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Theory for the coupling between longitudinal phonons and intrinsic Josephson oscillations
in layered superconductors
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A microscopic theory for the coupling of intrinsic Josephson oscillations in layered superconductors with
longitudinal c-axis phonons is developed. It is shown that the influence of lattice vibrations on thec-axis
transport can be fully described by introducing an effective longitudinal dielectric functioneph

L (v). Resonances
in the I -V characteristic appear at van Hove singularities of both acoustical and optical longitudinal phonon
branches. This provides a natural explanation of the recently discovered subgap structures in theI -V charac-
teristic of highly anisotropic cuprate superconductors. The effect of the phonon dispersion on the damping of
these resonances and the coupling of Josephson oscillations in different resistive junctions due to phonons are
discussed in detail.
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I. INTRODUCTION

The c-axis transport in the highly anisotropic cuprate s
perconductors Tl2Ba2Ca2Cu3O101d ~TBCCO! and
Bi2Sr2CaCu2O81d ~BSCCO! can well be described by
stack of Josephson junctions between the supercondu
CuO2-multilayers. This intrinsic Josephson effect can
seen in the multibranch structure of theI -V characteristic,
each branch corresponding to a well-defined number of ju
tions in the resistive state.1,2 The intrinsic Josephson effect
observed also in the behavior of the material in exter
magnetic fields and under microwave irradiation.1,2

Recently subgap structures in theI -V characteristic have
been discovered as intrinsic properties of the material3–5

which could be explained by the coupling between the intr
sic Josephson oscillations and phonons.6–8 This interaction is
mediated by the oscillating electric field in the Josephs
junction, which excites vibrations of charged ions in the m
terial. In our previous investigations6,7 we used a simple
model of a system of damped harmonic oscillators in or
to describe the dynamics of oscillating ions in the barri
We were able to derive an analytic expression for the
current densityj (V) as function of the dc-voltageV for one
resistive junction

j ~V!5 j qp~V!1
j c

2

vp
2

v2

e21
s

ve0

e1
21S e21

s

ve0
D 2 , ~1!

where the voltageV is related to the Josephson oscillatio
frequencyv by V5\v/(2e) and e(v)5e1(v)1 i e2(v) is
the dielectric function of the oscillating ions. From this res
it can be seen that theI -V curve has a maximum at th
frequency~voltage! where the real parte1 of the phonon-
dielectric function vanishes, which corresponds to a long
dinal eigenfrequency of the phonon system.

With appropriate values for the Josephson plas
freqencyvp , the quasiparticle conductivitys, the critical
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current densityj c , and the frequencies, dampings, and osc
lator strengths of phonons in the dielectric function we we
able to fit the experimental results for the subgap structu
in the I -V curves perfectly. In addition to this, the identifi
cation of the maxima of the structure with phonon freque
cies provides a natural explanation of why the position of
resonances is completely independent of temperature, m
netic field, and the geometry of the probe. The voltage po
tions of these resonances can also be related to structur
optical experiments,9,10 in particular to the reflectivity for
oblique incidence.11 In those cases where common structu
could be identified in Josephson experiments and optical
periments the oscillator strength and the damping are in
sonable agreement.

Though the simple oscillator model describes the exp
mental findings very well, a detailed theory for the coupli
between Josephson oscillations and phonons is still mis
and shall be presented in the following. In particular t
dispersion of phonons and the different coupling of ions
the superconducting layers and in the barrier material will
considered. This allows us to derive microscopically the
fective dielectric function entering Eq.~1! for the I -V curve
for one resistive junction and to find a generalization
multiple resistive junctions. As the electric fields in the J
sephson system are confined to the resistive junctions
dielectric function differs from the one encountered in op
cal experiments and different selection rules for phonons
ply. Therefore not only optical modes at the center of t
Brillouin zone but also acoustical modes and Raman ac
modes with van Hove singularities at the edge of the B
louin zone can be excited.

Another topic of this paper concerns the coupling of J
sephson oscillations in different resistive junctions. We w
show how the dispersion of phonons leads to a coupling
the phases of Josephson oscillations in different resis
junctions. This will be discussed in detail for two resistiv
junctions and general results will be given for large stacks
resistive junctions. A phase locking in a stack of Joseph
junctions is important for applications of such systems
high-frequency mixers and detectors.
6002 ©2000 The American Physical Society
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The excitation of phonons by Josephson oscillations
conventional single Josephson junctions has been obse
already a long time ago.12 Also in the I -V curves of break-
junctions of cuprate-superconductor13 structures due to
phonons might have been identified. The physical mec
nism described here can also be applied to these case
our formalism is particularly suited to treat stacks of Jose
son junctions with phonons in the frequency range betw
the Josephson plasma frequency and the gap frequency

It is not our intention to explain the details of theI -V
characteristic of TBCCO and BSCCO by a realistic latt
dynamical calculation. This is impossible at the moment
the complicated anisotropic superconductors with varia
doping showing this effect. Furthermore this would requir
detailed theory of superconductivity and the Josephson e
in two- and three-layer systems including information ab
the superconducting bands, charge distribution, and ch
susceptibility between the layers and inside the CuO2 planes
which is not available yet. Therefore we discuss a sim
model system with superconducting monolayers where
conduction electron charge is distributed homogeneou
along the layers, and a lattice-dynamical model with o
two phonon bands showing already the basic features
full theory which will be expected also for realistic system
We start the discussion with a definition of our model an
short derivation of the basic Josephson equations for a s
of Josephson junctions.

II. JOSEPHSON EQUATIONS FOR A STACK
OF JUNCTIONS

In this paper we model the strongly anisotropic cupr
superconductors by a system of superconducting layers s
rated by insulating material acting as tunneling barri
Phonons are excitated by the electric fields produced by
Josephson oscillations.

Strong support for this model and the insulating behav
of the barrier material comes from optical experiments: Th
show a very low optical cutoff frequencyvp , which allows
for pronouncedc-axis phonon structures to be seen with
unscreened oscillator strength typical for insulati
material.9–11 As this cutoff frequency scales with th
temperature-dependent critical current density,14 vp

2; j c , it
cannot be identified with a plasma oscillation in metal
systems, but can be explained naturally by assuming a
sephson tunneling coupling between the superconduc
layers.15 Moreover, this model is supported theoretically
band-structure calculations which show that the bands cr
ing the Fermi surface originate from electrons in the Cu2
layers while the electronic states of the barrier material
far away from the Fermi surface.16 Thus the assumption o
superconducting layers separated by insulating materia
justified both as basis for the Josephson effect and the e
tation mechanism ofc-axis phonons.

