0 in the flow. For periodic structures, a similar study of the ) - —
multidimensional displacement field was shown in Ref. 57 to on=— L' K fttR0t~A,Ke I«
yield interesting effects.

In aD + N-dimensional space, we distinguish between the _
internal or longitudinal space of dimensio®, to whichr 6(277-T)=—f ik fcaiKAKe“"”t,
belongs, and thezansversespace of dimensioN, to whichu « t
belongs. The elastic energy of an interface without over-
hangs defined by a height functien is quadratic inVu of
the form3 [ ct”(a,u;)(a,u}).

The disorder: the random bond@RB) case corresponds
to a random potential V(r,u), with correlations - -
[V(r,u)—V(r',u)]?=-28°(r—r")R(u—u’). Function 5A”(U)=J RyMRT (AN [o(7 = 7)]-AM[ut (7
R(u) is even, vanishes at=0 and goes to a negative con- ar

SA, =ik-CoyikA,.

The second-order correction o reads

stant for|u|>r;. The random-fieldRF) case corresponds to — ) }amg™ All(u)— ™A (u+v 7)d™ AK(u
a force F'(r,u) with correlationsF'(r,u)Fi(r’,u’)=8°(r _ .
—r")A(u—u’), where theA'l(u) vanish for|u[>r;. A —vr')=d"AN (utvT)d™ Au (7 +7)]
RB gives rise to a RF vi&'=—4'V and the correlators are il , m' AKj ,

related byA" (u)=—4"R(u). Note th at this type of cor- +d"A (7" +7)]9" A (u—v ).

relator deriving from a RB hagdNu A'l(u)=0. Finally, the
random periodic casérP) occurs wheru is defined up to a
discrete set of translations forming a lattice of poiRfs.g.,
whenu is a phase, defined up tor2shifts. In this case, the
disorder is periodic and one had' (u)=A"(u+ P) for any
P of the lattice[or R(u)=R(u-+P)].

The overdamped dynamics is given by

Note that each of the first three terms are symmetric under
i< ],u——u and that the fourth is exchanged with the fifth
under this symmetry. TheA remains a correlator.

Of course this second-order correctiond@ives back the
expression already computed foiDat+ 1 interface ifN=1.

At zero velocity, one gets the second derivative of the flow
equation of Balents and Fish&if we assume thai\(u)
depends only on the componentwparallel to the velocity
and send to zero, then our expression reduces to the equa-
tions of Ertas and Kardar.

To simplify the analysis, let us rely on the assumed sym-
metries of the system. If we suppose that the initial problem
g - . is rotationally invariant, i.e., ha®(N) symmetry, then the
_system. We added a d_rlvmg forde perpend|cula_1r tp the elasticity tensoc, the friction tensory, and the temperature
interface and a source fieft, , as an external excitation.  o56T are only scalars and the force-force correlators

Without assuming any symmetry, 16 andR}} be the covariant, ie.. for any R such that RT-R=1,
Gaussian correlation and response functions. We obtain b)QT-A(u)'R=A(R-u).
the same procedure as for the=1 case the following first- During the flow, we expect from physical grounds that the
order corrections due to disorder running terms of the action will conserve their symmetries

i but the velocityv which is fixed once for all selects a par-
6c,,=0, ticular direction in transverse space. The interesting symme-

77] atuf.”t: C}Hvaﬂvuit+ Fi(r vurt) + girt+ fi + hlrt '

where 7 is the friction tensor and a Langevin noise, with
correlations(¢, {1,y =2(nT)18(r—r')5(t—t"). The ten-
sor T stands for the temperatyg of this out of equilibrium
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tries are given by the little group of the velocity, i.e., the
transformationsk such thatR T-R=1 andR-v=v. Then aZ”(O)=eZ"(O)—Z”(O)J’ e
one may decompose the tensors on a basis involvifigne s=>0
has only two frictions, temperatures, response, and correla- ~, 2
tion functions and fiv&® A;’s, functions of (1%,v2,u.v)]. _f es( A ()‘S))
Unfortunately, the full problem cannot be easily decou- s>0 A
pled, even with the simplifications pointed out above. No - - - .
closed equation, e.g., for the correlator restricted to displace- =€A”(0)—3A"(0)2-9\?A"(0)AY(0) + O\
ments aligned with the velocit(ufv), has been found, and - ~
the problem even at zero temperature seems involved. THEOte thatA”(0)<<0 whereasA™(0)>0]. The flow of the
simplification used in Ref. 53 consists in assuming that Tiction is similarly slowed down:
does not depend on the transverse coordinates. This assump-
tion reduces the problem to ti¢=1 case, and it would be
interesting to solve at finité the behavior of transverse co-
ordinates along the lines of our analysis.

