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Wave transport along surfaces with random impedance
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We study transport and diffusion of classical waves in two-dimensional disordered systems and in particular
surface waves on a flat surface with randomly fluctuating impedance. We derive from first principles a
radiative transport equation for the angularly resolved energy density of the surface waves. This equation
accounts for multiple scattering of surface waves as well as for their decay because of leakage into volume
waves. We analyze the dependence of the scattering mean free path and of the decay rate on the power
spectrum of fluctuations. We also consider the diffusion approximation of the surface radiative transport
equation and calculate the angular distribution of the energy transmitted by a strip of random surface
impedance.
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I. INTRODUCTION

The propagation of wave energy in random media can
analyzed with radiative transport theory in the regime
weak random fluctuations and propagation distances tha
long compared to the wavelength. This transition of wave
transport has been explored for more than 30 years.1–5 An
equation for the correlation of wave functions, the Beth
Salpeter equation,3 can be obtained using diagram tec
niques. For propagation distances that are long compare
the wavelength and for weak fluctuations, the Bethe-Salp
equation simplifies to a radiative transport equation3 in the
ladder approximation. A systematic and efficient way to o
tain transport equations directly from random wave eq
tions is presented in Refs. 6 and 7. The mathematics be
the asymptotic limit involved in this process is explored
Refs. 8 and 9. A recent collection of interesting papers
various aspects of waves in random media is given in R
10.

Propagation of surface waves on a randomly inhomo
neous surface is a typical example of propagation in a t
dimensional random medium. Its study is of considera
interest both for the many applications in electronics, aco
tics, and solid-state physics, and for the understanding of
effects of dimensionality on general optical and quantu
mechanical disordered systems. Surface excitations on ro
surfaces have been analyzed extensively since the e
1980s.11 Interest in this problem accelerated, and is still s
nificant, after it was realized that the backscattering enhan
ment from slightly~compared to the wavelength! perturbed
surfaces is due to the coherent interference of multiply s
tered surface waves.12–15As a result, coherent surface effec
and in particular the localization of surface waves have b
studied in detail.12,16,13Backscattering enhancement from t
coherence of the double scattering of surface polaritons o
weakly random boundary is considered in Ref. 17. Surp
ingly, little is known about the transport regime in two d
mensions and the diffusion of surface excitations on rand
interfaces. Part of the reason for this may be the well-kno
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conclusion of the scaling theory of conductivity, that all ele
tron states in two-dimensional~2D! disordered systems ar
localized.18,19Recently, however, the generality of this resu
has been questioned because a metal-insulator transition
been observed experimentally in two-dimensional electro
systems~see, for example, Refs. 20 and 21!. In the case of
classical~electromagnetic or elastic! waves, the localization
length for 2D surface excitations can be much longer th
the scattering mean free path and, in contrast to o
dimensional propagation, there exists a range of distan
where the localization effects are not important and transp
of energy takes place.

In this paper we derive from first principles a radiativ
transport equation for scalar surface waves on a flat sur
with randomly varying impedance. We give explicit expre
sions for the scattering cross section of surface waves as
as the leakage rate to volume waves in terms of the statis
of the impedance fluctuations. We also analyze the surf
transport equation in the small mean free path limit and
tain a formula for energy transmission by a strip of rando
surface impedance.

The radiative transport equation for the angularly resolv
surface wave energy densityW(x,k) is given by Eq.~24! in
Sec. III. In Sec. IV we discuss the relative strength of surfa
scattering versus leakage to volume waves for differ
power spectral densities of the impedance fluctuations
Sec. V we analyze the small mean free path, diffusion lim
of the transport equation. The main result is formula~40!,
which gives the angular distribution of surface wave ene
transmitted by a strip of random surface impedance. In A
pendix A we explain briefly the formal perturbation analys
that leads to the transport equation~24!. In Appendix B we
give a brief presentation of the diffusion approximation f
the transport equation in a strip. Diffusion approximatio
are analyzed in various contexts in Refs. 22–27.

II. HIGH-FREQUENCY SURFACE-WAVE PROBLEM

We start from the three-dimensional wave equation

DC1k0
2C50, z.0, ~1!
6228 ©2000 The American Physical Society
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whereC is a component of the electric field of a monochr
matic ~with frequencyv! electromagnetic wave in a spatial
homogeneous dielectric medium withc the speed of light in
vacuum andk05v/c. Scalar surface waves propagatin
along the planez50 are solutions of Eq.~1! subject to the
impedance boundary conditions

]C

]z
5H~x,y!C, z50, ~2!

which decay exponentially in the upper half-spacez.0.
HereH is the surface impedance that we assume to have
form

H~x!52h0~x!2h~x!, x5~x,y!, ~3!

whereh0(x).0 is the nonrandom part andh(x) models the
impedance perturbations that may by caused by fluctuat
of the dielectric constant of the background media or
small surface roughness. We allow consideration o
coordinate-dependent impedanceh0(x), but this dependence
should be slow compared to the wavelength so that the s
dard high-frequency approximation is valid for surfa
waves when the fluctuations are zero. We assume tha
fluctuationsh(x) have mean zero,̂h(x)&50, and are spa-
tially homogeneous and isotropic random process with
correlation functionR(x),

^h~x!h~y!&5R~ ux2yu!,

and power spectrumR̂(k),

1

~2p!2 ^ĥ~p!ĥ~k!&5R̂~k!d~p1k!,

R̂~k!5E dy e2 ik•yR~ uyu!, k5uku. ~4!

We use the standard form of the Fourier transform:

f̂ ~k!5E dx e2 ik•xf ~x!, f ~x!5E dk

~2p!2 eik•x f̂ ~k!.

Since h has dimensions@length#21, we see that the powe
spectral densityR̂ is dimensionless. In the absence of flu
tuations @h50 in Eq. ~3!# and when, in addition,h0
5const.0, Eq. ~1! with the boundary conditions~2! admits
surface-wave solutions of the form

C~x,z!5eik•x2h0z,

with

uku25ps
25k0

21h0
2. ~5!