In the following we treat the superconducting layers
homogeneous metal sheets with a uniform electron distr
tion along the layers. We consider only the case of a unifo
tunneling current with a constant bias current and neg
magnetic-field effects due to the current flow. In this case
quantities are constant along the layers. Such an approx
tion is reasonable for a stack of junctions which is short w
n
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a-
but
-
n

r
le
a
ct
t
ge

e
e
ly
y
a

.
a
ck

e
pa-
.
e

r
y

o-
g

s-

e

is
ci-

s
u-

ct
ll
a-

respect to the Josephson penetration length but long eno
to neglect finite-size effects in the ionic polarization.

The tunneling current densityj n from layer n to n11
creates~two-dimensional! charge-density fluctuationsdrn on
the layers related by the continuity equation

j n~ t !2 j n21~ t !52dṙn~ t !. ~2!

These charge fluctuations create electric fieldsEn
r(t) ~in thec

direction! in the barrier between layern andn11 which are
constant inside each barrier and are related to the ch
fluctuations by the Maxwell equation

drn~ t !5e0@En
r~ t !2En21

r ~ t !# ~3!

or

En
r~ t !5

1

2e0
S (

n8<n

drn8~ t !2 (
n8.n

drn8~ t !D . ~4!

Assuming that the current densityj n for the first and last
barrier is fixed by the bias current densityj, then with help of
Eqs. ~2! and ~3! the tunneling current densityj n in all the
other junctions is related to the bias current densityj by

j 5 j n~ t !1e0Ėn
r~ t !. ~5!

The last term is the displacement current density related
the charge fluctuations on the layers. In the following w
denote this term byḊn(t)ªe0Ėn

r(t) in order to relate the
present results to the usual notation of the resistively shun
Josephson-junction~RSJ! model. Note that the introduction
of this notation does not mean that we are using macrosc
Maxwell equations as a phenomenological approximati
Instead our treatment is based completely on a microsc
model and one should keep in mind the microscopic ori
of this term.

In the following we approximate the tunneling current b
a superposition of a Josephson supercurrent density a
quasiparticle current density. Then we have for each ju
tion:

j 5 j csingn~ t !1 j qp@En~ t !#1Ḋn~ t !. ~6!

The Josephson current densityj csingn(t) depends on the
gauge invariant phase differencegn(t) between layersn and
n11 at positionszn and zn11. It is related to the average
total electric field in the barrier of thicknessd by

En~ t !ª
1

dEzn

zn11
Ez~z,t !dz ~7!

by the second Josephson equation

\

2ed
ġn~ t !5En~ t !. ~8!

Here small corrections to Eq.~8! for layered superconductor
which are discussed in Refs. 17 and 18 are neglected. Fo
quasiparticle current density we will use in the following a
Ohmic form j qp5sEn with a constant conductivitys. The
generalization to more realistic forms7 is straightforward.
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The crucial point where the phonons come into play is
relation between the fieldDn5e0En

r , which is created by the
charge fluctuations on the superconducting layers alone,
the average electric field Eq.~7! En5En

r1En
ion which con-

tains also the averaged fieldEn
ion created by the ionic dis

placements in the barrier. This will be discussed in de
below.

Before we do this let us summarize the most import
parameters which characterize the Josephson system:
first one is the~bare! Josephson plasma frequencyvp defined
by

vp
2
ª

2ed jc
\e0

. ~9!

The second one is the so-called characteristic frequency
fined by

vcª
2eVc

\
. ~10!

HereVc is the voltage where the quasiparticle current den
equals the valuej c . It is of the order of the superconductin
energy gap and is a measure of the dissipative propertie
the junction. In our simple model with a constant conduct
ity we havevc52ed jc /(\s). The ratiobc5vc

2/vp
2 is the

McCumber parameter, which isbc@1 for the strongly an-
isotropic cuprate superconductors. Moreover, for these m
rials there exist phonons with frequencies in the rangevp
,vphon!vc .

Typically the time dependence of the phase differen
g(t) can be written in the so-called resistive state as

g~ t !5u1vt1dg~ t !, ~11!

where v5^ġ& is the time average of the phase veloc
which is nonzero for a junction in the resistive state. It d
termines the dc voltageV5^E&d5\^ġ&/(2e) across the
junction. In the asymptotically stable state and for large v
ues of the McCumber parameterbc the oscillating partdg(t)
is small and oscillates with the frequencyv.

III. EXCITATION OF PHONONS
BY JOSEPHSON OSCILLATIONS

Now let us turn to the discussion of lattice vibration
Quite generally the lattice displacement of an ion of typek
with massMk , chargeZk in unit cell l is determined by the
following equation of motion:

MküaS l
kUt D1 (

l 8k8
FabS l

k
l 8
k8 DubS l 8

k8Ut D5eZkEa
r S l

kUt D .

~12!

Here Ea
r (k

l ut) is the local driving field at the equilibrium

position RW (k
l )5RW ( l )1RW (k) of the ion generated by th

charge fluctuationsdrn(t) on the superconducting layer
Note that the vibrating ions may be both in the barrier m
terial and on the superconducting layers. The supercond
ing electrons are assumed to move together with the ion
the layers.
e
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While the RSJ equations for the phases are highly non
ear, the relations between lattice displacements and ele
fields are linear, consequently we may analyze the respo
for each frequencyv separately. With a harmonic ansatz
the formua(k

l ut)5ua(k
l )e2 ivt we obtain for the amplitude

uaS l
k D5

1

N (
qW l

(
l 8k8b

ea~kuqW l!eb* ~k8uqW l!

v2~qW l!2v2

eiqW [RW ( l )2RW ( l 8)]

AMkMk8

3eZk8Eb
r S l 8

k8 D . ~13!

Herev2(qW l) andeW (kuqW l) are the eigenvalues and eigenve
tors of the dynamical matrix

(
k8b

DabS qW

kk8
Deb~k8uqW l!5v2~qW l!ea~kuqW l! ~14!

defined by

DabS qW

kk8
D 5(

l 8

1

AMkMk8

FabS l
k

l 8
k8DeiqW [RW ( l 8)2RW ( l )] .

~15!

The force-constant matrix contains the quantum-mechan
short-range interactions but also the short-range and lo
range Coulomb interactions~the latter being of the form
;qaqb /q2) between the ions, but not the fields set up by t
conduction electrons on the layers. The eigenfrequen
v(qW l) are therefore by construction thebare phonon fre-
quencies in the absence of the conduction electron ch
fluctuationsdrn(t). They include possible renormalizatio
by intra-atomic electronic polarization.

For the further discussion it is convenient to label t
lattice-dynamical unit cells byl 5( l x ,l y ,l z) with l z5n de-
noting the superconducting layer in which the lattice cell
contained~see Fig. 1!. Then thez component of the position
vector RW (k

l ) for l 5( l x ,l y ,n) does not depend onl i
5( l x ,l y) and we may writeRz(k

l )5Rz(k
n)5Rz(n)1Rz(k).

