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A microscopic theory for the coupling of intrinsic Josephson oscillations in layered superconductors with
longitudinal c-axis phonons is developed. It is shown that the influence of lattice vibrations oc-dkis
transport can be fully described by introducing an effective longitudinal dielectric fune{;ipm). Resonances
in the |-V characteristic appear at van Hove singularities of both acoustical and optical longitudinal phonon
branches. This provides a natural explanation of the recently discovered subgap structurds\incterac-
teristic of highly anisotropic cuprate superconductors. The effect of the phonon dispersion on the damping of
these resonances and the coupling of Josephson oscillations in different resistive junctions due to phonons are
discussed in detail.

I. INTRODUCTION current densityj., and the frequencies, dampings, and oscil-
lator strengths of phonons in the dielectric function we were
The c-axis transport in the highly anisotropic cuprate su-able to fit the experimental results for the subgap structures
perconductors  FBa,CaCu;0,9,5 (TBCCO) and in thel-V curves perfectly. In addition to this, the identifi-
Bi,Sr,CaCyOg, s (BSCCO can well be described by a cation of the maxima of the structure with phonon frequen-
stack of Josephson junctions between the superconductirgies provides a natural explanation of why the position of the
CuO,-multilayers. This intrinsic Josephson effect can beresonances is completely independent of temperature, mag-
seen in the multibranch structure of thev characteristic, netic field, and the geometry of the probe. The voltage posi-
each branch corresponding to a well-defined number of junctions of these resonances can also be related to structures in
tions in the resistive stafe? The intrinsic Josephson effect is optical experiment$® in particular to the reflectivity for
observed also in the behavior of the material in externabblique incidencé’ In those cases where common structures
magnetic fields and under microwave irradiatfon. could be identified in Josephson experiments and optical ex-
Recently subgap structures in the/ characteristic have periments the oscillator strength and the damping are in rea-
been discovered as intrinsic properties of the matérral, sonable agreement.
which could be explained by the coupling between the intrin-  Though the simple oscillator model describes the experi-
sic Josephson oscillations and phon®msThis interaction is  mental findings very well, a detailed theory for the coupling
mediated by the oscillating electric field in the Josephsorbetween Josephson oscillations and phonons is still missing
junction, which excites vibrations of charged ions in the ma-and shall be presented in the following. In particular the
terial. In our previous investigatioh5 we used a simple dispersion of phonons and the different coupling of ions on
model of a system of damped harmonic oscillators in ordethe superconducting layers and in the barrier material will be
to describe the dynamics of oscillating ions in the barrier.considered. This allows us to derive microscopically the ef-
We were able to derive an analytic expression for the dcfective dielectric function entering Eql) for thel-V curve
current densityj (V) as function of the dc-voltage for one  for one resistive junction and to find a generalization for

resistive junction multiple resistive junctions. As the electric fields in the Jo-
sephson system are confined to the resistive junctions this
o dielectric function differs from the one encountered in opti-
2 €2 — cal experiments and different selection rules for phonons ap-
(V)= Je @p @€ ly. Theref ly optical mod h f th
JV)=jgp)+ 5 = —————7, (1)  ply. Therefore not only optical modes at the center of the
2 w? , ( 9 Brillouin zone but also acoustical modes and Raman active
€11 €+ —— - . " .
weg modes with van Hove singularities at the edge of the Bril-

louin zone can be excited.

where the voltage/ is related to the Josephson oscillation  Another topic of this paper concerns the coupling of Jo-
frequencyw by V=1iw/(2e) and e(w)=€1(w) +i€ex(w) is  sephson oscillations in different resistive junctions. We will
the dielectric function of the oscillating ions. From this result show how the dispersion of phonons leads to a coupling of
it can be seen that the-V curve has a maximum at the the phases of Josephson oscillations in different resistive
frequency(voltage where the real parg; of the phonon- junctions. This will be discussed in detail for two resistive
dielectric function vanishes, which corresponds to a longitujunctions and general results will be given for large stacks of
dinal eigenfrequency of the phonon system. resistive junctions. A phase locking in a stack of Josephson

With appropriate values for the Josephson plasmgunctions is important for applications of such systems for
fregency w,, the quasiparticle conductivity, the critical  high-frequency mixers and detectors.
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The excitation of phonons by Josephson oscillations irrespect to the Josephson penetration length but long enough
conventional single Josephson junctions has been observéa neglect finite-size effects in the ionic polarization.
already a long time agtf. Also in the |-V curves of break- The tunneling current density;, from layern to n+1
junctions of cuprate-superconducforstructures due to creategtwo-dimensionalcharge-density fluctuationsp,, on
phonons might have been identified. The physical mechathe layers related by the continuity equation
nism described here can also be applied to these cases but
our formalism is particularly suited to treat stacks of Joseph- in()—jn_1(t)=—3pn(t). (2
son junctions with phonons in the frequency range between _ o _
the Josephson p|asma frequency and the gap frequency_ These Charge fluctuations create electric f|EﬂS) (|n thec

It is not our intention to explain the details of thev  direction in the barrier between layerandn+1 which are
characteristic of TBCCO and BSCCO by a realistic latticeconstant inside each barrier and are related to the charge
dynamical calculation. This is impossible at the moment forfluctuations by the Maxwell equation
the complicated anisotropic superconductors with variable
doping showing this effect. Furthermore this would require a Spn(t) = o ER(H) —ER_1(1)] 3
detailed theory of superconductivity and the Josephson effe
in two- and three-layer systems including information about
the superconducting bands, charge distribution, and charge 1
susceptibility between the layers and inside the Cpfanes Ef()=5— > Spa(t)— > Spp(D)]. (@
which is not available yet. Therefore we discuss a simple €0\ n'<n n'>n
model system with superconducting monolayers where the _ ) .
conduction electron charge is distributed homogeneously Assuming that the current density for the first and last
along the layers, and a lattice-dynamical model with onlyParrier is fixed by the bias current densjfyhen with help of
two phonon bands showing already the basic features of Bds- (2) and (3) the tunneling current density, in all the
full theory which will be expected also for realistic systems.Other junctions is related to the bias current density
We start the discussion with a definition of our model and a _
short derivation of the basic Josephson equations for a stack J=In(t) + €ER(1). 5

fJ h junctions. . . .
ot Josephson junctions The last term is the displacement current density related to

the charge fluctuations on the layers. In the following we
Il. JOSEPHSON EQUATIONS FOR A STACK denote this term byD ,(t):==€oEL(t) in order to relate the
OF JUNCTIONS present results to the usual notation of the resistively shunted
Josephson-junctiofRSJ) model. Note that the introduction

In this paper we model the strongly anisotropic cuprate f this notation does not mean that we are using macroscopic
superconductors by a system of superconducting layers sepg- 9 P

rated by insulating material acting as tunneling barrier. axwell equations as a phenomenological approximation.

