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Pairing correlations in the attractive Hubbard model on chains, ladders, and squares
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We report the results of zero-temperature quantum Monte Carlo simulations and zero-temperature mean-
field calculations of the attractive Hubbard model on chains, ladders, and square lattices. We investigated the
predictability of the BCS approximation, the dimensional crossover of the pairing correlation function from
one to two dimensions as a function of the ladder width, and the scaling of these correlations to the thermo-
dynamic limit of the two-dimensional model. We found that the BCS wave function is quantitatively correct
only for small values ofJ/t. For the system sizes, electron fillings, and interaction strengths studied, we never
saw the dimensional crossover. In general, our ability to achieve the dimensional crossover and accurate
scaling to the thermodynamic limit was limited by the size of the systems we could simulate. For these sizes,
although we saw the necessary signature of off-diagonal long-range order, the properties of the model did not
vary monotonically with increasing system size because of shell effects. We contrast this situation with the
dimensional crossover and scaling to the thermodynamic limit of the Ising model.

[. INTRODUCTION Characteristic of BCS-like superconductors is the large
number of Cooper pairs inside the volume defined by the
We report the results of zero-temperature quantum Monteoherence length, of a pair. In high-temperatureuprate
Carlo (QMC) simulations and zero-temperature mean-fieldsuperconductors, as well as several other classes of much
calculations of the attractive Hubbard model on chains, ladlower temperature superconductors, including doped cuprate
ders, and square lattices. We investigated the predictabilitiadders? the coherence length is comparatively small. For
of the BCS approximation, the dimensional crossover ofthese materials, one often proposes the attractive Hubbard
pairing correlations from one to two dimensions as a funcimodel
tion of the ladder width, and the scaling of these correlations
to the thermodynamic limit of the two-dimensional model.
We found that the BCS wave function is quantitatively cor- H= _t<%:U
rect only for weak attractive interactions. For the system '
sizes, electron fillings, and interaction strengths studied, weyhere U>0, as a counterpart to the BCS reduced Hamil-
never saw the dimensional crossover, and we were unable tgnian. Indeed, for any allowable electron filling, two elec-
scale the pairing correlations on finite-size square lattices t@ons are energetically favored to pair onto a lattice site, thus
those on infinitely sized ones. In general, our ability togiving them a seemingly very short coherence length. For
achieve the dimensional crossover and the proper scaling @mensions of two and higher, the ground-state possesses
the thermodynamic limit was limited by the size of the sys-swave ODLRO in the thermodynamic limit over certain
tems we could simulate. For these sizes, although we saw th@nges of electron fillings if the lattice is bipartite and the
necessary signature of off-diagonal long-range ordehumber ofA sites does not equal the number Bfsites, a
(ODLRO), the properties of the model did not vary mono- condition not satisfied, for example, by a square latlice.
tonically with increasing system size because of shell effects. |n this work we studied the attractive Hubbard model on
The BCS wave function occupies a deservedly prominenghains, ladders, and squares, using an exact QMC method.
place in the theory of superconductivity. For traditional su-The attractive Hubbard model has no fermion sign problem
perconductors, the electron-phonon interaction induces an apo it is relatively easy to study by QMC simulations. One
tractive interaction between pairs of electrons that is wellgoal was to observe the dimensional crossover of the super-
described by the reduced BCS Hamiltorfian conducting pairing correlation functions from the well-
known power-law behavior in one dimension to ODLRO in
two dimensions. We studied mostly the quarter filled system
and compared our results with the predictions of the BCS
approximation. We tried to establish the range of validity of
and the BCS wave function this approximation, and for the square lattices we tried to
investigate both the weak and strong-coupling regimes to
_ ot assess the validity of the argument of Noeg and
|BCS>_1;I (Ut vy 1€ )|0) 2 Schmitt-Rink regarding the smooth crossover from one re-
gime to the other.
provides an excellent approximation to the eigenstates of this Nozigres and Schmitt-Rinkstudied the transition from
Hamiltonian. In fact, under a number of circumstances, it isveak- to strong-coupling superconductivity in an attractive
the exact solution in the thermodynamic lirfit. continuum fermion model
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k2 s-wave pairing correlations for a long chain compared very
5Nk favorably with the Bethe ansatz predictions for a chain in the
thermodynamic limit. Systematically coupling these long
chains did not produce a monotonic variation in these corre-
- E Vk,k'CLq/quik+q/z,¢C—k/+q/z,¢Ck'+q/2,T, lations, and computational costs forced us to limit our study
kk'.g to a Lx4 systems withL~50. We believe the irregular
(4)  variations in the properties of the rectangular and square
structures are consequences of shell effects characteristic of

and the attractive lattice Hamiltonia®). For both models, finite-sized systems of fermions. We remark that increasing
they argued that the BCS wave function is a good approxithe value ofU/t reduces the shell effects as one would ex-
mation in the weak- and strong-coupling limits. In the con-Pect. These finite-size shell effects prevented us from observ-
tinuum model, weak coupling corresponds to carrier densiing the crossover to the two-dimensional behavior in the cor-
tites (n) satisfying(n)a,>1, and strong coupling satisfying relation functions. Wider systems or larger values of the
the opposite limit. For the lattice model, coupling strengthintéractions are needed to observe such crossover.
corresponds to the relative size of the interaction strebgth I the next section we summarize several useful exact
and the noninteracting bandwidi: Strong coupling isu  Properties of the attractive Hubbard model in two dimen-
>W and weak coupling i&) <W. Further, they argued that Sions, and then in Sec. Ill, we summarize our numerical ap-
this approximation interpolates smoothly and accurately beProach. In Sec. IV we present our main results, and in the
tween these limits, a remarkable fact because of the distinct{jnal section, Sec. V, we will discuss the implications of our
different physics occurring at these limits: For weak cou-Tesults and the effects of finite size on other simulations of
pling, Cooper pairs form according to the usual BCS pictureinteracting electron systems.
for strong coupling(Schafroth pairs are hard-core bosons
which may Bose condense.

We found the weak-coupling regime for a quarter-filled

system, i.e.{n)=1/2, on a square lattice is limited to values A number of exact statements can be made about the
of U/t satisfying 0<U/t=<1. For larger values obl/t, sig-  properties of the attractive Hubbard model at zero-
nificant disagreements in the values of on-siteave pairing  temperature. In one dimension the most important statements
correlations existed between the results of the simulationgor present purposes are the absence of any long-rangé order
and the predictions of the BCS approximation. These disand the inverse power-law form for the pairing correlation
agreements remained for valuesWft as large as 8, which function at large distances between péits.this section we

is as large as we could push our simulations, and suggest thgll focus on those statements that are at least true for
strong-coupling regime, if the arguments of Noe and ground-state properties in two dimensions. Most are, in fact,
Schmitt-Rink are correct, lies well beyorid/t=8. (With  true for any dimension. Most assume a bipartite lattice. Un-
our numerical technique we can only accurately simulatéortunately, we are unaware of any exact results assuring the
values ofU comparable to the size &f/.) model on a square lattice has ODLRO. The Mermin-Wagner