Furthermore the origin of the unit cell may be chosen on
superconducting layer, so thatRz(n)5zn .

In our model for the superconductivity in the layers w
have to assume that the mobile electronic charge is sp
out uniformly along the layers, because a microscopic the
connecting the superconducting bands and the atomic site
the CuO2 layers is still missing. Therefore the fieldEb

r (k
l )

does not depend on the positionx along the layer and ha
only a z component. In Eq.~13! only modes withqi50
appear and we may write for the displacement amplitudez
direction of an ion of typek in barriern:

FIG. 1. Labeling of unit cells.
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uzS n
k D5

1

Nz
(
qzl

(
n8k8

ez~kuqzl!ez* ~k8uqzl!

v2~qzl!2v2

3
eiqz(zn2zn8)

AMkMk8

eZk8Ez
rS n8

k8 D . ~16!

Now let us specify the driving fieldEz
r(k

n) for the ions in
more detail: Summing up the electric fields created by
charge fluctuations on the different layers we find

Ez
rS n

k D55
1

2e0
S (

n8<n

drn82 (
n8.n

drn8D for kP barrier

1

2e0
S (

n8,n

drn82 (
n8.n

drn8D for kP layer.

~17!

Note that for ionsinsidethe barrier the driving field does no
depend on the positionRz(k) of the ion and is equal to the
constant fieldEn

r introduced in Eq.~4!:

Ez
rS n

k D5H En
r for kP barrier

1

2
~En

r1En21
r ! for kP layer.

~18!

In order to find a relation between the lattice displac
ments and the driving field we introduce the Fourier tra
formation

Er~qz!5(
n

En
re2 iqzzn. ~19!

Then

(
n

ZkEz
rS n

k De2 iqzzn5:Z̃k* ~qz!E
r~qz! ~20!

with the qz-dependent effective charge

Z̃k~qz!5H Zk for kP barrier

1

2
Zk~11eiqzd! for kP layer

~21!

and consequently

uzS n
k D5

1

Nz
(
qzl

(
k8

eiqzRz(
n
k)

1

AMk

3
ez~kuqzl!ez* ~k8uqzl!

v2~qzl!2v2

eZ̃k8
* ~qz!

AMk8

Er~qz!.

~22!

Thereby the vanishing ofZ̃k for qzd5p and for ions on the
layers reflects the fact that for alternating electric fields in
barriers no net force is acting on the superconducting lay

Next we want to relate the driving field to the avera
total electric fieldEn in the barrier because this field is co
nected with the phase differencegn by the second Josephso
Eq. ~8!. The microscopic total electric fieldEz(x,z) is the
sum of the fields set up by both the charge fluctuations
e

-
-

e
s.

d

the displaced ionic charges:Ez(x,z)5Ez
r(x,z)1Ez

ion(x,z).
As Ez

r(x,z) is assumed to be constant inside the barrier a
independent ofx we may replace the other two fields also b
their averages across the barrier and over one unit cell a
the layer. For the averaged fields we have then the relat

En
r5En2En

ion . ~23!

The field En
ion in the barrier can be calculated from th

difference of the scalar potentials on layersn andn11 pro-
duced by the ionic displacements averaged over the are
one unit cell as

En
ion52

e

e0vc
S (

kP barrier
ZkuzS n

k D1
1

2 (
kP layer

ZkFuzS n
k D

1uzS n11
k D G D . ~24!

Herevc is the volume of one unit cell. The factor 1/2 resu
from the fact that displacements of ions~with qi50) on a
layer do not contribute to the potential on the same lay
Note that this field forqi50 does not depend on the ion
displacements in other barriers and is closely related to
ionic polarization in the same barrier. Defining a generaliz
polarization by

En
ion5:2Pn /e0 , ~25!

we may write for the displacement in the barrier

Dnªe0En
r5e0En1Pn , ~26!

which has the usual form as in the macroscopic Maxw
theory.

Going over to a Fourier transformation the relation

P~qz!5x~qz ,v!e0Er~qz! ~27!

between the polarization and the driving field is obtain
with

x~qz ,v!5(
l

uV~qzl!u2

v2~qzl!2v2
~28!

and the oscillator strength

uV~qzl!u25
e2

vce0
(
kk8

Z̃k~qz!
ez~kuqzl!ez* ~k8uqzl!

AMkMk8

Z̃k8
* ~qz!.

~29!

The special combination of phase factors contained
Z̃k(qz) @Eq. ~21!# are a consequence of the different cont
bution of ions on and between the superconducting layer
the electric field in the barrier.

Using e0Er(qz)5e0E(qz)1P(qz) we can solve for
P(qz):

P~qz!5
x~qz ,v!

12x~qz ,v!
e0E~qz!. ~30!

The relationD(qz)5e0eph
L (qz ,v)E(qz) defines an effective

longitudinal dielectric function
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eph
L ~qz ,v!5

1

12x~qz ,v!
. ~31!

This function has zeros at the eigenfrequenciesv(qzl) of
the dynamical matrix. Due to the form of the oscillat
strengths Eq.~29! only modes with polarization in thec di-
rection contribute. As the electric fieldEn is constant along
the layers we haveqW i50 and only longitudinal modes in th
c-direction couple, therefore the zeros ofe ph

L (qz ,v) are ex-
actly at the longitudinal eigenfrequencies of the dynami
matrix.

In the case of a single dispersionless phonon mode w
frequencyvL the functioneph

L (v) can be directly compared
with the dielectric function used in Ref. 6. In fact, in th
caseeph

L (v) can be written as

eph
L ~v!511

V2

vL
22V22v2

. ~32!

The form of the longitudinal dielectric function
e ph

L (qz ,v)5eph
zz(qz ,v) @Eq. ~31!#, which we have intro-

duced here, is different from the transverse dielectric fu
tion e ph

T (qx ,v)5e ph
zz (qx ,v)511x(qx ,v). In both func-

tions different eigenfrequencies and oscillator streng
enter, however, in the limitqz→0,qx→0, which is relevant
in optical experiments, the values of both functions a
equal.

