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We study transport and diffusion of classical waves in two-dimensional disordered systems and in particular
surface waves on a flat surface with randomly fluctuating impedance. We derive from first principles a
radiative transport equation for the angularly resolved energy density of the surface waves. This equation
accounts for multiple scattering of surface waves as well as for their decay because of leakage into volume
waves. We analyze the dependence of the scattering mean free path and of the decay rate on the power
spectrum of fluctuations. We also consider the diffusion approximation of the surface radiative transport
equation and calculate the angular distribution of the energy transmitted by a strip of random surface
impedance.

[. INTRODUCTION conclusion of the scaling theory of conductivity, that all elec-
tron states in two-dimension&2D) disordered systems are
The propagation of wave energy in random media can béocalized:®**Recently, however, the generality of this result
analyzed with radiative transport theory in the regime offi@s been questioned because a metal-insulator transition has
weak random fluctuations and propagation distances that aR$€n observed experimentally in two-dimensional electronic
long compared to the wavelength. This transition of waves t‘i?;sstgirgj(staels&fr%%eei(ganngglce’ofglfgls)izov(\)/a?/r:ai)Ztﬁet?oecgﬁzsaetig;
transport has been explqred for more than 30 yearén length for 2D surface excitations can bé much longer than
equation for the correlation of wave functions, the Bethe

Salbet tioh be obtained using di ¢ h'the scattering mean free path and, in contrast to one-
alpeter_equation,can be obtain€d using diagram 1ech- 4;ensional propagation, there exists a range of distances

niques. For propagation distances that are long compared {gnere the localization effects are not important and transport
the wavelength and for weak fluctuations, the Bethe-Salpeteit energy takes place.

equation simplifies to a radiative _transport.e.queﬁitmthe In this paper we derive from first principles a radiative
ladder approximation. A systematic and efficient way to ob-transport equation for scalar surface waves on a flat surface
tain transport equations directly from random wave equawith randomly varying impedance. We give explicit expres-
tions is presented in Refs. 6 and 7. The mathematics behinglons for the scattering cross section of surface waves as well
the asymptotic limit involved in this process is explored in as the leakage rate to volume waves in terms of the statistics
Refs. 8 and 9. A recent collection of interesting papers orof the impedance fluctuations. We also analyze the surface
various aspects of waves in random media is given in Reftransport equation in the small mean free path limit and ob-
10. tain a formula for energy transmission by a strip of random
Propagation of surface waves on a randomly inhomogesurface impedance.
neous surface is a typical example of propagation in a two- The radiative transport equation for the angularly resolved
dimensional random medium. Its study is of considerablesurface wave energy densiy(x,k) is given by Eq.(24) in
interest both for the many app”cations in e|ectroniCS, acougsec. ”l In Sec. IV we discuss the relative Strength of Surface
tics, and solid-state physics, and for the understanding of thecattering versus leakage to volume waves for different
effects of dimensionality on general optical and quantumPower spectral densities of the impedance quptua_Uons. ]n
mechanical disordered systems. Surface excitations on roughC: V We analyze the small mean free path, diffusion limit
surfaces have been analyzed extensively since the earf)f the transport equation. The main result is form(4d),
1980s!! Interest in this problem accelerated, and is still sig-Which gives the angular distribution of surface wave energy
nificant, after it was realized that the backscattering enhancdt@nsmitted by a strip of random surface impedance. In Ap-
ment from slightly(compared to the wavelengtperturbed pendix A we explain briefly the fqrmal perturbat|o_n analysis
surfaces is due to the coherent interference of multiply scathat leads to the transport equatit#). In Appendix B we
tered surface wave€-15As a result, coherent surface effects 9iVe @ brief presentation of the diffusion approximation for
and in particular the localization of surface waves have beef1€ transport equation in a strip. Diffusion approximations
studied in detait?1613Backscattering enhancement from the @ré analyzed in various contexts in Refs. 22-27.
coherence of the double scattering of surface polaritons on a
weakly random boundary is considered in Ref. 17. Surpris-
ingly, little is known about the transport regime in two di-  We start from the three-dimensional wave equation
mensions and the diffusion of surface excitations on random
interfaces. Part of the reason for this may be the well-known AV +Ki¥=0, z>0, (1)

Il. HIGH-FREQUENCY SURFACE-WAVE PROBLEM
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whereW is a component of the electric field of a monochro- e?AW, + kS‘PfO, z>0, (7)
matic (with frequencyw) electromagnetic wave in a spatially
homogeneous dielectric medium withthe speed of light in

vacuum andky=w/c. Scalar surface waves propagating €
along the plane=0 are solutions of Eq(l) subject to the
impedance boundary conditions i=— 7, (X)V_(x,0). (8)

&€

Jz

O e |

FA Here we have also replacegi— /e, consistent with Eq.
-7 —Hxy)¥, z=0, (2)  (6), regarding the strength of the fluctuations.

We assume that solutions of E@®) are outgoing or de-
which decay exponentially in the upper half-space0. caying waves at infinity so that the functidh, (x,z) has the
HereH is the surface impedance that we assume to have thierm
form

dk . ,
HO)==70(x) = 7(x), x=(xy), 3 Vo(x2)= fﬁz—zzﬂ elfoxrietonleg (k), (9

where 79(x) >0 is the nonrandom part ang(x) models the  \yhere ¢p(k) is given by
impedance perturbations that may by caused by fluctuations

of the dielectric constant of the background media or by | ~/kc2)—k2, [k|<kq
small surface roughness. We allow consideration of a d(K)=1{ .
coordinate-dependent impedanggx), but this dependence iVk*=ky,  [kI>ko
should be slow compared to the wavelength so that the stafRe the boundary conditiof8) implies that the amplitudes
dard high-frequency approximation is valid for surfacepg (k) satisfy the equation

waves when the fluctuations are zero. We assume that the®
fluctuations(x) have mean zerq,7(x))=0, and are spa- dq

tially homogeneous and isotropic random process with the i p(K)Bg(k)=— f W%(Q)Bs(k—w), (13)
correlation functionR(x),