We assume that the fluctuationsh(x) are weak,

«5R~0!/h0
2!1, ~6!

and the wavelength and correlation lengthl cor are of the
same order, which means that scattering has an apprec
effect at distances of order«21. Therefore, we rescale th
spatial variablex→x/«, and problem~1!,~2! becomes, in res-
caled variables,
he

ns
y
a

n-

he
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«2DC«1k0
2C«50, z.0, ~7!

«
]C«

]z
~x,0!5F2h0~x!2A«hS x

« D GC«~x,0!

ª2h«~x!C«~x,0!. ~8!

Here we have also replacedh→A«h, consistent with Eq.
~6!, regarding the strength of the fluctuations.

We assume that solutions of Eq.~8! are outgoing or de-
caying waves at infinity so that the functionC«(x,z) has the
form

C«~x,z!5E
R2

dk

~2p!2 e@ ik•x1 if~k!z#/«B«~k!, ~9!

wheref(k) is given by

f~k!5H Ak0
22k2, uku<k0

iAk22k0
2, uku.k0

. ~10!

Then the boundary condition~8! implies that the amplitudes
B«(k) satisfy the equation

if~k!B«~k!52E dq

~2p!2 ĥ«~q!B«~k2«q!, ~11!

which we rewrite as

if~«k!ĉ«~k!52E dq

~2p!2 ĥ«~q!ĉ«~k2q!, ~12!

whereĉ«(k) stands for the Fourier transform of the functio
c«(x)[C«(x,0). If we definev(x,k) by

v~x,k!52 if~k!2h0~x!, ~13!

then we can write Eq.~12! in the form

E dk

~2p!2 eik•xv~x,«k!ĉ«~k!5A«hS x

« Dc«~x!. ~14!

In the presence of random inhomogeneitieshÞ0, the sur-
face waves undergo scattering both into surface and volu
waves. The second process produces effective decay of
face waves even if the medium itself is lossless, since v
ume waves propagate in a homogeneous medium.

One way to treat surface wave scattering withh05const
is to approximate Eq.~1! or ~12! by a closed two-
dimensional Schro¨dinger-type equation for the wave func
tion of the surface waves in which the coupling of surfa
waves with outgoing volume waves is taken into account
means of an imaginary part of an effective potential.13 As-
suming that the correlation length of the fluctuations is mu
smaller than the wavelengthl52p/k0 , this equation has the
form

1

2h0
~«2D1ps

2!c2@hss~x!1Sv#c50. ~15!

Here the random functionhss(x) has the same power spe
trum R̂(p) as h(x) in the vicinity of p52ps and the com-
plex nonrandom part of the potential,Sv , is given by
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Sv5E
upu<k0

dp

~2p!2 R̂~ up2ku!G0v~p!, ~16!

whereuku5ps , andG0v is the Green’s function of the three
dimensional wave equation~1! with h05const andh50,
evaluated at the surfacez50:

G0v~p!5
1

iAk0
22p21h0

.

Once the approximate surface Schro¨dinger equation~15! has
been obtained, one can get the Bethe-Salpeter equatio
correlations of surface wave functions and then simplify t
to a surface transport equation in the high frequency lim
The result is Eq.~24! below.

Here we take a different approach, going directly fro
Eq. ~12! to the transport equation for surface waves in
high-frequency limit and bypassing the approximation~15!,
the Bethe-Salpeter equation for it, and its high-frequen
limit. This allows us to identify the relations between th
wavelength, the correlation length, and the relative stren
of the impedance fluctuations that lead to the transport
gime for surface waves and to avoid intermediate appro
mations. In particular, the assumptionklcor!1, which is not
necessary in the regime we consider here, was essentia
the derivation of Eq.~15!. Moreover, we have also allowe
the backgroundh0(x) to be nonuniform on a scale larg
compared to the wavelength, when an explicit expression
the Green’s function used in the derivation of Eq.~15! is not
available. In this regime the coherent interaction of multip
scattered waves is negligible and so are localization effe
They can be considered by analyzing Eq.~15! as a two-
dimensional Schro¨dinger equation with random potential a
is done in Ref. 13.

III. TRANSPORT EQUATION FOR SURFACE WAVES

We will derive the radiative transport equation for surfa
waves starting from the Wigner distribution6 for the surface
wave functionc«(x) satisfying Eq.~12!. It is a function of
position x and wave vectork, and it is scaled with the pa
rameter« of Eq. ~6!:

W«~x,k!5E
R2

dy

~2p!2 eik•yc«S x2
«y

2 D c̄«S x1
«y

2 D ,

x,kPR2. ~17!

The Wigner distribution has many useful properties. It
real, its weak limit as«→0 is a non-negative distribution
and energy and flux density may be expressed as

uc«~x!u25E dk W«~x,k!,

i«

2
@c«¹c̄«2c̄«¹c«#5E kW«~x,k!dk,

respectively. It is customary to interpretW«(x,k) as an en-
ergy density in phase space in the high-frequency limit, e
though only its limit ase→0 is positive. Detailed math
ematical properties of the Wigner distribution may be fou
for
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in Refs. 6 and 7 and references cited therein. We note
the weak limit«→0 is equivalent to the ladder approxima
tion in many situations when other diagrams are negligi
because of phase cancelations.

We obtain an exact equation forW«(x,k) using Eq.~12!
and the definition~17!:

E E dx8dk8

~2p!4 eik•x81 ix•k8v̂~k8,x8!W«S x1
«x8

2
,k2

«k8

2 D
5A«E dp

~2p!2 eip•x/«ĥ~p!W«S x,k2
p

2D , ~18!

which after using Eq.~13! becomes

E dx8

~2p!2 eik•x8f̂~x8!W«S x1
«x8

2
,kD

2 i E dk8

~2p!2 eik8•xĥ0~k8!W«S x,k2
«k8

2 D
5 iA«E dp

~2p!2 eip•x/«ĥ~p!W«S x,k2
p

2D . ~19!