Phonons are excitated by the electric fields produced by thl@nzgegdaggrc};iagﬂg&t dlsketz)sseig fnc?rr:jpltiteelxqic::r:ozcrglci:(r:ogﬁomc
Josephson oscillations. p p g

. . . . of this term.
Strong support for this model and the insulating behavior In the following we approximate the tunneling current by

of the barrier material comes from optical experiments: Theya superoosition of a Josephson supercurrent density and a
show a very low optical cutoff frequenay, , which allows berp P P Y

for pronouncedc-axis phonon structures to be seen with anquasiparticle current density. Then we have for each junc-

unscreened oscillator strength typical for insuIatingtlon:
material®'* As this cutoff frequency scales with the o . :
temperature-dependent critical current den¥ityy>~j, it J=1cSinyn(t) +] gl En(t) ]+ Dp(t). (6)
cannot be identified with a plasma oscillation in metallic The Josephson current densitysiny,(t) depends on the
systems, but can be explained naturally by assuming a Jgrauge invariant phase differengg(t) between layers and
sephson tunneling coupling between the superconducting+1 at positionsz,, and z,. ;. It is related to the average

layers:®> Moreover, this model is supported theoretically by total electric field in the barrier of thicknessby
band-structure calculations which show that the bands cross-

ing the Fermi surface originate from electrons in the guO 1 (zn+1
layers while the electronic states of the barrier material are En(D:=5 E.(z,t)dz (7)
far away from the Fermi surfac.Thus the assumption of o
superconducting layers separated by insulating material iBy the second Josephson equation
justified both as basis for the Josephson effect and the exci-
tation mechanism o€-axis phonons. .

In the following we treat the superconducting layers as EVn(t):En(t)- ®
homogeneous metal sheets with a uniform electron distribu-
tion along the layers. We consider only the case of a unifornHere small corrections to E¢B) for layered superconductors
tunneling current with a constant bias current and neglectvhich are discussed in Refs. 17 and 18 are neglected. For the
magnetic-field effects due to the current flow. In this case alfuasiparticle current density we will use in the following an
quantities are constant along the layers. Such an approxim&hmic form j,,=cE, with a constant conductivity. The
tion is reasonable for a stack of junctions which is short withgeneralization to more realistic forfis straightforward.
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The crucial point where the phonons come into play is the n+l
relation between the field ,= €;Ef,, which is created by the o R o] 1=,,1)
charge fluctuations on the superconducting layers alone, and . . L
the average electric field Eq7) E,=E-+E?" which con-

. . i . . . L [ J [ J
tains also the averaged fiell>" created by the ionic dis- n-1
placements in the barrier. This will be discussed in detail " -
below. FIG. 1. Labeling of unit cells.

Before we do this let us summarize the most important

parametgrs which characterize the Josephson sy;tem: The while the RSJ equations for the phases are highly nonlin-
first one is thebarg Josephson plasma frequenay defined  ear, the relations between lattice displacements and electric

by fields are linear, consequently we may analyze the response
. for each frequency separately. With a harmonic ansatz of
,._2edjc g theform u (L Jty=u,(')e "t we obtain for the amplitude
wp'_ hE . ( )
0
The second one is the so-called characteristic frequency de- [ | ): i ea(K|q)\)e§(K’|q)\) glalR(-RI"
fined by Akl NG T 0X(gN) - 0? VMM ./
2eV, I’
W= (10) xeZ.Ej Rk (13

HereV, is the voltage where the quasiparticle current de”SitM-lerewz(ﬁ)\) andé(K|ﬁ)\) are the eigenvalues and eigenvec-
equals the valug. . It is of the order of the superconducting s of the dynamical matrix

energy gap and is a measure of the dissipative properties of
the junction. In our simple model with a constant conductiv-

ity we havew,=2edj./(fc). The ratio 8,= wi/w} is the > Dus 9 es(x’|GN) = w2(AN)el(x|Gh)  (14)
McCumber parameter, which {§.>1 for the strongly an- KB kK
isotropic cuprate superconductors. Moreover, for these mate-
rials there exist phonons with frequencies in the range defined by
<wphon< [OF
Typically the time dependence of the phase difference a 1 A
¥(t) can be written in the so-called resistive state as Daﬂ( KK,) => W‘%ﬁ( KKr)e'q[R(' )=ROI
I k'Vik!
y(t)= 0+ wt+ 5y(t), (11) (15)

The force-constant matrix contains the quantum-mechanical
short-range interactions but also the short-range and long-
range Coulomb interaction&he latter being of the form

_~qaq3/q2) between the ions, but not the fields set up by the
conduction electrons on the layers. The eigenfrequencies

w(ﬁ)\) are therefore by construction th®are phonon fre-
quencies in the absence of the conduction electron charge
fluctuations p,(t). They include possible renormalization
by intra-atomic electronic polarization.

For the further discussion it is convenient to label the

Now let us turn to the discussion of lattice vibrations. lattice-dynamical unit cells by=(l,,ly,l;) with I,=n de-
Quite generally the lattice displacement of an ion of type Noting the superconducting layer in which the lattice cell is
with massM ., chargeZ, in unit cell| is determined by the ~containedsee Fig. 1 Then thez component of the position

where w=(7) is the time average of the phase velocity
which is nonzero for a junction in the resistive state. It de-
termines the dc voltag®/=(E)d=7(y)/(2e) across the
junction. In the asymptotically stable state and for large val
ues of the McCumber parametgg the oscillating party(t)

is small and oscillates with the frequeney

I1l. EXCITATION OF PHONONS
BY JOSEPHSON OSCILLATIONS

following equation of motion: vector Ifé(',() for 1=(ly,ly,n) does not depend or
=(Ix,1y) and we may writeRZ('K)z R,(1)=Ry(n) +R,(k).
. L I’ | Furthermore the origin of the unit cell may be chosen on the
= P
MKU“(Kt) +|%, q)aﬁ(mc’ UB(K/ t eZKEa(K t)' superconducting layer, so thRt(n) =2z, .
(12) In our model for the superconductivity in the layers we

have to assume that the mobile electronic charge is spread
Here E-(,|t) is the local driving field at the equilibrium out uniformly along the layers, because a microscopic theory
position R(')=R(1)+R(x) of the ion generated by the connecting the superconducting bands and the atomic sites in
charge fluctuationssp,(t) on the superconducting layers. the CuQ layers is still missing. Therefore the fieEig('K)
Note that the vibrating ions may be both in the barrier ma-does not depend on the positianalong the layer and has
terial and on the superconducting layers. The superconduconly a z component. In Eq(13) only modes withq =0
ing electrons are assumed to move together with the ions afppear and we may write for the displacement amplitude in
the layers. direction of an ion of type< in barriern:
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u n)_iz ez(K|qz)\)e§(K,|qz)\)
\ x N, A n'«k’ wz(qzk)—wz
eldz(zn—2zn1) 4
x—eZK,EQ . (16)
VM M K

