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Collective phase oscillation in two-dimensionat-wave superconductors
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We theoretically investigate the Carlson-Goldm@®G) mode in two-dimensionall,z_2-wave supercon-
ductivity. In conventionak-wave superconductors, it is known that the CG mode is observed as a peak in the
structure function of the pair field susceptibil{q, w) only just below the transition temperatufgand only
in dirty systems. On the other hand, in tth@vave state, we show that the peak structure can be observed down
to T=0.2T. in clean systems. Furthermore, we also show that the peak splits into two when the direction of the
momentumq deviates from theg, or g, axes, or nodal directions of the order parameter. These features
originate from a singularity in the charge-density fluctuation due to the presence of the nodegl-ofahe
order parameter: It enhances the screening of the long-range Coulomb interaction so that the CG mode can
exist far belowT.. We also investigate a quasi-two-dimensional system, and show that the Josephson plasma
can be observed i8(q,w) whenq is parallel to thec direction.

I. INTRODUCTION depairing effect by the scatterings increases the quasiparti-
cles in thed-wave state, which may cause the Landau damp-
The Goldstone mode which accompanies the spontaneoizg. Thus, when only the smearing effect on the CG mode is
gauge-symmetry breaking is one of the most fundamentegonsidered, observation of this collective mode seems more
phenomena in superconductivity. In neutral systems, it iglifficult in the d-wave state than in thewave one.
known as the Anderson-Bogoliubov modghason! In However, in addition to the stronger Landau damping, we
charged systems, it is the Carlson-Goldm@G) mode?®  can also expect a stronger screening effect by the quasipar-
Both modes have linear dispersions, and they are the colledicles around the nodes in tiiewave state. Then if the CG

tive phase oscillations of the superconducting order param'©de can survive by the screening effect down to the low-

eter. In the language of the two-fluid picture, they are thel€mpPerature region where the Landau damping is weak, it

oscillations of the superfluid component. may be observed as a peak $fq,») overwhelming the

Besides the superfluid component, the quasiparticle&andau damping. Thus it is a crucial problem whether the
. . . . nodes work positively or negatively for the CG mode at low
which are excited thermally are also crucial, particularly for

. . temperatures. At the present stage, within a pole analysis, it
the CG mode. For_con_ventlonél$otrop|© SWave supercon- o reported that the CG mode is overdamped rigain the
ductors, the following important roles have been clarified:

d-wave state even in the presence of the potential

(i) Screening effect: In charged superconductors, thecaitering2® However, the CG mode at low temperatures
Goldstone mode does not existTat-0 because of the Iong-  has not been investigated yet.

range Coulomb interaction between electragiderson- In this paper, we present a microscopic theory for the CG

Higgs mechanisii* In order for the CG mode to appear, the mode in two-dimensionat-wave superconductors in order

Coulomb interaction between superfluid carriers must beg clarify nodal effects on this mode. We assume a circular

screened out by the quasiparticles. Thus the CG mode ajFermi surface, and calculat§(q,w) within the random

pears only just below the transition temperatufg) (Where a  phase approximatiofRPA) in terms of the pairing and the

large number of quasiparticles are excited thermfafly-** long-range Coulomb interactions. Nonmagnetic impurity
(i) Landau damping: The CG mode is observed as a peacatterings are taken into account within theatrix ap-

in the structure function of the pair field susceptibility proximation. We also consider a quasi-two-dimensional sys-

S(9,w); it is experimentally measured by a tunneling experi-tem, and investigats(q, ») in the case when the momentum

ment under a magnetic field='® Since the quasiparticles g is parallel to thec axis.

cause the Landau damping which makes the CG mode over- This paper is organized as follows: We present our for-

damped, the suppression of the damping effect is needed #aulation in Sec. Il. We investigate the CG mode in clean

observing the CG mode. In clean superconductors, the Larsystems and dirty ones, respectively, in Secs. Il and IV. We

dau damping is so strong that the peak does not appear #xtend our theory to a quasi-two-dimensional system in Sec.