Finally a comparison of our theory with theoretical inve
tigations in Ref. 19 are in order. In principle there are tw
different electron-phonon coupling mechanisms, which m
couple Josephson oscillations and phonons:~i! the electro-
magnetic interaction between the ionic charges and
charges of conduction electrons,~ii ! the dependence of th
tunneling matrix element on lattice displacements. The fi
mechanism is considered in our work, the second in Ref.
Both mechanisms require a different theoretical treatm
~on a diagrammatical basis the two mechanisms would
respond to different diagrams!. It has been argued in Ref. 2
that in the layered cuprate superconductors the charges o
ions in the insulating barrier between superconducting lay
are unscreened and therefore have a strong interaction
conduction electrons in the CuO2 layers. We therefore con
sidered this mechanism for our treatment of the coupl
between Josephson oscillations and phonons. Though we
not write down a Hamiltonian for the interacting system o
method, nevertheless, is a full microscopic theory wh
treats the electron-phonon interaction on a random-ph
type level by describing the interaction with the help of i
ternal fields. This approximation is sufficient as long as
do not want to consider the electron-phonon interaction
side the superconducting layers and treat exchange ef
between different superconducting layers.

IV. INFLUENCE OF PHONONS
ON THE I -V CHARACTERISTIC

According to the RSJ-like model derived in Eq.~6! the
current density in junctionn is

j 5 j csingn~ t !1sEn~ t !1Ḋn~ t !, ~33!
l

th

-

s

e

y

e

t
9.
nt
r-

the
rs
ith

g
did
r
h
e-

e
-
cts

whereDn(t)5e0En
r(t) is the electric field in junctionn set

up by the charge fluctuations of conduction electrons.
pointed out in the previous section this field can be expres
by the average electric field in the barrier and the generali
polarization Eq.~25! asDn(t)5e0En(t)1Pn(t). The polar-
ization has to be calculated self-consistently from the io
displacements and depends linearly on the electric field.

Let us discuss first the case of one resistive junction
n50 in the middle of a large stack while all other junction
nÞ0 are in the superconducting state. Then, as mentio
previously, all the oscillations are governed by one f
quencyv, and we can write for the phase forn50

g0~ t !5u01vt1dg0~ t !, ~34!

while for nÞ0 we have

gn~ t !5un1dgn~ t !. ~35!

In the stationary statedgn(t) oscillates with the same fre
quencyv,

dgn~ t !5dgne2 ivt1c.c. ~36!

Higher harmonics can be neglected forbc@1. In this limit
the fluctuationsdgn(t) are small and we may use the expa
sion

sing0~ t !.sin~u01vt !1cos~u01vt !dg0~ t !, ~37!

while for nÞ0 we have

singn~ t !.sinun1cosundgn~ t !. ~38!

The bias current densityj on the left-hand side of the RS
Eq. ~33! is time independent and equal for all junction
while the quantities on the right-hand side have both ti
independent and oscillating components.

Let us discuss the equations for the nonresistive juncti
(nÞ0) first. Here the dc component is

j 5 j csinun . ~39!

This fixes the constant part of the phases in the nonresis
junctions and relates it to the bias current.

For the oscillating part of Eq.~33! one obtains

05 j ccosundgn~ t !1s
\

2ed
dġn~ t !1Ḋn~ t ! ~40!

or

05v̄p
2dgn~ t !1

s

e0
dġn~ t !1

2ed

\e0
Ḋn~ t ! ~41!

with the reduced Josephson plasma frequency

v̄p
25vp

2A12S j

j c
D 2

. ~42!

Now we discuss the resistive junction atn50. Keeping
only the lowest harmonic we find

sing0~ t !.sin~u01vt !1Re~dg0eiu0!. ~43!

The dc component of the RSJ Eq.~33! is therefore given by
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j ~V!5 j qp~V!1 j cRe~dg0eiu0!, ~44!

where V is the dc voltage of the resistive junction an
j qp(V)5sEdc is the quasiparticle current density.

For the oscillating part one finds

05 j csin~u01vt !1s
\

2ed
dġ0~ t !1Ḋ0~ t !. ~45!

The two Eqs.~40! and~45! can be combined to one inho
mogeneous linear differential equation for alln:

v̄p
2dgn~ t !1

s

e0
dġn~ t !1

2ed

\e0
Ḋn~ t !5 f n~ t ! ~46!

with

f n~ t !5H v̄p
2dg0~ t !2vp

2sin~u01vt ! for n50

0 for nÞ0.
~47!

Assuming a time dependence of the forme2 ivt for all
oscillating quantities we have

v̄p
2dgn1

2 ivs

e0
dgn1

2ed

\e0
~2 iv!Dn5 f n ~48!

with

f n5H v̄p
2dg02

ivp
2

2
e2 iu0 for n50

0 for nÞ0.

~49!

In order to incorporate the nonlocal dependence of
polarization on the electric fields in different barriers a sp
tial Fourier representation of the form

dgn5
1

Nz
(
qz

g~qz!e
iqzzn ~50!

is introduced. Using the relation

D~qz!5e0eph
L ~qz ,v!E~qz!5

e0\

2ed
eph

L ~qz ,v!~2 iv!g~qz!

~51!

in Eq. ~48! yields

G21~qz ,v!g~qz!5 f 0 ~52!

with

G21~qz ,v!5v̄p
22 iv

s

e0
2v2eph

L ~qz ,v!. ~53!

The phase oscillation in the resistive junction follows

dg05
1

Nz
(
qz

g~qz!5g~v! f 0 ~54!

with

g~v!5
1

Nz
(
qz

G~qz ,v!. ~55!

Solving for dg0
e
-

dg05
1

2

2 ivp
2

g21~v!2v̄p
2

e2 iu0 ~56!

we obtain

Re~dg0eiu0!5
1

2
Im

vp
2

g21~v!2v̄p
2

. ~57!

From this finally the following expression for the dc-curre
density as function of the dc voltage is obtained:

j ~V!5 j qp~V!2
j c

2

vp
2

v2
Im

1

ẽ~v!

5 j qp~V!1
j c

2

vp
2

v2

ẽ2~v!

ẽ1
2~v!1 ẽ2

2~v!
. ~58!

Here ẽ(v) is a modified dielectric function,

ẽ~v!5 ēph~v!1
is

e0v
, ~59!

where

ēph~v!5J21~v!1
v̄p

2

v2
2

is

e0v
~60!

and

J~v!5
1

Nz
(
qz

S eph
L ~qz ,v!2

v̄p
2

v2
1

is

e0v D 21

. ~61!

This expression describes the dc current density as fu
tion of the dc voltageV5\v/(2e). It has a maximum for
frequenciesv where the real part ofẽ(v) vanishes, i.e., for
longitudinal phonon frequencies.

This can easily be seen if we consider the special cas
one phonon mode without dispersion. Thenēph(v)
5eph

L (v), which is of the form Eq.~32!. The corresponding
I -V curve is shown in Fig. 2, which is calculated with th

FIG. 2. AnalyticalI -V curve for one resistive junction with on
phonon resonance atv5vL . The arrows mark the hysteretic jump
found in current-biased experiments and numerical simulations
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dielectric function

eph
L ~v!511

V2

vL
22V22v22 ivr

. ~62!