We want to find the asymptotic behavior of the average^W«&
of the solution of this equation as«→0, which is the high-
frequency and weak-fluctuation regime. The small param
e appears in two different ways in this equation. In the ter
on the left thex and k arguments ofW« are shifted by an
ordere term. The small-e expansion for these terms is just
Taylor expansion. The term on the right is the random p
turbation, and the shift in the argument ofW« is not small,
while the Fourier exponentialeip•x/« is rapidly oscillating
and the whole term is of orderA«. To deal with this term we
introduce a two-scale expansion of the form

W«~x,k!5W~x,k!1A«W1~x,j,k!1«W2~x,j,k!1¯ ,

j5
x

«
, ~20!

with the leading termW(x,k) independent of the fast vari
able j. The elimination of the fast oscillatory dependen
can be also done by integrating~averaging! the ladder ap-
proximation of Bethe-Salpeter equation over an areauDxu
such thatl!uDxu! l sc.

28 We substitute now expansion~20!
into Eq. ~19! and obtain in the leading order in«

v~x,k!W~x,k!50 ~21!

or

f~k!W~x,k!5 ih0~x!W~x,k!. ~22!

It follows from Eq. ~22! that nontrivial solutionsW(x,k)
exist only for wave vectorsk defined by the dispersion equa
tion if(k)52h0(x). In other words, the Wigner distribu
tion W(x,k) is singular~a delta function! with support on the
set

S5$~x,k!: if~k!52h0~x!%,

which is a circle ink space centered at the origink50 of
radiusps(x)5Ak0

21h0
2(x) at every pointx on the surface.
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Physically, this means that only surface waves with wa
numberk5ps(x) are present in the leading order, and t
local wave numberps(x) is given by the expression abov
However, the higher-order terms in the expansion~20! con-
tain volume waves withk<k0 . They are generated by sca
tering of the surface waves and result in an effective non
sipative attenuation.

An asymptotic analysis, presented in detail in Appen
A, leads to the following transport equation for the avera
Wigner distribution^W&, which from now on we denote
again byW:

¹kv•¹xW~x,k!2¹xv•¹kW~x,k!

5E
upu.k0

dp

2p
R̂~k2p!@W~x,p!2W~x,k!#d„v~x,p!

2v~x,k!…22E
upu<k0

dp

~2p!2 R̂~k2p!

3ImF 1

v~x,p!2v~x,k!GW~x,k! ~23!

or, on using Eqs.~13! and ~21!,

k

h0
•¹xW~x,k!1¹xh0•¹kW~x,k!

5E
upu.k0

dp

2p
R̂~ up2ku!@W~x,p!2W~x,k!#d~Ak22k0

2

2Ap22k0
2!2E

upu<k0

dp

~2p!2 R̂~ up2ku!

3
2Ak0

22p2

k0
22p21h0~x!2 W~x,k!. ~24!

The left side of Eq.~24! describes the streaming of energ
in the phase space (x,k) along rays that are in general curve
for h0(x)Þconst. The rays satisfy

dX

ds
5

K

h0~X!
,

dK

ds
5¹xh0~X!,

so that the wave vectorK also changes along the ray
h0(x)Þconst. However, the rays are tangent to the setuK u2

5k0
21h0(X)2, on whichW(x,k) is supported.
The first term on the right side of the transport equat

~24! accounts for the scattering of surface waves into surf
waves with the sameuku5ps , but with different directions of
propagation in the planez50, and has a form standard fo
any transport equation, as in Eq.~23!. The second, absorp
tion term appears because surface waves undergo scatt
into outgoing volume waves with wave numbersk<k0 . The
latter, however, leave the surface after scattering and do
contribute to the production of scattered surface wav
Therefore this term in Eq.~24! is a pure loss term and th
loss rate is equal to22 ImSv with Sv defined by Eq.~16!.

Recall thatW(x,k) vanishes off the frequency shelluku
5ps , and hence we may look for solutions of Eq.~24! in the
form
e

s-

x
e

n
e

ing

ot
s.

W~x,k!5I ~x,f!d„k2ps~x!…, ~25!

with k̂5(cosf,sinf). When we substitute this form ofW
into Eq.~24!, the terms that involved8„k2ps(x)… on the left
side cancel and we obtain forI (x,f) the equation

k̂•¹xI ~x,f!1
h0

ps
~ k̂'

•¹xh0!
]I

]f

5
h0

2

ps
E

0

2p df8

2p
R̂~psuk̂2 k̂8u!@ I ~x,f8!2I ~x,f!#

1
2h0 Im Sv

ps
I ~x,f!, ~26!

wherek̂'5(2cosf,sinf) andSv is given by Eq.~16!. This
equation is the main result of this section.

Volume waves are generated only by scattering of surf
waves, and hence their energy is of orderO(«). This means
that for k<k0 , ^W0&vol5^W1&vol50, and the first nonzero
term in the expansion of the Wigner distribution for volum
waves is^W2&. At the surface (z50) this is equal to

^W2&vol~x,z50,k!5
1

Im@v~x,k!#
E dp

~2p!2 R̂~p2k!

3W~x,p!ImF 1

v~x,p!2v~x,k!G ,
~27!

or, on using Eqs.~13! and ~21!,

^W2&vol~x,z50,k!5E dp

~2p!2

R̂~ uk2pu!
p22k2 W~x,p!,

k<k0 , ~28!

or, using Eq.~25!,

^W2&vol~x,z50,k!5
ps

ps
22k2 E df

~2p!2

3R̂~ uk2psp̂u!I ~x,f!,

p̂5~cosf,sinf!.

Here I (x,f) is the solution of Eq.~26!, that is, the intensity
of surface waves at the pointx, propagating in the direction
f. We see that in the absence of dissipation, energy is c
served. The loss of surface wave energy coming from the
term in Eq.~26! is due solely to its transformation into rad
ating volume waves in the upper half space.

