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Pairing correlations in the attractive Hubbard model on chains, ladders, and squares
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Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87444

~Received 7 December 1999!

We report the results of zero-temperature quantum Monte Carlo simulations and zero-temperature mean-
field calculations of the attractive Hubbard model on chains, ladders, and square lattices. We investigated the
predictability of the BCS approximation, the dimensional crossover of the pairing correlation function from
one to two dimensions as a function of the ladder width, and the scaling of these correlations to the thermo-
dynamic limit of the two-dimensional model. We found that the BCS wave function is quantitatively correct
only for small values ofU/t. For the system sizes, electron fillings, and interaction strengths studied, we never
saw the dimensional crossover. In general, our ability to achieve the dimensional crossover and accurate
scaling to the thermodynamic limit was limited by the size of the systems we could simulate. For these sizes,
although we saw the necessary signature of off-diagonal long-range order, the properties of the model did not
vary monotonically with increasing system size because of shell effects. We contrast this situation with the
dimensional crossover and scaling to the thermodynamic limit of the Ising model.
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I. INTRODUCTION

We report the results of zero-temperature quantum Mo
Carlo ~QMC! simulations and zero-temperature mean-fi
calculations of the attractive Hubbard model on chains, l
ders, and square lattices. We investigated the predictab
of the BCS approximation, the dimensional crossover
pairing correlations from one to two dimensions as a fu
tion of the ladder width, and the scaling of these correlatio
to the thermodynamic limit of the two-dimensional mod
We found that the BCS wave function is quantitatively co
rect only for weak attractive interactions. For the syst
sizes, electron fillings, and interaction strengths studied,
never saw the dimensional crossover, and we were unab
scale the pairing correlations on finite-size square lattice
those on infinitely sized ones. In general, our ability
achieve the dimensional crossover and the proper scalin
the thermodynamic limit was limited by the size of the sy
tems we could simulate. For these sizes, although we saw
necessary signature of off-diagonal long-range or
~ODLRO!, the properties of the model did not vary mon
tonically with increasing system size because of shell effe

The BCS wave function occupies a deservedly promin
place in the theory of superconductivity. For traditional s
perconductors, the electron-phonon interaction induces a
tractive interaction between pairs of electrons that is w
described by the reduced BCS Hamiltonian1

H5(
ks

eknk,s2(
k,k8

Vk,k8ck,↑
† c2k,↓

† c2k8,↓ck8,↑ , ~1!

and the BCS wave function

uBCS&5)
k

~uk1vkck,↑
† c2k,↓

† !u0& ~2!

provides an excellent approximation to the eigenstates of
Hamiltonian. In fact, under a number of circumstances, i
the exact solution in the thermodynamic limit.2
PRB 620163-1829/2000/62~1!/600~15!/$15.00
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Characteristic of BCS-like superconductors is the la
number of Cooper pairs inside the volume defined by
coherence lengtha0 of a pair. In high-temperature~cuprate!
superconductors, as well as several other classes of m
lower temperature superconductors, including doped cup
ladders,4 the coherence length is comparatively small. F
these materials, one often proposes the attractive Hub
model

H52t (
^ i j &,s

~ci ,s
† cj ,s1cj ,s

† ci ,s!2U(
i

ni ,↑ni ,↓ , ~3!

where U.0, as a counterpart to the BCS reduced Ham
tonian. Indeed, for any allowable electron filling, two ele
trons are energetically favored to pair onto a lattice site, t
giving them a seemingly very short coherence length.
dimensions of two and higher, the ground-state posse
s-wave ODLRO in the thermodynamic limit over certa
ranges of electron fillings if the lattice is bipartite and t
number ofA sites does not equal the number ofB sites, a
condition not satisfied, for example, by a square lattice.3

In this work we studied the attractive Hubbard model
chains, ladders, and squares, using an exact QMC met
The attractive Hubbard model has no fermion sign probl
so it is relatively easy to study by QMC simulations. O
goal was to observe the dimensional crossover of the su
conducting pairing correlation functions from the we
known power-law behavior in one dimension to ODLRO
two dimensions. We studied mostly the quarter filled syst
and compared our results with the predictions of the B
approximation. We tried to establish the range of validity
this approximation, and for the square lattices we tried
investigate both the weak and strong-coupling regimes
assess the validity of the argument of Nozie`res and
Schmitt-Rink5 regarding the smooth crossover from one
gime to the other.

Nozières and Schmitt-Rink5 studied the transition from
weak- to strong-coupling superconductivity in an attract
continuum fermion model
600 ©2000 The American Physical Society
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H5(
k,s

k2

2m
nk,s

2 (
k,k8,q

Vk,k8ck¿q/2,↑
† c2k1q/2,↓

† c2k81q/2,↓ck81q/2,↑ ,

~4!

and the attractive lattice Hamiltonian~3!. For both models,
they argued that the BCS wave function is a good appro
mation in the weak- and strong-coupling limits. In the co
tinuum model, weak coupling corresponds to carrier den
tites ^n& satisfying^n&a0@1, and strong coupling satisfyin
the opposite limit. For the lattice model, coupling streng
corresponds to the relative size of the interaction strengtU
and the noninteracting bandwidthW: Strong coupling isU
@W and weak coupling isU!W. Further, they argued tha
this approximation interpolates smoothly and accurately
tween these limits, a remarkable fact because of the distin
different physics occurring at these limits: For weak co
pling, Cooper pairs form according to the usual BCS pictu
for strong coupling,~Schafroth! pairs are hard-core boson
which may Bose condense.

We found the weak-coupling regime for a quarter-fill
system, i.e.,̂ n&51/2, on a square lattice is limited to value
of U/t satisfying 0<U/t&1. For larger values ofU/t, sig-
nificant disagreements in the values of on-sites-wave pairing
correlations existed between the results of the simulati
and the predictions of the BCS approximation. These d
agreements remained for values ofU/t as large as 8, which
is as large as we could push our simulations, and sugges
strong-coupling regime, if the arguments of Nozie`res and
Schmitt-Rink are correct, lies well beyondU/t58. ~With
our numerical technique we can only accurately simul
values ofU comparable to the size ofW.!

We comment that in the strong-coupling limit (U/t@1
and with any band filling of an even number of fermion!,
the attractive Hubbard model, up to second order in deg
erate perturbation theory, maps to an interacting hard-c
boson system in the subspace of doubly occupied and em
sites.6 These bosons hop to nearest neighbors with an ef
tive amplitude22t2/U and interact with a nearest-neighb
repulsion 2t2/U. However, the BCS wave function is th
exact eigenstate of this effective problem only in the co
pletely empty and completely filled lattice cases~see Appen-
dix A!. From our analysis we are unable to say whether aw
from the extreme cases the BCS fixed point is the cor
strong-coupling limit. The BCS fixed point can still be th
correct one and large quantitative differences can exist.