Here an additional dampingr of the phonon has been intro
duced in Eq.~32! in order to simulate the energy transfer in
other junctions due to the coupling of the ions. A peak in
I -V curve appears atv5vL . The width of the peak is de
termined by this damping together with the quasiparti
conductivity. The deviation from the quasiparticle curre
density vanishes at the pole ofeph

L (v) at v05AvL
22V2.

The rise at low voltages is due to the plasma resonance.
bc@1 the minimum of the I -V curve is at v ret

.(3/2)1/4vp /Ae ph
L (vp). In current-biased experiments an

corresponding numerical simulations the parts with nega
differential conductivity are skipped hysteretically as ind
cated in the figure.

Note that the denominator in the functionJ(v) @Eq. ~61!#
is the totalqz- andv-dependent longitudinal dielectric func
tion of the coupled system of phonons and conduction e
trons,

e tot
L ~qz ,v!5eph

L ~qz ,v!2
v̄p

2

v2
1

is

e0v
. ~63!

Zeros of the real part of this function describe longitudin
collective modes in the system. On the other hand, the r
nances in theI -V curve appear at thebare longitudinal pho-
non frequency in the case of a narrow phonon band.
summation overqz in Eq. ~61! leads to an effective dampin
of the resonances which is proportional to the phonon
persion. The physical origin is the loss of energy by phon
from the resistive junction to the neighboring junctions.

The result for the current-voltage characteristic can
generalized to the case of several junctions being in the
sistive state, if we assume that all junctions oscillate with
same frequencyv. Denoting the subset of indices for th
resistive junctions byI then for i PI we obtain~for a deriva-
tion see the Appendix!:

j ~V!5 j qpS \v

2e D2
j c

2

vp
2

v2
Im (

kPI
eiu i

3S ē~ i ,k,v!1
is

e0v
d i ,kD 21

e2 iuk. ~64!

The dielectric functionē( i ,k,v) is defined by

ē~ i ,k,v!ªS 1

Nz
(
qz

eiqz(zi2zk)

eph
L ~qz ,v!2

v̄p
2

v2
1

is

e0v
D 21

1S v̄p
2

v2
2

is

e0v D d i ,k . ~65!

The terms in brackets in Eqs.~64! and~65! are understood
as matrix inversions. The dc voltageV is obtained, if one
multiplies \v/(2e) by the number of resistive junctions
e

e
t

or

e

c-

l
o-

e

-
s

e
e-
e

Note that the right-hand side of Eq.~64! depends on the laye
index i PI , while the left-hand side is equal for each jun
tion. From this equality the~relative! phasesu i in the differ-
ent junctions can, in principle, be determined, which in tu
provides an analytical expression for theI -V curve.

In the case of two resistive junctions exactly two solutio
exist withu i5u j andu i5u j1p, respectively. In the genera
case several different solutions are found. The stability
these solutions will be checked by a comparison with a dir
numerical integration of the coupled equations of motions
the following section. It turns out that those analytical so
tions are most stable where the phasesu i of the oscillating
Josephson junctions fit best to the pattern of lattice vibrati
with the given frequencyv.

V. A SIMPLE EXAMPLE

The theory in the preceding sections is developed for g
eral lattice-dynamical models and is valid within the assum
tions we have made for the superconducting properties:
treat only single-layer systems assuming a homogene
conduction-electron charge distribution along the layers.
extension of the theory to more realistic systems is, in pr
ciple, possible, but requires to introduce the charge sus
tibility of conduction electrons in the superconducting sta
and a generalization of the Josephson theory to multila
systems. But for this more details of the electronic proper
are required than are currently known about these mater
In addition to this, it is not possible to compare theoretic
results for theI -V curves with experiments in detail, as re
liable lattice-dynamical calculations for the strongly anis
tropic systems BSCCO and TBCCO with two and three la
ers and variable oxygen content are not yet available.

In the following we consequently only want to illustra
the main features of our theory in a simple toy model, wh
reflects some basic aspects of the real system. One of
main lattice-dynamical property of these systems is certa
the existence of a longitudinal acoustical and~several! flat
longitudinal optical bands which result from movements
groups of ions in the barrier against ions in the CuO2 planes
in the c direction.21–23 Such modes we simulate by the mo
simple lattice-dynamical model consisting of two kinds
ions with ionic chargesZl , Zb52Zl and massesMl , Mb .
The first kind (k5 l ) is placed on the superconducting la
ers, the second kind (k5b) in the middle of the barrier. The
motion of ions in thec direction which is assumed to b
uniform along the layers is approximated by a two-atom
chain model with nearest-neighbor interactions in thec di-
rection:

MlüS n
l D2 f FuS n

bD1uS n21
b D22uS n

l D G5eZlE
rS n

l D ,

MbüS n
bD2 f FuS n11

l D1uS n
l D22uS n

bD G5eZbErS n
bD .

~66!

By choosing the masses very different a narrow optical b
can be simulated. From a diagonalization of the dynam
matrix given by Eq.~66! the well-known eigenfrequencie
v(qzl) of the two-atomic chain are obtained. With help
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the eigenvectors the oscillator strengths defined in Eq.~29!
are calculated, which are needed for the longitudinal die
tric function Eq.~31!.

The driving field on the right-hand side of Eq.~66! is the
field set up by the conduction electron charges on the su
conducting layers, which can be expressed by the~constant!
field En

r in the barrier between layersn and n11 with the
help of Eq.~18!. The latter can be expressed by the avera
total electric fieldEn in the barrier:

En
r5En1

1

e0
Pn , ~67!

where the polarization Eq.~25! is given by

Pn5
e

vc
S ZbuS n

bD1
1

2
ZlFuS n

l D1uS n11
l D G D . ~68!

These equations for the motion of lattice displaceme
have to be supplemented by the extended RSJ Eq.~33!:

j 5 j csingn~ t !1s
\

2ed
ġn~ t !1e0

\

2ed
g̈n~ t !1 Ṗn~ t !.

~69!

This model is used to calculate theI -V characteristics in
two ways:~i! The I -V curves are calculated analytically u
ing the results Eq.~64! obtained by the Green’s-functio
method. Thus the peaks due to the phonon resonance
obtained.~ii ! The coupled set of RSJ equations Eq.~69! and
phonon equations Eqs.~66, 68! are integrated numerically b
a Runge-Kutta method for a finite stack of Josephson ju
tions. Changing the bias current gradually allows to follo
the I -V curves as in the current-biased experimental situa
and to reproduce the hysteretic behavior in particular.
start with the discussion of the first branch of theI -V curve,
where one junction is in the resistive state.