S(q,w),** even if the Coulomb interaction is screened out. Itv, which is followed by the summary in Sec. VI. Throughout

is observed only in dirty systems, because the Landau damphis paper, the clean system means the one in which potential

ing is suppressed by potential scatterifgh™ 214 scatterings are absent. When the potential scatterings is
Since the discovery of higli; cuprates, thel,>_,2-wave  present, the system is called the dirty one.

superconductivity has attracted much attentidrin this

state, since a large number of the quasiparticles can be ex- Il. FORMULATION

cited thermally around the nodes of ttievave order param-

eter, the Landau damping should be stronger than that in the

conventionals-wave one. Furthermore, when we introduce We investigate the two-dimensiondgdwave superconduc-

potential scatterings in order to suppress the damping, thevity which is described by the Hamiltoni&h'42*

A. Model two-dimensional d-wave superconductor

0163-1829/2000/69)/5971(13)/$15.00 PRB 62 5971 ©2000 The American Physical Society



5972 Y. OHASHI AND S. TAKADA PRB 62
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H=> Wi(&m—A )W i) = :
Ep plépTa™ A7)V Glpiom) lom—&,3+ApTy’ 29
1 where 8= 1/T, while v, and o, express, respectively, the
+ 52 V() p3gp3-—q Boson and the Fermion Matsubara frequendés(q, ) is
q related to IT;;(q,iv,) as I;;(q,0)=11;;(qivy—w.=w
+i0).

g
- E(quplfq"'PZqPqu) +Himpa 2.0

1. Clean system

WThere‘I'p—(cpT ,C—p|) is the Nambu field operator in which | the clean system, the lowest-order polarization func-
c

pos IS a@n electron creation operator with spin; 7(i  tions in terms of the interactions are obtained*a$
=1,2,3) is the Pauli matrix. The kinetic energy is given by

=p?/(2m)—eg (p*=pi+p;) with e¢ being the Fermi 0 ) £ E+A]
energy. sz(q,w)=% Yp 1_T

We put the long-range Coulomb interactio¥(q)
=47e?/q? assuming a three-dimensional material with the E.—E_ .
two-dimensional electronic bang),.** As for the pairing in- X(E+_ Ef)z_witf(EQ_f(Ef)]
teraction, we assume the separable interactiopy,;=

-0, ypyp,cmc,plc p'|Cpr1, Wherey,= \/5005(29) is _2 2( §+§,+A,§ E.+E_
the basis function of the,2_2-wave superconductivity«?p E.E_. J(E.+E_)2—o?

is the polar angle op around thep, axis measured from the
py axis. In this case, the order parameter has the fagm X[1-f(E4)—f(E-)], 2.7
=7vpA. We have choser, being real and proportional to
the 7;-component in Eq(2 1. 0 _

In Eq. 1, pig=,%)- G2V, (1=1,2,3), where Hss(q,w>—§
'yp ('yp 'yp yp) (Ypr ¥pr1)- PhyS|caIIy p3q IS the charge-

m—Az) E.—E_
E.E. J(E,—E_)>-w?

density operator, whilg,, and p,, describe, respectively, X[f(E4)—f(E-)]
the amplitude and phase fluctuation of the order parameter. £ —A2 E 4E
The last term in Eq(2.1) represents the nonmagnetic im- —E (1_ t5- p) + 27 ;
purity scatterings: ELE_ J(E,+E )"~ w%
X[1-f(E)—f(E-)], (2.8
Himp=U e @) Rigl g 2.2
e Ri,Ep:,p' preTP @32 wheref is the Fermi distribution functionE.. = \/§2+4—A2

andé. = &,+ Ve /2 (ve . Fermi velocity. In Egs.(2.7) and

whereu is an impurity potential aR;. For simplicity, we (2.8, we have expanded,.q, up to O(q) assumingg

have assumed thewave scattering in Eq2.2). =O(1/¢) (E=vplT,: superconducting  coherence
length.**** We have also expandell,; 4 as Ay, qo=A4,
B. Structure function of pair field susceptibility +(q/2)-V,A,, and have neglected the second term, be-
The structure function of the pair field susceptibility cause it is smaller than the first one I(A/eg) for g
S(q,w) is given by =O(1/g)

Under these apprOX|mat|ons faf, and A,, we find
_ 12(q w) = 21(q w) = 13(q w)= H31(q w)=0101314
S(a, @)= —Im[55(q, )], (2.3 Then, since the amplitude fluctuation does not couple with
the charge- den5|ty fluctuation nor the phase fluctuation, we
wherell»;(q, ) is the correlation function of the phase fluc- 4o not needl?, in studyingIl,,. On the other hand, the

tuation of the order parameter: phase-charge couplirﬂgs is finite as

o 0 — _ 10
H”(q,w)z—if dte Y[ piq(1),pj—o(0]) (i,j=1,2,3. 50, )=~ 30, w)
0
(2.9 Ap E,—E_

) ) ) ) |(U+E ’}/DE E (E+ _)2_(1)2
Equation (2.4) also defines the charge-density fluctuation +
I153, the amplitude fluctuatiol; and the coupling of dif- X[f(E,)—f(E_)]
ferent kinds of fluctuation$l;;.; ;.