(10

which we rewrite as
(n(x)n(y))=R(|x=yl]),

N d -
and power spectrurR(k), i p(ek) i (K)=— f %%(Q)l/f‘g(k—cﬂ, (12
1 ~ . .
)3 _£ whereys (k) stands for the Fourier transform of the function
(2m2 (1P k) =R S(p+k), () =W, (x,0). If we definew(x,k) by

w(X,K)==ip(k) = 79(x), (13

ﬁi(k)=f dye " R(ly|), k=|kl. (4) _ _
then we can write Eq12) in the form

We use the standard form of the Fourier transform:

f O e,k (0= Vo] &0, (19
(27) ' e g e

In the presence of random inhomogeneities 0, the sur-
Since 7 has dimensionglength ™!, we see that the power face waves undergo scattering both into surface and volume
spectral densityR is dimensionless. In the absence of fluc- waves. The second process produces effective decay of sur-
tuations [#=0 in Eq. (3)] and when, in addition,z, face waves even if the medium itself is lossless, since vol-
=const>0, Eq. (1) with the boundary condition€) admits ~ Ume waves propagate in a homogeneous medium.

. . dk . .
f(k)=f dx e " *f(x), f(x)=f(27)2e'k'xf(k).

surface-wave solutions of the form One way to treat surface wave scattering witf= const
_ is to approximate Eqg.(1) or (12) by a closed two-
W (x,z) =€k 07, dimensional Schdinger-type equation for the wave func-
with tion of the surface waves in which the coupling of surface

waves with outgoing volume waves is taken into account by
5) means of an imaginary part of an effective potenfttahs-

[K|?=pE=Kk5+ 5. : - e
suming that the correlation length of the fluctuations is much

We assume that the fluctuationgx) are weak smaller than the wavelengi=27/Ky, this equation has the
' form
e=R(0)/ 75<1, (6) L
20 4 2 _
and the wavelength and correlation lendty, are of the 2_7]0(8 A+pg)—[nsdx) +2,]¢p=0. (15

same order, which means that scattering has an appreciable

effect at distances of order . Therefore, we rescale the Here the random functioms(x) has the same power spec-
spatial variablec— x/&, and problen(1),(2) becomes, inres- trum R(p) as #7(x) in the vicinity of p=2p, and the com-
caled variables, plex nonrandom part of the potentid, , is given by
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dp . in Refs. 6 and 7 and references cited therein. We note that
Eu:f WRQP—H)GOU(P), (16)  the weak limits—0 is equivalent to the ladder approxima-
Ipl<ko tion in many situations when other diagrams are negligible
where|k|=ps, andG, is the Green’s function of the three- because of phase cancelations.

dimensional wave equatiofl) with zy=const andz=0, We obtain an exact equation f_(x,k) using Eq.(12)
evaluated at the surfaa=0: and the definition(17):
- f f IXAK” xrvixk g et 5 ex'’ ek’
Goy(p)= ——. € (k' X" YW, | X+ — k= —
0 (p) im+ o (277) 2 2

. - . d _
Once the approximate surface Sdtirmer equatior{15) ha§ — \/gf P 5 el ?7(p)WS<X,k— p , (18)
been obtained, one can get the Bethe-Salpeter equation for (2m) 2

correlations of surface wave _funqtions and then simplify_th_isWhich after using Eq(13) becomes
to a surface transport equation in the high frequency limit.
The result is Eq(24) below.

Here we take a different approach, going directly fromJ
Eqg. (12) to the transport equation for surface waves in the
high-frequency limit and bypassing the approximatids), _ dk’ e ek’
the Bethe-Salpeter equation for it, and its high-frequency —ljme' a0k )W8<Xak— 7)
limit. This allows us to identify the relations between the
wavelength, the correlation length, and the relative strength ) dp D xfe A p
of the impedance fluctuations that lead to the transport re- = \/;f (Zﬁ)zep Sn(p)Ws(X,k— 5)- (19
gime for surface waves and to avoid intermediate approxi-
mations. In particular, the assumpti&ih,,<1, which is not ~We want to find the asymptotic behavior of the averége)
necessary in the regime we consider here, was essential fof the solution of this equation as— 0, which is the high-
the derivation of Eq(15). Moreover, we have also allowed frequency and weak-fluctuation regime. The small parameter
the backgroundzy,(x) to be nonuniform on a scale large € appears in two different ways in this equation. In the terms
compared to the wavelength, when an explicit expression fopn the left thex andk arguments ofW, are shifted by an
the Green’s function used in the derivation of Etf) is not ~ order e term. The smalk expansion for these terms is just a
available. In this regime the coherent interaction of multiply Taylor expansion. The term on the right is the random per-
scattered waves is negligible and so are localization effectgurbation, and the shift in the argument\&f; is not small,
They can be considered by analyzing E@5) as a two- While the Fourier exponentia¢'P*¥'® is rapidly oscillating
dimensional Schidinger equation with random potential as and the whole term is of ordefe. To deal with this term we

ex’
x+—,k)

ax e p(x )W,
(2m)? € 2

is done in Ref. 13. introduce a two-scale expansion of the form
Ill. TRANSPORT EQUATION FOR SURFACE WAVES W, (%,K)=W(x,K) + Ve Wi(x, &K) +eW(X, &)+,
We will derive the radiative transport equation for surface X

waves starting from the Wigner distributibfor the surface &=, (20

wave functiony.(x) satisfying Eq.(12). It is a function of

position x and wave vectok, and it is scaled with the pa- with the leading termW(x,k) independent of the fast vari-