A. One resistive junction

Quite generally theI -V curve is expected to have peaks
the van Hove singularities of the phonon dispersion. Deta
however, depend on the oscillator strength defined by
~29! which enters the longitudinal dielectric function E
~31!. In particular at the edge of the Brillouin zone forqz
5p/d only the motion of ions within the barrier contribut
to the oscillator strength, the ions on the superconduc
layers are inactive due to the factor 11exp(iqzd) in Eq. ~21!.
These features will be illustrated in the following.

For the lattice-dynamical model introduced above atqz
5p/d only one type of particles is moving due to symmet
In the acoustical branch the heavier ion, in the optical bra
the lighter ion is moving. If the heavier ion is on the supe
conducting layers (Ml.Mb) the oscillator strength vanishe
at the end of the acoustic branch~see Fig. 3!, and peaks are
expected to appear in theI -V curve at the two van Hove
singularities of the optical branch. On the other hand, if
lighter ion is on the superconducting layers (Ml,Mb) then
the oscillator strength vanishes at the end of the opt
branch, and peaks are expected atqz5p/d from the acous-
tical branch and atqz50 from the optical branch.

This is illustrated in Fig. 4 where we have plotted resu
c-

r-

e

ts

are

c-

n
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t
s,
q.

g

:
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-

e
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for the I -V curve of the first branch in the two casesMl
,Mb and Ml.Mb . In our model the phonon dispersion
fixed by the values ofvLO

2 (qz50)52 f (1/Ml11/Mb) and
the mass ratioMl /Mb . A measure for the oscillator strengt
is the quantityV l ,b

2
ªe2Z2/(Ml ,be0vc). In Fig. 4 we have

used the following parameters:bc5vc
2/vJ

25375, Ml /Mb

50.2 andMb /Ml50.2, respectively~this mass ratio is cho-

FIG. 3. Dispersion and oscillator strengths for the two-atom
chain model. Shown are the oscillator strengthsuV(qzl)u2 for the
acoustical branch~dashed curve! and the optical branch~solid
curve! and for the two cases of the heavy ions on the supercond
ing layer (Ml.Mb) and in the barrier (Ml,Mb).

FIG. 4. I -V curves for one resistive junction with subgap stru
tures due to acoustical and optical phonons.
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sen to obtain a sufficiently flat optical branch!. The phonon
frequencies are normalized tovc and are given byvLO(qz

50)50.28vc . The oscillator strength is given byvc
2/V l

2

5200 for Ml,Mb andvc
2/Vb

25200 for Ml.Mb . The cor-
responding phonon dispersion and the oscillator strengths
shown in Fig. 3.

In order to demonstrate that the discussed effects are
alistic, we have adapted the values ofbc and vLO /vc to
TBCCO. The chosen valueuVu2/vLO

2 50.08 for the oscillator
strength atqz50 is comparable with the experimental es
mate'0.13 from Ref. 11 for the optical oscillator strengt
Also the chosen value of the dampingr/vLO50.02 is in the
range 0.01–0.07 of experimental values11 for optical
phonons.

For Ml,Mb the analytical results for theI -V curve in
Fig. 4 show phonon peaks at the van Hove singularity of
acoustic branch atqz5p/d and at the van Hove singularit
at qz50 of the optical branch, the resonance at the van H
singularity atqz5p/d of the optical branch is suppresse
For Ml.Mb only structures due to the two van Hove sing
larities of the optical branch appear. In both cases the
crease of theI -V curve at low frequencies indicates the J
sephson plasma frequency. The numerical results show
Fig. 5 for Ml,Mb ~herevc513.1 THz) follow the analyti-
cal results in the regions of positive differential resistan
perfectly, and otherwise show the hysteretic behavior as s
in experiments. At low values ofj / j c the I -V curve switches
back to the superconducting state of the junction.

B. Two resistive junctions

Another important effect of the coupling between Jose
son oscillations and phonons is the synchronization~phase
locking! of Josephson oscillations in different resistive jun
tions, which would be absent without phonons in short ju
tions, which are homogeneous parallel to the layers.
want to illustrate this for the case of two resistive junctio
coupled by one narrow optical phonon branch.

FIG. 5. Comparison between analytical~solid line! and numeri-
cal results~rhombus! for the I -V curve of one resistive junction
with subgap structures due to acoustical and optical phonons
Ml,Mb .
re
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The second branch of theI -V curve which corresponds to
two resistive junctions has a rather complex structure alre
for one phonon band. This is shown schematically in Fig
If we denote the two dynamical states of the first branch ba
andb, then on the second branch with two resistive junctio
either both junctions are in statea ~labelaa), both junctions
are in stateb ~labelbb) or one junction is in statea while the
other junction is in stateb ~label ab). Note that in the latter
case the oscillation frequencies of the two junctions are
ferent. In the case of well separated resistive junctions
voltages of a structure for a given bias current are determi
by vaa52va , vbb52vb , vab5va1vb . This is no longer
true, if the resistive junctions are close to each other a
interact via phonons. Then the voltages in the second bra
are slightly lower.

In the case of two resistive junctionsi andj two solutions
of Eq. ~64! exist with phase differencesu i5u j and u i5u j
1p, corresponding to in-phase and out-of-phase Joseph
oscillations, respectively. Inserting these results in Eq.~64!
two different I -V curves can be calculated. Note that th
formula applies only for the statesaa andbb, because in the
derivation we have assumed that the two junctions oscil
with the same frequency. A similar formula can also be d
rived for the stateab. In that case the phases are meanin
less because the two junctions oscillate with different f
quencies and are essentially decoupled.

In Fig. 7 we show examples calculated for a narrow o
tical band withMl /Mb510 and the light ion oscillating in
the barrier. Here the different analytical solutions are sho
together with numerical results for neighboring resisti
junctions, j 5 i 11 ~a!, and two resistive junctions separate
by 1 or 2 superconducting junctions,j 5 i 12 ~b!, j 5 i 13
~c!.

It is plausible that in the case of neighboring resisti
junctions out-of-phase Josephson oscillations (u i5u j1p)
favor a coupling to phonons at the edgeqz5p/d of the
Brillouin zone, while the coupling of in-phase oscillation
(u i5u j ) is strongest for zone-center phonons atqz50. This
is shown in Fig. 7~a!, where theI -V curve for the in-phase
solution shows a peak atv(qz50), while for the out-of-
phase solution the current maximum is atv(qz5p/d).