Now let us specify the driving fiel&~(") for the ions in
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the displaced ionic charge&,(x,z) =E~L(x,2) + EY"(x,z).

As EX(x,z) is assumed to be constant inside the barrier and
independent ok we may replace the other two fields also by
their averages across the barrier and over one unit cell along
the layer. For the averaged fields we have then the relation

Ef=E,—E°", (23)

more detail: Summing up the electric fields created by the The field Eirﬁ’“ in the barrier can be calculated from the

charge fluctuations on the different layers we find

z Opn — E 5pnr) for ke barrier

n’>n

1
Sen > Spw— 2 Opn| for ke layer.
€0\ n’ n'>n

(17)

Note that for ionsnsidethe barrier the driving field does not
depend on the positioR,(«) of the ion and is equal to the

constant fieldg!, introduced in Eq(4):

EA for ke barrier

Eg( n) ~{1 (18

K E(Eﬁ+Eﬁ,l) for ke layer.

In order to find a relation between the lattice displace-
ments and the driving field we introduce the Fourier trans-

formation
E"(q,)=2, Efe™ "%, (19
n
Then
ny . ~
> Z,E K)e"qZ2n=:z:<qz>Eﬂ<qz> (20)
n
with the q,-dependent effective charge
Z, for ke barrier
Z =<1 .
“d9) EZK(1+e'qzd) for ke layer @1
and consequently
n 1 ) n, 1
= — 19,R,(,)
P % KE e -
Xez(K|qz)\)e;(K,|qz7\) e’zf('(QZ) Er(q,)
N o Mg
(22)

Thereby the vanishing &, for g,d= 7 and for ions on the

difference of the scalar potentials on layerandn+1 pro-
duced by the ionic displacements averaged over the area of
one unit cell as

) e n 1 n
ElN=— Z.u ( )+ = ZJu ( )
n €oUc | ke Darrier A\ Kk 2 Kezlayer 1T Kk
n+1
+u, « ) (29

Hereuv. is the volume of one unit cell. The factor 1/2 results
from the fact that displacements of iofigith g;=0) on a
layer do not contribute to the potential on the same layer.
Note that this field forgy=0 does not depend on the ionic
displacements in other barriers and is closely related to the
ionic polarization in the same barrier. Defining a generalized
polarization by

E'=:—P, /e, (25)
we may write for the displacement in the barrier
Dn:: EoEﬁ: EoEn+ Pn y (26)

which has the usual form as in the macroscopic Maxwell
theory.
Going over to a Fourier transformation the relation

P(9,)=x(d;,»)eE"(q,) (27)

between the polarization and the driving field is obtained
with

Qg M)
)=, 28
X(0z,0)= 2 o) o (28)
and the oscillator strength

€ o5 elklgNe] (x'[aN)

2: \ z Z *
|Q(qz)\)| V€ KZK, ZK(QZ} \/m ZK'(qz)-
(29

The special combination of phase factors contained in

ZK(qZ) [Eqg. (21)] are a consequence of the different contri-
bution of ions on and between the superconducting layers to
the electric field in the barrier.

Using €gE”(q,) = €0E(q,) + P(gq,) we can solve for

layers reflects the fact that for alternating electric fields in thep(q )
barriers no net force is acting on the superconducting layers.

Next we want to relate the driving field to the average
total electric fieldg, in the barrier because this field is con-
nected with the phase differengg by the second Josephson

Eqg. (8). The microscopic total electric fiel&,(x,z) is the

_ X(qZIw)
P(g,) = mEOE(qz)-

The relationD(q,) = Eoﬁlﬁh(qsz)E(qz) defines an effective

(30)

sum of the fields set up by both the charge fluctuations antbngitudinal dielectric function
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where D, (t) = €EA(t) is the electric field in junctiom set
m- 31) up by the charge fluctuations of conduction electrons. As

pointed out in the previous section this field can be expressed
This function has zeros at the eigenfrequencig€s,\) of by the average electric field in the barrier and the generalized
the dynamical matrix. Due to the form of the oscillator polarization Eq.(25) asD(t) = €E(t) + P,(t). The polar-
strengths Eq(29) only modes with polarization in the di- ization has to be calculated self-consistently from the ionic
rection contribute. As the electric field, is constant along displacements and depends linearly on the electric field.

the layers we havéHIO and only longitudinal modes in the L€t us discuss first the case of one resistive junction at

actly at the longitudinal eigenfrequencies of the dynamican# 0 are in the superconducting state. Then, as mentioned
matrix. previously, all the oscillations are governed by one fre-

In the case of a single dispersionless phonon mode wit§uencye, and we can write for the phase for=0
frequencyw, the functione;h(w) can be directly compared

(0, @) =

. . . : : ; : =0y+ wt+
with the dielectric function used in Ref. 6. In fact, in this Yo(t)= o+ wt+ Syo(1), (34)
casee,';h(w) can be written as while for n#0 we have
. 0?2 V(D)= 0+ Syn(1). (395
Eprl @) =1+ wf—ﬂz—wz' (32 In the stationary statéy,(t) oscillates with the same fre-

quencyw,
The form of the longitudinal dielectric function _ it

e';,h(qz,w)=ef)ﬁ(qz,w) [Eg. (3], which we have intro- Orn()=dype T C. (36)

duced here, is different from the transverse dielectric funcHigher harmonics can be neglected f8y>1. In this limit

tion .sTph(qX ,0) = €(dy,0) =1+ x(qy, ). In both func- the fluctuationssy,(t) are small and we may use the expan-

tions different eigenfrequencies and oscillator strengthsion

enter, however, in the limig,—0,q,—0, which is relevant

in optical experiments, the values of both functions are sinyo(t)=sin(fp+ wt) +cog O+ wt) Syo(t),  (37)
equal. _ , o while for n#0 we have