rametere of Eq. (6): able & The elimination of the fast oscillatory dependence
can be also done by integratingveraging the ladder ap-

dy ey\— ey proximation of Bethe-Salpeter equation over an giea|
=] —L _gkvy -2 i
W (x.k) fRz(zw)2e Pe| X= o [ Ye| Xt o), such that <|Ax|<l..2® We substitute now expansiggo0)
into Eq. (19) and obtain in the leading order i
x,k e R2. a7
i o ] _ o(X,K)W(x,k)=0 (21
The Wigner distribution has many useful properties. It is
real, its weak limit ass—0 is a non-negative distribution, Of
and energy and flux density may be expressed as .
A(K)YW(X,K) =i 770(X) W(X,K). (22)
|¢8(X)|2:f dk W, (x,k), It follows from Eq. (22) that nontrivial solutionsW(x,k)
exist only for wave vectork defined by the dispersion equa-
| tion i p(k) =— no(x). In other words, the Wigner distribu-
e - _ tion W(x,k) is singular(a delta functiopwith support on the
UATETA TSR] FACAOLTS o
respectively. It is customary to interpréf (x,k) as an en- S=1(x,k):i p(K) = — 75(X)},

ergy density in phase space in the high-frequency limit, even
though only its limit ase—0 is positive. Detailed math- which is a circle ink space centered at the origk+=0 of
ematical properties of the Wigner distribution may be foundradius pg(x) = \/k02+ noz(x) at every pointx on the surface.
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Physically, this means that only surface waves with wave W(x,k)=1(x,¢) (k—ps(X)), (25)
numberk=p,(x) are present in the leading order, and the

local wave numbeps(x) is given by the expression above. with k=(cose,sing). When we substitute this form ol
However, the higher-order terms in the expansidd) con-  into Eq.(24), the terms that involvé’ (k— p4(x)) on the left

tain volume waves wittk<k,. They are generated by scat- side cancel and we obtain fo¢x, ¢) the equation
tering of the surface waves and result in an effective nondis-

sipative attenuation. . 7o -~ 9

An asymptotic analysis, presented in detail in Appendixk- VI (x,¢)+ — (k- Vy70) —
A, leads to the following transport equation for the average Ps I
Wigner distribution{W), which from now on we denote )
again byW: 75 (27dg’ . < )

P ﬁR(pslk—k DO @") = 1(x,¢)]
Viw- VW(X,K) = V- V W(X,K) :
d 4 2mIm2, 26)
— | SRRk pIWO) - WK T p) p. O
IpI>ko4 T

dp . wherek' = (—cos¢,sin¢) and3., is given by Eq.(16). This
—w(x,k))—ZJ ——>R(k—p) equation is the main result of this section.
Ipl<ko(277) Volume waves are generated only by scattering of surface
waves, and hence their energy is of or@f). This means
W(x,k) (23)  that for k=kg, {(Wp)yo={(W1)yq=0, and the first nonzero
term in the expansion of the Wigner distribution for volume
waves is{W,). At the surface £=0) this is equal to

XM ) — w(xK)

or, on using Eqs(13) and(21),

k 1 dp .
o VWK + Vo TiW(x,K) (Wadvai(X,2=0K) = 12e 0 f 2m2R(P~K)
O 1
- 9P (I KW(x,p) Wk, k) 8 VKE— R
- A - l - l — Ko
ko2 WP o)~ (x|
27)
dp . (
—\p?=K;5 —f ——R(|p—k
P ko) lpl=<ko(277)? (Ip=kD or, on using Eqgs(13) and (21),
2/kg—p? .
S dp R(lk=pl)
224 o002 VK- 24 (Wohua(x,2=0K)= | 555 =7y WOx.p)
The left side of Eq(24) describes the streaming of energy k<K 5
in the phase space k) along rays that are in general curved o (28)
for no(X) # const. The rays satisfy or, using Eq.(25),
dx K dK V. 7o(X) b dob
T vy A< 70 ’
ds  7o(X)" ds % (Wo)yol(X,2=0k) = Fskz 2m?
so that the wave vectoK also changes along the ray if . A
70(X) # const. However, the rays are tangent to the| K@t XR([k=pgp (X, ),
=k3+ 70(X)?, on whichW(x,k) is supported.
The first term on the right side of the transport equation p=(cosp,sing).

(24) accounts for the scattering of surface waves into surface

waves with the samik| = ps, but with different directions of Herel(x,¢) is the solution of Eq(26), that is, the intensity
propagation in the plane=0, and has a form standard for of surface waves at the poirt propagating in the direction
any transport equation, as in E@3). The second, absorp- ¢. We see that in the absence of dissipation, energy is con-
tion term appears because surface waves undergo scatterisgrved. The loss of surface wave energy coming from the last
into outgoing volume waves with wave numbéksk,. The  term in Eq.(26) is due solely to its transformation into radi-
latter, however, leave the surface after scattering and do neting volume waves in the upper half space.

contribute to the production of scattered surface waves.