In calculatingIT,,, it is convenient to introduce the fol- 0, Ap E,+E_
lowing polarization function in the Matsubara formalism Tloy > YZE E_ (E.+E_)2iw?
X[1-f(EL)—f(E)]. (2.9

, B
Hij(qian):—J'O dTe'V”T<TT{piq(T)pj_q(O)}>, (2.5
Taking into account the interactions within RPA, we
and the thermal one-particle Green’s function obtaint34
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ﬁzz(q,w) of p over the Fermi surface. Although our theory can treat
(g, 0) = — ' (2.10 arbitrary scattering strength, as typical cases we consiger
1+(9/2)115(q, w) the Born scattering@>1), and(ii) the unitarity limit (C
where =0). Equation(2.13 is solved together with the gap equa-
V(Q) tion
m _ 170 0 \
HZZ(q’w)_sz(q'w)+H23(q’w}1—V(q)Hg3(q,w) T on 7r2J 1
In—=— >, —_—) ——|. (2.1H
X110, ). (2.1 To Bomeo |\ Jaz+azl  om

. . 0 3,14
The gap equation can be written withy, as (b) I,Xq,) in dirty systemIn the dirty systemJI{} in

g Eq. (2.1D) is replaced byllj; which is given by

1+ =119,(0,0=0. (2.12
2°% ng H£3 0 0 N(0) = ,360'
The CG mode is obtained as a poleldf,(q,w). From Iy, I%;]~ 0 MLy 7J_OodwftanhT

Egs. (2.10 and (2.12, the equation of the CG mode is
sz(q,w)—ng(0,0):O. In this paper, however, we solve X[E.(qwo)-E_(qoo)]. (2.16
the real part of this equatidh'* when we calculate the dis-

persion and the velocity of the CG mode; this treatment ne(The derivation ofIIj; is explained in Appendix A.Here
glects the damping of the CG mode. We consider the dampl:lgg' representdl, in the normal state:

ing by examining how the mode appears as a peak in the
spectrum ofS(q, w). w

_ InOn_umericaI caIcuIations,_ we trapsform thesummation Vw+iT)2=(veq)2—il
in I1j; into the§ and angular integrations. Then the Coulomb (2.17
interaction always appears ¥$q)N(0)(=V) in Eq. (2.1,
whereN(0)=m/(2) is the density of stateDOS) at the
Fermi level. We writeV with use of the plasma energy,

15Y(q,0)=—2N(0)| 1-

wherel’ =2v/(1+ C?) is the damping rate of electrons. The
matrix £ . (q,w,") in Eq. (2.16) is given by

=Jamne?/m (n: carrier density as V= (w,/T)?/(q&y)?, E.(qoo0)=A(q00)-A(qoo")
where&,=v /T with T? being the transition temperature in L

the clean system, and putp=104T2>A. Although we do %

not show thew, dependence of our results explicitly, they 1+ as(w,0")A(q0,0")

are almostw, independent as far as,>A. -
Xa(o,0)AL(qow). (218
2. Dirty system ) ) PO — ~
) . We write the matrix elements &.., A., A., andA. as,
(@) Renormalized Matsubara frequency and gap equation,, example,

We calculate the nonmagnetic impurity scatterings within the

t-matrix approximation. The renormalized one-particle A?f A"f
Green’s function is then given by E@.6) with i w,, being A= AR 733" (2.19
-28 + +
replaced b§* =0
; Then their matrix elements are given by
A(lwp)

ion=ionty=r——, (2.13 y y
oY C Ko AlL(g,0,0")=(WL(p,q0,0"))E,

- AL(g,0,0")=(¥WL(p,q0,0") Y,
A(iwm):<~'i> . (2.14 AL(G,0,0")=(yWL(p,q0,00), %29
<2 2 —~ . .
omtAp/ ¢ AL(g,0,0")=(WL(p,g.0,0") yp)F.