We comment that in the strong-coupling limiU(t>1  theorenm?® only assures that long-range ord&RO) cannot
and with any band filling of an even number of fermigns exist in two dimensions at finite temperature. We are also
the attractive Hubbard model, up to second order in degendnaware of any pertinent theorems regarding the attractive
erate perturbation theory, maps to an interacting hard-corelubbard model on ladder structures.
boson system in the subspace of doubly occupied and empty Perhaps the most fundamental theorem says the ground
sites® These bosons hop to nearest neighbors with an effestate for an even number of electrons is a nondegenerate
tive amplitude— 2t?/U and interact with a nearest-neighbor singlet for every electron filling* On the other hand, the
repulsion 22/U. However, the BCS wave function is the most useful property of the model is its mapping for any
exact eigenstate of this effective problem only in the com-electron filling onto a half filled repulsive Hubbard model in
pletely empty and completely filled lattice cagese Appen- a magnetic field? Charge and pairing operators map into
dix A). From our analysis we are unable to say whether awayseudospin operators and vice versa. A specific version of
from the extreme cases the BCS fixed point is the correcthis mapping maps staggered components of the pseudospin
strong-coupling limit. The BCS fixed point can still be the operators in the half filled repulsive model into charge and
correct one and large quantitative differences can exist.  pairing operators in the attractive half filled mod&I.

Our main object of study was pairing correlation func- At half filling, on-sitesswave ODLRO exists in the attrac-
tions. We found that the distance dependent pairing propettive Hubbard model if and only if a charge-density wave
ties of the model on a square lattice did not vary monotoni{CDW) LRO exists™ It is generally accepted that the ground
cally as we systematically expanded its size, and we werstate of the half filled, two-dimensional, repulsive model is
unable to obtain a very accurate estimate of the order paranone of antiferromagneti€AF) LRO. Because longitudinal
eter in the thermodynamic limit, even though it is clear frompseudospin maps to charge, and transverse pseudospin to
the calculations that the system has ODLRO in that limit.pairing, the acceptance of AF LRO for the half filled repul-
This shortcoming contrasts a much earlier zero-temperatursive model seems sufficient to establish on-siteave
QMC study that claimed to do such an extrapolation on theODLRO and CDW LRO as ground states of the half filled
integrated pairing correlation function and obtained a valuettractive model. Indeed numerical studies support this
for the order parameter consistent with our results. Our comeonclusion’.
puted results for the long-range spatial dependence of the Another theorem states if the charge spectrum is gapped

Il. ATTRACTIVE HUBBARD MODEL



602 M. GUERRERO, G. ORTIZ, AND J. E. GUBERNATIS PRB 62

in either the repulsive or attractive models, then there can be For the study at hand, the initial staté¢r) is the direct
no on-siteswave ODLRO It is generally accepted that the product of two spin Slater determinants, i.e.,

ground state of the half filled, two-dimensional repulsive

model has a charge gap. This presence implies a spin gap for

the ground state of the half filled, two-dimensional attractive )= 1;[ |67)- ®
model. Thus the theorem does not violate the inference of
ODLRO in the attractive model at half filling. Because the kinetic energy is a quadratic form in the creation

In this paper we are exclusively interested in the properand destruction operators for each spin, the action of its ex-
ties of the attractive model away from half filling. Here a ponential on the trial state is simply to transform one direct
theorem states that on-sgavave ODLRO exists if and only product of Slater determinants into another. While the poten-
if extendeds-wave ODLRO exist$® Noteworthy is that this tial energy is not a quadratic form in the creation and de-
theorem also states that the magnitude of the order parametstruction operators, its exponential is replaced by the sum of
for the extended-wave state vanishes as half filling is ap- exponentials of such forms via the discrete Hubbard-
proached, making the doped case essentially different iStratonovich transformation
character from the half filled case. In particular &) is the
expectation value of the on-sigewave order parameter and QATUN Ny }ef(llszu

- 7XAT‘](ni.a'+ni,f(ril)
(Ag) is that of extended s-wave, then €

x=*1

—uU-2 X (L2A7U(N; s+ni )
(Bgr)= ——(83), ) ° ©
provided U=0 and coshr=e*"2 Accordingly we re-
whereu is the chemical potential. At half filling, because of express the iteration step as
particle-hole symmetry, 2= —U. Accordingly, at half fill-

ing (Ag)=0. We comment that this relation between the N - -

extendeds-wave order parameter and the on-gittropic 1;[ |bo)= dXP(X)l:T[ Bo(¥)[¢o), (10
swave order parameters depends on the hopping integral

being isotropic. If one were to set, for exampte=t and  \where x=(x;,x,,...xy) is the set of Hubbard-

t,=—t, thed,2_,2-wave order parameter would appear onstratonovich fieldone for each lattice siteN is the number

the left-hand side of Ed5). In the isotropic hopping case we S SN (1N G
did not see any significant signal diwave pairing. In Ap- of lattice sitesP(x)=(3)" is the probability distribution for

pendix A, we prove the equivalent theorem for the BCS apihese fields, an8,(x) is an operator function of these fields

proximation. formed from the prpduct of the exponentials of the kinetic
Ground-state numerical studies away from half filling see@nd potential energies. ) R
a necessary signature of on-sitevave ODLRO ordef. The Upon examination, one sees thaéB (x)=B_,(x)

pair-pair correlation function clearly does not vanish WhenEB()Z)_ This equivalence means the equivalence of the
the pairs are well separated. To establish ODLRO one alsgropagators for the separate spin components of the initial
needs to show that this correlation also does not vanish in theiate. If these components are identical, i.e., | #9)
thermodynamic limit.  Establishing this for the two- —|4-9y=|4.), then only one component needs to be
dimensional attractive model was one of our goals. Topropagated:

achieve this objective we used an exact QMC method, that

is, a method with no sign problem. We now summarize this L

method. |¢>’>=J dxP(x)B(x)[¢), 1D

I1l. NUMERICAL APPROACH but more importantly, the overlap of the initial state with the

current staté ' | 1) ={¢'| ¢1)? and thus is always positive.

h The ?etailﬁ of our nu_merical r?pproach are the same @Phis positivity is sufficient to eliminate the sign problem.
those for the constrained-path Monte Carl€PMC) The Monte Carlo method is used to perform the multidi-

7 . .
r_neth%d except we hak\)/le noBconstramtfbi(_:ause thﬁf simulas, o nsional integration over the Hubbard-Stratonovich fields.
tions have no sign problem. Because of this, apart from stay a5 5o by generating a set of random walkers initialized
tistical error, the method is exact. Briefly the strategy of ourby replicating| /) many times. Each walker is then propa-

approach is as follows: . . - -
Starting with some trial statéyr), we project out the gated independently by samplingcarom P(x) and propa-

ground state by iterating gating it with B(x). After the propagation has “equili-
brated,” the sum over the walkers provides an estimate of
|y =e A7H=ED|y), (6)  the ground-state wave functige).

here E- i ¢ th q P In practice, we performed an importance-sampled random
where Ey Is some guess of the ground-state energy. Ulvalk, obtained by defining for each Slater determinapit
poselyA 7 is a small parameter so fét=T+V we can write

another ond¢) via

e*ATH%e*ATT/ZefATVefATT/Z, (7)

by = : 12
where T and V are the kinetic and potential energies. We |4)=(¢1l4) ) 12
used values oA 7 ranging from 0.03 to 0.05. and using the transformed iterative equation