~As)—-4(0)
)\2

al J 52 )Z()\s)—Z(O)
nn= e —-S)——————
K s>0 A2
=—7A"(0)—3\?AV(0)+O\Y).
APPENDIX G: THE FLOW OF THE DISORDER ~ ~
CORRELATOR AT SMALL VELOCITY The term—A’(0%)? in the v=0 flow of A(0) in Eq.

4.14 atv=0 is replaced ab>0 b
The effect of a small velocity on the FRG flow is mainly (419 atv P y
f CAns)\?
e S
s>0 A

restricted to the boundary layer of width about the origin.
Analytically, it is rather difficult to give an estimate pf or IA(0)=(e—20)A(0)+
to decide howA,(u) precisely behaves in the boundary layer

|u|~p;. Itis, however, possible to simplify the formidable A(rs) 2
second-order correction to the disorder correlator, displayed _f eS( ) (G2
in Eqg. (4.13, and to obtain analytically several results, giv- s>0 A

ing some hints about this behavior.

The O(A?) term in Eq.(4.11) is written under a form . <
involving two integrations oves,s’, reflecting the presence down the exponential growth af;(0).

of two response functions integrated over time. After some Opte_umng a nlumerlcal mtegr_atlon Of the flow IS a highly
hontrivial quesf! since all the interesting properties occur

which has the right sigriusing Cauchy inequalijyto slow

integrations by part, the)(A%) term becomés close to the origin yielding unaccurate results in real space.
~ ~ In Fourier space, the number of harmonics to be retained is
Z”(u)f e Zns) - A(lJJr?\S)JFA(U—7\S)) huge if one wants to focus on the quasicuspy behavidr (
s>0 2 ~ k2 at the cuspy fixed poiit However, we obtained, at

5 _ 5 _ least at the beginning of the floup tol.) with small initial
N f 7SA(U+)\S)—A(U) f 7SA(u—)\s)—A(u) velocity, the curve shown in Fig. 6. The initial condition was
e e
s>0 s>0

N N a RB disorder(full line). It is obvious on the snapsh@iot-
ted ling close tol . that the flow transformed the RB into a
A(u+As)+A(u—\s)—2A(u) RF.

—f e SA’(\S) . (GY)
>0
s APPENDIX H: BEFORE THE LARKIN LENGTH

Integrated oveuw, this correction becomes ~ ]
We show here that at the scdle A,(u) is very close to

. ) A(u+rs)—E(u—\s) the static zero-temperature _fixed poikt (u). This can be
f duA’(u)f e 5(2—5s) . checked numerically, even in the presence of a small tem-
0 s>0 A perature and small velocity. Analytically, one cannot obtain
an exact integration of the flow, but we can compayéu)
&0 the knownA* (u) by the following arguments.

Let us take, e.g., the RF case for whi¢h €/3. For weak
disorder one obtains from the integration of E4.17)

c 1/3
e§|c:(1+T) :rf
3[Ag(0)]

Thus atv+0, the integral ofA grows during the flow, fA
whereas it wagonservedn the statics. _ _ _

Using Eq.(G1), one can also compare the flow &f at ~ Where we have useld;(0)| =2o(0)/r{=[A/r{. We prove
small velocity to the cuspy=0 flow. In particular, one in Appendix E thaty=|A*'(0")| verifies y=€¥3[A)?
observes that the effect of the velocity is to reduce theand that A*(0)~61’3(IZ)2’3. Thus the range r}

blowup of the curvaturé”(0): ~A*(0)/|A"*(0")| of A* verifies

For any noncrazy functiord, this expression is positive.
Assuming thatA has no cusp, it can be safely expanded an
we can check that it is of ordev?:

13
; (H1)

€

ajzz(e—sg)szxZJ A"+ O(\Y).
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r¥~re e~ yle. (H2) A comparison of Eqs(H2) and (H3) shows that the two
ranges are similar. Furthermore, in the RF cfideis con-
To determine the range | (u) we use the fact that at the served by the flow at =0, and thus the similarity of ranges

beginning of the flow one can neglect the nonlinear term inshows that the shape Af is close to the shape df* (same
the f2|0‘|"’ Eq. | (4.1). We are left with X(u) integral, same rangeS|m|IarIy in the RP case it is also true
=el 2018 (ue) and thus the range ‘ﬁlc(“) is simply thatZ,C resembles\*, but now y = ea/6 as can be seen on

r(lg)=rse e, (H3) the fixed pointA* (u) = (e/6)[a%/6—u(a—u)].
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