Finally a comparison of our theory with theoretical inves-
tigations in Ref. 19 are in order. In principle there are two sinyy(t)=sin6,+ cosé,,5yx(t). (39
different electron-phonon coupling mechanisms, which may
couple Josephson oscillations and phondiisthe electro- The bias current densifyon the left-hand side of the RSJ

magnetic interaction between the ionic charges and th&Qg. (33) is time independent and equal for all junctions,
charges of conduction electron@, the dependence of the while the quantities on the right-hand side have both time
tunneling matrix element on lattice displacements. The firsindependent and oscillating components.

mechanism is considered in our work, the second in Ref. 19. Let us discuss the equations for the nonresistive junctions
Both mechanisms require a different theoretical treatmengn+0) first. Here the dc component is

(on a diagrammatical basis the two mechanisms would cor- o

respond to different diagramdt has been argued in Ref. 20 1=]csinby. (39

that in the layered cuprate superconductors the charges of thgis fixes the constant part of the phases in the nonresistive
ions in the insulating barrier between superconducting |ayerfhnctions and relates it to the bias current.
are unscreened and therefore have a strong interaction with por the oscillating part of Eq:33) one obtains

conduction electrons in the CyQayers. We therefore con-
sidered this mechanism for our treatment of the coupling . hoo . .

between Josephson oscillations and phonons. Though we did 0=jcCosbndyn(t) + 05 8yn() +Dn(t)  (40)
not write down a Hamiltonian for the interacting system our

method, nevertheless, is a full microscopic theory whichor

treats the electron-phonon interaction on a random-phase- 2ed

type level by describing the interaction with the help of in- _"2 9. e~

ternal fields. This approximation is sufficient as Iongp as we 0=wpdyn(t)+ € oyl + heoD”(t) (41)
do not want to consider the electron-phonon interaction in- .
side the superconducting layers and treat exchange effectd
between different superconducting layers.

th the reduced Josephson plasma frequency

i\ 2
1 (42)

Je

IV. INFLUENCE OF PHONONS
ON THE |-V CHARACTERISTIC Now we discuss the resistive junction m&0. Keeping
According to the RSJ-like model derived in E@) the  Only the lowest harmonic we find
current density in junctiom is . . i
yin Siny(t)=sin( 6+ wt) + Re Syye' %0). (43)

j=jcsiny,(t)+aEq(t)+Dy(1), (33)  The dc component of the RSJ EH&J) is therefore given by
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J(V)=jq(V)+]cRe(8yp€e'P), (44)

where V is the dc voltage of the resistive junction and
J gp(V) = 0Eqc is the quasiparticle current density.
For the oscillating part one finds

hoo. .

The two Eqgs(40) and(45) can be combined to one inho-
mogeneous linear differential equation for ail

o

— . 2ed.
wp57n(t)+ € Oyn(t)+ h_eoDn(t):fn(t) (46)
with

w28yo(t) — wZsin( B+ wt) for n=0

4
0 for n#0. “n

fo(t)=

Assuming a time dependence of the foem'®! for all
oscillating quantities we have
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FIG. 2. Analyticall -V curve for one resistive junction with one
phonon resonance at= w, . The arrows mark the hysteretic jumps
found in current-biased experiments and numerical simulations.

—iw?

1

=~ ——F ¢ 56
— —iwo ed | Yo 2g*1(w)—526 0
Wp0Ynt ——dynt E(—Iw)Dn=fn (48) P
0 we obtain
with )
2 Re(5y,€' %) 1| Yo (57)
i . Y€ )= sim—/———.
. ZﬁéVo—%e*'ﬂo for n=0 9 ° 2 g w)~w)
" 0 ¢ 20 From this finally the following expression for the dc-current
or n7u. density as function of the dc voltage is obtained:
In order to incorporate the nonlocal dependence of the .2
polarization on the electric fields in different barriers a spa- i((V)=i.(V)— Je ﬂ| !
. . X J(V)=]g(V) Sims
tial Fourier representation of the form 2 »?2 € w)
1 . 2 ew)
Syn=rc 2 (gy)en (50 VAN (58
N; q Jl )+ w? €(w)+e5(w)
's introduced. Using the relation Here'e(w) is a modified dielectric function,
D(0,) = eoe( )y, ) E( )=ﬂeL( w)(—iw)y(d,) ~ N !
dz 0€pndz; d: 2edEph 4z, Y4z ()= ep( @) +—, (59)
in Eq. (48) yields where
G Xa,, =f 52 — 0% o
(dz, @) y(dz)=fo (52 Eph(w):\]fl(w)_’__z__ (60)
o and
-1 _ 2 i - 2L
G (qzyw)_wp wao w Eph(QZ!w)' (53) 1 ) EFZ) i -1
. . . . . . . = L S + -
The phase oscillation in the resistive junction follows J(w) N, qzz €pr(dz: ) w2 €W (61)

1
8y0=g, 2 () =9(e)fo (54
with
1
g(w)= 5 2 G(dz.w). (59
z Qz

Solving for 8yq

This expression describes the dc current density as func-
tion of the dc voltage/=7%w/(2€). It has a maximum for
frequenciesw where the real part of(w) vanishes, i.e., for
longitudinal phonon frequencies.

This can easily be seen if we consider the special case of
one phonon mode without dispersion. Theg, ()
= E:;h(w), which is of the form Eq(32). The corresponding
I-V curve is shown in Fig. 2, which is calculated with the
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dielectric function Note that the right-hand side of E@4) depends on the layer
indexi e, while the left-hand side is equal for each junc-

L 02 tion. From this equality thérelative) phased; in the differ-
enw)=1+ . (62 iuncti N prine i ioh i
ph 2 2 2 . ent junctions can, in principle, be determined, which in turn
wi— Qv —iwp . . .
provides an analytical expression for th&/ curve.
Here an additional damping of the phonon has been intro- In the case of two resistive junctions exactly two solutions

duced in Eq(32) in order to simulate the energy transfer into exist with 6= 6; and 6;= ¢+ 7, respectively. In the general
other junctions due to the coupling of the ions. A peak in thecase several different solutions are found. The stability of
|-V curve appears ab=w, . The width of the peak is de- these solutions will be checked by a comparison with a direct
termined by this damping together with the quasiparticlenumerical integration of the coupled equations of motions in
conductivity. The deviation from the quasiparticle currentthe following section. It turns out that those analytical solu-
density vanishes at the pole @th(“’) at wy= \/;E__QZ tions are most s_table_where the phagesf the o_scilla}ting_
The rise at low voltages is due to the plasma resonance. Fgf_)sephson junctions fit best to the pattern of lattice vibrations
B.>1 the minimum of the |-V curve is at w,  With the given frequency.