IV. EFFECT OF THE POWER SPECTRUM

In order to compare the strength of scattering and leak
of surface waves in the transport equation~26!, we introduce
the scattering and radiation lengths defined by
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l sc
215

h0
2

ps
E

0

2p df8

2p
R̂~psuk̂2 k̂8u!,

l rad
215

h0g

ps
5

2h0

ps
E

upu<k0

dp
Ak0

22p2

h0
21k0

22p2 R̂~ up2ku!,

~29!

where uku5ps and g522 ImSv . These expressions sho
an important difference that exists between the tw
dimensional case we consider here and the one-dimens
case considered in Ref. 13. Both exhibit an exponential
cay of energy~because of both localization and leakage
one dimension, and only due to leakage in two dimensio!.
However, while in the one-dimensional case scattering
surface waves into themselves may be easily suppresse
choosing a power spectrum supported away fromp50 and
p52ps , which makesl sc→` in the one-dimensional case
while keepingl rad finite, this mechanism does not apply
two dimensions. In the latter case total suppression of
surface wave scattering requires a power spectrum suppo
away from the whole interval 0<p<2ps , which will also
suppress the leakage into the volume by making bothl sc and
l rad tend to infinity. It is easier in the two-dimensional case
control the leakage of surface waves into volume by cho
ing a power spectrum that is supported outside the inte
ps2k0<p<ps1k0 . Then l sc is finite, while l rad→`, and
energy does not decay exponentially as a function of
propagation distancer, but rather behaves as 1/r for larger.

Both the scattering and radiation lengths may be co
puted explicitly ford-correlated fluctuations ofh(x), R(x)
5s2d(x/ l cor):

l sc
215

h0
2

ps
~s l cor!

2,

l rad
215

h0~s l cor!
2

pps
Fk02h0 tan21

k0

h0
G , ~30!

so that

FIG. 1. The ratiol sc/ l rad defined by Eq.~29! for the power
spectrum~32! as a function ofD5k0 /h0 with s51 and various
values ofp0 : ~a! Solid line for thed-function correlation;~b! p0

50, dash-dotted line;~c! p05ps , dashed line; and~d! p053ps ,
dotted line.
-
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l sc

l rad
5

1

p
~z2tan21 z!, z5

k0

h0
. ~31!

Therefore, in thed-correlated case scattering dominates le
age for wave numbersk0!h0 , while for high wave numbers
k0@h0 leakage dominates scattering.

In Figs. 1–4 we present numerical results for the ra
l sc/ l rad for power spectra of the form

R̂~p!5Cexp@2s~p2p0!2# ~32!

for various values ofs andp0 . Scattering dominates leakag
when k0 /h0!1 for a wide range of parameterss and p0 ,
while the converse is true fork0 /h0@1, as we noted above
for the d-correlated case. Leakage is strongest when,
power spectrum is centered atp05ps as is also clear from
the definition ofl rad. Indeed, leakage is produced by scatt
ing of a surface wave with wave vectork on the circle of

FIG. 2. The ratiol sc/ l rad defined by Eq.~29! for the power
spectrum~32! as a function ofD5k0 /h0 with s55 and various
values ofp0 , and d-correlated: ~a! Solid line for thed-function
correlation;~b! p050, dash-dotted line;~c! p05ps , dashed line;
and ~d! p053ps , dotted line.

FIG. 3. The ratiol sc/ l rad defined by Eq.~29! for the power
spectrum~32! as a function ofD5k0 /h0 with p050 for various
values ofs: ~a! s50.1, solid line;~b! s55, dashed line; and~c!
s510, dash-dotted line.
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radiusps into a volume wave with wave vectorp inside the
disk of radiusk0 centered atk50 with the probability of
such an event being proportional toR̂(k2p). This probabil-
ity is enhanced ifR̂(p) has a maximum atp5ps . We also
see that there are two ways to increase the radiation le
relative to the scattering length for a given ratiok0 /h0 . First,
with a power spectrum of the form~32! and with large
enoughs, for some fixedp0 , as Figs. 3 and 4 show. Thi
will both reduce leakage into volume waves and make s
face wave scattering be mostly forward in the casep050.
Another way, which seems to be more efficient, is to fix t
variances and let the centering parameterp0 be sufficiently
large, as can be seen by comparing these figures with Fig
and 2. This would produce mostly backward scatteri
However, while using the tails of Gaussian power spec
tends to reduce leakage, the constantC in Eq. ~32! has to be
very large to make scattering significant.

V. TRANSMITTED DISTRIBUTION AND DIFFUSION
LIMIT

There exist several numerical methods to solve Eq.~26!
and we refer to Ref. 22 for details. The main difficulty lies
the large number of degrees of freedom, 2 in space (x) and 1
in the direction of propagation~k! for each frequency. We
consider in this section an approximation to the transp
equation which is valid in the diffusive regime. It is we
known23,24,6 that the energy density diffuses more than
transports when the following conditions are satisfied:~i! the
scattering length, or mean free path, is small compared to
distance of propagation, and~ii ! the absorption length is
large compared to the distance of propagation. We have
in Sec. IV that these requirements can be satisfied for s
cific power spectra and frequencies.

To simplify the presentation we consider here a flat pow
spectrumR̂5M and strip geometry. That is, we assume th
the surface is unperturbed outside of a strip of widthL with
its boundaries perpendicular to thex axis. We also assum
thath05const. The thickness of the slabL is large compared

FIG. 4. The ratiol sc/ l rad defined by Eq.~29! for the power
spectrum~32! as a function ofD5k0 /h0 with p053ps for various
values ofs: ~a! s50.1, solid line;~b! s51, dashed line; and~c!
s55, dotted line.
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to the scattering length, that is,

l sc5
2pps

h0
2M

!L,

where l sc is the transport mean free path. The absorpt
length is also much larger than bothl sc andL, and is given by

l rad5
1

l scg
5

ps

2h0uIm Svu
.

In particular, we have in the above scaling

l scl rad*L2.

We consider propagation of a surface wave through a r
dom surface layer occupying an interval@0,L# ~see Fig. 5!
and are interested in the asymptotic distribution of the o
going energy densityWout(L,m) radiated out from this layer
given the incident energy distributionWin(0,m), where m
5cosf and f is the angle between the direction of prop
gation and thex axis,mP@21,1#. In this notation the radia-
tive transfer equation~26! takes the form

m]xW~x,m!1 l scgW~x,m!