Our main object of study was pairing correlation fun
tions. We found that the distance dependent pairing pro
ties of the model on a square lattice did not vary monoto
cally as we systematically expanded its size, and we w
unable to obtain a very accurate estimate of the order par
eter in the thermodynamic limit, even though it is clear fro
the calculations that the system has ODLRO in that lim
This shortcoming contrasts a much earlier zero-tempera
QMC study7 that claimed to do such an extrapolation on t
integrated pairing correlation function and obtained a va
for the order parameter consistent with our results. Our co
puted results for the long-range spatial dependence of
i-
-
i-

-
tly
-
;

s
-

the

e

n-
re
ty
c-

-

y
ct

r-
i-
re
m-

.
re

e
-

he

s-wave pairing correlations for a long chain compared v
favorably with the Bethe ansatz predictions for a chain in
thermodynamic limit. Systematically coupling these lo
chains did not produce a monotonic variation in these co
lations, and computational costs forced us to limit our stu
to a L34 systems withL;50. We believe the irregula
variations in the properties of the rectangular and squ
structures are consequences of shell effects characterist
finite-sized systems of fermions. We remark that increas
the value ofU/t reduces the shell effects as one would e
pect. These finite-size shell effects prevented us from obs
ing the crossover to the two-dimensional behavior in the c
relation functions. Wider systems or larger values of t
interactions are needed to observe such crossover.

In the next section we summarize several useful ex
properties of the attractive Hubbard model in two dime
sions, and then in Sec. III, we summarize our numerical
proach. In Sec. IV we present our main results, and in
final section, Sec. V, we will discuss the implications of o
results and the effects of finite size on other simulations
interacting electron systems.

II. ATTRACTIVE HUBBARD MODEL

A number of exact statements can be made about
properties of the attractive Hubbard model at ze
temperature. In one dimension the most important statem
for present purposes are the absence of any long-range o8

and the inverse power-law form for the pairing correlati
function at large distances between pairs.9 In this section we
will focus on those statements that are at least true
ground-state properties in two dimensions. Most are, in fa
true for any dimension. Most assume a bipartite lattice. U
fortunately, we are unaware of any exact results assuring
model on a square lattice has ODLRO. The Mermin-Wag
theorem10 only assures that long-range order~LRO! cannot
exist in two dimensions at finite temperature. We are a
unaware of any pertinent theorems regarding the attrac
Hubbard model on ladder structures.

Perhaps the most fundamental theorem says the gro
state for an even number of electrons is a nondegene
singlet for every electron filling.11 On the other hand, the
most useful property of the model is its mapping for a
electron filling onto a half filled repulsive Hubbard model
a magnetic field.12 Charge and pairing operators map in
pseudospin operators and vice versa. A specific version
this mapping maps staggered components of the pseudo
operators in the half filled repulsive model into charge a
pairing operators in the attractive half filled model.13

At half filling, on-sites-wave ODLRO exists in the attrac
tive Hubbard model if and only if a charge-density wa
~CDW! LRO exists.14 It is generally accepted that the groun
state of the half filled, two-dimensional, repulsive model
one of antiferromagnetic~AF! LRO. Because longitudina
pseudospin maps to charge, and transverse pseudosp
pairing, the acceptance of AF LRO for the half filled repu
sive model seems sufficient to establish on-sites-wave
ODLRO and CDW LRO as ground states of the half fille
attractive model. Indeed numerical studies support t
conclusion.7

Another theorem states if the charge spectrum is gap
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in either the repulsive or attractive models, then there can
no on-sites-wave ODLRO.15 It is generally accepted that th
ground state of the half filled, two-dimensional repulsi
model has a charge gap. This presence implies a spin ga
the ground state of the half filled, two-dimensional attract
model. Thus the theorem does not violate the inference
ODLRO in the attractive model at half filling.

In this paper we are exclusively interested in the prop
ties of the attractive model away from half filling. Here
theorem states that on-sites-wave ODLRO exists if and only
if extendeds-wave ODLRO exists.16 Noteworthy is that this
theorem also states that the magnitude of the order param
for the extendeds-wave state vanishes as half filling is a
proached, making the doped case essentially differen
character from the half filled case. In particular, if^Ds& is the
expectation value of the on-sites-wave order parameter an
^Ds* & is that of extended s-wave, then

^Ds* &5
2U22m

t
^Ds&, ~5!

wherem is the chemical potential. At half filling, because
particle-hole symmetry, 2m52U. Accordingly, at half fill-
ing ^Ds* &50. We comment that this relation between t
extendeds-wave order parameter and the on-site~isotropic!
s-wave order parameters depends on the hopping inte
being isotropic. If one were to set, for example,tx5t and
ty52t, the dx22y2-wave order parameter would appear
the left-hand side of Eq.~5!. In the isotropic hopping case w
did not see any significant signal ofd-wave pairing. In Ap-
pendix A, we prove the equivalent theorem for the BCS
proximation.

Ground-state numerical studies away from half filling s
a necessary signature of on-sites-wave ODLRO order.7 The
pair-pair correlation function clearly does not vanish wh
the pairs are well separated. To establish ODLRO one
needs to show that this correlation also does not vanish in
thermodynamic limit. Establishing this for the two
dimensional attractive model was one of our goals.
achieve this objective we used an exact QMC method,
is, a method with no sign problem. We now summarize t
method.

III. NUMERICAL APPROACH

The details of our numerical approach are the same
those for the constrained-path Monte Carlo~CPMC!
method17 except we have no constraint because the sim
tions have no sign problem. Because of this, apart from
tistical error, the method is exact. Briefly the strategy of o
approach is as follows:

Starting with some trial stateucT&, we project out the
ground state by iterating

uc8&5e2Dt(H2ET)uc&, ~6!

where ET is some guess of the ground-state energy. P
poselyDt is a small parameter so forH5T1V we can write

e2DtH'e2DtT/2e2DtVe2DtT/2, ~7!

where T and V are the kinetic and potential energies. W
used values ofDt ranging from 0.03 to 0.05.
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For the study at hand, the initial stateucT& is the direct
product of two spin Slater determinants, i.e.,

ucT&5)
s

ufT
s&. ~8!

Because the kinetic energy is a quadratic form in the crea
and destruction operators for each spin, the action of its
ponential on the trial state is simply to transform one dir
product of Slater determinants into another. While the pot
tial energy is not a quadratic form in the creation and d
struction operators, its exponential is replaced by the sum
exponentials of such forms via the discrete Hubba
Stratonovich transformation

eDtUni ,sni ,2s5
1

2
e2(1/2)DtU (

x561
e2xDtJ(ni ,s1ni ,2s21)

3e(1/2)DtU(ni ,s1ni ,2s) ~9!

provided U>0 and coshDtJ5eDtU/2. Accordingly we re-
express the iteration step as

)
s

ufs8 &5E dxW P~xW !)
s

Bs~xW !ufs&, ~10!

where xW5(x1 ,x2 , . . . ,xN) is the set of Hubbard-
Stratonovich fields~one for each lattice site!, N is the number

of lattice sites,P(xW )5( 1
2 )N is the probability distribution for

these fields, andBs(xW ) is an operator function of these field
formed from the product of the exponentials of the kine
and potential energies.

Upon examination, one sees thatBs(xW )5B2s(xW )
[B(xW ). This equivalence means the equivalence of
propagators for the separate spin components of the in
state. If these components are identical, i.e., ifufT

s&
5ufT

2s&[ufT&, then only one component needs to
propagated:

uf8&5E dxW P~xW !B~xW !uf&, ~11!

but more importantly, the overlap of the initial state with th
current statêc8ucT&5^f8ufT&2 and thus is always positive
This positivity is sufficient to eliminate the sign problem.