PRB 62 PAIRING CORRELATIONS IN THE ATTRACTIMVE . .. 603

~ — TABLE |. Summary of relevant parameters of the QMC simu-
o'y = J dxP(x)B(X)| ). (13)  lations. Shown are the systems sizes, the electron fil{nys and
the exponenp of the power-law decay fod/t=2. For two- and
In this equation three-legged ladders, where there is a double entry, for example,
50x 2, the top entry gives the value ¢ for the top envelope,
-~ - - {pr|d") while the bottom entry is for the bottom envelope. In one dimension
P(x)= P(X)W- (14 the fillings are alwaygn)=1/2+1/L.
Thus importance sampling changes the probability distribu- System size (n) B

tion of the Hubbard-Stratonovich fields, biasing it towards

the generation of states with large overlap with the initial 34x1 0.53 0.889)
state. The branching nature of the random walk is the same 42x1 0.52 0.826)
as described for the CPMC method and will not be discussed 50x1 0.52 0.864)
here. It is a necessary procedure for controlling the variance 66x1 0.52 0.799)
of the computed results.
We used two different estimators for the expectation val- 50x1 0.52 0.864)
ues of some observabt®. One is the mixed estimator 50x2 0.50 1.013)
0.872)
(11O o) 50 3 0.51 1.324)
(O) mixed= v (15 0.953)
50X 4 0.51 0.685)
and the other is the back-propagated estimator
—1ATH 6X6 0.5
<O>bp:<'ﬂT|e — HO|¢0>, (16) 8% 8 05
(rle™" 2™ o) 10x 10 0.5
where| ) is the QMC estimate of the ground state arisd ﬁi ii 8':1
typically in the range of 20 to 40. For observables that com- '
mute with the Hamiltonian, the mixed estimator is a very 168 0.45

accurate one and converges to the exact answigbason-
verges to the exact ground state. For observables that do not
commute with the Hamiltonian, like correlation functions, ) o ! )
the back-propagated estimator has been found to give Ve,l”)lpwever are different as the au?qllary-ﬂ_eld projector method
accurate estimates of ground-state properties. Significant difiSes & different back-propagation estimator for all observ-
ferences between the predictions of these two estimators oft?!eS-
ten exist.

We remark that we could have projected to the ground V. RESULTS
state using the BCS wave function as our starting ptint. '
This wave function is not normally represented as a direct In sequence we will now report and discuss results for the
product of two spin Slater determinants, but by a trick pro-attractive Hubbard model on chains, squares, and ladders. In
posed by Yokayama and Shibapne can re-express it as a each case we will comment on the predictions of the BCS
single Slater determinant. In this new representation, one caspproximation relative to the predictions of the QMC simu-
then show that there is still no sign problem, but that thelations. For chains we will also comment on supportive cal-
computational cost of working with this wave function is at culations we performed using the density-matrix
least a factor of 4 more. Since no statistically significantrenormalization-group(DMRG) method?® Included in a
differences in computed results occur, we almost exclusivelgeparate subsection is a discussion on the specific issue of
used the computationally more efficient direct product ofdimensional crossover.
free-electron wave functions fogs). Additionally, most of Because the variances of our computed results are smaller
our calculations were done for closed-shell electron fillings for closed-shell fillings, we only considered such fillings, and
i.e., nondegenerate electron fillings in the noninteractingpecause the shell structure changes with lattice size, as we
problem. For these fillings and for the same amount of comehanged lattice sizes, we could not maintain the electron
puting time, the statistical error of our expectation values islensities(n) at a fixed value. For the results reported here,
considerably smaller than that of our expectation values atve fixed the electron density as close as possible to the quar-
open-shell fillings(which can be easily handled when the ter filled value, that is, to a value of one electron per two
BCS wave function is used as constr&int lattice sites. The actual fillings for many of the lattices stud-

We also remark that the standard auxiliary-field projectoried are given in Table I. In all cases we had equal numbers of
Monte Carlo method also has no sign problem for the attracup- and down-spin electrons. In one-dimension we used
tive Hubbard model. Although only a few comparisons exist,(n)=1/2+1/L which converges to quarter filling dsis in-
we are unaware of any statistically significant differencescreased. We remark that the accuracy of our QMC calcula-
between results from that method and results from the ongons were benchmarked against those of exact diagonaliza-
used here. If both are exact procedures, then, of course, thetiens calculations of X4 lattices. The QMC results, and in
should not be any. The estimators used in the two methodgarticular those computed by the back-propagation estima-
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tors, agreed well within statistical error with those of the 10°

more precise method. o lL=66 107
a-—a L=50
*--% =42
A. Chains L4
10° |

For both finite and infinite chain lengths one can obtain
the energies of the attractive Hubbard model from its Bethe 10
ansatz solutiofl. Marsiglio and Tanak&'?? for example, &
have made extensive comparisons of these energies with thy®
predictions of the BCS approximation. Additionally, by com-
puting the Bethe ansatz energies for systemdlofiN.—1,
and N.+1 electrons, they also calculated the pair binding
energy by evaluating Ay =(Ey_-1—2Ey +Ey_+1)/2,
which in the BCS approximation is the gap?® The energy
is the least accurate at intermediate coupling strengths at ha
filling, where the disagreement however is only a few per-
cent, and becomes exact in the weak- and strong-coupling
limits at low electron density. In general, the pair binding  FIG. 1. The QMC on-siteswave pairing correlation function
energy is poorly reproduced, with the disagreement being the (R) as a function of the distand&| between pairs for aJ/t
least in the dilute electron-density limit. Typically, the BCS =2 chain of different length&. The inset shows the fit of results
wave function overestimates the binding energy. For finitefor the L=66 chain to the inverse power-law forfd7) using a
size systems they also found significant shell effects in thealue of 3=0.79.
energy as a function of electron density or as a function of
chain length in the weak-coupling regime. They did not in-ansatz predictions difficult. We found we could smooth out
vestigate the pairing correlations. the fluctuations by computingy(R) from?*

Exact analysis of the Bethe ansatz solution by Kawakami
and Yand showed that in the thermodynamic limit the on- 1 Ne(®
site swave pairing correlation functioR¢(R) behaves like P(R)= N.(R) izl (AL(R)AL0));. (21

p =

1

107 |

IR

P«(R) =<A2(R)AS(O)>~ iﬁ (17) Here we sum over all possible pa_irs of _Iattice sites separated
R by the same displacemeRtand divide this sum by the num-
berN,(R) of such pairs of sites, which is a function Rf At
large values ofR, this function was much smoother. More
importantly, it compared very well with the QMC results.

at large separationR between the pairs. The nonuniversal
exponents is a function of botHJ/t and the electron filling.