1
1

l sc
S W~x,m!2

1

p E
21

1 W~x,m8!

A12~m8!2D 50,

W~0,m!5Win~m! for 0,m,1, ~33!

W~L,m!50 for 21,m,0, ~34!

where W(x,m) is the energy density at positionxP(0,L)
propagating with direction cosinemP@21,1#. We assume
that no energy enters the domain atx5L, which means that
the outgoing distribution is given byWout(m)5W(L,m) for
0,m,1.

To calculate the distributionWout in the diffusion regime,
we write an asymptotic expansion of the transport equa
~33! and its solutionW(x,m) in the form

FIG. 5. Slab geometry.
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S 1

l sc
L01L11 l scL2D FW01 l scW11 l sc

2 W21 l sc
3 W3

1bl sc

0 S x

l sc
,m D1bl sc

L S L2x

l sc
,m D1O~ l sc

4 !G50 ~35!

~W01 l scW11 l sc
2 W21 l sc

3 W3!~0,m!1bl sc

0 ~0,m!1O~ l sc
4 !

5Win~m!, 0,m,1,

~W01 l scW11 l sc
2 W21 l sc

3 W3!~L,m!1bl sc

L ~0,m!1O~ l sc
4 !

50, 21,m,0,

wherebl sc

0 (y,m) andbl sc

L (y,m) are boundary layer terms de

fined for y>0 andmP@21,1# that decay exponentially fas
wheny→`. Each of these terms also satisfies an asympt
expansion of the form

bl sc
5b01 l scb11 l sc

2 b21 l sc
3 b31O~ l sc

4 !.

The operatorsLi for i 50,1,2 are given by

L0W~x,m!5W~x,m!2E
21

1

s~m8!W~x,m8!dm8,

L1W~x,m!5m]xW~x,m!,

L2W~x,m!5gW~x,m!,

where we have introduced

s~m!5
1

p

1

A12m2
. ~36!

The asymptotic analysis, presented in detail in Appendix B
shows that the leading-order termW0 is independent of the
directionm and has the form

W0~x!5W0~0!
exp~2A2gx!2exp@2A2g~2L2x!#

12exp~22A2gL !

;W0~0!
L2x

L
as g→0,

with

W0~0!5W̄in5
&

p E
0

1 m

A12m2
H~m!Win~0,m!dm. ~37!

For the outgoing distributionWout(L,m)5W(L,m) in the
first-order~in l sc! approximation, we obtain

Wout~L,m!5
l sc

&
H~m!@2]xW0~L !#1O~ l sc

2 !. ~38!

HereH(m) is Chandrasekhar’s function,25 which solves the
nonlinear equation

15H~m!E
0

1 m8s~m8!H~m8!

m81m
dm8. ~39!

We can rewrite Eq.~38! in the form
ic

,

Wout~L,m!5m̄ inH~m!
l scAg

sinhA2gL2

5ūinH~m!A l sc

l rad
F sinhSA 2L2

l scl rad
D G21

.

~40!

Expression~40! provides a physical interpretation of Cha
drasekhar’sH function, for it is, up to some constant, th
outgoing distribution of radiation for a source term located
infinity. This is also known as the law of darkening25 or the
Milne problem.26

We present now numerical calculations of the vario
quantities involved in the above derivation. It is interesti
to compare them with their analog in three dimensions,
tained by replacings~m! in Eq. ~36! by 1. The computation
of theH function is obtained by solving Eq.~39!, which was
already given for three dimensional problems in Ref. 25. W
have plotted in Fig. 6 theH functions in two and three di-
mensions for isotropic scattering. The constanta51/& in
two dimensions that appears in the definition~38! of Wout is
replaced by 1/) is three dimensions. Therefore, the tran
mitted flux is larger in two dimensions than in three dime
sions, even though theH function is slightly smaller in two
dimensions than in three. This is compatible with the e
trapolation lengthLex5L(m) that appears in Eqs.~B7! and
~B8!. The extrapolation length gives the energy density
the diffusion approximation atx5L. Approximate values of
Eq. ~B12! in 2D and 3D are

Lex
2D;0.8164, Lex

3D;0.7104, ~41!

respectively.
These values for the extrapolation lengths were obtai

from the asymptotic analysis of the boundary layer in tra
port theory. It is interesting to compare them with the cla
sical approximation of the extrapolation lengths obtained
assuming that the diffusion regime is valid up to the boun
ary. ConsiderW linear in m ~diffusion approximation!,
W(x,m)5W0(x)2m]xW0(x). We set herel sc51 for sim-
plicity. The boundary conditionW(L,m)50 for m,0 can-
not be satisfied exactly sinceW0(x) does not depend onm.

FIG. 6. Chandrasekhar’sH functions in two ~solid line! and
three~dash-dotted line! dimensions.
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This requires a boundary layer and is done carefully in A
pendix B. However, this boundary condition can be satisfi
on average. Multiplying the transport equation~33! by
s(m)u(x), whereu is a test function, and integrating ove
(0,L)3(21,1) yields

E
0

LE
21

1

~m]xWu1gWu!s dx dm50.

Assume thatu(0)50. We have after integrating by parts

E
0

LE
21

1

~2mW]xu1gWu!s dx dm1E
21

1

msW~L !u~L !dm

50.

The condition that the mean incoming flux be zero is

E
21

0

ms@W0~L !2m]xW0~L !#dm50.

With s given by Eq.~36! this is equivalent to

W01
p

4

]W0

]x
50.

In 3D, wheres51, the constantp/4 is replaced by 2/3.
Therefore, we have in the diffusion regime the followin
approximations for the extrapolation lengths:

Ldiff
2D 5

p

4
;0.7854, Ldiff

3D 5
2

3
;0.6667, ~42!

which are rather close to the asymptotically exact extrap
tion lengths given in Eq.~41!.