The Monte Carlo method is used to perform the multi
mensional integration over the Hubbard-Stratonovich fiel
It does so by generating a set of random walkers initializ
by replicatingucT& many times. Each walker is then prop
gated independently by sampling axW from P(xW ) and propa-
gating it with B(xW ). After the propagation has ‘‘equili-
brated,’’ the sum over the walkers provides an estimate
the ground-state wave functionuc0&.

In practice, we performed an importance-sampled rand
walk, obtained by defining for each Slater determinantuf&
another oneuf̃& via

uf̃&5^fTuf&uf&, ~12!

and using the transformed iterative equation
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uf̃8&5E dxW P̃~xW !B~xW !uf̃&. ~13!

In this equation

P̃~xW !5P~xW !
^fTuf8&

^fTuf&
. ~14!

Thus importance sampling changes the probability distri
tion of the Hubbard-Stratonovich fields, biasing it towar
the generation of states with large overlap with the init
state. The branching nature of the random walk is the sa
as described for the CPMC method and will not be discus
here. It is a necessary procedure for controlling the varia
of the computed results.

We used two different estimators for the expectation v
ues of some observableO. One is the mixed estimator

^O&mixed5
^cTuOuc0&

^cTuc0&
, ~15!

and the other is the back-propagated estimator

^O&bp5
^cTue2 lDtHOuc0&

^cTue2 lDtHuc0&
, ~16!

whereuc0& is the QMC estimate of the ground state andl is
typically in the range of 20 to 40. For observables that co
mute with the Hamiltonian, the mixed estimator is a ve
accurate one and converges to the exact answer asuc0& con-
verges to the exact ground state. For observables that do
commute with the Hamiltonian, like correlation function
the back-propagated estimator has been found to give
accurate estimates of ground-state properties. Significant
ferences between the predictions of these two estimators
ten exist.

We remark that we could have projected to the grou
state using the BCS wave function as our starting poin18

This wave function is not normally represented as a dir
product of two spin Slater determinants, but by a trick p
posed by Yokayama and Shiba,19 one can re-express it as
single Slater determinant. In this new representation, one
then show that there is still no sign problem, but that
computational cost of working with this wave function is
least a factor of 4 more. Since no statistically significa
differences in computed results occur, we almost exclusiv
used the computationally more efficient direct product
free-electron wave functions forucT&. Additionally, most of
our calculations were done for closed-shell electron fillin
i.e., nondegenerate electron fillings in the noninteract
problem. For these fillings and for the same amount of co
puting time, the statistical error of our expectation values
considerably smaller than that of our expectation value
open-shell fillings~which can be easily handled when th
BCS wave function is used as constraint18!.

We also remark that the standard auxiliary-field projec
Monte Carlo method also has no sign problem for the attr
tive Hubbard model. Although only a few comparisons ex
we are unaware of any statistically significant differenc
between results from that method and results from the
used here. If both are exact procedures, then, of course,
should not be any. The estimators used in the two meth
-
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however are different as the auxiliary-field projector meth
uses a different back-propagation estimator for all obse
ables.

IV. RESULTS

In sequence we will now report and discuss results for
attractive Hubbard model on chains, squares, and ladder
each case we will comment on the predictions of the B
approximation relative to the predictions of the QMC sim
lations. For chains we will also comment on supportive c
culations we performed using the density-mat
renormalization-group~DMRG! method.20 Included in a
separate subsection is a discussion on the specific issu
dimensional crossover.

Because the variances of our computed results are sm
for closed-shell fillings, we only considered such fillings, a
because the shell structure changes with lattice size, as
changed lattice sizes, we could not maintain the elect
densitieŝ n& at a fixed value. For the results reported he
we fixed the electron density as close as possible to the q
ter filled value, that is, to a value of one electron per tw
lattice sites. The actual fillings for many of the lattices stu
ied are given in Table I. In all cases we had equal number
up- and down-spin electrons. In one-dimension we u
^n&51/211/L which converges to quarter filling asL is in-
creased. We remark that the accuracy of our QMC calcu
tions were benchmarked against those of exact diagona
tions calculations of 434 lattices. The QMC results, and i
particular those computed by the back-propagation esti

TABLE I. Summary of relevant parameters of the QMC sim
lations. Shown are the systems sizes, the electron fillings^n&, and
the exponentb of the power-law decay forU/t52. For two- and
three-legged ladders, where there is a double entry, for exam
5032, the top entry gives the value ofb for the top envelope,
while the bottom entry is for the bottom envelope. In one dimens
the fillings are alwayŝn&51/211/L.

System size ^n& b

3431 0.53 0.88~9!

4231 0.52 0.82~6!

5031 0.52 0.86~4!

6631 0.52 0.79~3!

5031 0.52 0.86~4!

5032 0.50 1.07~3!

0.87~2!

5033 0.51 1.32~4!

0.95~3!

5034 0.51 0.68~5!

636 0.5
838 0.5

10310 0.5
12312 0.51
14314 0.5

1638 0.45
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tors, agreed well within statistical error with those of t
more precise method.

A. Chains

For both finite and infinite chain lengths one can obt
the energies of the attractive Hubbard model from its Be
ansatz solution.8 Marsiglio and Tanaka,21,22 for example,
have made extensive comparisons of these energies with
predictions of the BCS approximation. Additionally, by com
puting the Bethe ansatz energies for systems ofNe ,Ne21,
and Ne11 electrons, they also calculated the pair bindi
energy by evaluating DNe

5(ENe2122ENe
1ENe11)/2,

which in the BCS approximation is the gapD.23 The energy
is the least accurate at intermediate coupling strengths at
filling, where the disagreement however is only a few p
cent, and becomes exact in the weak- and strong-coup
limits at low electron density. In general, the pair bindi
energy is poorly reproduced, with the disagreement being
least in the dilute electron-density limit. Typically, the BC
wave function overestimates the binding energy. For fin
size systems they also found significant shell effects in
energy as a function of electron density or as a function
chain length in the weak-coupling regime. They did not
vestigate the pairing correlations.

Exact analysis of the Bethe ansatz solution by Kawaka
and Yang9 showed that in the thermodynamic limit the o
site s-wave pairing correlation functionPs(R) behaves like

Ps~R!5^Ds
†~R!Ds~0!&;

1

Rb
~17!

at large separationsR between the pairs. The nonunivers
exponentb is a function of bothU/t and the electron filling.
~Kawakami and Yang provide a graph givingb for a selec-
tion of values ofU/t for all fillings between 0 and 1.! Be-
cause the BCS approximation always predicts ODLRO,
predictions for the behavior of pairing correlation functio
is qualitatively incorrect.