2(3/2)1/4wp/\/el:ph(wp). In current-biased experiments and

corresponding numerical simulations the parts with negative V. A SIMPLE EXAMPLE

Sggaeirxl?rllecggggg tivity are skipped hysteretically as indi- The theory in the preceding sections is developed for gen-

Note that the denominator in the functidtw) [Eq. (61)] eral lattice-dynamical models and is valid within the assump-

is the totalg,- and w-dependent longitudinal dielectric func- E'Onf wel ha\(e rlnalde for thet superconduptmg phropemes: we
tion of the coupled system of phonons and conduction elecycat only single-layer systems assuming a nhomogeneous
trons conduction-electron charge distribution along the layers. An
’ extension of the theory to more realistic systems is, in prin-
— . ciple, possible, but requires to introduce the charge suscep-
w lo T . . .
y——P 4 — . (63 tibility of conduction electrons in the superconducting state
w? €W and a generalization of the Josephson theory to multilayer
systems. But for this more details of the electronic properties

Zeros of the real part of this function describe longitudinal e required than are currently known about these materials.
collective modes in the system. On the other hand, the resqy aqgition to this, it is not possible to compare theoretical

nances in thé-V curve appear at theare longitudinal pho- yegjts for thel -V curves with experiments in detail, as re-
non frequency in the case of a narrow phonon band. Thgape |attice-dynamical calculations for the strongly aniso-
summation over, in Eq. (61) leads to an effective damping {qnjc systems BSCCO and TBCCO with two and three lay-
of the resonances which is proportional to the phonon disg,s and variable oxygen content are not yet available.
persion. The physical origin is the loss of energy by phonons |, he following we consequently only want to illustrate
from the resistive junction to the neighboring junctions. the main features of our theory in a simple toy model, which
The result for the current-voltage characteristic can bgeflects some basic aspects of the real system. One of the
generalized to the case of several junctions being in the réyain |attice-dynamical property of these systems is certainly
sistive state, if we assume that all junctions oscillate with thhe existence of a longitudinal acoustical afseveral flat
same frequency». Denoting the subset of indices for the oty dinal optical bands which result from movements of
resistive junctions by then fori e | we obtain(for a deriva- groups of ions in the barrier against ions in the Guanes
tion see the Appendjx in the ¢ direction?*~2* Such modes we simulate by the most
simple lattice-dynamical model consisting of two kinds of

el_ot(qz ,w) = EIp_h(QZ @

i(V)=] ﬁ_ B j—cw—glmz ot ions with ionic chargeZ,, Zp,=—2, and masseM,, M.
JV) =1 op 2e 2 w2 & The first kind («=1) is placed on the superconducting lay-
_ ers, the second kindk=b) in the middle of the barrier. The
i k lo s o —i6, 64 motion of ions in thec direction which is assumed to be
x| e, ,w)+60—w ik €% (64) uniform along the layers is approximated by a two-atomic
- chain model with nearest-neighbor interactions in ¢thei-
The dielectric functiore(i,k, ) is defined by rection:
ko) 1 s elaz—2) -1 " (n) . (n>+ (n—l) ) (n) eZ.EP(n)
e(i,kw)= — | | —flu u —2u = \
N, G o) ;‘2)+ i I b b I I
€pnllz, @) = — +——
©° €@ () n+1 n) n\] [N
” - Mbub—uI +u|—2ub—eZbEb.
P s 66
bl LIS (65) (66)

By choosing the masses very different a narrow optical band

The terms in brackets in Eq&4) and(65) are understood can be simulated. From a diagonalization of the dynamical
as matrix inversions. The dc voltagé is obtained, if one matrix given by Eq.(66) the well-known eigenfrequencies
multiplies 7 w/(2€) by the number of resistive junctions. «(g,\) of the two-atomic chain are obtained. With help of
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the eigenvectors the oscillator strengths defined in (26).
are calculated, which are needed for the longitudinal dielec-
tric function Eq.(31).

The driving field on the right-hand side of E@6) is the
field set up by the conduction electron charges on the super-
conducting layers, which can be expressed by(tomstant
field Ef in the barrier between layersandn+1 with the
help of Eq.(18). The latter can be expressed by the average
total electric fieldE,, in the barrier:

1
EL=E,+ —P,, (67)
€0
where the polarization Ed25) is given by
e (n 1 (n n+1
Pn—v—C Zpu| +§Z| uljtu . (68

These equations for the motion of lattice displacements
have to be supplemented by the extended RSJE3).

S ho. ho. )
J:JCS|n7n(t)+Uﬁ'yn(t)+foﬁ?’n(t)+Pn(t)-
(69

This model is used to calculate theV characteristics in
two ways:(i) Thel-V curves are calculated analytically us-

THEORY FOR THE COUPLING BETWEEN . ..

0.3

0/®

QI /e 2

QI /2

> 0.2

6009

q ¥

FIG. 3. Dispersion and oscillator strengths for the two-atomic

ing the results Eq(64) obtained by the Green's-function chain model. Shown are the oscillator strendtfi§q,\)|? for the
method. Thus the peaks due to the phonon resonances arepustical branchidashed curveand the optical branchsolid

obtained (ii) The coupled set of RSJ equations E8P) and

curve and for the two cases of the heavy ions on the superconduct-

phonon equations Eq&6, 68 are integrated numerically by ing layer (M;>M;) and in the barrier M1, <My).

a Runge-Kutta method for a finite stack of Josephson junc-

tions. Changing the bias current gradually allows to followfor the I-V curve of the first branch in the two casbf
thel-V curves as in the current-biased experimental situatior< M, andM,;>My,. In our model the phonon dispersion is
and to reproduce the hysteretic behavior in particular. Wdixed by the values ofv?o(q,=0)=2f(1/M,+1/M;) and

start with the discussion of the first branch of th& curve,
where one junction is in the resistive state.

the mass ratidl, /M, . A measure for the oscillator strength
is the quantityQ?,=eZ?/(M, ,equ.). In Fig. 4 we have

used the following parameterg.= w2/ w3=375, M,/M,

A. One resistive junction

Quite generally thé-V curve is expected to have peaks at
the van Hove singularities of the phonon dispersion. Details,
however, depend on the oscillator strength defined by Eg.
(290 which enters the longitudinal dielectric function Eq.
(31). In particular at the edge of the Brillouin zone fqy
=/d only the motion of ions within the barrier contribute
to the oscillator strength, the ions on the superconducting
layers are inactive due to the factot-Exp(qgd) in Eq. (21).
These features will be illustrated in the following.