It can be seen that the numerical results in the dynam
stateaa follow one of the analytical solutions before a hy
teretic switch into statebb occurs~outside the figure!. This is
verified in Fig. 7~a! where the numericalI -V curve follows

or

FIG. 6. Schematic plot of the first and second branch of theI -V
curve with subgap structures due to one phonon.
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the analytical curve foru i5u i 111p. In Fig. 7~b! the in-
phase solution withu i5u i 12 has maxima for voltages cor
responding to frequencies of optical phonons at bothqz
5p/d and qz50, while the out-of-phase solution has
broad maximum in the middle of the Brillouin zone. Th
numerical results follow the in-phase solution. Figure 7~c!
shows results forj 5 i 13.

FIG. 7. I -V curve for two resistive junctions separated by 0~a!,
1 ~b!, 2 ~c! superconducting junctions. Shown are analyticalI -V
curves calculated for a narrow optical band for the in-phaseu j

2u i50 ~solid line! and the out-of-phase,u j2u i5p ~dashed line!
solution together with numerical results~dots!.
C. Several resistive junctions

The results obtained for two resistive junctions show t
the peak position in theI -V curve depends only slightly on
the distance between the resistive junctions. More impor
is the fact that phonons are able to synchronise the phas
Josephson oscillations in different resistive junctions. This
important for the use of such systems in high-frequency
plications. We have checked this numerically for the case
a block of many resistive junctions. For frequenciesv close
to a phonon eigenfrequencyv(qz5p/d) at the edge of the
Brioullin zone the Josephson field oscillations in neighbor
junctions differ by a value close top. For frequencies close
to v(qz50) near theG point the Josephson oscillations a
nearly in phase. These phase-locked dynamical states
reached from arbitrary initial conditions for the phase
There is also a synchronization of Josephson oscillations
frequencies far away from phonon resonances. We did
yet investigate the stability of these states systematically
we expect these to be less stable than at frequencies clo
a phonon resonance.

VI. EXPERIMENTAL RESULTS

Recently the explanation of the subgap resonances
Refs. 3–5 and 8 with the phonon coupling mechanism p
sented here could be well confirmed by Raman meas
ments on the same samples4,24 and infrared reflectivity ex-
periments with grazing incidence,11,25where the latter allows
to determine both longitudinal and transverse modes~see
Table I!. Small deviations of the order of;5 –10% may be
attributed to the fact that in optical experiments and in
intrinsic Josephson effect different averages overqW of the
dielectric functions are relevant. Note that in our theo
modes which are Raman active atqz50 may couple to in-
trinsic Josephson oscillations also forqzÞ0. Earlier experi-
mental data,9,10 which are obtained from polycrystallin
samples, show the same qualitative behavior, but differ
detail.

With the help of rigid-ion26 and shell-model
calculations21–23some of the more pronounced structures c
be connected with certain elongation patterns of the ions
the unit cell. For example, the peak in theI -V curve at 4.64

TABLE I. Comparison of the frequenciesf sg5(h/2e)Vdc ~in
THz! of the most pronounced subgap resonances in Ref. 8 an
infrared- and Raman-active modes in Bi2Sr2CaCu2O8 and
Tl2Ba2Ca2CunO2n14.

Subgap resonances and phonons in Bi2Sr2CaCu2O8

f sg 2.97 3.89 5.17 5.60 Ref. 8 Josephson effec
f LO 2.85 5.07 Ref. 11 IR reflectivity
f LO 2.86 5.16 Ref. 25 IR reflectivity
f TO 3.80 Refs. 4,24 Raman effect

Subgap resonances and phonons in Tl2Ba2Ca2CunO2n14

f sg 3.63 4.64 Ref. 8 Josephson effecta

f LO 4.50 Ref. 11 IR reflectivityb

aTl2Ba2Ca2Cu3O10.
bTl2Ba2Ca2Cu2O8.
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THz in Tl2Ba2Ca2Cu3O10 seems to be due to a~Cu,Ba!
mode.

The qualitative features of the subgap resonances h
already been explained with the help of the phonon interp
tation in Ref. 8: The position of the resonance is independ
on temperature, magnetic field and the geometry of
probe, while the intensity of the structure varies; j c

2 with the
critical current densityj c(T,B). Also the behavior of the
position and intensity of the structures in external pressu24

are in agreement with the phonon explanation and form
~1!.

One of the main qualitative features of the general the
with dispersive phonon bands, which goes beyond the lo
oscillator model used in Refs. 6 and 8, is the possibility
describe resonances at van Hove singularities, which app
e.g., at the upper band edge of the acoustical phonon ba

This might be an explanation for a resonance seen in R
5 at 3.2 mV (5̂1.54 THz) in the I -V characteristic of
Tl2Ba2Ca2Cu3O10, because the same frequency is expec
by lattice-dynamical calculations22 for the upper edge of the
acoustical band, and there are no optical phonon band
this low-frequency range. Figure 8 shows a fit of aI -V curve
calculated with the two-atomic chain model~and some addi-
tional damping! to the experimental results from Ref. 5. A
for this three-layer compound no data from optical expe
ments are available we assumed that the peak at 7.5 mV
be identified with the LO mode at 8.1 mV (5̂3.9 THz) cal-
culated in Ref. 27, and we used for our fit the calcula
LO-TO splitting (v LO

2 2vTO
2 )/vTO

2 50.59. Such a large os
cillator strength has been observed for a similar mode, wh
Tl is oscillating against the CuO planes, in optical expe
ments for a one-layer compound.11 Using the damping as a
fit parameter we find a valuer/vLO50.04 which is in rea-
sonable agreement with the damping of optical phonons

Similarly in BSCCO the upper edge of the longitudin

FIG. 8. Fit of the experimentalI -V curve in Tl2Ba2Ca2Cu3O10

from Ref. 5 near the subgap resonances at the band edge o
acoustical branch~at 3.2 mV! and an optical branch with the help o
the a two-atomic chain model. The inset shows the experime
result over a wider frequency range.
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acoustical phonon band, which has been detected in inela
neutron scattering at 5 meV,28 might correspond to a les
pronounced phonon resonance in the intrinsic Josephso
fect at Vsg54.9 mV (5̂2.38 THz), which seems to be in
visible in optical experiments. Nevertheless, at the pres
time this interpretation is not yet fully conclusive, as th
instrumental resolution of 0.65 meV in the neutron-scatter
experiment is still rather large compared with the accuracy
the measurement of theI -V curve.

Also the effect of the two van Hove singularities at th
optical band edges on theI -V curve as discussed abov
might have been seen in the satellite structures at 5.17
~10.7 mV! and 5.6 THz~11.6 mV! in the I -V curve of
BSCCO.7 This interpretation is further supported by the th
oretical prediction of the bandwidth;0.3 THz and the fact
that the assignment of no other phonon mode is plausibl

VII. CONCLUSIONS AND OUTLOOK

In this paper we have developed a microscopic theory
the coupling between Josephson oscillations and phonon
intrinsic Josephson systems like the highly anisotropic
prate superconductors. We determined the precise form
the longitudinal dielectric function Eq.~31! describing this
coupling and obtained analytical results Eqs.~58! and ~64!
for the I -V curve for one and several resistive junctions. T
principle features and selection rules for phonon resonan
in the I -V curves are illustrated with help of a simple lattic
dynamical model.