We computed the on-sites-wave pairing function in sev-
eral different ways. In the QMC simulations, we used pe
odic boundary conditions, took

Ds~ i !5ci ,↓ci ,↑ , ~18!

and then calculated

Ps~R!5
1

L (
i

^Ds
†~ i 1R!Ds~ i !& ~19!

for each possible value ofR by using the back-propagatio
estimator. In the DMRG calculation, we used open bound
conditions and computedPs(R) in two different ways. In the
first way we computed

Ps~R!5^Ds
†~ i R1R!Ds~ i R!& ~20!

for each value ofR relative to some sitei R , which depends
on R, chosen to place the pairs as close to the center of
chain as possible. In other words, to avoid edge effects, f
given value ofR, we used the sites closest to the center.
the large values ofR, the resulting estimate displayed rap
fluctuations that made comparisons with the QMC and Be
e
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ansatz predictions difficult. We found we could smooth o
the fluctuations by computingPs(R) from24

Ps~R!5
1

Np~R! (
i 51

Np(R)

^Ds
†~R!Ds~0!& i . ~21!

Here we sum over all possible pairs of lattice sites separa
by the same displacementR and divide this sum by the num
berNp(R) of such pairs of sites, which is a function ofR. At
large values ofR, this function was much smoother. Mor
importantly, it compared very well with the QMC results.

In Figs. 1 and 2 we show samples of our results forU/t
52. In Fig. 1, we superimpose several calculations ofPs(R)
for different chain lengthsL to illustrate that increasing the
chain length did not change the pairing correlations at sh
and intermediate distances. It simply increased the rang
distance over which we correctly captured these correlatio
We fitted the large distance behavior of the correlation fu
tions to the inverse power-law function~17! and found ex-
ponentsb consistent with the Bethe ansatz prediction. F
example, from Kawakami and Yang’s graph, we estima
b50.80(2). Our fit for thechain of L566, shown in the
inset to Fig. 1, predictedb50.79(3). Exponents for other
fits are given in Table I. For long enough chains we obtain
close agreement between the value ofb obtained by fitting
and the value obtained from Kawakami and Yang’s graph
performing the fit we eliminated the short-range behav
and the upturn in the correlations at large distances. T
upturn is a finite-size effect caused by periodic bound
conditions.

A comparison of our QMC results with those from BC
and DMRG calculations are shown in Fig. 2~a!. Clearly, the
predictions from the two quite different numerical metho
agree, provided we average the DMRG results as discu
above. For purposes of comparison, we also show the
diction of the BCS approximation. It is qualitatively differen
from what is required from the exact solution. Figure 2~b!
shows the difference in the DMRG results when compu

FIG. 1. The QMC on-sites-wave pairing correlation function
Ps(R) as a function of the distanceuRu between pairs for aU/t
52 chain of different lengthsL. The inset shows the fit of result
for the L566 chain to the inverse power-law form~17! using a
value ofb50.79.
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for the two different ways of averaging, that is, when co
puted from Eqs.~20! and ~21!.

In short, both the DMRG and QMC predictions agree w
with each other and with the exact prediction of the Be
ansatz solution for the asymptotic form of the pairing cor
lation function at large distances. As expected, the BCS
proximation is qualitatively incorrect for this same functio

B. Squares

In two dimensions, an exact analytic solution for the Hu
bard model does not exist. Within statistical error, the QM
approach, however, provides an exact numerical solution
this subsection we are principally concerned with compar
predictions of the BCS approximation with those of the ex
QMC simulations.

In Fig. 3, we show the QMC and BCSPs(R) as a func-
tion of the distanceR for an 838 lattice withU/t51, 2, and
4. The curves show the same behavior: The correlations
idly drop in magnitude over a distance of a few lattice sp

FIG. 2. The on-sites-wave pairing correlation functionPs(R) as
a function of the distanceuRu between pairs for aU/t52 chain of
lengthL550. ~a! Comparison of the results of the BCS approxim
tion with a QMC calculation that used Eq.~19! and a DMRG cal-
culation that used Eq.~21!. ~b! Comparison of the DMRG result
for the two different ways, Eqs.~20! and ~21!, of estimating the
correlation function.
-
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-
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p-
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ings and then stay constant over the remainder of the
tances. The constant behavior at these larger distances
signature of ODLRO, if the distances extended to infinity.
the results go fromU/t51 to U/t54, the agreement be
tween the QMC simulations and the BCS approximation
lattices of the same size progressively worsens. Bey
U/t51, the quantitative agreement is poor. One also s
that asU/t increases, the magnitude of the pairing corre
tions increases. At large distances, if there is ODLRO,
pairing correlation function becomes asymptotically equa
^Ds&

2. In the BCS approximation,U times ^Ds& equals the
energy gap, and this gap becomes exponentially small w
decreasingU/t to 0 and proportional toU/t when increasing
U/t to infinity. However, as noted before, the attractive Hu
bard model is gapless if it has on-sites-wave ODLRO.15

While we computed several cases forU/t58, the statis-
tical error was considerably larger and hence we do not sh
these results. However, in all cases computed, as we
creased the magnitude ofU/t, we never saw the QMC and
BCS results approach each other. In fact, as we increa
U/t beyond 1, their difference continuously increased.
Fig. 4, we show both the on-site and extendeds-wave pairing
correlation functions as a function of distance forU/t54
and a 14314 lattice. In the inset we eliminated the sho
distance part to emphasize the flat large distance behavio
both correlation functions. By averaging over this flat beha
ior we estimated botĥDs* &2 and ^Ds&

2 and attempted to
verify that the ratio is proportional to (2U22m)2/t2 as
stated by Eq.~5!. Because most of our simulations were do
for fixed particle numbers and closed-shell fillings, the es
mation of m was difficult. Using a variation of the presen
method18 that allows an estimation ofm, we found m
522.77 for a 838 system withU/t54. Using this same
value ofm for the 14314 system withU/t54 yields (2U
22m)2/t252.37 which compares very well to the value
2.40~3! estimated from the figures. We also observed that
ratio of the expectation values for the on-site and exten
s-wave order parameters wasexactlyobeyed in the BCS ap
proximation, provided the BCS value ofm was used. In Ap-
pendix A we present the analysis leading to this result.
also observed that the long-range values of both the on

FIG. 3. The QMC and BCS on-sites-wave pairing correlation
functionPs(R) as a function of the distanceuRu between pairs for a
838 lattice andU/t51, U/t52, andU/t54.
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and extendeds-wave pairing correlation functions do no
vary monotonically with lattice size. We illustrate this in Fi
5 by plotting both the QMC and BCS results for^Ds& as a
function of the reciprocal of the numberN of lattice sites for
both U/t52 and U/t54. Within the BCS approximation
one can computêDs& directly for any lattice size.

In Fig. 5~a!, the BCS result forU/t52 clearly does not
converge to the thermodynamic limit monotonically. T

FIG. 4. The QMC and BCS on-site and extendeds-wave pairing
correlation functionsPs(R) as a function of the distanceuRu be-
tween pairs forU/t52 and a 14314 lattice. The inset shows th
large distance behavior of these same functions.