VI. CONCLUSIONS

We have studied analytically and numerically transp
and diffusion of surface waves on random interfaces. St
ing from the general three-dimensional wave equation w
impedance boundary conditions, we derived the radia
transport equation~23! for surface waves on a flat surfac
with randomly fluctuating impedance. The transport equat
accounts for both scattering of surface waves and leak
into volume waves that results in an effective loss of surf
waves. The scattering cross section and the ‘‘absorptio
length are expressed in terms of the power spectrum of
random fluctuations. We have studied the effect of the po
spectrum on the relative strengths of scattering and leak
and we have examined ways to decrease leakage by cho
an appropriate power spectrum, in particular by shifting
peak. We have also considered the diffusion approximat
which is valid when the scattering mean free path is mu
smaller than the absorption length, which must in turn
much larger than the propagation distance. We have obta
an analytical expression for the angular distribution of
energy of surface waves transmitted through a strip of r
dom impedance in this regime. We have also computed
extrapolation length~41! for the diffusion approximation,
which provides asymptotically correct boundary conditio
for the diffusion equation.
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APPENDIX A: DERIVATION OF THE TRANSPORT
EQUATION

We present now the perturbation analysis of Eq.~18!. It is
convenient to take the imaginary part of Eq.~18! using the
fact thatWe andh are real valued:

E dx8dkb

~2p!4 @eik•x81 ix•k8v̂~k8,x8!

1e2 ik•x82 ix•k8v̂̄~k8,x8!#WeS x1
ex8

2
,k2

ek8

2 D
5AeE dp

~2p!2 eip•x/eĥ~p!FWeS x,k2
p

2D
2WeS x,k1

p

2D G . ~A1!

The leading-order term@O(1)# in Eq. ~A1! is simply the
imaginary part of Eq.~21!. The orderO(Ae) term in Eq.
~A1! is

E dx8dk8

~2p!4 @eik•x81 ix•k8v̂~k8,x8!

2e2 ik•x82 ix•k8v̂̄~k8,x8!#W1S x,j1
x8

2
,kD

5E dp

~2p!2 eip•jĥ~p!FWS x,k2
p

2D2WS x,k1
p

2D G .
Therefore, the Fourier transform ofW1 in the fast variablej
is given by

Ŵ1~x,q,k!5
ĥ~q!@W~k2q/2!2W~k1q/2!#

v~x,k1q/2!2v̄~x,k2q/2!2 iu
. ~A2!

Hereu.0 is a regularization parameter. We shall later ta
the limit u→0.

We insert expression~A2! into the orderO(«) term in Eq.
~A1! and average. The left side of Eq.~A1! becomes then

S 1

2i
¹kv1

1

2i
¹kv̄ D •¹xW2S 1

2i
¹xv1

1

2i
¹xv̄ D •¹kW.

~A3!

We denoted herêW& by W again for simplicity. We average
the right side of Eq. ~A1! under the assumption tha
^hhW&'^hh&^W&, which is equivalent to the ladder ap
proximation in the diagram expansion. We will also assu
that statistical averages are equal to the the spatial aver
with respect to the fast variablej. These formal assumption
may be justified rigorously in the high frequency limit.9,8 The
second assumption implies that theO(«) term involvingW2
becomes
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K E dx8dk8

~2p!4 @eik•x81x•k8v̂~k8,x8!1e2 ik•x82 ix•k8v̂̄~k8,x8!#W2S x,j1
x8

2
,kD L 5@v~x,k!2v̄~x,k!#^W2~x,j,k!&50

~A4!

for k5ps sincev(x,k) is real for suchk. Therefore, we get in the orderO(«)

S 1

2i
¹kv1

1

2i
¹kv̄ D •¹xW2S 1

2i
¹xv1

1

2i
¹xv̄ D •¹kW5 K E dp

~2p!2 eip•xĥ~p!FW1S x,k2
p

2D2W1S x,k1
p

2D G L . ~A5!
d
r

e

in
We insert expression~A2! into the right side of Eq.~A5!
and use Eq.~4! to obtain that it is equal to

E dp

~2p!2 R̂~k2p!@W~p!2W~k!#

3F 1

v̄~x,k!2v~x,p!1 iu
1

1

v̄~x,p!2v~x,k!1 iuG .
~A6!

We split the above integral in two parts:

E 5E
upu,k0

1E
upu>k0

. ~A7!

In the first regionv(x,p) has a nonzero imaginary part an
W(x,p)50, while in the secondv(x,p) is real andW(x,p)
Þ0. Furthermore,v(x,k) is real sinceW(x,k) vanishes out-
side the frequency shellk5ps , and thusk.k0 . Then the
first term in Eq.~A7! is

2E
upu<k0

dp

~2p!2 R̂~k2p!W~k!F 1

v~x,k!2v~x,p!

1
1

v̄~x,p!2v~x,k!G
52i E

upu<k0

dp

~2p!2 R̂~k2p!

3ImF 1

v~x,p!2v~x,p!GW~x,k!. ~A8!

The integral over the second region in Eq.~A7! is
E
upu>k0

dp

~2p!2 R̂~k2p!@W~p!2W~k!#

3F 1

v~x,k!2v~x,p!1 iu
1

1

v~x,p!2v~x,k!1 iuG
5E

upu>k0

dp

~2p!2 R̂~k2p!@W~p!2W~k!#

3
~22iu!

@v~x,k!2v~x,p!#21u2

→~2 i !E
upu>k0

dp

~2p!

3R̂~k2p!@W~p!2W~k!#d@v~x,p!2v~x,k!#

~A9!

asu→0. Combining expressions~A8! and~A9! for the right
side of Eq.~A5! yields the radiative transport equation fo
the average Wigner distribution:

¹kv~x,k!•¹xW~x,k!¹xv~x,k!•¹kW~x,k!

5E
upu>k0

dp

2p
R̂~ up2ku!@W~x,p!2W~x,k!#

3d@v~x,p!2v~x,k!#22E
p<k0

dp

~2p!2

3R̂~p2k!ImF 1

v~x,p!2v~x,k!GW~x,k!,

which is Eq.~23!.
We derive now expression~28! for ^W2&vol for k<k0 ,

that is, for the angular distribution of the energy for volum
waves at the surfacez50. Once again we average Eq.~A1!,
but now for k<k0 , and not fork5ps . Recall thatW(x,k)
vanishes fork<k0 and therefore the leading order term
Eq. ~A1! is O(e). It is given by
@v~x,k!2v̄~x,k!#^W2&vol~x,k!5 K E dp

~2p!2 eip•jĥ~p!FW1S x,j,k2
p

2D2W1S x,j,k1
p

2D G L . ~A10!
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The left side is the same as in Eq.~A4!. It does not vanish
now sincev(x,k) has a nonzero imaginary part fork,k0 .
The right side of Eq.~A10! is given by Eq. ~A6! with
W(x,k)50:

E dp

~2p!2 R̂~k2p!W~x,p!F 1

v̄~x,k!2v~x,p!