Here,y=n;/(7N(0)), C=1/(7wuN(0)), andn; is the num- -
ber density of the impurities;- - - )¢ represents the average The definition of W is as follows:

where

22 23
W W  VZ(0h ) A2+ (Z(wl)2- A2
32 33| =171
W W VZ(0) + @)P - AR Z(0l) - A2

Z(o', +0)Z(0h) = A2+[Z(w) + ©) = Z(0’) Ay,
VZ(0) + )= ANZ(wh)*—A;

X , (2.2

7'3i
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wheren=(pg/m)-q, andZ(w-) is the renormalized frequency in E@.13 in which the analytic continuationy,— o, is

taken. In Eq(2.18), a-(w,w") is defined by
73

ai(w,w’)=ﬂx -1

Aiog— o' +o)A(ilog—ol)

(Born),

(unitarity).

(2.22

lIl. COLLECTIVE PHASE OSCILLATION IN
CLEAN SYSTEM

A. Dispersion

Figure 1 shows the dispersion of the CG modedgt

charge-density fluctuation which is described by the last term
in Eq. (2.11) (=V,33) is the dominant origin of this anisot-
ropy.

The temperature region where the CG mode exists is very
wide compared with that in the isotropgwave case as

=0. (6, polar angle of the momentum of the CG mode shown in Fig. 2a). (For the isotropicswave state, we put
measured from the, axis) The CG mode has a linear dis- y,=1.) This is because the quasiparticles around the nodes
persion for small momenta as the phason in the neutral sysan screen the Coulomb interaction down to lower tempera-
tem. When temperature is lowered, the dispersion of the Caures in thed-wave state. We also find that, whilgg in-
mode disappears from the high-energy region and disappeagseases with decreasing temperature in the isotreiave

completely belowl'=0.45T2. This is because the screening State, it saturates at a value=¢s) depending org, in the

of the Coulomb interaction by quasiparticles is weaker ag-wave one. The increase ofg in the former can be under-
stood as that the phase of the order parameter becomes

lower temperatures.
In neutrald-wave superconductivity, on the other hand,

the phason exists down ©=0. In particular, afT=0 we
obtainw=(ve/\2)-q for smallq irrespective oft, (Appen-
dix B).

In addition to the CG mode, we obtain the other solution
which has higher energy than the CG mdfién the follow-
ing, it is referred as the upper modéit the present stage,
the character of this mode is unclear except that, as shown in
Fig. 2, the CG mode disappears with the upper mode at a low
temperature. Since the upper mode does not appear as a peak
in the spectrum of5(q,w), we do not investigate it in this

paper.

B. Velocity

Figure 2 shows the velocities of the CG magdeg; and the
phasorv ,. The difference between the two is small n&gr
because the Coulomb interaction is screened out by the qua-
siparticles. The anisotropy afcc becomes remarkable with
decreasing temperature. Sinégdependence af , is weak
compared with that ob g, we find that the effect of the

() T/T=09 (0) 1= (0 TM=07
L N d
EU 4 0.2
3 06—
/ phason === 0 ; ; ; ;
L g 0 02 04 06 08 1
ATy — .
IIIIII N T/Tc
P23 4seT 02 46 80 0246 0nH FIG. 2. Temperature dependence of the velocity of the collec-
qén tive phase oscillations. We have obtained the velocity as/q at
g¢p=0.2. In theswave case, the CG mode and the upper mode are

FIG. 1. Dispersion of the CG mode 84=0.

VCG/ VE

0.8 r

0.6 1

04 r

02

0.8

0.6 1

04 |

cG —

upper mode -----
phason ------
CG:s-wave -—-

(b)8,=71/16

02 |

shown with the same dashed-dotted line.
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3 80000 | o
40000 - o
Z' 60000 s
30000 L £ n 0 004 008 012 016 02
oo 40000 s, T/Tc0=0.9 — |
20000 | = T/Tc0=0.8 -----
80 NN T/Tc0=0.5 ------
10000 | 20000 0 ny
0 . 0 ..............................
s000 (b)0,=7/16 0 004 008 (()).12 0.16 02
3 e
3‘: 40000 1 FIG. 4. Temperature dependenceSff|, w) atq&y,=0.2 in two-
CCQ\] 30000 | dimensional chargeg-wave superconductivity withy,=0.
2 20000 |
o0 20000 space. Apart from slight difference, the spectrum is given by
" 10000 | the inset in Fig. &) irrespective ofg,. We find that there is
no peak structure except for the central peak at0.
0 A peak structure begins to appear at a finite energy de-
pending oné, for TsO.STS: The peak splits into two for
50000 64+ 0 as shown in Fig. ®). At 6,= /4, the higher peak is
40000 - located neaton.ZTg, while the lower one disappears.
We compare the peak energy at=0.5T0 with
30000 f =vceq in whichvg is given in Fig. 2:
20000 r
0.144 (0.14 :04=0,
10000 | ® (0.143 a
== 0.168 (0.112,0.168 :04=m/16, (3.2
0 Te | 0.197 (0.196 0y= 74,