FIG. 5. The expectation value of the on-sites-wave order pa-
rameter̂ Ds& as a function of the reciprocal of the sizeN of a square
lattice. In both~a! and~b! the QMC results are compared to those
the BCS approximation. In~a!, U/t52. In ~b!, U/t54 and the inset
shows the behavior of the BCS predictions for small values of
reciprocal of the lattice size.
same lack of monotonicity is apparent in the variation of t
QMC results. Because the BCS and QMC results are qu
titatively different, we see no reason why the QMC resu
might extrapolate to the BCS result, but more importan
we do not see how to extract an accurate value of^Ds& in the
thermodynamic limit, although it is clear from our resul
that it is a finite value and therefore there will be ODLRO
the thermodynamic limit. In Fig. 5~b!, we show similar
curves forU/t54. The apparent monotonicity of the BC
result is deceptive, as illustrated in the inset to this figu
The more important point is that the BCS results appro
the thermodynamic limit forU/t54 case more rapidly than
they did for theU/t52 case. This trend is very general an
suggests that the QMC results for larger values ofU/t will
also converge more rapidly to the thermodynamic lim
Large interactions reduce fermion shell effects. Unfor
nately both the necessarily large values ofU/t and lattice
sizes appear inaccessible with our simulation method.
U/t51 we estimate that the BCS approximation has
proached the thermodynamic limit within a percent for la
tices of the order of 60360; for U/t58 our estimate is for
lattices of the order of 10310. As mentioned before, a
U/t58 the QMC results have large statistical errors in t
back-propagation estimate of the pairing correlation fu
tions.

In summary, for on-sites-wave pairing correlations, we
find that the QMC and BCS results agree in the we
coupling limit. While the QMC results show a necessa
signature of ODLRO, we were unable to extrapolate ac
rately our results for the order parameter to the thermo
namic limit.

C. Ladders

An alternate way to reach the two-dimensional thermo
namic limit is extrapolating from a ladder structure of fixe
but long, lengthL by letting the number of legsM become
large. Here we report our results from the use of this st
egy.

We built up the ladder structures by coupling 1, 2, and
additional chains to the one-dimensional chain and mak
the interchain and intrachain hopping amplitudes equal.
used periodic boundary conditions in thex ~long! direction
and open boundary conditions in they ~short! direction. We
call this a cylindrical boundary condition. For the on-si
s-wave pairing correlation function we computed it on
along thex direction, using

Ps~R!5
1

L (
i 0

^Ds
†~ i 01R!Ds~ i 0!&, ~22!

where thei 0 are lattice sites along one of the central legs
the ladder. For a three-legged ladder, the sites in thex direc-
tion are on the central leg. For a two-legged ladder, we u
just one of the legs. By symmetry, the chain-directed pair
correlations are the same on each leg. For a four-legged
der, we just used one of the two central legs.

To provide some perspective, we first present in Fig
plots of the energy as a function of system size. In particu
in Fig. 6~a! is the energy per site for aU/t52 chain as a
function of the reciprocal of chain length. The variation wi
length is smooth and monotonic. Linearly extrapolating t

e
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data to infinite length, we find an energy per site o
21.079(1) which is within statistical error of the Bethe a
satz value of21.079.25 In Fig. 6~b! is the energy per site a
a function of the reciprocal of the number of legsM for a
ladder of lengthL550. The variation is smooth and mono
tonic and extrapolates to a value of21.49(1), avalue simi-
lar to the one we found from the QMC simulations for t
two-dimensional lattice. This is not surprising since,
though the extrapolating function can be shape depend
the energy is a bulk quantity, i.e., independent of the w
one performs the thermodynamic limit. These tw
dimensional QMC results are shown in Fig. 6~c! for the non-
interacting case and for the interacting case computed
both the BCS approximation and the QMC method. T
variation is neither smooth or monotonic. Additionally
tracks the noninteracting problem. This tracking support
claim that the nonmonotonic variations are caused by s
effects that are obvious and inherent to non-interacting
mion problems. For thes-wave pairing correlation function
a typical result is shown in Fig. 7. Similar to the on
dimensional case~Fig. 1!, the curves for increasing ladde
length lie on top of those for shorter lengths. In contrast
the one-dimensional case, however, distinct oscillations e
but the overall trend is a decrease in magnitude with incre
ing distance. For the two- and three- legged cases we fi
the top and bottom envelopes of the oscillations to
power-law decay~17! and found the two decays rates to
close but not the same. These exponents were also clo

FIG. 6. The QMC energy per siteE/N as a function of the
reciprocal of the numberN of lattice sites forU/t52 systems.~a!
Chains (N5L), ~b! ladders (N5L3M ), and ~c! squares (N5L
3L). For squares the free-electron and BCS results are also sh
For chains and ladders, the QMC curves smoothly and line
extrapolate to the thermodynamic limit indicated by the starbu
symbols at 1/N50.
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the one-dimensional value~Table I!. An important observa-
tion is the overall magnitude of the pairing correlations
first decreasing below the one-dimensional value and then
we built up the ladder structure to four legs, increasing ab
the three-leg value. For a ladder of lengthL550, the varia-
tion of thes-wave pairing correlation function with the num
ber of legs is shown in Fig. 8. A typical fit to determine th
exponents of decay is shown in the inset. Other fitted val
are given in Table I. We note that while the exponent do
not change much from the one-dimensional case to the
and three-legged ladder cases, it does decrease signific
when the fourth leg is added.

We remark that using the BCS approximation, we co
puted the pairing correlations for the same system sizes
with periodic boundary conditions in both directions. Whi
this approximation always showed ODLRO, its order para
eter ^Ds& showed the same trend as we obtained from
QMC simulations: In going from one to three-legs, the val

n.
ly
t

FIG. 7. The QMC on-sites-wave pairing correlation function
Ps(R) as a function of the distanceuRu between pairs forU/t52,
and two and three-legged ladders of different lengths.

FIG. 8. The QMC on-sites-wave pairing correlation function
Ps(R) as a function of the distanceuRu between pairs for aU/t
52 ladder of length 50 as a function of the number of legsM. The
inset shows the long-range behavior of these correlations fitte
the inverse power-law function~17!.
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of the order parameter at first monotonically decreased
then increased relative to the value of the three-legged la
when the fourth leg was added.

D. Dimensional crossover

What type of variation with ladder width should one e
pect? Recently finite temperature QMC studies of quan
spin-12 ladders found nonmonotonic variations with the nu
ber of legs.26–28 More specifically, the dynamic susceptibil
ties of even-legged ladders had spin gaps while those of o
legged ones did not. The size of the spin gap rapi
decreased with increasing number of legs and is a resu
topological considerations similar to those associated w
Haldane gaps in one-dimensional chains. For fixed, but la
ladder lengths the uniform susceptibility vanished as
temperature was lowered and then the number of legs
trapolated to infinity. This susceptibility however extrap
lated to a nonzero value if at low temperatures the tw
dimensional results were extrapolated to the thermodyna
limit. Proper extrapolation of this system to the thermod
namic limit appears to be an unsolved problem. The theo
ical and experimental situation has received several re
reviews.29,30

Turning from quantum critical phenomena to the fin
temperature critical behavior and using the two-dimensio
Ising model as an example, we can easily study the dim
sional crossover from one to two dimensions and the
trapolation of two-dimensional results to the thermodynam
limit. We, in fact, were able to derive exact results, given
Appendix B, for the spin-spin correlations for such fini
systems. Using these exact results we computed the spin
correlation function as a function of distance along the c
tral leg for several illustrative cases. For the calculations p
sented in Fig. 9, we fixed the reciprocal of the critical te
perature at its bulk value of12 ln(A211)'0.44, chose a long
ladder length of 200 lattice sites, and computed the corr
tion function for various number of legs. What is seen is
smooth but gradual transition from the expected exponen
decay in one dimension to the expected power-law deca
two dimensions. Proper extrapolation of this system to
thermodynamic limit is an exactly solvable problem.31