(Kawakami and Yang provide a graph givigggfor a selec- In Figs. 1 and 2 we show samples of our results st

tion of values ofU/t for all fillings between 0 and 1 .Be- _ ; ; i
cause the BCS approximation always predicts ODLRO, it§_2' I_n Fig. 1, We Supermpose several calcqlaﬂon@_gﬂ?)
> ) i ) ; or different chain length& to illustrate that increasing the
predictions for the behavior of pairing correlation functions | _: . - i
! - . chain length did not change the pairing correlations at short
is qualitatively incorrect. . X . . ; .
. . . and intermediate distances. It simply increased the range in
We computed the on-sitewave pairing function in sev- . . >
eral different ways. In the QMC simulations, we used eri_dlstance over which we correctly captured these correlations.
. ys. It ' PE e fitted the large distance behavior of the correlation func-
odic boundary conditions, took . . _
tions to the inverse power-law functidd7) and found ex-
Agi)=ci (Gt (18)  Ponentsp consistent with the Bethe ansatz prediction. For
e example, from Kawakami and Yang's graph, we estimated
and then calculated B=0.802). Our fit for thechain of L=66, shown in the
inset to Fig. 1, predicte@@=0.793). Exponents for other
P(R)= E 2 <AT(i +R)A()) (19) fits are given in Table I. For long enough chains we obtained
S L 5 s s close agreement between the valueBobbtained by fitting
and the value obtained from Kawakami and Yang's graph. In
performing the fit we eliminated the short-range behavior
¥ind the upturn in the correlations at large distances. This
upturn is a finite-size effect caused by periodic boundary
conditions.
PR =(AT(iot+R)A 20 A comparison of_our QMC resultfs Wl_th those from BCS
(R =(As(irtR)A(IR) 20 and DMRG calculations are shown in Figag Clearly, the
for each value oR relative to some sitéz, which depends predictions from the two quite different numerical methods
on R, chosen to place the pairs as close to the center of thagree, provided we average the DMRG results as discussed
chain as possible. In other words, to avoid edge effects, for above. For purposes of comparison, we also show the pre-
given value ofR, we used the sites closest to the center. Atdiction of the BCS approximation. It is qualitatively different
the large values OR, the resulting estimate displayed rapid from what is required from the exact solution. Figur)2
fluctuations that made comparisons with the QMC and Bethshows the difference in the DMRG results when computed

for each possible value d® by using the back-propagation
estimator. In the DMRG calculation, we used open boundar
conditions and computel(R) in two different ways. In the
first way we computed
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=—wBCS, Unt=1
®—9QMC, U=
=—a1BCS, Ut=2
>—© QMC, Uft=2
+—¢BCS, U4
0.1 A—AQMC, Urt=4

P.(R)

10 & — o DMRG(average) 0.05 ¢

o——&

1 16 100 0 2 4 6
(@) IRI IR|

FIG. 3. The QMC and BCS on-sitewave pairing correlation
= ‘ function P¢(R) as a function of the distand®| between pairs for a
N8 8X 8 lattice andU/t=1, U/t=2, andU/t=4.

Tkong ings and then stay constant over the remainder of the dis-

**M tances. The constant behavior at these larger distances is a
] signature of ODLRO, if the distances extended to infinity. As
the results go fromJ/t=1 to U/t=4, the agreement be-
tween the QMC simulations and the BCS approximation for
lattices of the same size progressively worsens. Beyond
U/t=1, the quantitative agreement is poor. One also sees
that asU/t increases, the magnitude of the pairing correla-
tions increases. At large distances, if there is ODLRO, the
(b) pairing correlation function becomes asymptotically equal to
(Ag)2. In the BCS approximatiorl) times(A,) equals the
1 10 100 energy gap, and this gap becomes exponentially small when
(&) IR| decreasingJ/t to 0 and proportional tdJ/t when increasing
U/t to infinity. However, as noted before, the attractive Hub-
bard model is gapless if it has on-sitavave ODLRO

While we computed several cases foft=8, the statis-
tical error was considerably larger and hence we do not show
these results. However, in all cases computed, as we in-
creased the magnitude bf/t, we never saw the QMC and
BCS results approach each other. In fact, as we increased
U/t beyond 1, their difference continuously increased. In
for the two different ways of averaging, that is, when com-Fi9- 4, we show both the on-site and extensedave pairing
puted from Eqs(20) and (21). correlation funcugns as a funcnon of dllst.ance ort=4

In short, both the DMRG and QMC predictions agree welidnd a 1414 lattice. In the inset we eliminated the short

with each other and with the exact prediction of the BethediStance part to emphasize the flat large distance behavior for
ansatz solution for the asymptotic form of the pairing corre-Poth correlation functions. By averaging over this flat behav-

i 2 2
lation function at large distances. As expected, the BCS ag®" We estimated bot{As)® and (Ag)” and attempted to

. . . o . . . i in i i _ 2142
proximation is qualitatively incorrect for this same function. Verify that the ratio is proportional toU—2u)/t" as
stated by Eq(5). Because most of our simulations were done

for fixed particle numbers and closed-shell fillings, the esti-
mation of u was difficult. Using a variation of the present
In two dimensions, an exact analytic solution for the Hub-method® that allows an estimation ofx, we found
bard model does not exist. Within statistical error, the QMC= —2.77 for a 8<8 system withU/t=4. Using this same
approach, however, provides an exact numerical solution. Inalue of u for the 14X 14 system withU/t=4 yields (—U
this subsection we are principally concerned with comparing-2)?/t?=2.37 which compares very well to the value of
predictions of the BCS approximation with those of the exac®2.4Q3) estimated from the figures. We also observed that the
QMC simulations. ratio of the expectation values for the on-site and extended
In Fig. 3, we show the QMC and BCB4(R) as a func- swave order parameters wasactlyobeyed in the BCS ap-
tion of the distancd for an 8x 8 lattice withU/t=1, 2, and  proximation, provided the BCS value gf was used. In Ap-
4. The curves show the same behavior: The correlations rapendix A we present the analysis leading to this result. We
idly drop in magnitude over a distance of a few lattice spac-also observed that the long-range values of both the on-site

¢ -- ¢ DMRG(center)
10° | - —© DMRG(average)

FIG. 2. The on-sites-wave pairing correlation functioR4(R) as
a function of the distanckR| between pairs for &/t=2 chain of
lengthL =50. (a) Comparison of the results of the BCS approxima-
tion with a QMC calculation that used E(L9) and a DMRG cal-
culation that used Eq21). (b) Comparison of the DMRG results
for the two different ways, Eq920) and (21), of estimating the
correlation function.

B. Squares
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2 - ‘ ‘ ‘ same lack of monotonicity is apparent in the variation of the
O—OQMGC on—site s—wave QMC results. Because the BCS and QMC results are quan-
©—@QMC extended s-wave titatively different, we see no reason why the QMC results

.5 B H50S oo e 6 | might extrapolate to the BCS result, but more importantly,

we do not see how to extract an accurate valu@\qQj in the
thermodynamic limit, although it is clear from our results
that it is a finite value and therefore there will be ODLRO in
the thermodynamic limit. In Fig. (6), we show similar
curves forU/t=4. The apparent monotonicity of the BCS
result is deceptive, as illustrated in the inset to this figure.
The more important point is that the BCS results approach
the thermodynamic limit folJ/t=4 case more rapidly than
they did for theU/t=2 case. This trend is very general and
suggests that the QMC results for larger valuedJéf will
also converge more rapidly to the thermodynamic limit.
1= Large interactions reduce fermion shell effects. Unfortu-