Therefore this term in Eq(24) is a pure loss term and the
. : : IV. EFFECT OF THE POWER SPECTRUM
loss rate is equal te-2 Im3,, with %, defined by Eq(16).
Recall thatW(x,k) vanishes off the frequency shek| In order to compare the strength of scattering and leakage

=ps, and hence we may look for solutions of Eg4) in the  of surface waves in the transport equati@6), we introduce
form the scattering and radiation lengths defined by
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FIG. 1. The ratiolg/l .4 defined by Eq.(29) for the power
spectrum(32) as a function ofA=kq/ 7, with o=1 and various
values ofpg: (a) Solid line for the &function correlation;(b) pg
=0, dash-dotted linefc) po=ps, dashed line; andd) po=3ps,

FIG. 2. The ratiolg./l,q defined by Eq.(29) for the power
spectrum(32) as a function ofA=kq,/ 7, with o=5 and various
values ofpg, and &correlated: (a) Solid line for the &~function
correlation; (b) py=0, dash-dotted line(c) po=ps, dashed line;

dotted line. and (d) po=3ps, dotted line.
2 ’

4 Mo (27d¢’ . A a | 1 k

I 1:_ R k_ k, )1 ﬁ = — - 1 = _0

% . Jo 2a R(Plk=K| =gt = (3D
Lm0y 2mg W A Therefore, in the>-correlated case scattering dominates leak-
== pm R(|p—kl), age for wave numbetig<< 79, while for high wave numbers

Ps  Ps Jipl<ky 70T Kog—P

ko> 7, leakage dominates scattering.
(29 In Figs. 1-4 we present numerical results for the ratio

where |k|=ps and y=—21mZ2,. These expressions show |/l .4 for power spectra of the form
an important difference that exists between the two-
dimensional case we consider here and the one-dimensional R(p)=Cexd — a(p—po)?] (32
case considered in Ref. 13. Both exhibit an exponential de- . ) .
cay of energy(because of both localization and leakage infor various values oér andp,. Scattering dominates leakage
one dimension, and only due to leakage in two dimengions Whenko/7o<1 for a wide range of parametetsand po,
However, while in the one-dimensional case scattering ofvhile the converse is true fdg/7,>1, as we noted above
surface waves into themselves may be easily suppressed g/ the S-correlated case. Leakage is strongest when, the
choosing a power spectrum supported away frpm0 and ~ Power spectrum is centered pg=ps as is also clear from
p= 2pS’ which maked s ® in the one-dimensional case, the definition ofl rad- Indeed, Ieakage is prOduced by scatter-
while keepingl .4 finite, this mechanism does not apply in ing of a surface wave with wave vectéron the circle of
two dimensions. In the latter case total suppression of the
surface wave scattering requires a power spectrum supported
away from the whole interval € p<2p,, which will also
suppress the leakage into the volume by making bgtand
I .aqtend to infinity. It is easier in the two-dimensional case to
control the leakage of surface waves into volume by choos-
ing a power spectrum that is supported outside the interval
ps—ko=p=pstky. Thenlg is finite, while | ,,4—, and
energy does not decay exponentially as a function of the
propagation distance but rather behaves asr Ifor larger.

Both the scattering and radiation lengths may be com- o2}
puted explicitly for s-correlated fluctuations of(x), R(x)
=a26(x/ ¢o)): o1t

07

0S5F

0.4

03F

y=Leo L op

2
—-1_ 770 2 oo
Isc =—(oleo)
Ps

_4_mo(ol con? _1k0 FIG. 3. The ratiolg/l 4 defined by Eq.(29) for the power
T R—— Ko— motan 7o) (30 spectrum(32) as a function ofA =Kk, /7, with po=0 for various

values ofo: (a) 0=0.1, solid line;(b) c=5, dashed line; anct)
so that o=10, dash-dotted line.
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FIG. 4. The ratiol ¢/l 4 defined by Eq.(29) for the power to the scattering length, that is,
spectrum(32) as a function ofA =k /7, with py=3p, for various
values ofg: (@) 0=0.1, solid line;(b) c=1, dashed line; antt)

=5, dotted line. _ 2mps

.= <L,
" peM

radiusps into a volume wave with wave vectgrinside the
disk of radiusky, centered ak=0 with the probability of
such an event being proportionalﬁ‘ﬂék—p). This probabil-

ity is enhanced iiR(p) has a maximum ap= ps. We also 1

see that there are two ways to increase the radiation length | o= — = L_
relative to the scattering length for a given raiy 7, . First, lscy  270/Im3,|

with a power spectrum of the forni32) and with large

enougha, for some fixedp,, as Figs. 3 and 4 show. This In particular, we have in the above scaling
will both reduce leakage into volume waves and make sur-

face wave scattering be mostly forward in the cage 0. lod ra= L2

Another way, which seems to be more efficient, is to fix the

varianceo and let the centering parametgy be sufficiently e consider propagation of a surface wave through a ran-
large, as can be seen by comparing these figures with Figs.dom surface layer occupying an intenj@L] (see Fig. 5

and 2. This would produce mostly backward scatteringand are interested in the asymptotic distribution of the out-

HOWeVer, while Using the tails of GIaUSSian power Spectrﬁoing energy densityvout(LUu) radiated out from this |ayer
tends to reduce leakage, the const@ni Eq. (32) has to be given the incident energy distributiow;,(0,x), where u

where |4 is the transport mean free path. The absorption
length is also much larger than bdthandL, and is given by

very large to make scattering significant. =cos¢ and ¢ is the angle between the direction of propa-
gation and the axis, w € [ —1,1]. In this notation the radia-
V. TRANSMITTED DISTRIBUTION AND DIFFUSION tive transfer equatioli26) takes the form
LIMIT

There exist several numerical methods to solve @6) paxWX, ) + sy WX, )

and we refer to Ref. 22 for details. The main difficulty lies in ,
. 1 1 (1 W(x,u')

the large number of degrees of freedom, 2 in spagea(d 1 + W p)—— | —m—=|=
in the direction of propagatiofk) for each frequency. We l'sc mJ 11— (u')?

consider in this section an approximation to the transport

equation which is valid in the diffusive regime. It is well

knowrf>?46 that the energy density diffuses more than it

transports when the following conditions are satisfigdthe

scattering length, or mean free path, is small compared to the W(L,u)=0 for —1<u<0, (34)

distance of propagation, an@di) the absorption length is

large compared to the distance of propagation. We have se&there W(x, ) is the energy density at positione (0,L)

in Sec. IV that these requirements can be satisfied for spgyropagating with direction cosing e[ —1,1]. We assume

cific power spectra and frequencies. that no energy enters the domainxat L, which means that
To simPIify the presentation we consider here a flat powethe outgoing distribution is given bw,,(x)=W(L,x) for

spectrumR=M and strip geometry. That is, we assume thatO<u<1.