2
1

v~x,k!2v̄~x,p!G . ~A11!

Then Eq. ~28! follows from Eqs. ~A10! and ~A11! since
v(x,p) is real.

APPENDIX B: THE OUTGOING DISTRIBUTION

1. Perturbation analysis

We now carry out the asymptotic analysis of Eq.~35! that
leads to Eqs.~37! and~38!. Upon equating like powers ofl sc
in Eq. ~35!, and knowing the boundary layer terms dec
exponentially fast, we obtain the following equations insi
the medium:

~ i! L0W050,

~ ii ! L0W11L1W050,

~ iii ! L0W21L1W11L2W050,

~ iv! L0W31L1W21L2W150. ~B1!

The boundary conditions are given by

~ i! W0~0,m!1b0
0~0,m!5Win~m!, 0,m,1,

~ ii ! Wi~0,m!1bi
0~0,m!50, 0,m,1, 1< i<3,

~ iii !Wi~L,m!1bi
L~0,2m!50, 21,m,0, 0< i<3.

~B2!

The boundary layer termsbj
0,L are solutions of the half-

space problem

mbx1b2E
21

1

s~m8!b~x,m8!dm850, ~B3!

and are decaying exponentially asx→`. We will use below
two important facts associated with Eq.~B3!. First, it is
known27 that for a bounded incoming fluxb(0,m)5g(m) for
Eq. ~B3!, 0,m,1, the solutionb(x,m) converges exponen
tially rapidly to a constantb` asx→`. We let

b`5L~g!, ~B4!

whereL is the linear functional that maps the incoming flu
onto the solution at infinity. We require thatb`50 for the
boundary layersb0,L. That is, the boundary layer terms dec
to 0. Second, we define the response operatorR by

R@g#~m!5b~0,2m!, 0,m,1, ~B5!

which maps the incoming flux onto the outgoing one.
Solving the above equations gives the asymptotic beh

ior of the energy densityWl sc
and that of its outgoing distri-
v-

bution Wout. Provided that the initial distributionWin(m) is
regular, all asymptotic expansions can be justifi
rigorously.23,30 We deduce from~i! in Eqs.~B1! that

W0~x,m!5W0~x!.

This means that the leading term in the expansion is actu
independent of the direction of propagation away from
boundaries. This does not hold in the vicinity of the interfa
x50 since the boundary condition~i! of Eqs.~B2! must be
satisfied, which is impossible without the introduction of t
boundary layer termb0

0. The only way to have an exponen
tially decayingb0

0 is to impose the condition that

W0~0!5L~Win!, ~B6!

with the linear functionalL defined in~B4! above. Expres-
sion ~B6! and the explicit expression~B12! for the linear
functional L given below lead to the boundary conditio
~37!. Since there is no incoming energy atx5L, we have
b0

L[0 and the second boundary condition

W0~L !50.

We now consider~ii ! in Eqs. ~B1!. Since*21
1 ms(m)dm

50, we deduce thatW1 is given by

W1~x,m!52m]xW0~x!1W10~x!,

whereW10 is still undetermined, but depends only onx. The
boundary condition~ii ! in Eqs.~B2! at x50 gives

2m]xW0~0!1W10~0!1b1
0~0,m!50.

Exponential decay forb1 is possible provided that

W10~0!5L~m!]xW0~0!, ~B7!

with the linear functionalL defined in Eq.~B4!. A similar
relation atx5L yields

W10~L !52L~m!]xW0~L !. ~B8!

Since *21
1 (L0W2)(x,m)s(m)dm[0 independently of

W2 , we deduce from ~iii ! in Eqs. ~B1! that
*21

1 (2m]xm]xW01gW0)s(m)dm50, which gives the dif-
fusion equation

2
1

2
W091gW050,

W0~0!5L~Win!, W0~L !50, ~B9!

since*21
1 m2s(m)dm51/2. The solution to this equation i

given by Eq.~37!:

W0~0!
exp~2A2gx!2exp@2A2g~2L2x!#

12exp~22A2gL !

;W0~0!
L2x

L
when g→0.

The derivative atx5L that enters Eq.~38! is
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]xW0~L !52
W0~0!

L
exp~2A2gL !

2A2gL

12exp~22A2gL !

;2
W0~0!

L
when g→0. ~B10!

We do not analyze the boundary conditions in Eqs.~B2! for
b2

0 andb2
L since they are not involved in the leading term

the expansion forWout.
It remains to find an equation forW10 so as to complete

the description of the terms of orderl sc. This is done by
averaging~iv! of Eqs. ~B1! multiplied by s~m! in m over
@21, 1#, which gives

1

2 E21

1

L1W2s~m!dm1gW1050.

However, part~iii ! of Eqs.~B1! implies that

1

2 E21

1

m
]W2

]x
dm52

1

2
W109 ,

so we get diffusion equation forW10:

2
1

2
W109 1gW1050,

W10~0!5L~m!]xW0~0!, W10~L !52L~m!]xW0~L !.

This equation can be solved sinceW0 is known.
We are now ready to calculate the leading term in

asymptotic expansion ofWout. SinceW0(L)50, bL(0)50,
andb0(L/ l sc) is exponentially small,Wout is at most of order
l sc. The term of orderl sc does not vanish and is given by

W1~L,m!1bL~0,m!