For the lattice-dynamical model introduced abovegat
= a/d only one type of particles is moving due to symmetry:
In the acoustical branch the heavier ion, in the optical branch
the lighter ion is moving. If the heavier ion is on the super-
conducting layersNi,>M,) the oscillator strength vanishes
at the end of the acoustic bran@ee Fig. 3, and peaks are
expected to appear in theV curve at the two van Hove
singularities of the optical branch. On the other hand, if the
lighter ion is on the superconducting layeid,<M,) then
the oscillator strength vanishes at the end of the optical
branch, and peaks are expectedjat w/d from the acous-
tical branch and at),=0 from the optical branch.

=0.2 andM,/M,;=0.2, respectivelythis mass ratio is cho-

03 F
M, <M,
02
0.1
0.0....I....I....I..
0.0 0.1 0.2 0.3
w/m,
03 F
M, >M,
02
0.1
0.0...|I|.‘.I‘...I|.
0.0 0.1 0.2 0.3
w/o

c

FIG. 4. 1-V curves for one resistive junction with subgap struc-
This is illustrated in Fig. 4 where we have plotted resultstures due to acoustical and optical phonons.
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1. branch 2. branch
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j
0.2
[&]

=

0.1 - >

\Y
FIG. 6. Schematic plot of the first and second branch of ive
curve with subgap structures due to one phonon.
0'00.0 1.I0 2fo 3fo 4..0

The second branch of tHeV curve which corresponds to
two resistive junctions has a rather complex structure already

FIG. 5. Comparison between analyti¢ablid line) and numeri-  for one phonon band. This is shown schematically in Fig. 6.
cal results(rhombus for the I-V curve of one resistive junction If we denote the two dynamical states of the first brancla by
with subgap structures due to acoustical and optical phonons faandb, then on the second branch with two resistive junctions
M <My. either both junctions are in state(labelaa), both junctions

are in statd (labelbb) or one junction is in stata while the

sen to obtain a sulfficiently flat optical brancfihe phonon  other junction is in staté (labelab). Note that in the latter
frequencies are normalized to. and are given byw, (g,  case the oscillation frequencies of the two junctions are dif-
=0)=0.28».. The oscillator strength is given bgoﬁ/ﬂf ferent. In the case of well separated resistive junctions the
=200 forM;<M,, and wE/ng 200 for M,>M,. The cor- voltages of a structure for a given bias current are determined
responding phonon dispersion and the oscillator strengths aRy ®aa=2wa, Wph=2wy, Wap=wa+ wp. This is no longer
shown in Fig. 3. true, if the resistive junctions are close to each other and

In order to demonstrate that the discussed effects are réateract via phonons. Then the voltages in the second branch
alistic, we have adapted the values 8f and w o/w, to  are slightly lower. S _
TBCCO. The chosen valy€)|? w?,=0.08 for the oscillator In the case of two resistive junctionsndj two solutions
strength atg,=0 is comparable with the experimental esti- Of EQ. (64) exist with phase differenceg ;= 6; and 6;= 6,
mate~0.13 from Ref. 11 for the optical oscillator strength. * 7. corresponding to in-phase and out-of-phase Josephson

Also the chosen value of the dampipéw,o=0.02 is in the ~ Oscillations, respectively. Inserting these results in ©&4)
range 0.01-0.07 of experimental valtlesfor optical —two different|-V curves can be calculated. Note that this

phonons. formula applies only for the statesa andbb, because in the
For M,<M, the analytical results for the-V curve in  derivation we have assumed that the two junctions oscillate

Fig. 4 show phonon peaks at the van Hove singularity of thé/ylth the same frequency. A similar formula can also be_de—
acoustic branch at,= m/d and at the van Hove singularity rived for the stateab. In. that_ case th(_a phase_s are meaning-
atq,=0 of the optical branch, the resonance at the van Hovdess bfacause the two junctions oscillate with different fre-
singularity atq,=/d of the optical branch is suppressed. duencies and are essentially decoupled.

For M,>M,, only structures due to the two van Hove singu- !N Fig- 7 we show examples calculated for a narrow op-
larities of the optical branch appear. In both cases the intical band withM,/M;,=10 and the light ion oscillating in
crease of the-V curve at low frequencies indicates the Jo- the barrier. .Here the @fferent analytical s_quuons are §hqwn
sephson plasma frequency. The numerical results shown ﬁqget_her ‘_’V'th numerical results _fo_r nglght_)onng resistive
Fig. 5 forM, <M, (herew.=13.1 THz) follow the analyti- Junctionsj =i+1 (a), and two resistive junctions separated
cal results in the regions of positive differential resistancePy 1 O 2 superconducting junctiongs=i+2 (b), j=i+3
perfectly, and otherwise show the hysteretic behavior as seef? ) . . _ -

in experiments. At low values gfj. thel-V curve switches It is plausible that in the case of neighboring resistive

back to the superconducting state of the junction. junctions out-of-phase Josephson oscillatioms=(6; + )
favor a coupling to phonons at the edge=7/d of the

S Brillouin zone, while the coupling of in-phase oscillations
B. Two resistive junctions (6;= 6;) is strongest for zone-center phonongjat 0. This
Another important effect of the coupling between Josephis shown in Fig. 7a), where thel-V curve for the in-phase
son oscillations and phonons is the synchronizatipmase solution shows a peak ab(q,=0), while for the out-of-
locking) of Josephson oscillations in different resistive junc-phase solution the current maximum iseao,= 7/d).
tions, which would be absent without phonons in short junc- It can be seen that the numerical results in the dynamical
tions, which are homogeneous parallel to the layers. Wetateaa follow one of the analytical solutions before a hys-
want to illustrate this for the case of two resistive junctionsteretic switch into statbb occurs(outside the figure This is
coupled by one narrow optical phonon branch. verified in Fig. 1a) where the numerical-V curve follows

vV [THz]
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TABLE |. Comparison of the frequenciefg = (h/2e)V. (in
THz) of the most pronounced subgap resonances in Ref. 8 and of
infrared- and Raman-active modes in ,8,CaCyOg and

T1,B2,CaCuOz 4 4.