the surface is unperturbed outside of a strip of widtiith To calculate the distributiolV,,; in the diffusion regime,

its boundaries perpendicular to tleaxis. We also assume we write an asymptotic expansion of the transport equation

that o= const. The thickness of the slahis large compared (33) and its solutionW(x, ) in the form

W(O,u)=W;,(n) for 0<pu<1, (33
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1 i " i " T i " i i " _
(l—sc.co+£1+|scz:2 Wo+ | Wy + 12W, + 13 W,
I 261 /.",-
X L—x
+bY | =, u|+bf | ——,u|+0(%)|=0 (35 82
s\ Igc se| lge g 7
221 e T
2 3 0 4 e e
(W0+|SCW1+|SCW2+|SCW3)(0,,u)+b|sc(0,,u)+0(|sc) g L
=Wip(n), 0<p<1, gm—
B e /_//
(Wo+1 sy +120W5 +13W3) (L, ) +bi (0,) +O(12) 5.
=0, —1<u<0, 2 S
whereb,osc(y, u) and bfsc(y, u) are boundary layer terms de- 'o a1 oz o3 4 05 s 07 ds oo 1

fined fory=0 andu e[ —1,1] that decay exponentially fast Cosine of the angle of Transmission mu

wheny— . Each of these terms also satisfies an asymptotic F|G. 6. Chandrasekharsl functions in two (solid line) and

expansion of the form three(dash-dotted linedimensions.
by =bo+1sD1+15ho+13bs+O(1%). Loy
P - Woul L, p) = pinH(p) ———
The operatorg; for i=0,1,2 are given by sinh /2yL2
! ’ ’ ’ | 2|_2 -1
EoW(X,M)=W(X,u)—f o(u" )W, p")du', _— se|
1 =UipH(x) \/ —1 sin .
Ira IS(J rad
EIW(X!M):MﬁXW(Xnu’)I (40)
LoW(X, ) = YW(X, 1), ExpreSS|o[1(40) proyldes a |_oh_y5|cal interpretation of Chan-
_ drasekhar'sH function, for it is, up to some constant, the
where we have introduced outgoing distribution of radiation for a source term located at
infinity. This is also known as the law of darkenfigr the
( ):i 1 (36) Milne problem?®
Rl NI We present now numerical calculations of the various

) ) ) . ) quantities involved in the above derivation. It is interesting
The asymptotic analysis, presented in detail in Appendix B 1o compare them with their analog in three dimensions, ob-
shows that the leading-order teMf, is independent of the tained by replacingr(x) in Eq. (36) by 1. The computation

directionu and has the form of theH function is obtained by solving E¢39), which was
already given for three dimensional problems in Ref. 25. We
exp(—v2yx) —ex — V2y(2L —x)] have plotted in Fig. 6 thé&l functions in two and three di-

Wy(X)=Wy(0 ! ) ; . .
o(X) o(0) 1—exp(—2v29L) mensions for isotropic scattering. The constant 172 in

two dimensions that appears in the definiti@®) of W, is
replaced by /3 is three dimensions. Therefore, the trans-
mitted flux is larger in two dimensions than in three dimen-
sions, even though thid function is slightly smaller in two
dimensions than in three. This is compatible with the ex-
) S trapolation Iength_ex_z A(w) that appears in Eq$B7) anq .
WO(O):Win:?f SH()Win(Ou)dp. (37) (B8). _The_ extrapola_tlon _Iength gives the energy density in
0V1—p the diffusion approximation at=L. Approximate values of

For the outgoing distributionV, (L, u)=W(L,u) in the Eq. (B12) in 2D and 3D are
first-order(in | approximation, we obtain L§XD~0.8164, |-2><D”0-7104: (41)

L—x
~W0(O)T as y—0,

with

lec respectively.
WoudL,pw)=—=H(u)[— aXWO(L)]JrO(IgC). (39 These values for the extrapolation lengths were obtained
V2 from the asymptotic analysis of the boundary layer in trans-

HereH () is Chandrasekhar’s functid,which solves the port theory. It is interesting to compare them with the clas-

nonlinear equation sical approximation of the extrapolation lengths obtained by
assuming that the diffusion regime is valid up to the bound-
Tp'o(u" )H(') ary. ConsiderW linear in u (diffusion approximatiop
1=H(M)LWdM : (B9 W(x, 1) =Wy(X) — mdWo(X). We set herd =1 for sim-

plicity. The boundary conditioW(L,u)=0 for ©<0 can-
We can rewrite EQq(38) in the form not be satisfied exactly sind&y(x) does not depend op.
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This requires a boundary layer and is done carefully in Ap- ACKNOWLEDGMENTS
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L (1
f f (o WO+ yW6)o dx du=0. APPENDIX A: DERIVATION OF THE TRANSPORT
0 /-1 EQUATION
Assume thay(0)=0. We have after integrating by parts We present now the perturbation analysis of @@). It is
L 1 convenient to take the imaginary part of Ed8) using the
J J' (— pWdy 0+ yW8) o dx dM*‘J woW(L)o(L)dy  fact thatW, and » are real valued:
0J-1 -1
f dx’ dk®
(2m)*

=0. [eik»x'JriX-k’a)(kr,xr)

The condition that the mean incoming flux be zero is

B ex’ ek’
+e kX —ixk G)(k’,x’)]WE(er 7,'(— 7)

0
f_llﬂf[wo(l—) — mdWo(L)]du=0.

=ﬁfﬂzei“’%<p>[w (xk— E)
With o given by Eq.(36) this is equivalent to (2m) ¢ 2
p
T Wy W/ x,k+ = |. (A1)
ot 7 ox O ?