FIG. 4. The QMC and BCS on-site and extendeslave pairing n_ately both th_e necess_glrlly I_?;lrr]ge VaIL_JeS%bI_t and l‘?ﬁ“%e E
correlation functionsP¢(R) as a function of the distandd| be- SIz€Ss appear Inaccessibie with our simulation method. For

tween pairs folU/t=2 and a 1414 lattice. The inset shows the U/t=1 we estimate that the BCS gpprOXImatlon has ap-
large distance behavior of these same functions. proached the thermodynamic limit within a p_ercent.for lat-
tices of the order of 68 60; for U/t=8 our estimate is for
and extendeds-wave pairing correlation functions do not lattices of the order of 1810. As mentioned before, at
vary monotonically with lattice size. We illustrate this in Fig. U/t=8 the QMC results have large statistical errors in the
5 by plotting both the QMC and BCS results fak) as a  back-propagation estimate of the pairing correlation func-
function of the reciprocal of the numbak of lattice sites for  tions.
both U/t=2 and U/t=4. Within the BCS approximation In summary, for on-siteswave pairing correlations, we
one can computéA) directly for any lattice size. find that the QMC and BCS results agree in the weak-
In Fig. 5@a), the BCS result fold/t=2 clearly does not coupling limit. While the QMC results show a necessary
converge to the thermodynamic limit monotonically. The signature of ODLRO, we were unable to extrapolate accu-
rately our results for the order parameter to the thermody-

0.15

Y W L

i

05 1

0.3 . ‘ A
namic limit.
0.25 1
®) C. Ladders
02 An alternate way to reach the two-dimensional thermody-
g.n 0.15 | : namic limit is extrapolating from a ladder structure of fixed,
v r N but long, lengthL by letting the number of leg® become
0.1 . “\/\\[ large. Here we report our results from the use of this strat-
i 1 egy.
0.05 ¢ ‘ We built up the ladder structures by coupling 1, 2, and 3
0 0.0005 0.001 - . . . . .
additional chains to the one-dimensional chain and making
0 the interchain and intrachain hopping amplitudes equal. We
0.2 . ‘ used periodic boundary conditions in tRglong) direction
and open boundary conditions in tiigshory direction. We
@ Uht=2 =—aBCsS call this a cylindrical boundary condition. For the on-site
0.15 —OCPMC 1 swave pairing correlation function we computed it only
along thex direction, using
2"’ 0.1 1
v P{(R)= 1 2 (As(iotR)Ad(io), (22
0
0.05 1 where thei, are lattice sites along one of the central legs of
the ladder. For a three-legged ladder, the sites inxttiieec-
0 tion are on the central leg. For a two-legged ladder, we used

0 0.01 0.02 0.03 just one of the legs. By symmetry, the chain-directed pairing
1N correlations are the same on each leg. For a four-legged lad-

FIG. 5. The expectation value of the on-sitevave order pa-  d€r, we just used one of the two central legs. o
rameter(A) as a function of the reciprocal of the sikieof a square To provide some perspective, we first present in Fig. 6
lattice. In both(a) and(b) the QMC results are compared to those of Plots of the energy as a function of system size. In particular,
the BCS approximation. Ife), U/t=2. In(b), U/t=4 and the inset  in Fig. 6@) is the energy per site for &/t=2 chain as a
shows the behavior of the BCS predictions for small values of thfunction of the reciprocal of chain length. The variation with
reciprocal of the lattice size. length is smooth and monotonic. Linearly extrapolating this
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3
-1.1 o
-1.2 (b)
5 1.3 = mBCS
e—eQaMC
14 | 4—¢ Free Electron |
al 1o 1 10
L ‘ ‘ ‘ . .
-1 FIG. 7. The QMC on-siteswave pairing correlation function
(@) P(R) as a function of the distand®| between pairs folJ/t=2,
e and two and three-legged ladders of different lengths.
-1 T 1
‘\‘\.\0 the one-dimensional valu@able ). An important observa-
tion is the overall magnitude of the pairing correlations at
-1.2 ‘ ; ‘ : : first decreasing below the one-dimensional value and then, as
0 0.005 001 0.015 0.02 0.025 0.03 9

1N we built up the ladder structure to four legs, increasing above
the three-leg value. For a ladder of lengtk 50, the varia-

FIG. 6. The QMC energy per site/N as a function of the tion of thes-wave pairing correlation function with the num-
reciprocal of the numbeN of lattice sites forU/t=2 systems(a) ber of legs is shown in Fig. 8. A typical fit to determine the
Chains N=L), (b) ladders N=LxM), and (c) squares N=L  exponents of decay is shown in the inset. Other fitted values
XL). For squares the free-electron and BCS results are also showg,q given in Table I. We note that while the exponent does
For chains and ladders, the QMC curves smoothly and Iinearl)hot change much from the one-dimensional case to the two
extrapolate to the thermodynamic limit indicated by the starburs%md three-legged ladder cases, it does decrease significantly
symbols at IN=0. when the fourth leg is added.

We remark that using the BCS approximation, we com-
data to infinite length, we find an energy per site of puted the pairing correlations for the same system sizes but
—1.079(1) which is within statistical error of the Bethe an- with periodic boundary conditions in both directions. While
satz value of-1.079%° In Fig. &b) is the energy per site as this approximation always showed ODLRO, its order param-
a function of the reciprocal of the number of lelysfor a  eter (A;) showed the same trend as we obtained from the
ladder of lengthL=50. The variation is smooth and mono- QMC simulations: In going from one to three-legs, the value
tonic and extrapolates to a value 6f1.491), avalue simi-
lar to the one we found from the QMC simulations for the
two-dimensional lattice. This is not surprising since, al-
though the extrapolating function can be shape dependen
the energy is a bulk quantity, i.e., independent of the way
one performs the thermodynamic limit. These two-
dimensional QMC results are shown in Figcefor the non- 107
interacting case and for the interacting case computed by
both the BCS approximation and the QMC method. Thef
variation is neither smooth or monotonic. Additionally it o’
tracks the noninteracting problem. This tracking supports a
claim that the nonmonotonic variations are caused by shel
effects that are obvious and inherent to non-interacting fer-
mion problems. For the-wave pairing correlation function,

a typical result is shown in Fig. 7. Similar to the one-
dimensional cas€Fig. 1), the curves for increasing ladder 107 ‘
length lie on top of those for shorter lengths. In contrast to R 10

the one-dimensional case, however, distinct oscillations exist

but the overall trend is a decrease in magnitude with increas- FiG. 8. The QMC on-siteswave pairing correlation function
ing distance. For the two- and three- legged cases we fitted (R) as a function of the distand@| between pairs for aJ/t

the top and bottom envelopes of the oscillations to the=2 |adder of length 50 as a function of the number of IdysThe
power-law decay17) and found the two decays rates to beinset shows the long-range behavior of these correlations fitted to
close but not the same. These exponents were also close ti@ inverse power-law functiofL?).