What is the relevance of the studies on these spins
tems to our QMC simulations? From studies in finit
temperature critical phenomena, one suggestion on the
trolling physics of a dimensional crossover is the type
behavior depending on the relative size of the dominant c
relation length to the width of the system.32 This insight was
developed in part from analytic studies ofD-dimensional
ladders sized̀ 3`3•••3`3M and scaling its behavior to
a (D11)-dimensional system by lettingM→`. In going
from one to two dimensions, as long as one is on the crit
surface, one expects the long-range behavior to be o
dimensional-like if the correlation length is larger than t
width and two-dimensional-like if it is smaller. The variou
correlation functions we computed for the Hubbard mod
such as charge-charge, spin-spin, and pair-pair, rapidly
cayed over a distance of several lattice spacings from t
on-site value, suggesting our system sizes were large en
so that if we were on the quantum critical surface, our ph
ut
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ics would be more two-dimensional-like than on
dimensional-like. We find that it appears to be the other w
around.

The picture so appropriate for finite-temperature critic
phenomena established for classical systems might no
appropriate to our fermion simulations because the sys
sizes are too small and are dominated by shell effect
phenomenon intrinsic to quantum fermion systems. In F
10, we plot the band structure of the free-electron case
one, two, three, and four legged ladders of infinite leng
with cylindrical boundary conditions. The horizontal lin
represents the Fermi energy for an electron density of
For one leg, the one-dimensional case, there is one band
two-legs there are two bands but only the lower band
filled. While the entire system is quarter filled, the on

FIG. 9. The spin-spin correlation function for an Ising ladder
lengthL5200 as a function of the distanceuRu between spins and
of the number of legsM. The temperature is at the bulk critica
value, and the distanceuRu is along a central leg in thex direction.
Cylindrical boundary conditions were used.

FIG. 10. Bandstructure of the noninteracting problem on on
two-, three-, and four-legged ladders. Cylindrical boundary con
tions are applied. The long lengthL is infinite, and the horizontal
line represents the Fermi energy for a quarter filled system.
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dimensional-like lower band is half filled. Not surprising
then is the one-dimensional-like decay rate of the pair
correlations. For three and four legs there are three and
bands. More than one band is participating but the situa
is not yet two-dimensional-like. This simple band pictu
therefore provides some qualitative basis for understand
our data. This understanding suggests, at least for the siz
the systems we were able to study, that the length scale
terpretation of dimensional crossover is not yet applicabl

As still another way of looking at the finite-size effects w
present Fig. 11 which displays the allowablek values for
noninteracting 238, 438, and 838 lattices with periodic
boundary conditions. For quarter filling the black dots a
occupied by an up- and down-spin electron, the gray dots
the degenerate states in the open shell, and the open do
unoccupied. Clearly for 238 the occupiedk states are those
of a one-dimensional lattice. This situation changes little
the 438 case, but has significantly changed for the 838
case. Obviously in the noninteracting case the dimensio
crossover requires more than just a few legs.

While finite-size shell effects may explain the nonmon
tonic variations we observed, we emphasize that the na
of the variation of the pairing correlation to crossover fro
one to two dimensions was not revealed in our simulatio
We note than even in the apparently simpler classical Is
model the crossover was slow.

FIG. 11. The allowedk states for a 238, 438, and 838 non-
interacting problem with periodic boundary conditions. Illustrat
are whichk states are occupied for quarter filling of an equal nu
ber of up- and down-spin electrons. A black dot denotes dou
occupancy, an open circle represents no occupancy, and a gre
represents the degenerate state comprising the open shell.
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V. CONCLUDING REMARKS

We presented an extensive QMC study of pairing cor
lations in the attractive Hubbard model on chains, ladde
and squares. While still computationally intensive, the QM
method we used is free of the fermion sign problem t
would prevent a similar study for the repulsive Hubba
model. By using a method free of the sign problem, we o
tained results that apart from statistical errors are exact
several instances we re-enforced this exactness by repro
ing behavior predicted by exact analysis. For example,
chains we got the correct asymptotic behavior of the on-
s-wave pairing correlation function. For squares, we verifi
Zhang’s relation between the on-site and extendeds-wave
order parameters. Several of our ambitious computatio
objectives were, however, limited by the size of the syste
and interactions strengths we could afford to simulate. S
we demonstrated the validity of the BCS approximation
the weak-coupling limit for a short-ranged interaction a
highlighted several important unresolved issues about fin
scaling of fermion systems.

To a degree, the finite-size and shell effects exhibited
our results are expected. Such effects have been repo
before.17,33,34The difficulty we had in trying to extrapolate
beyond them to the thermodynamic limit was unexpect
Part of the surprise follows from QMC simulations of th
attractive Hubbard model always having an easier time
vealing a signature of ODLRO than simulations of the rep
sive model. Years ago, in fact, ODLRO was reported for
attractive model via a QMC simulation.7 How we attempted
to establish ODLRO in this paper, however, differs fro
how it was attempted in that previous work. There, the u
form susceptibility

xs5
1

N (
R

Ps~R! ~23!

was extrapolated to the thermodynamic limit. While this
an appropriate quantity for very large system sizes, it is n
appreciated that for small systems, it is often dominated
the values ofPs(R) nearR50. These values merely mea
sure local spin and charge fluctuations. Directly examin
the long-distance behavior ofPs(R), as done here, is a mor
appropriate procedure.

Re-examining Fig. 3 of Ref. 7, we notice the following
The values ofxs for small lattices were excluded from th
extrapolation. The values for the larger lattice sizes fluc
ated about the fit by amounts larger than the statistical er
We do not doubt that a proper extrapolation will yield
non-negative value forxs . Noting thatxs is roughly^Ds&

2,
we remark that their numerical values for^Ds& are consistent
with ours.

From Fig. 3 of Ref. 7, we also notice how smoothly th
uniform susceptibility for the charge-density wave extrap
lated to the thermodynamic limit. In the present work, w
recall the smooth and linear variation of the energy of
chains and the ladders with size in contrast to the err
variation for the squares. The finite-size effects influence
ferent quantities and systems differently. While one expe
these effects, where they appear appreciably is a bit
predictable.
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610 PRB 62M. GUERRERO, G. ORTIZ, AND J. E. GUBERNATIS
What is curious is the control the shell structure of t
noninteracting problem has on the behavior of the interac
system. If one were to examine the variation of energy of
two-dimensional Hubbard model as a function of electr
density, one would see shell locations defined by the no
teracting problem and the energy in a shell to a very go
approximation varying nearly linearly with electro
density.33,17,34The interactions do change the slope~chemi-
cal potential! of this variation from the noninteraction value
however, this nearly linear variation suggests the presenc
different sets of nearly degenerate ground states as the
tron density varies form shell to shell. One expects the in
action to destroy the degeneracy in the shell of the nonin
acting problem so that shell effects in the interacting probl
would be less than those in the noninteracting problem. T
expectation is not fully supported by the data for all prop
ties of the system.