The leading-order terniO(1)] in Eq. (Al) is simply the

In 3D, whereo=1, the constantr/4 is replaced by 2/3. imaginary part of Eq(21). The orderO(ye) term in Eq.

Therefore, we have in the diffusion regime the following

approximations for the extrapolation lengths: (A1) is
dx'dk” . ., .,
L3 ~7 ~0.7854, Lﬁ!?f=§~o.6667, (42 am LT Bk X
which are rather close to the asymptotically exact extrapola- —e KX I K (ke XYW | X, E4 X?Ik)
tion lengths given in Eq(41).
VI. CONCLUSIONS :f (zof)z e'P E(p)| W X,k—g -W X,k+g :

We have studied analytically and numerically transportrherefore, the Fourier transform W, in the fast variablet
and diffusion of surface waves on random interfaces. Starts given by

ing from the general three-dimensional wave equation with

impedance boundary conditions, we derived the radiative R P DIW(k—aq/2) —W(k+q/2)]
transport equatiori23) for surface waves on a flat surface Wi(x,q,k)= (XKF02) —aixk—a2)—i6"
with randomly fluctuating impedance. The transport equation wX.krq @X.K=q
accounts for both scattering of surface waves and leakagqere 9>0 is a regularization parameter. We shall later take
into volume waves that results in an effective loss of surfacehe |imit #— 0.

waves. The scattering cross section and the “absorption” \ye insert expressiofA2) into the ordeiO(¢) term in Eq.
length are expressed in terms of the power spectrum of thga1) and average. The left side of Eg1) becomes then
random fluctuations. We have studied the effect of the power

spectrum on the relative strengths of scattering and leakage, 1 1 1

and we have examined ways to decrease leakage by choosing| 5 V@ + Eka) -V W— (zvxahL Ewa) -ViW.

an appropriate power spectrum, in particular by shifting its (A3)

peak. We have also considered the diffusion approximation,

which is valid when the scattering mean free path is muchVe denoted her@\) by W again for simplicity. We average
smaller than the absorption length, which must in turn bethe right side of Eq.(Al) under the assumption that
much larger than the propagation distance. We have obtaindd; W)~ (7 7)(W), which is equivalent to the ladder ap-

an analytical expression for the angular distribution of theproximation in the diagram expansion. We will also assume
energy of surface waves transmitted through a strip of ranthat statistical averages are equal to the the spatial averages
dom impedance in this regime. We have also computed thwith respect to the fast variabf These formal assumptions
extrapolation length41) for the diffusion approximation, may be justified rigorously in the high frequency limft The
which provides asymptotically correct boundary conditionssecond assumption implies that ©é€c) term involvingW,

for the diffusion equation. becomes

(A2)

1
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!

X, &+ XEk) > =[w(X,Kk) = o(X,K) [{W,(x,&k))=0

dx'dk’ . , G —
<f [elk»x +x-k &)(k’,X’)-I-e_'k'X —ix-k &)(k’,X’)]WZ

(2m)*
(A4)
for k=pg sincew(x,k) is real for suctk. Therefore, we get in the ord€(e)
1 1 1 1 3 dp s P P
EkavL Eka -V, W— vaw'f' zvxw -V W= (277)28 7(p)| W, X,k—z -W,; X,k+§ . (A5)
|
We insert expressiofA2) into the right side of Eq(A5) dp .
and use Eq(4) to obtain that it is equal to f 22 Rk=p)[W(p)—W(k)]
Ipl=ko(277)
d 1 1
p - X — + -
J WR(k—P)[W(D)—W(k)] w(X,K) —w(x,p)+i6  w(x,p)—w(x,k)+ib
= [ PR W) - W)
X ! + ! Ipl=ko(277) PILTEP
o(X,K)—w(X,p)+if ox,p)—w(xKk)+ib| . (—2i0)
(AB) [w(x,K)— w(x,p)]*+ 67
. dp
We split the above integral in two parts: H(—l)fp>k 2m
=R
f f f - X R(k=p)[W(p) —W(K) ][ 0(x,p) ~ w(x,K)]
= + .
Ipl<ko  JIpI=ko 80 (A9)

In the first regionw(x,p) has a nonzero imaginary part and as#— 0. Combining expression@8) and(A9) for the right
W(x,p) =0, while in the second(x,p) is real andw(x,p) side of Eq.(A5) yields the radiative transport equation for
+0. Furthermorep(x,k) is real sinca(x,k) vanishes out- the average Wigner distribution:

side the frequency shek=pg, and thusk>k,. Then the

first term in Eq.(A7) is Viw(X,K) - V,W(X,K) Vo (X,K) - VI W(X,K)

N )
_f|p|>k027TR(|p k|)[W(X,p) W(x,Kk)]

dp .
—f P R(k—p)W(K)

lpl<ko(277) w(X,K) = w(x,p) "
1 Xé[w(x'p)_w(x'k)]_zfpgko(ZT)z
=
o(X,p) — w(X,K) ) L
T ipl=ko(2m)? P which is Eq.(23).

We derive now expressiof28) for (Ws),q for k<kg,

that is, for the angular distribution of the energy for volume
X 1m —w(x,p)— w(X,p) W(x,K). (A8) waves at the surface=0. Once again we average Hé1),
but now fork=<kg,, and not fork=p. Recall thatWw(x,k)
vanishes fork=<k, and therefore the leading order term in
The integral over the second region in E47) is Eqg. (Al) is O(e). Itis given by

p
X,f,k'i‘ E

[@(X.K) = @(X,K) (W) yol(X,K) = <

d .
(2:)2 elp'g’h(p)[wl ng!k_ g) _W]_ > . (AlO)
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The left side is the same as in E@\4). It does not vanish  bution W,,,. Provided that the initial distributioV;,(x) is
now sincew(x,k) has a nonzero imaginary part fa<ks.  regular, all asymptotic expansions can be justified
The right side of Eq.(A10) is given by Eg.(A6) with  rigorously?®**°We deduce fronii) in Egs.(B1) that
W(x,k)=0:

Wo(X, u) =Wop(X).