Subgap resonances and phonons isSBICaCyOg
fsg 297 3.89 517 5.60 Ref. 8 Josephson effect

i

f,o 2.85 5.07 Ref. 11 IR reflectivity
flo 2.86 5.16 Ref. 25 IR reflectivity
fro 3.80 Refs. 4,24 Raman effect

Subgap resonances and phonons yB&CaCu,0,,, 4

fg 3.63 464 Ref. 8  Josephson efféct
. 2 2 2 s flo 4.50 Ref. 11 IR reflectivity
0.50 052 0.54 0.56 0.58
05 ol _ 2T1,Ba,Ca,Cl;0y.
5T1,Ba,Ca,Cu,O;.

C. Several resistive junctions

The results obtained for two resistive junctions show that
the peak position in thé-V curve depends only slightly on
the distance between the resistive junctions. More important
is the fact that phonons are able to synchronise the phases of
Josephson oscillations in different resistive junctions. This is
important for the use of such systems in high-frequency ap-
plications. We have checked this numerically for the case of
a block of many resistive junctions. For frequencieslose
to a phonon eigenfrequeney(q,= 7/d) at the edge of the
Brioullin zone the Josephson field oscillations in neighboring

i

28, 50 550 .54 056 0.56 junctions differ by a value close te. For frequencies close
w/ o, to w(q,=0) near thel” point the Josephson oscillations are
0.50 Y T nearly in phase. These phase-locked dynamical states are
(© reached from arbitrary initial conditions for the phases.
045 b There is also a synchronization of Josephson oscillations for
’ frequencies far away from phonon resonances. We did not
yet investigate the stability of these states systematically but
0.40 b we expect these to be less stable than at frequencies close to
o a phonon resonance.
035 |
VI. EXPERIMENTAL RESULTS
00 | Recently the explanation of the subgap resonances in

Refs. 3—5 and 8 with the phonon coupling mechanism pre-
sented here could be well confirmed by Raman measure-
o5 . . . . ments on the same sampté8and infrared reflectivity ex-
0.50 0.52 0.54 0.56 0.58 periments with grazing incidendé?>where the latter allows
to determine both longitudinal and transverse mo(kee
FIG. 7. 1-V curve for two resistive junctions separated bgaf) Tak?le ). Small deviations 9f the _order 0#5__10% may _be
1 (b), 2 (c) superconducting junctions. Shown are analytical attributed to the fact that in optical experlmenti and in the
curves calculated for a narrow optical band for the in-phage, intrinsic Josephson effect different averages oyeof the
—6;=0 (solid line) and the out-of-phase); — ¢;= 7 (dashed ling  dielectric functions are relevant. Note that in our theory
solution together with numerical resultgots. modes which are Raman active@t=0 may couple to in-
trinsic Josephson oscillations also fpy# 0. Earlier experi-
the analytical curve fog;=#6;,,+ . In Fig. 7(b) the in- mental datd*° which are obtained from polycrystalline
phase solution withg,= 6; ., has maxima for voltages cor- samples, show the same qualitative behavior, but differ in
responding to frequencies of optical phonons at bqgth detail.
=m/d and q,=0, while the out-of-phase solution has a With the help of rigid-io® and shell-model
broad maximum in the middle of the Brillouin zone. The calculationé*~>3>some of the more pronounced structures can
numerical results follow the in-phase solution. Figue)7 be connected with certain elongation patterns of the ions in
shows results foj=i+3. the unit cell. For example, the peak in the/ curve at 4.64

0.
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15.0 acoustical phonon band, which has been detected in inelastic
neutron scattering at 5 me¥’, might correspond to a less
pronounced phonon resonance in the intrinsic Josephson ef-

fect atVgg=4.9 mV (=2.38 THz), which seems to be in-
visible in optical experiments. Nevertheless, at the present
time this interpretation is not yet fully conclusive, as the
instrumental resolution of 0.65 meV in the neutron-scattering
experiment is still rather large compared with the accuracy in
the measurement of tHeV curve.

Also the effect of the two van Hove singularities at the
optical band edges on theV curve as discussed above
might have been seen in the satellite structures at 5.17 THz
(10.7 mV) and 5.6 THz(11.6 m\) in the |-V curve of
Kbl resal BSCCO! This interpretation is further supported by the the-
< Experiment oretical prediction of the bandwidtk 0.3 THz and the fact
that the assignment of no other phonon mode is plausible.

15.0 -

/uA
°
o

T
2

10.0

I(HA)

5.0

0.0 1 n 1 1 1 n
0.0 2.0 4.0 6.0 8.0 10.0

U(mV) VIl. CONCLUSIONS AND OUTLOOK

FIG. 8. Fit of the experimentdl-V curve in ThBaCaCu;0,q
from Ref. 5 near the subgap resonances at the band edge of t
acoustical branchat 3.2 m\j and an optical branch with the help of
the a two-atomic chain model. The inset shows the experiment
result over a wider frequency range.

In this paper we have developed a microscopic theory for
e coupling between Josephson oscillations and phonons in
intrinsic Josephson systems like the highly anisotropic cu-
ar?rate superconductors. We determined the precise form of
the longitudinal dielectric function Eq31) describing this
coupling and obtained analytical results E¢88) and (64)

THz in TI,Ba,C3Cu;0,9 seems to be due to €Cu,Ba  for thel-V curve for one and several resistive junctions. The
mode. principle features and selection rules for phonon resonances
The qualitative features of the subgap resonances hava thel-V curves are illustrated with help of a simple lattice-

already been explained with the help of the phonon interpredynamical model.

tation in Ref. 8: The position of the resonance is independent Wwe have shown that not only optical, but also acoustical,
on temperature, magnetic field and the geometry of thehonons at the edge of the Brillouin zone couple to Joseph-
probe, while the intensity of the structure varie$? with the  son oscillations. This may explain the structure observed in
critical current densityj(T,B). Also the behavior of the Ref. 5 in thel-V curve occurring at an unusual low voltage
position and intensity of the structures in external pre<éure (frequency, which is not found in reflectivity experiments,
are in agreement with the phonon explanation and formulgesting transverse optical phononsct0, and in lattice-

1. . : _ _ -
. o dynamical calculations for infrared active phonongjat0.
One of the main qualitative features of the general theo%\ weak satellite structure observed in theV curve of

with dispersive phonon bands, which goes beyond the loc
oscillator model used in Refs. 6 and 8, is the possibility t(féSCCO(REf' /) may be due to a double resonance from the

. . i . two van-Hove singularites of an optical branch.
describe resonances at van Hove singularities, which appear, . i
The analytical results are compared with results from a

€.g., at the upper band edge of the acoustical phonon band'umerical integration of the coupled equations of motion for

This might be an explanation for a resonance seen in Re h o .