One of our objectives was establishing how large must
system be before we can say it is in a superconducting s
Over 40 years ago, Anderson35 asked how small can supe
conducting metal particles be before they lose their sup
conducting properties. He asserted the cutoff came when
gap near the Fermi surface induced by the small size
comes larger than the superconducting gap. There is
dence for the validity of this condition from experiment
studies of the superconducting properties of metal clust
What happens if the superconductor, as is the case for
attractive Hubbard model, is gapless? On the other han
the finite attractive model approximately a gapped superc
ductor? If so, are our results suggesting the gaps are sm

What are the implications of our results for establishi
ODLRO in the repulsive Hubbard model? The behavior
the repulsive model is quite different than the behavior of
attractive model. For any size of the repulsive model stud
so far, the difficulty is finding pairing correlations larger tha
those of the noninteracting problem.36 In the thermodynamic
limit the noninteracting problem is not superconducting
whatever long-range correlations seen for small syste
must suppressed in larger systems. In the repulsive mo
d-wave pairing correlations are stronger than thes-wave
pairing correlations, and as the system size was increa
the magnitude of thed-wave pairing correlations systemat
cally vanished.36,18 What our results underscore is the ca
needed to establish that any observed enhancement o
d-wave pairing correlations is an intrinsic effect and no
finite-size effect.

We comment that all results reported here are for a sin
electron filling. All the properties studied are a function
filling so at some other fillings, it might be easier to extrap
late to the thermodynamic limit and it might be possible th
the BCS approximation remains in quantitative agreem
with the QMC simulations for larger values ofU/t. In fact, a
few simulations for^n&50.875 for 434, 636, and 838
lattices showed only a weak variation in the results for
pairing correlation function.

While we simulated systems at other fillings, these sim
lations were neither extensive or systematic enough to es
lish conclusions other than those now being reported. Als
building up the ladder to a square, we took quite long ladd
which restricted the number of legs we could afford to sim
late. We made the ladder long so the pairing properties of
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chain clearly matched the predications of the Bethe an
solution of the infinite chain. It might be possible to see t
dimensional crossover and extrapolate to the bulk tw
dimensional properties from shorter but wider ladders. F
example, in Fig. 12 we showPs(R) for a 1638 ladder at
U/t52. The flatness suggests possible ODLRO consis
with the results for the square geometry.

What are possible ways of handling the finite-size effec
One way, suggested by Bormann, Schneider, and Frick,37 is
adjustingU/t for different system sizes so the BCS appro
mation for Ps(R) closely approximates the one from th
QMC simulations, subtracting this approximation from t
QMC results, and then extrapolating the differences to
thermodynamic limit. After this, then one would add to th
result the BCS results for an infinite system.~Actually, Bor-
mann, Schneider, and Frick did this forxs .) We did not try
this procedure because it is related to another one, scaling
vertex correction. Here, one replaces averages like^c†c†cc&
with ^c†c†cc&2^c†c&^c†c& and studies the size dependen
of the remainder which is called the vertex contribution.38 In
spot checks, we found no significantly different scaling b
havior between the vertex and full contributions.

Another way to remove finite-size effects is the pha
averaging method suggested for exact diagonalization s
ies by Loh and co-workers.39 and recently adopted for QMC
simulations by Ceperley.40 In this procedure, one replace
the hopping amplitudet at the boundary byteif and obtains
various physical quantities as a function off. Then one
averages these quantities overf. Loh and co-workers give a
justification and demonstration of the method. In exact
agonalization studies, one just does a sequence of diago
izations for different values off. In a Monte Carlo method
for computational efficiency it is necessary to treatf as an-
other stochastic parameter and then let the random walk
the averaging. To do this one needs to change the Q
method. In the applications contemplated by Ceperley,
means changing from the fixed-node to the fixed-ph
method.41 In our case we are developing an analog of t
fixed-phase method, called the constrained phase.42 Hope-
fully we will be able to report results from this method soo

Finally, we would like to emphasize that this paper h

FIG. 12. The QMC on-sites-wave pairing correlation function
Ps(R) as a function of the distanceuRu between pairs for a rectan
gular quarter filledU/t52 lattice of size 1638.
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been dealing exclusively with systems having a homo
neous long-range phase coherence. There is a rapidly g
ing body of experimental evidence suggesting that inhom
geneously textured ~intrinsically nanoscale! phases
characterize the quantum state of high-temperature super
ductors. It is possible that the superfluid density characte
ing that state is inhomogeneous. We believe that an ex
sion of the attractive Hubbard model includin
inhomogeneous terms~mimicking stripes! could be the start-
ing point to understand the fundamental problem of inhom
geneous superfluids.
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APPENDIX A: BCS EQUATIONS

In this appendix we present the key equations used in
BCS calculations. Some are well documented while oth
are not. For completeness and convenience we give t
here.

First to establish notation, we take Eq.~3! as the Hamil-
tonian for a lattice ofN sites and rewrite it ink space:

H5(
k,s

eknk,s2
U

2N (
k,k8,q
s5↑,↓

ck,s
† ck8,2s

† ck81q,2sck2q,s ,

~A1!

usingek522t(coskx1cosky) and assuming periodic bound
ary conditions in all spatial directions. We used the BC
wave function~2! with k-independent relative phasew:

uBCS~w!&5)
k

~uk1vke
iwck,↑

† c2k,↓
† !u0&. ~A2!

The effective mean-field Hamiltonian, resulting from the n
glect of pairing fluctuations, is

HBCS5(
k,s

jknk,s2D(
k

~ck,↑
† c2k,↓

† 1c2k,↓ck,↑!1
UNe

2

4N
,

~A3!

whereNe5^N̂e&52(kvk
2 is the average number of electron

and D5(U/N)(k^ck,↑
† c2k,↓

† &5(U/N)(kukvk is the BCS
gap, andjk5ek2m2UNe/2N. The value of the energy wa
calculated from

^HBCS&5^H2mN̂e&

52(
k

~ek2m!vk
22

U

N F S Ne

2 D 2

1S ND

U D 2G
~A4!

andm andD were determined by self-consistently solving
-
w-
-

n-
z-
n-

-

.
,
s.

-
s
o

ur
rs
m

-

(
k

F12
jk

Ek
G5Ne , ~A5!

U

2N (
k

Ek
2151, ~A6!

whereEk5Ajk
21D2. With these values ofm andD we de-

termineduk ,vk from

2ukvk5
D

Ek
, ~A7!

uk
22vk

25
jk

Ek
. ~A8!

A quantity central to this work is thes-wave superconducting
pairing correlation functionPs(R)5^Ds

†(R)Ds(0)&. Within
the BCS approximation it is

Ps~R!5S D

U D 2

1
Ne

2N
dR,02F~R!, ~A9!

where the functionF(R)

F~R!5
1

N2 (
k,k8

ei (k82k)•Ruk8
2 vk

2 ~A10!

vanishes in the limituRu→`.
To establish the proportionality between thes-wave and

extended s-wave order parameters, we considered
Heisenberg equation of motion forDs( i )5ci ,↓ci ,↑ :

2 i
]Ds~ i !