This means that the leading term in the expansion is actually
independent of the direction of propagation away from the
boundaries. This does not hold in the vicinity of the interface
: (A1l)  x=0 since the boundary conditidi of Egs.(B2) must be
satisfied, which is impossible without the introduction of the
Then Eq.(28) follows from Eqgs.(A10) and (A1l) since  houndary layer ternbd. The only way to have an exponen-

f dp R(k—p)Wi
2n)? (k—p)W(x,p)

1
(%K) —o(x,p)

o(X,K) = w(x,p)

w(x,p) is real. tially decayingb] is to impose the condition that
APPENDIX B: THE OUTGOING DISTRIBUTION Wo(0)=A(W,,), (B6)
1. Perturbation analysis with the linear functionalA defined in(B4) above. Expres-

sion (B6) and the explicit expressiofB12) for the linear

leads to Eqs(37) and(38). Upon equating like powers of, functionaIA given_ beloyv Ieaq to the boundary condition
in Eq. (35), and knowing the boundary layer terms decay(:f’_7)' Since there is no incoming energyatL, we have
exponentially fast, we obtain the following equations insidePo=0 and the second boundary condition

the medium:

We now carry out the asymptotic analysis of E8F) that

Wy(L)=0.
(i) LoWo=0, o . 1
We now conside(ii) in Egs.(B1). Since[Z juo(u)du
(i)  LoW;+LWy=0, =0, we deduce thatV, is given by
(lll) £0W2+ £1W1+ ,C2W0=0, W]_(X,,LL): _M&XWO(X)+W10(X)1
(V) LoWat LWt LW, =0 (B1) whereW,j is still undetermined, but depends only xnThe
ovV3 1vv2 2VV1— M.

boundary conditior{ii) in Egs.(B2) atx=0 gives
The boundary conditions are given by o
() Wo(Oue) 4 b0 =W (). O . — mdxWo(0) +Wi(0) +b3(0,u)=0.
[ M)+ ) =W, , O<u<1i,
ot oFH it a Exponential decay fob, is possible provided that

i) Wi(0u)+b%0u)=0, 0<u<l, 1<i<3,

(i) W;(O,u) + by (0,u) M Wio(0)=A (1) dWo(0), (B7)

(i )Wi(L,p) +bf (0,— #)=0, —1<u<0, O<i<3. with the linear functionalA defined in Eq.(B4). A similar
(B2)  relation atx=L yields

The boundary layer termls?’L are solutions of the half- Wog(L)=— A () dWo(L). (B8)
space problem
1 Since ffl(ﬁowz)(x,,u)a(,u)d,uzo independently of
ub,+ b—f a(p")b(x,u")du’ =0, (B3) W,, we deduce from (i) in Egs. (Bl) that
-1 I (= mdyud Wo+ yWo) o(w)dw=0, which gives the dif-
and are decaying exponentially &s:>. We will use below ~ fusion equation
two important facts associated with EB3). First, it is
knowr?’ that for a bounded incoming flux(0,x) =g(u) for 21
Eq. (B3), 0< <1, the solutiorb(x,x) converges exponen- 2
tially rapidly to a constanb,, asx—«. We let

Wj -+ yWo=0,

Wo(0)=A(Win),  Wo(L)=0, (B9)
b..=A(g), ® , . .
_ ) ) ) ] since [Z,u“o(n)du=1/2. The solution to this equation is
whereA is the linear functional that maps the incoming flux given by Eq.(37):

onto the solution at infinity. We require that,=0 for the

boundary layers®-. That is, the boundary layer terms decay — J2x) — — 2v(2L—
to 0. Second, we define the response operRtday Wo(0) exp \/_yx) exd \/_7( X)]
1—exp(—2+/29L)
RIgI(u)=Db(0,— ), O0<u<1, (BS) L
which maps the incoming flux onto the outgoing one. ~Wo(0) /— when y—0.

Solving the above equations gives the asymptotic behav-
ior of the energy den:sityv|SC and that of its outgoing distri- The derivative ak=L that enters Eq(38) is
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W,(0) 2\29L ing on u: R [w«]. Because of the relative simplicity of the
A Wq(L)=— exp(—2yL) linear transport equation in homogeneous half space, no nu-
L 1—eXI0(—2\/2_7L) merical solution of the transport equation is actually neces-
sary. We show in Appendix B 2 that the linear functional
Wo(0) is given by
~m 0 when y—0. (B10)
1
We do not analyze the boundary conditions in E&2) for A(f)= lf po(pw)H(uw)f(w)du, (B12)
bJ andb} since they are not involved in the leading term of @ Jo
the expansion folV;. whereH (u) is Chandrasekhar’s function, the solution of Eq.