- ) - e Josephson oscillations and phonons. For this purpose a
5 at 3.2 mV (=1.54 THz) in thel-V characteristic of gimpjified lattice-dynamical model has been used with one
TI,Ba,CaCu;0,, because the same frequency is expectedicoystical and one optical branch. It is found that in the limit
by lattice-dynamical calculatioffor the upper edge of the  of |arge values of the McCumber parameter the numerical
acoustical band, and there are no optical phonon bands igyits follow closely the analytical solutions with the fol-
this low-frequency range. Figure 8 shows a fit d+& curve  |owing exceptions:(i) Using a gradual change of the bias
calculated with the two-atomic chain modehd some addi-  ¢yrent, regions of thé-V curve with negative differential
tional damping to the experimental results from Ref. 5. As conquctivity are skipped as is observed in current-biased ex-
for this three-layer compound no data from optical experi-periments. (i) In the case of several resistive junctions,
ments are available we assumed that the peak at 7.5 mV Cqphere several analytical solutions are obtained, the numeri-
be identified with the LO mode at 8.1 m\~@3.9 THz) cal- cal result follows only one of the analytical solutions. The
culated in Ref. 27, and we used for our fit the calculatedstability of the different analytical solutions is currently in-
LO-TO splitting (w3 o— w3,)/w3,=0.59. Such a large os- vestigated. It seems to be that the solution which gives a
cillator strength has been observed for a similar mode, wherminimum for the interaction energy between polarization and
Tl is oscillating against the CuO planes, in optical experi-the electric field generated by the Josephson oscillations at a
ments for a one-layer compoufitiUsing the damping as a given frequency is most stable. The phonons thus serve to
fit parameter we find a valup/ w =0.04 which is in rea- synchronize the Josephson oscillations in different resistive
sonable agreement with the damping of optical phonons. layers, which is important for the application of such systems

Similarly in BSCCO the upper edge of the longitudinal as high-frequency devices.
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In this paper we have considered only the case of a cur- Syn(t)= 5yne““’t+ C.C. (A3)
rent distribution in thec direction which is homogeneous ) ) )
along the layers. We neglected all magnetic-field effects asExPanding with respect téy, and keeping only the lowest
suming that all quantities are uniform along the layers. Fof@monic one finds
real systems this is an artificial approximation, because the

current induced magnetic field can never be avoided com- siny, (t) = S?n(BJert)wLRe(éyJe i) n=jel
pletely. Nevertheless, we argue that this is a valid approxi- A sin 6,+cosé,, 5y, (1) else.
mation for the intrinsic Josephson systems forming a mesa (A4)

strL_Jctu_re with an extension of a feyymn _in_ab _direction Splitting the RSJ Eq(A1) into a dc part and an oscillating
which is much larger than the thicknessdmlirection. Such part one obtains for the dc part

a junction is still short with respect to the length=c/w),
describing the variation of the phase difference along the _ [UEdcﬂcRewyjeiaj) for n=jel
layers produced by the self-field of the bias current. There- 1=

fore the treatment of the superconducting layers as metal
sheets with a uniform charge distribution, the creation ofyhjle the oscillating part can be written aggg
uniform polarization fields and the neglect@fin the cal- _ 2 m—77732

culation of the longitudinal dielectric function is justified for PV (710

the systems investigated. This will be different in the case of T . o .

longer junctions and strong external magnetic fi8lth par- ~ @38¥,(t)+ — 8¥,()+ 2 f e(n—=n’,t=t") Sy, (t')dt’
ticular the flow of vortices and their interaction with phonons €0 n' S

has to be investigated in this ca¥e. =f,(t) (AB)

jcsiné, else, (AS)
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Introducing the spatial Fourier transform
APPENDIX: 1-V CURVES FOR SEVERAL

1 .
RESISTIVE JUNCTIONS ¥(q,)= - 2 Syqe~ 9z (A10)
Quite generally the RSJ equation for théh junction can zn=1
be written as we obtain
ho. —id.z:
jzjcSinyn(t)+o'2_7n(t) V(qz):G(qu)z fie 22
ed jel
eoh o . 0’ .

+ 20?1 nE fﬁme'ﬁh(n—n’,t—t’)yn/(t’)dt’, (A1) :G(qz,w)JEEI Eg(syj—i Tpe*'ﬁj eiazZ
wherees(n—n’,t) is the dielectric function Eq(31) in real (A11)
space and time domain. with the Green’s function

Let us denote the index of a general junction by

ne{l---N} and the subset of indices of resistive junctions . — . O 2 L

by I. In the following we assume that oscillations in all junc- G (g w)=wp—io—— 0%, 0)  (AL2)
tions are governed by one frequensyand the phases can be 0

written as of the homogeneous equation.

From this an equation fofy;(i € |) in the resistive junc-
6+ wt+5y(t) n=jel tions is obtained:
WO=1, s (A2)
nt Sya(t) else 2

10 i o) @28 18yi= —i P aib
with 3 (67X w)—wpa 1oy = —i5le ! (ALY
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with W2 |
i(V)=0Ege—joo5Im 2 €'
L. 1 . _ 2(,02 el
G(i,j,w)=5 2 G(qw)ei@ s, (AL4)
2 — . io -1
Using X fph(l,k,w)JrEO—w&i,k e % (A17)
— 1 _2 [ H - - B
eph(i,k,w)=——zG_1(i,k,w)+ w—g—l—g) ik _ Finally we want to note that the dielectric function
@ w® 0w ALS €or(i,K,w) can also be used to write the RSJ equations in a
(A15) form where only the phaseg(t), of the resistive junctions
we get i el enter:
S TR R :
=i— iK,w)+——35 e '%, L .
i 2w? kel epnll ko) €ow K J:Jcsm%(t)‘*'(fm%(t)
(A16)
i i i o
which gives us the dc component E@5) of the current + ot L LN e g
density 2ed 2 |, ety (ALg)
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