]t
5@HBCS,Ds~ i !#. ~A11!

It is straightforward to show that

@HBCS,Ds~ i !#5~UNe /N12m!Ds~ i !1tDs* ~ i !

2D~ni ,↑1ni ,↓21!. ~A12!

Then usinĝ @HBCS,Ds( i )#&50 for an equilibrium state, we
find

^Ds* ~ i !&5
2U22m

t
^Ds~ i !&5

2U22m

t S D

U D ,

~A13!

where the extendeds-wave pair field operator is defined by

Ds* ~ i !5 (
d56 x̂,6 ŷ

~ci ,↓ci 1d,↑2ci ,↑ci 1d,↓!. ~A14!

This fundamental relation is formally the same as the o
found by Zhang16 for the exact solution of the Hubbar
model. We note, however, that the chemical potential a
expectation values in Eq.~A13! are BCS ones.

In the strong-coupling regime (U/t→`), the chemical
potential m52U/2 and the gapD5 1

2 UA12(Ne /N21)2,
therefore

S D

U D 2

→1

4 F12S Ne

N
21D 2G ~A15!
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and in that limit^Ds* &50 and

uBCS~0!&5)
i

FA12
Ne

2N
1ANe

2N
ci↑

† ci↓
† G u0&.

~A16!

While not used in any of the results reported here, ano
relation we derived and found useful in other contexts i
simple way to project from the BCS wave function the co
ponent corresponding to a fixed number of particles.
though in the thermodynamic limit one can ignore exact p
ticle number conservation, for a finite system, one of
cannot because the particle number fluctuations^N̂e

2&
2^N̂e&

254(kuk
2vk

2 , inherent in the BCS wave function, ca
be large. To project out theNe-particle component, one use

uCNe
&5

1

2pE0

2p

dwe2 iwNe/2uBCS~w!&. ~A17!

By directly doing the implied integration over the phase, o
can show that the amplitudêBCS(0)uCNe

&5^CNe
uCNe

&
5vNe

where(Ne
vNe

51. To find vNe
one can use the re

cursion relation

NpvNp
5vNp21(

k
S vk

uk
D 2

1 (
j 51

Np21

~21! jvNp2( j 11)(
k

S vk

uk
D 2( j 11)

,

~A18!

whereNp5Ne/2 is the number of pairs. We also note th
uBCS(0)&5(Ne

uCNe
&.

APPENDIX B: ISING LADDERS

In this appendix we state the main equations necessa
study the crossover from one to two dimensions in a sys
of classical Ising spins. We present analytical expressi
from which various observables are derivable. In particu
we state those equations necessary to study the large-dis
behavior of the spin-spin correlation function near and at
two-dimensional critical point.

Because of the extensive literature on the Ising model,
will present only the results relevant for aL3M lattice,
which have not been explicitly documented to our know
edge. As close as we could, we followed the notation a
methodology in Ref. 31.

The M-ladder Ising Hamiltonian in the absence of an e
ternal magnetic field is

H52J1 (
i 52M2

M1

(
j 512N̄

N̄

Si , jSi , j 11

2J2 (
i 52M2

M121

(
j 512N̄

N̄

Si , jSi 11,j , ~B1!

where cylindrical boundary conditions (Si ,12N̄5Si ,11N̄) are
used,Si , j561, and
er
a
-
-
r-
n

e

t

to
m
s

r,
nce
e

e

-
d

-

M 11M 2115M ~number of rows!

2N̄5L ~number of columns! ~B2!

Figure 13 presents a schematic representation of the m
HamiltonianH. The partition functionZML is

ZML5@2 cosh~bJ1!#ML~cosh~bJ2!# (M21)LPf@A#,
~B3!

where the Pfaffian of the antisymmetric matrixA is

Pf2@A#5detA5)
u

$u11z1eiuu2MlM@v21a22M v̄2#%,

~B4!

with u5p(2n21)/L(n51,2, . . . ,L),z1(2)5tanh(bJ1(2)),

l5
z2~12z1

2!a

u11z1eiuu2
, l̄5

z2~12z1
2!

u11z1eiuu2a
~B5!

a5
1

2z2~12z1
2!

H ~11z1
2!~11z2

2!

2z1~12z2
2!@eiu1e2 iu#~12z2

2!

3A~12a1eiu!~12a1e2 iu!S 12
eiu

a2
D S 12

e2 iu

a2
D J ,

~B6!

a15
z1~12uz2u!

11uz2u
, a25

z1
21~12uz2u!

11uz2u
, ~B7!

v25
1

2 S 11
z2

22@4z1
2sin2~u!1~12z1

2!2#/u11z1eiuu4

l̄2l
D ,

~B8!
v̄2512v2.

We were mainly interested in studying the spin-spin c
relation function along the central row~as indicated in Fig.
13!. This function is given by

^S0,0S0,n&
25~12z1

2!2ndetFTRR TRL

TLR TLL
G , ~B9!

FIG. 13. The cylindrical geometry used for the Ising mod
ladder withM legs.
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where then3n matricesTIJ are

TRR5F 0 ••• A21~0;n21!RR

A21~1;0!RR ••• A21~1;n21!RR

A A

A21~n21;0!RR ••• 0

G ,

~B10!

TRL5F A21~0;1!RL2c ••• A21~0;n!RL

A21~1;1!RL ••• A21~1;n!RL

A A

A21~n21;1!RL ••• A21~n21;n!RL2c

G ,

~B11!

TLR5F A21~1;0!LR1c ••• A21~1;n21!LR

A21~2;0!LR ••• A21~2;n21!LR

A A

A21~n;0!LR ••• A21~n;n21!LR1c

G ,

~B12!

TLL5F 0 ••• A21~1;n!LL

A21~2;1!LL ••• A21~2;n!LL

A A

A21~n;1!LL ••• 0

G ~B13!

with c5(z1
212z1)21, A21(k;k8) IJ

5(1/L)(ueiu(k2k8)@B21(u)# IJ and
nd

ic

.R
e

m

Re
@B21~u!#RR52@B21~u!#LL

5
1

u11z1eiuu2
$@b22

21#UU1@b22
21#DD%,

~B14!

@B21~u!#RL52@B21~u!#LR*

5
21

~11z1e2 iu!
H 12

1

~11z1e2 iu!
~@b22

21#UU

2@b22
21#DD2@b22

21#DU1@b22
21#UD!J , ~B15!

@b22
21#UU5 i

vv̄
z2

~12a22(M211)!
v21 v̄2a22M1

v21 v̄2a22M
,

~B16!

@b22
21#DD52 i

vv̄
z2

~12a22(M111)!
v21 v̄2a22M2

v21 v̄2a22M
,

~B17!

@b22
21#UD5

~v21 v̄2a22M1!~v21 v̄2a22M2!

z2a~v21 v̄2a22M2!
, ~B18!

@b22
21#DU52@b22

21#UD . ~B19!

If one were interested in the strip geometry (L→`), then
TRR5TLL50 and^S0,0S0,n& could be written in terms of an
n3n Toeplitz determinant.
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