It remains to find an equation fal, so as to complete (39), and« is defined by
the description of the terms of ordéy.. This is done by

averaging(iv) of Eqgs. (B1) multiplied by o(w) in u over 1 1
[—1, 1], which gives a= Zfo pPo(p)du= 5 (B13)

% fjlﬁlwzﬂ(#)dﬂ+ W0, In Appendix B 2 we show also that the functi®{ ](w) is

given by
However, part(iii) of Egs.(B1) implies that Rlpul(pw)=aH(uw)—u (B14)
1 (1 W, 1 and from this and Eq(B11) we obtain expressiof38) for
> f_l,qu,u= - EW'l’o, the outgoing distributiotW,, ().
so we get diffusion equation fo,q: 2. Half-space problem

1 We present here the part of the perturbation analysis that
- EW{O+ YW;0=0, leads to the half-space transport problem and analyze it to
get Eqs(B12) and(B14), and derive also Eq39) for Chan-

_ _ drasekhar’s function. Half-space problems have been studied
W1o0)= A (1) hWo(0),  WiolL)==A(4) A Wo(L). extensively in the physica?® and mathematical
This equation can be solved sind&, is known. literature3%31:32:333¢C|ose to the boundary, the volume equa-

We are now ready to calculate the leading term in thetions (B1) have to be modified to account for the boundary
asymptotic expansion o, SinceW,y(L)=0, b*(0)=0, layers. The term of orddg.’ in Eq.(35) near the boundary is
andb®(L/1¢y is exponentially small\W,, is at most of order  given by
ls.. The term of ordet. does not vanish and is given by
LoWo+ Lo(bg+bg) + dy[bg(y, ) + bg((L =), — 1)]=0

instead of(i) in Eqgs.(B1). SinceLy,Wy=0 and the boundary
= — udWo(L)+Wyo(L)+b"(0,—n) for —1<u<1. layers are exponentially decaying, we have

Wi (L, ) +b5(0,)

g L — .
The boundary condition fab-(y,x) aty=0 is Mﬁybg(y,ﬂ)+£ob8(y,u)=0 for y=>0

b“(0,— u) = wdWo(L) —Wig(x) for —1<u<0,
that is,

and wpel[—1,1],

0 = L —
bL(0,u) = — md,Wo(L) —Wig(x) for 0<pu<1, B(0,44) =Win = Wo(0)-

since the total incoming flux at=L is zero. Therefore, we
have that

and a similar equation fdug .
We want to analyze the half-space problem
_ - in RTx[—
bY(0,) = = RL ] (= ) AWo( L)~ Wyo( ) #dybTb=(ob)=0 in RTx[~1.1],
b(Ou)=g(w) for O<u<1. (B15)

Here(-) means averaging ip over[—1, 1J:

for —1<u<O,

sinceR[1](x)=1. HereR[g] is the response operator de-
fined in Eq.(B5). In other words, we obtain that, for<Ou

1
<1, )=t

Woul ) =lsd = mdsWo(L) +Wao(L) =Rl ] () 9xWo(L) ando(u) is a positive function defined dn-1, 1] satisfying
—Wio(L)]+O(12) (o)=1 ando(—u)=0c(u), like, for instance, the function
(36). We know from Refs. 23, 27 and 30—-32 that E§15)
=|S([R[/.L](,u,)+,LL][—0"XW0(L)]+O(|§C). (B11) admits a unique bounded solution, which converges expo-

_ _ nentially fast ag/— to a constant
To computeW,,, numerically we need the linear func-

tional A to determineW,(0) and the response operator act- b,=A(Q).
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This defines the linear functional: L*(0,1)—R. The re-
flection operatofR € £(L*(0,1)) is denoted by

R[g](n)=b(0,—p) for 0<u<1.

We now want to derive more explicit formulas for the reflec-

tion operatorR and the linear functionah. Let N\(«) be the

solution of Eq.(B15) with g(u)=u. It is easily seen that
N+ (y— ) satisfies Eq(B15) with g(u)=0. Let us note,
however, that\ +(y—u) is not uniformly bounded. We
verify that w(u)=o(u)[N(—p)+y+u] solves the equa-
tion

—pdytw—o(u)(w)y=0 for y>0 and wuel[—-1/1],

w(O,u)=0 for —1<u<O. (B16)

The functionw actually solves an adjoint equation to Eg.

(B15). Let us now multiply Eq(B15) by w and Eq.(B16) by
b, and subtract the latter from the former. Integratehgdu
over (0x) X[ —1,1] yields

(b (X, w)W(X, 1)) =(ub(0,)W(0,u)).
This relation is valid for allk=0. Lettingx—« yields

1
bo.(uw) = fo ©g(pm)W(0,u).

We easily check thatuo\)=(uo)=0. Therefore(uw)
=(ou?). Moreover, w(0,u) is given for 0<u<1 by
()[R w](m) + ] by definition ofA(w). Defininga as in
Eq. (B13) yields Eq.(B12):

1 (1
/\(9)=;fO po(uw)H(p)g(p)du, (B17)
where Chandrasekhar’s functiéi( ) is given by
1
H(p)=—{u+RIpl(w);- (B18)
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It remains to derive Eq(39) for Chandrasekhar’s func-
tion, defined by Eq(B18). In order to do so we derive a new
relation between the response operdoand the functiorH
that also allows us to solve them easily numerically.

Let b be the solution of Eq(B15), which converges tb.,
wheny—, Letv be the solution of Eq(B15) with g(u)
replaced byug(u). We denote by the function

uty.= by~ [ (ob)oras 819
We verify thatud,u+u—(ou)=0. Let
z(y,m)=v(y,m)—u(y,m) +b.(u=y).  (B20)

We verify thatz solves Eq.(B15) with boundary condition
g(u)=b.u. Sinceb converges td,, exponentially, we see
that z(y,u) is bounded. Therefore, we can consider
R[z(0,u>0)]. Using Eq.(B20), the response operator can
be expressed in two different ways:

Z(0,u<0)=b Rl pn](—w)
=R[ugl(—p)—uRIGI(—p)+bop.

In other words, we have according to E§.18) that

R[ugl+pR[g]=baH.
Sinceb..= A(g), we deduce from EqB17) that

1
R pg]l(pm)+uRIgI(u)= H(M)fo mo(u)H(u)g(u)du.

(B21)

This relation holds for every functioy. Consider now
g(u)=(u+ug) 1 for some fixeduoe[0,1] and apply Eq.
(B21) at pointu=uq. SinceR[1]=1, we obtain

g 47

This is relation(39).

o )H(u")

!
Py —du’.
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