52m]xW0~L !1W10~L !1bL~0,2m! for 21,m,1

The boundary condition forbL(y,m) at y50 is

bL~0,2m!5m]xW0~L !2W10~x! for 21,m,0,

that is,

bL~0,m!52m]xW0~L !2W10~x! for 0,m,1,

since the total incoming flux atx5L is zero. Therefore, we
have that

bL~0,m!52R@m#~2m!]xW0~L !2W10~x!

for 21,m,0,

sinceR@1#(m)[1. HereR@g# is the response operator d
fined in Eq.~B5!. In other words, we obtain that, for 0,m
,1,

Wout~m!5 l sc@2m]xW0~L !1W10~L !2R@m#~m!]xW0~L !

2W10~L !#1O~ l sc
2 !

5 l sc@R@m#~m!1m#@2]xW0~L !#1O~ l sc
2 !. ~B11!

To computeWout numerically we need the linear func
tional L to determineW0(0) and the response operator a
e

ing on m: R @m#. Because of the relative simplicity of th
linear transport equation in homogeneous half space, no
merical solution of the transport equation is actually nec
sary. We show in Appendix B 2 that the linear functionalL
is given by

L~ f !5
1

a E
0

1

ms~m!H~m! f ~m!dm, ~B12!

whereH(m) is Chandrasekhar’s function, the solution of E
~39!, anda is defined by

a5A2E
0

1

m2s~m!dm5
1

&
. ~B13!

In Appendix B 2 we show also that the functionR@m#(m) is
given by

R@m#~m!5aH~m!2m ~B14!

and from this and Eq.~B11! we obtain expression~38! for
the outgoing distributionWout(m).

2. Half-space problem

We present here the part of the perturbation analysis
leads to the half-space transport problem and analyze
get Eqs.~B12! and~B14!, and derive also Eq.~39! for Chan-
drasekhar’s function. Half-space problems have been stu
extensively in the physical25,29 and mathematica
literature.30,31,32,33,34Close to the boundary, the volume equ
tions ~B1! have to be modified to account for the bounda
layers. The term of orderl sc

21 in Eq. ~35! near the boundary is
given by

L0W01L0~b0
01b0

L!1m]y@b0
0~y,m!1b0

L
„~L2y!,2m…#50

instead of~i! in Eqs.~B1!. SinceL0W050 and the boundary
layers are exponentially decaying, we have

m]yb0
0~y,m!1L0b0

0~y,m!50 for y.0

and mP@21,1#,

b0
0~0,m!5Win2W0~0!.

and a similar equation forb0
L .

We want to analyze the half-space problem

m]yb1b2^sb&50 in R13@21,1#,

b~0,m!5g~m! for 0,m,1. ~B15!

Here ^•& means averaging inm over @21, 1#:

^ f &5E
21

1

f ~x,m!dm,

ands~m! is a positive function defined on@21, 1# satisfying
^s&51 ands(2m)5s(m), like, for instance, the function
~36!. We know from Refs. 23, 27 and 30–32 that Eq.~B15!
admits a unique bounded solution, which converges ex
nentially fast asy→` to a constant

b`5L~g!.
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This defines the linear functionalL: L`(0,1)→R. The re-
flection operatorRPL„L`(0,1)… is denoted by

R@g#~m!5b~0,2m! for 0,m,1.

We now want to derive more explicit formulas for the refle
tion operatorR and the linear functionalL. Let l~m! be the
solution of Eq.~B15! with g(m)5m. It is easily seen tha
l1(y2m) satisfies Eq.~B15! with g(m)50. Let us note,
however, thatl1(y2m) is not uniformly bounded. We
verify that w(m)5s(m)@l(2m)1y1m# solves the equa
tion

2m]y1w2s~m!^w&50 for y.0 and mP@21,1#,

w~0,m!50 for 21,m,0. ~B16!

The functionw actually solves an adjoint equation to E
~B15!. Let us now multiply Eq.~B15! by w and Eq.~B16! by
b, and subtract the latter from the former. Integratingdydm
over (0,x)3@21,1# yields

^mb~x,m!w~x,m!&5^mb~0,m!w~0,m!&.

This relation is valid for allx>0. Lettingx→` yields

b`^mw&5E
0

1

mg~m!w~0,m!.

We easily check that̂msl&5^ms&50. Therefore^mw&
5^sm2&. Moreover, w(0,m) is given for 0,m,1 by
s(m)@R@m#(m)1m# by definition ofl~m!. Defininga as in
Eq. ~B13! yields Eq.~B12!:

L~g!5
1

a E
0

1

ms~m!H~m!g~m!dm, ~B17!

where Chandrasekhar’s functionH(m) is given by

H~m!5
1

a
$m1R@m#~m!%. ~B18!
r-

ia

v

-

It remains to derive Eq.~39! for Chandrasekhar’s func
tion, defined by Eq.~B18!. In order to do so we derive a new
relation between the response operatorR and the functionH
that also allows us to solve them easily numerically.

Let b be the solution of Eq.~B15!, which converges tob`

when y→`. Let v be the solution of Eq.~B15! with g(m)
replaced bymg(m). We denote byu the function

u~y,m!5mb~y,m!2E
0

y

^sb&~s!ds. ~B19!

We verify thatm]xu1u2^su&50. Let

z~y,m!5v~y,m!2u~y,m!1b`~m2y!. ~B20!

We verify thatz solves Eq.~B15! with boundary condition
g(m)5b`m. Sinceb converges tob` exponentially, we see
that z(y,m) is bounded. Therefore, we can consid
R@z(0,m.0)#. Using Eq.~B20!, the response operator ca
be expressed in two different ways:

z~0,m,0!5b`R@m#~2m!

5R@mg#~2m!2mR@g#~2m!1b`m.

In other words, we have according to Eq.~B18! that

R@mg#1mR@g#5b`aH.

Sinceb`5L(g), we deduce from Eq.~B17! that

R@mg#~m!1mR@g#~m!5H~m!E
0

1

ms~m!H~m!g~m!dm.

~B21!

This relation holds for every functiong. Consider now
g(m)5(m1m0)21 for some fixedm0P@0,1# and apply Eq.
~B21! at pointm5m0 . SinceR@1#51, we obtain

15H~m!E
0

1 m8s~m8!H~m8!

m81m
dm8.

This is relation~39!.
.
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