—1

10

BN =

10° |
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of the order parameter at first monotonically decreased but 05
then increased relative to the value of the three-legged ladder 04|
when the fourth leg was added. '
03
D. Dimensional crossover
What type of variation with ladder width should one ex- 0.2

pect? Recently finite temperature QMC studies of quantum

spin+ ladders found nonmonotonic variations with the num-

ber of legs?®~?® More specifically, the dynamic susceptibili-

ties of even-legged ladders had spin gaps while those of odd- A

legged ones did not. The size of the spin gap rapidly cn:
U)O
v

decreased with increasing number of legs and is a result of
topological considerations similar to those associated with
Haldane gaps in one-dimensional chains. For fixed, but large, 10"
ladder lengths the uniform susceptibility vanished as the
temperature was lowered and then the number of legs ex-

0 10 20 30 40

*— M=1 {chain)

trapolated to infinity. This susceptibility however extrapo- 08 v
lated to a nonzero value if at low temperatures the two- 06 I (© T Moos tsquare)

dimensional results were extrapolated to the thermodynamic
limit. Proper extrapolation of this system to the thermody-
namic limit appears to be an unsolved problem. The theoret-
ical and experimental situation has received several recent
. 59 30 ) 20 40 60 80 100
reviews:™ IRI
Turning from quantum critical phenomena to the finite
temperature critical behavior and using the two-dimensional FIG. 9. The spin-spin_correlation _function for an Isingnladder of
Ising model as an example, we can easily study the dimerléngthL =200 as a function of the dlstand:B|_ between spins _a_nd
sional crossover from one to two dimensions and the eng the number of legdM. The temperature is at the bulk critical
trapolation of two-dimensional results to the thermodynamic/alue: and the distand&| is along a central leg in the direction.
limit. We, in fact, were able to derive exact results, given in CYlindrical boundary conditions were used.
Appendix B, for the spin-spin correlations for such finite
systems. Using these exact results we computed the spin-spigs  would be more two-dimensional-like than one-
correlation function as a function of distance along the cendimensional-like. We find that it appears to be the other way
tral leg for several illustrative cases. For the calculations prearound.
sented in Fig. 9, we fixed the reciprocal of the critical tem- The picture so appropriate for finite-temperature critical
perature at its bulk value dfln(y2+1)~0.44, chose along Phenomena established for classical systems might not be
ladder length of 200 lattice sites, and computed the correla@ppropriate to our fermion simulations because the system
tion function for various number of legs. What is seen is asizes are too small and are dominated by shell effects, a
smooth but gradual transition from the expected exponentigthenomenon intrinsic to quantum fermion systems. In Fig.
decay in one dimension to the expected power-law decay i#0, we plot the band structure of the free-electron case for
two dimensions. Proper extrapolation of this system to theéne, two, three, and four legged ladders of infinite length
thermodynamic limit is an exactly solvable prob|é?‘n. with cylindrical boundary conditions. The horizontal line
What is the relevance of the studies on these spins sysepresents the Fermi energy for an electron density of 1/2.
tems to our QMC simulations? From studies in finite- FOr one leg, the one-dimensional case, there is one band. For
temperature critical phenomena, one suggestion on the cofwo-legs there are two bands but only the lower band is
trolling physics of a dimensional crossover is the type offilled. While the entire system is quarter filled, the one-
behavior depending on the relative size of the dominant cor-
relation length to the width of the systethThis insight was

developed in part from analytic studies BFdimensional
ladders sizede X X - - - X0 X M and scaling its behavior to
a (D+1)-dimensional system by lettinlyl —o°. In going

from one to two dimensions, as long as one is on the critical
surface, one expects the long-range behavior to be one-
dimensional-like if the correlation length is larger than the
width and two-dimensional-like if it is smaller. The various
correlation functions we computed for the Hubbard model,
such as charge-charge, spin-spin, and pair-pair, rapidly de- F|G. 10. Bandstructure of the noninteracting problem on one-,
cayed over a distance of several lattice spacings from thetwo-, three-, and four-legged ladders. Cylindrical boundary condi-
on-site value, suggesting our system sizes were large enougbns are applied. The long lengthis infinite, and the horizontal
so that if we were on the quantum critical surface, our phystine represents the Fermi energy for a quarter filled system.

Jd&
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@ ) V. CONCLUDING REMARKS
OO0 O O0OO0O0OO0o . ..
5000 80 0 We presented an extensive QMC study of pairing corre-
Ceeee®eo lations in the attractive Hubbard model on chains, ladders,
(©) e e e e e O and squares. Whilg still computational_ly int(_ensive, the QMC
OCOeoeee®o O method we used is free of the fermion sign problem that
OO e®e®@® OO0 would prevent a similar study for the repulsive Hubbard
OO0 00000 model. By using a method free of the sign problem, we ob-
tained results that apart from statistical errors are exact. In
. several instances we re-enforced this exactness by reproduc-
ing behavior predicted by exact analysis. For example, for
chains we got the correct asymptotic behavior of the on-site
OO0 O @O0 OO0 LS . . .
s-wave pairing correlation function. For squares, we verified
(b) e Zhang's relation between the on-site and extendedhve

order parameters. Several of our ambitious computational
000 @000 objectives were, however, limited by the size of the systems
and interactions strengths we could afford to simulate. Still,
we demonstrated the validity of the BCS approximation in
the weak-coupling limit for a short-ranged interaction and
@ highlighted several important unresolved issues about finite-
scaling of fermion systems.

To a degree, the finite-size and shell effects exhibited by
our results are expected. Such effects have been reported
before!’2334The difficulty we had in trying to extrapolate
beyond them to the thermodynamic limit was unexpected.
Part of the surprise follows from QMC simulations of the
attractive Hubbard model always having an easier time re-
vealing a signature of ODLRO than simulations of the repul-

FIG. 11. The allowed states for a X8, 4x 8, and 8<8 non-  sive model. Years ago, in fact, ODLRO was reported for the
interacting problem with periodic boundary conditions. lllustrated attractive model via a QMC simulatidnHow we attempted
are whichk states are occupied for quarter filling of an equal num-to establish ODLRO in this paper, however, differs from
ber of up- and down-spin electrons. A black dot denotes doublénow it was attempted in that previous work. There, the uni-
occupancy, an open circle represents no occupancy, and a grey defrm susceptibility
represents the degenerate state comprising the open shell.

1
dimensional-like lower band is half filled. Not surprisingly Xs=N ; Ps(R) (23
then is the one-dimensional-like decay rate of the pairing

correlations. For three and fo_ur Ieg; .ther.e are three a_md f.o%as extrapolated to the thermodynamic limit. While this is
bands. More than one band is participating but the situatio n appropriate quantity for very large system sizes, it is now

is not yet two-dimensional-like. This simple band picture ;e ciated that for small systems, it is often dominated by
therefore provides some qualitative basis for understanding, o \aiues of® (R) nearR=0. These values merely mea-

. . . S "
our data. This understanding suggests, at least for the sizes gfi;e |ocal spin and charge fluctuations. Directly examining

the systems we were able to study, that the length scale igpe long-distance behavior &(R), as done here, is a more
terpretation of dimensional crossover is not yet applicable. gppropriate procedure.