We have shown that not only optical, but also acoustic
phonons at the edge of the Brillouin zone couple to Jose
son oscillations. This may explain the structure observed
Ref. 5 in theI -V curve occurring at an unusual low voltag
~frequency!, which is not found in reflectivity experiments
testing transverse optical phonons atqW 50, and in lattice-
dynamical calculations for infrared active phonons atqW 50.
A weak satellite structure observed in theI -V curve of
BSCCO~Ref. 7! may be due to a double resonance from t
two van-Hove singularites of an optical branch.

The analytical results are compared with results from
numerical integration of the coupled equations of motion
the Josephson oscillations and phonons. For this purpo
simplified lattice-dynamical model has been used with o
acoustical and one optical branch. It is found that in the lim
of large values of the McCumber parameter the numer
results follow closely the analytical solutions with the fo
lowing exceptions:~i! Using a gradual change of the bia
current, regions of theI -V curve with negative differentia
conductivity are skipped as is observed in current-biased
periments.~ii ! In the case of several resistive junction
where several analytical solutions are obtained, the num
cal result follows only one of the analytical solutions. Th
stability of the different analytical solutions is currently in
vestigated. It seems to be that the solution which give
minimum for the interaction energy between polarization a
the electric field generated by the Josephson oscillations
given frequency is most stable. The phonons thus serv
synchronize the Josephson oscillations in different resis
layers, which is important for the application of such syste
as high-frequency devices.
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In this paper we have considered only the case of a
rent distribution in thec direction which is homogeneou
along the layers. We neglected all magnetic-field effects
suming that all quantities are uniform along the layers. F
real systems this is an artificial approximation, because
current induced magnetic field can never be avoided c
pletely. Nevertheless, we argue that this is a valid appro
mation for the intrinsic Josephson systems forming a m
structure with an extension of a fewmm in ab direction
which is much larger than the thickness inc direction. Such
a junction is still short with respect to the lengthlc5c/vp
describing the variation of the phase difference along
layers produced by the self-field of the bias current. The
fore the treatment of the superconducting layers as m
sheets with a uniform charge distribution, the creation
uniform polarization fields and the neglect ofqi in the cal-
culation of the longitudinal dielectric function is justified fo
the systems investigated. This will be different in the case
longer junctions and strong external magnetic field.29 In par-
ticular the flow of vortices and their interaction with phono
has to be investigated in this case.30
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APPENDIX: I -V CURVES FOR SEVERAL
RESISTIVE JUNCTIONS

Quite generally the RSJ equation for then th junction can
be written as

j 5 j csingn~ t !1s
\

2ed
ġn~ t !

1
e0\

2ed (
n8

E
2`

`

eph
L ~n2n8,t2t8!g̈n8~ t8!dt8, ~A1!

whereeph
L (n2n8,t) is the dielectric function Eq.~31! in real

space and time domain.
Let us denote the index of a general junction

nP$1•••N% and the subset of indices of resistive junctio
by I. In the following we assume that oscillations in all jun
tions are governed by one frequencyv and the phases can b
written as

gn~ t !5H u j1vt1dg j~ t ! n5 j PI

un1dgn~ t ! else
~A2!

with
r-

s-
r
e
-

i-
a

e
-
al
f

f

r
r
.

-
in-
ch
n

dgn~ t !5dgne2 ivt1c.c. ~A3!

Expanding with respect todgn and keeping only the lowes
harmonic one finds

singn~ t !.H sin~u j1vt !1Re~dg je
iu j ! n5 j PI

sinun1cosundgn~ t ! else.
~A4!

Splitting the RSJ Eq.~A1! into a dc part and an oscillating
part one obtains for the dc part

j 5H sEdc1 j cRe~dg je
iu j ! for n5 j PI

j csinun else,
~A5!

while the oscillating part can be written as@v̄p
2

5vp
2A12( j / j c)

2#

v̄p
2dgn~ t !1

s

e0
dġn~ t !1(

n8
E

2`

`

e~n2n8,t2t8!dg̈n8~ t8!dt8

5 f n~ t ! ~A6!

with

f n~ t !5H v̄p
2dg j~ t !2vp

2sin~u j1vt ! n5 j PI

0 else.
~A7!

Writing

f j~ t !5 f je
2 ivt1c.c. ~A8!

the amplitude of the driving term for a resistive junction
given by

f j5v̄p
2dg j2 i

vp
2

2
e2 iu j . ~A9!

Introducing the spatial Fourier transform

g~qz!5
1

Nz
(
n51

N

dgne2 iqzzn ~A10!

we obtain

g~qz!5G~qz ,v!(
j PI

f je
2 iqzzj

5G~qz ,v!(
j PI

S v̄p
2dg j2 i

vp
2

2
e2 iu j De2 iqzzj

~A11!

with the Green’s function

G21~qz ,v!5v̄p
22 iv

s

e0
2v2eph

L ~qz ,v! ~A12!

of the homogeneous equation.
From this an equation fordg i( i PI ) in the resistive junc-

tions is obtained:

(
j PI

@G21~ i , j ,v!2v̄p
2d i , j #dg j52 i

vp
2

2
e2 iu i ~A13!
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with

G~ i , j ,v!5
1

Nz
(

q
G~q,v!eiq(zi2zj ). ~A14!

Using

ēph~ i ,k,v!52
1

v2
G21~ i ,k,v!1S v̄p

2

v2
2

is

e0v D d i ,k

~A15!

we get

dg i5 i
vp

2

2v2 (
kPI

S ēph~ i ,k,v!1
is

e0v
d i ,kD 21

e2 iuk,

~A16!

which gives us the dc component Eq.~A5! of the current
density
P

c

.

R

R

L.

d

.E

.
N.
.

.

es
j ~V!5sEdc2 j c

vp
2

2v2
Im (

kPI
eiu i

3S ēph~ i ,k,v!1
is

e0v
d i ,kD 21

e2 iuk. ~A17!

Finally we want to note that the dielectric functio
ēph( i ,k,v) can also be used to write the RSJ equations i
form where only the phasesg i(t), of the resistive junctions
i PI enter:

j 5 j csing i~ t !1s
\

2ed
ġ i~ t !

1
e0\

2ed (
j PI

E
2`

`

ēph~ i , j ,t2t8!g̈ j~ t8!dt8. ~A18!
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