As still another way of IOOking at the finite-size effects we Re-examining F|g 3 of Ref. 7, we notice the fo”owing:
present Fig. 11 which displays the allowatievalues for  The values ofy, for small lattices were excluded from the
noninteracting X 8, 4x 8, and 8<8 lattices with periodic extrapolation. The values for the larger lattice sizes fluctu-
boundary conditions. For quarter filling the black dots areated about the fit by amounts larger than the statistical error.
occupied by an up- and down-spin electron, the gray dots aré/e do not doubt that a proper extrapolation will yield a
the degenerate states in the open shell, and the open dots aen-negative value fogs. Noting thatys is roughly(A)?,
unoccupied. Clearly for 8 the occupied states are those we remark that their numerical values fak,) are consistent
of a one-dimensional lattice. This situation changes little inwith ours.

the 4xX8 case, but has significantly changed for the & From Fig. 3 of Ref. 7, we also notice how smoothly the
case. Obviously in the noninteracting case the dimensionalniform susceptibility for the charge-density wave extrapo-
crossover requires more than just a few legs. lated to the thermodynamic limit. In the present work, we

While finite-size shell effects may explain the nonmono-recall the smooth and linear variation of the energy of the
tonic variations we observed, we emphasize that the naturghains and the ladders with size in contrast to the erratic
of the variation of the pairing correlation to crossover fromvariation for the squares. The finite-size effects influence dif-
one to two dimensions was not revealed in our simulationsferent quantities and systems differently. While one expects
We note than even in the apparently simpler classical Isinghese effects, where they appear appreciably is a bit less
model the crossover was slow. predictable.
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What is curious is the control the shell structure of the  0.15
noninteracting problem has on the behavior of the interacting
system. If one were to examine the variation of energy of the
two-dimensional Hubbard model as a function of electron L
density, one would see shell locations defined by the nonin- 44 |
teracting problem and the energy in a shell to a very good
approximation varying nearly linearly with electron &
density>>1"34The interactions do change the slohemi- o~
cal potential of this variation from the noninteraction value;
however, this nearly linear variation suggests the presence c
different sets of nearly degenerate ground states as the ele:
tron density varies form shell to shell. One expects the inter-
action to destroy the degeneracy in the shell of the noninter-
acting problem so that shell effects in the interacting problem 0
would be less than those in the noninteracting problem. This
expectation is not fully supported by the data for all proper-
ties of the system. FIG. 12. The QMC on-sits-wave pairing correlation function

One of our objectives was establishing how large must thee(R) as a function of the distand®| between pairs for a rectan-
system be before we can say it is in a superconducting statgular quarter filledJ/t=2 lattice of size 1& 8.

Over 40 years ago, Anderstrasked how small can super-

conducting metal particles be before they lose their superchain clearly matched the predications of the Bethe ansatz
conducting properties. He asserted the cutoff came when treolution of the infinite chain. It might be possible to see the
gap near the Fermi surface induced by the small size bedimensional crossover and extrapolate to the bulk two-
comes larger than the superconducting gap. There is evilimensional properties from shorter but wider ladders. For
dence for the validity of this condition from experimental example, in Fig. 12 we show(R) for a 16<8 ladder at
studies of the superconducting properties of metal clusterd)/t=2. The flatness suggests possible ODLRO consistent
What happens if the superconductor, as is the case for thaith the results for the square geometry.

attractive Hubbard model, is gapless? On the other hand, is What are possible ways of handling the finite-size effects?
the finite attractive model approximately a gapped supercor@ne way, suggested by Bormann, Schneider, and Bfiik,
ductor? If so, are our results suggesting the gaps are smalidjustingU/t for different system sizes so the BCS approxi-

What are the implications of our results for establishingmation for Ps(R) closely approximates the one from the
ODLRO in the repulsive Hubbard model? The behavior ofQMC simulations, subtracting this approximation from the
the repulsive model is quite different than the behavior of theQMC results, and then extrapolating the differences to the
attractive model. For any size of the repulsive model studiedhermodynamic limit. After this, then one would add to this
so far, the difficulty is finding pairing correlations larger than result the BCS results for an infinite systefActually, Bor-
those of the noninteracting problethin the thermodynamic mann, Schneider, and Frick did this fgg.) We did not try
limit the noninteracting problem is not superconducting sothis procedure because it is related to another one, scaling the
whatever long-range correlations seen for small systemsertex correction. Here, one replaces averages(like'cc)
must suppressed in larger systems. In the repulsive modekith (c'ccc)—(c'c)(c'c) and studies the size dependence
d-wave pairing correlations are stronger than thwave of the remainder which is called the vertex contributiim
pairing correlations, and as the system size was increasespot checks, we found no significantly different scaling be-
the magnitude of thel-wave pairing correlations systemati- havior between the vertex and full contributions.
cally vanished®® What our results underscore is the care Another way to remove finite-size effects is the phase
needed to establish that any observed enhancement of tlaweraging method suggested for exact diagonalization stud-
d-wave pairing correlations is an intrinsic effect and not aies by Loh and co-worker¥.and recently adopted for QMC
finite-size effect. simulations by Ceperleff. In this procedure, one replaces

We comment that all results reported here are for a singlé¢he hopping amplitudé at the boundary bye'¢ and obtains
electron filling. All the properties studied are a function of various physical quantities as a function ¢f Then one
filling so at some other fillings, it might be easier to extrapo-averages these quantities overLoh and co-workers give a
late to the thermodynamic limit and it might be possible thatjustification and demonstration of the method. In exact di-
the BCS approximation remains in quantitative agreemenagonalization studies, one just does a sequence of diagonal-
with the QMC simulations for larger values bf/t. In fact, a izations for different values of. In a Monte Carlo method
few simulations for(n)=0.875 for 4x4, 6x6, and 8<8  for computational efficiency it is necessary to treéass an-
lattices showed only a weak variation in the results for theother stochastic parameter and then let the random walk do
pairing correlation function. the averaging. To do this one needs to change the QMC

While we simulated systems at other fillings, these simumethod. In the applications contemplated by Ceperley, this
lations were neither extensive or systematic enough to estalmeans changing from the fixed-node to the fixed-phase
lish conclusions other than those now being reported. Also imethod* In our case we are developing an analog of the
building up the ladder to a square, we took quite long ladder§ixed-phase method, called the constrained pRastope-
which restricted the number of legs we could afford to simu-fully we will be able to report results from this method soon.
late. We made the ladder long so the pairing properties of the Finally, we would like to emphasize that this paper has

0.05 -

IRl
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been dealing exclusively with systems having a homoge- &

neous long-range phase coherence. There is a rapidly grow- 2 [1— E_} =Ne, (AS5)
ing body of experimental evidence suggesting that inhomo- K
geneously textured (intrinsically nanoscale phases U
characterize the quantum state of high-temperature supercon- —> E =1, (AB6)
ductors. It is possible that the superfluid density characteriz- 2N

ing that state is inhomogeneous. We believe that an exten- N s AR
sion of the attractive Hubbard model including whereE, = y ¢+ A% With these values ok andA we de-

inhomogeneous termaimicking stripes could be the start- terminedu v from

ing point to understand the fundamental problem of inhomo- A
geneous superfluids. 2ukvk=E—, (A7)
k
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APPENDIX A: BCS EQUATIONS

In this appendix we present the key equations used in our F(R)= i 2 ei(k’—k)~Ru2,vi (A10)
BCS calculations. Some are well documented while others N2 (k! K
are not. For completeness and convenience we give them ) o
here. vanishes in the limitR|—oo.

First to establish notation, we take E@) as the Hamil- To establish the proportionality between thwave and
tonian for a lattice oN sites and rewrite it itk space: extended swave order parameters, we considered the

Heisenberg equation of motion fdvs(i)=c; ¢ ;:
]
t .
H:kz Gknk'o._m E CI,(TCk’,fo-Ck'+q,*0'Ck*q,lT’ . L?As(|)

k,k’,q -
o=11 Jt

(A1)

usinge, = — 2t(cosk,+cosky) and assuming periodic bound-
ary conditions in all spatial directions. We used the BCS [Hecs As(i)]=(UNg/N+2u)Ag(i)+tAg (i)
wave function(2) with k-independent relative phage — AN~ 1). (A12)

=[Hgcs,As(i)]. (A11)

It is straightforward to show that

|BCS(<p)>=H (Ut veeiec] TCtk ]0). (A2) ]:I_'hgn using{[Hgcs,Ag(i)])=0 for an equilibrium state, we
K ’ ’ in

The effectiyt_a mean—fielq Hamiltonian, resulting from the ne- _ —U—2pu _ —U—2u/A
glect of pairing fluctuations, is (A (i))= f(ﬁs(l)ﬁ — gl
- UNZ (A13)
HBCS:;, gknk"’_A; (C1Coki kil s where the extendeslwave pair field operator is defined by
(A3)

whereN.=(Ng)=23,v? is the average number of electrons Asr(i)= 572 - (Ci,1Cit571—CiCivs). (AL4)
and A=(U/N)S(cf ¢ty )=(U/N)Zuw is the BCS TEXEY
gap, andé, = e, — u— UN/2N. The value of the energy was This fundamental relation is formally the same as the one

calculated from found by Zhandf for the exact solution of the Hubbard
model. We note, however, that the chemical potential and
(Hgee) =(H —MNe) expectation values in E4A13) are BCS ones.
) ) In the strong-coupling regimeU/t—«), the chemical
S (Ek_mvz_ﬂ[(& N %) } potential = —U/2 and the gapd =2U\1— (Ng/N—1)2,
n KN U therefore

(Ad) AV 1 Ne |2
and u andA were determined by self-consistently solving o) "3t in Tt (AL5)
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and in that limit{As)=0 and
N N
|BCS(O)>=H { Vi-ont Vool

While not used in any of the results reported here, another
relation we derived and found useful in other contexts is a
simple way to project from the BCS wave function the com-
ponent corresponding to a fixed number of particles. Al-
though in the thermodynamic limit one can ignore exact par-
ticle number conservation, for a finite system, one often

cannot because the particle number fluctuatiaiié)

—(Ng)?=43,uZv?Z, inherent in the BCS wave function, can
be large. To project out thid.-particle component, one uses

Row M,

10).
(Al16)

Row 0

FIG. 13. The cylindrical geometry used for the Ising model
ladder withM legs.

M,+M_+1=M (number of rows

1 (27 .
Py )=s—| dee *NBC . A17 —
W) ZwJo ee [BCS(¢)) (AL7) 2N=L (number of columns (B2)

By directly doing the implied integration over the phase, oneFigure 13 presents a schematic representation of the model
can show that the amplitud(aBCS(o)NfNe):<w1rNe|\1fNe> HamiltonianH. The partition functionzy,,_ is

= whereX =1. To find one can use the re- _
N -~ NeNe “Ne Zy=[2 costipd;) M- (cost( B,) ™M D-PT A],
cursion relation (B3)

vk)Z where the Pfaffian of the antisymmetric matrikis

Nywn =wn -
PN, Npl; Uy

PR Al=detA=[] {|1+ze?|2M\M[v2+ a~2Mp2]},
0

Np—1 . Vi 2(j+1)
+ 121 (_1)JwNp—(j+l); (U_k) , (B4)
(A18) with 6=m(2n—1)/L(n=1,2, ... 1),z o)=tanh(Bly(y,
whereN,=N/2 is the number of pairs. We also note that 22(1—25)(1 —_ 22(1—25) (B5)
|BCS(O)>:ENe|\PNe>' a |1+21ei9|2 , _|1+zle”’|2a

APPENDIX B: ISING LADDERS
(1+22)(1+23)

X= —5

In this appendix we state the main equations necessary to  2z,(1—2z2)
study the crossover from one to two dimensions in a system 2o in )
of classical Ising spins. We present analytical expressions  —Zi(1—-2z3)[e'"+e "](1-2;)
from which various observables are derivable. In particular, 7 —7
we state those equations necessary to study the large-distance \/(1_ ae'?)(1— ale”’)( 1— e_) ( 1— e_) J ,

behavior of the spin-spin correlation function near and at the @y @y

two-dimensional critical point. (B6)
Because of the extensive literature on the Ising model, we

will present only the results relevant for laxM lattice, 2,(1—|z,)) z7Y(1-z,))

which have not been explicitly documented to our knowl- a1:1+—|22|' a2:1+—|Zz|’ (B7)

edge. As close as we could, we followed the notation and
methodology in Ref. 31. ) - -~ ona
The M-ladder Ising Hamiltonian in the absence of an ex- 02:}( 1+22—[4zls|n2( 0)+(1-27)°]/|1+2,€" )

ternal magnetic field is 2 A=\
M., N 2,2 (B8)
H=-3 2 2 8§81 '
- ’:__N We were mainly interested in studying the spin-spin cor-
My-1 N relation function along the central rogs indicated in Fig.
-J; 2 XSS (B1)  13). This function is given by
i==M_ j=1-N
where cylindri iti N= N 2 Trr Tr
ylindrical boundary conditionsS(; =S 1+n) are (So.Son)?=(1-75)?"de , (B9)
used,S; j==*1, and T Tr T



PRB 62 PAIRING CORRELATIONS IN THE ATTRACTIMVE . .. 613

where thenxXn matricesT; are [B Y 0)]rr=—[B 1(0)].L
0 o ATHO:n—1)grg 1
=——{[b yu+[bsoat ,
. Ail(l;O)RR A*l(l;n_l)RR |1+Zle|0|2{[ 22 ]UU [ 22]DD}
RR ; : ’ (B14)
A Yn-1;0 0 _ _
(n=1:0)re e10 (B HOk=-[1B 1O,
-1
[ ATH0;Dp—C - ATH0;n)RL = _ {1— —([bz'Tuu
A*l(l.l)RL . Afl(l.n)RL (1"’2197'0) (1+Zleila)
TRL_ . . ’
A~(n - 1:1) A~(n Zi.'n) c _[bzzl]DD_[b221]0u+[b221]u0)}, (B15)
L —LLRrRL T URLT M
(B11) _ _
bt =i Y —2(M_+1) v?+via M
FAT L0 Rte - ATNLN-1)R ] b2z Juy =17 (1= a b2 tp2q M
- ATY2;00r - ATHZ2in- DR (B16)
LR™ . . ’
: : _vv_ v2+v_2a721v|,
A0k - ATXnin—1)g+c] bz Top= i (1-a M)~ —— 0,
1% [Ve)
... _1 - —_— JR—
A‘l(g'l) 2—&2& [ylypm e T T g
T = .' - .' t (B13) - Za(v?+vla?M-) ’
A Ynl), - 0 [b2s lou=—[bss Jup - (B19)
_ B If one were interested in the strip geometiy—¢ ), then
_ 1 -1 —1/L-1!
with o c=(z17=2) % ATKK)  Tee=T, =0 and(Sy ¢Sy, could be written in terms of an
=(1L)3 e %K) B~1(9)],; and nxn Toeplitz determinant.
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