where the numbers in the parentheses are the peak energies
FIG. 3. Temperature dependence $fq,») at q§=0.2 in  in Fig. 3. Thus except for the lower peak in Figbg we find
chargedd-wave superconductivity. Sinc(q,w) at T=0.99T2is  that the peaks correspond to the CG mode. We mention that
almosté, independent, only the spectrum@y=0 is shown in the  thjs result is qualitatively different from that in the clean
inset in(a). isotropic swave case in which, as shown in Fil%. 4, the CG
, mode does not appear in the spectrunsfd, ).

“hard” owing to the recovery of the long-range Coulomb " tpae js o poFI)g which corre%ponds t%qtht)e lower peak in
interaction at low temperatures. On the other hands well Fig. 3(b). We note that it is not the “upper mode.” Instead,

dfescribed bw?j:vaCOi@l' erlred’flE Oq— /4 i/s the czjing(lje we find that the lower peak energy is well fitted with
of q measured from the nodal direction @t /4. Indeed,  _ 1 “\wherep! =, cosh,. [ ,= 64— (~ ml4): angle ofq

this equation gives measured from the nodal direction @&t — m/4]: It gives o

0.707 (0.715 atT=0.6T%) :6,=0, =0.111TT7 at §,=w/16. This agreement indicates that the
o node of the order parameter is a key also in understanding
vs=vgx| 0.831 (0.833 atT=0.6T;) :0q=m/16, the lower peak. Furthermore, since the splitting of the peak is
1 (0.99 atT=O.4T(C’) 0= Tl4, not observed in the neutral systeffig. 5), V33, is crucial

(3.1  also for the lower peak in Fig.(B).

where the numbers in the parenthesesdg in Fig. 2. Thus
we find that the saturation afcg is deeply related to the D. Nodal effect on the CG mode
nodes of the order parameter. We investigate this effect in

detail in Sec. 11D Now we investigate how the nodes of the order parameter

affect the CG mode an8(q,w). Focusing omA,=0 at the

nodes, we regard the nodes as twee-dimensional normal-

state electronic bandsoward 6= = /4, as schematically
Figure 3 shows the temperature dependenc&(qfw).  shown in Fig. 6.

At T=0.99T2, the anisotropy ofS(q,w) is weak, because ~ These “normal bands” do not affedd$, and I13;, be-

the thermal excitation of the quasiparticles is not restricteccause the basis functiory,= \/icos(mp) in Egs.(2.7) and

around the nodes but occurs in all directions in momentun{2.9) equals 0 at the nodes. On the other hand, they affect

C. Structure function of pair field susceptibility: S(q,w)
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FIG. 5. Temperature dependenceSff], ) atqé,=0.2 in neu-
tral d-wave superconductivity.

0.04 0.2

13, becausey, is absent in Eq(2.8). To see the effect of
the normal bands, we extract only their contributions from

Hg3(q,w):

2
7i
2

5 (3.3
/It

H%?(q,w)zszl(mi;z

where »;=vq; with g;=q cosé,; N{(0) is DOS of one of

the one-dimensional bands at the Fermi level. Clearly, Eq.

(3.3) diverges negatively in the limib— 7; — 8. In this limit,
the screened Coulomb interactiof/(1—VIISY) is com-

band

FIG. 6. Schematic picture of two one-dimensional normal elec-
tron bands ird-wave superconductivity.
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008 0.12 0.16
0
@/Tc
FIG. 7. Real part 0H23(q,w) in chargedd-wave superconduc-
tivity. We put T=0.5TY andqé&,=0.2.

0.04

02

pletely suppressed. Although the angular integration in Eq.
(2.8 weakens the singularity, it still remains iH3; as
shown in Fig. 7.

Figure 8 shows the spectrum of the real parvgfs,. In
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-0.004 =
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0.012 | **
0.004
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0.004 __ eranzinnne e meees
O " T ST 1
(b) d-wave: 6=1/16 ™.
-0.004 - - - - =
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Re[V2332]/N(Q) —
IL,(N)/N(0) -—---
0.012 5H22(C)/N(0) """
0.008
0.004
O ~~~~~~
(c) s-wave T
-0.004 — .
0 004 008 012 0.16 0.2

o/Te

FIG. 8. Real part OfV,gp=TIofV/(1—VII)IS, at T
=0.5T% and q¢,=0.2. We also showsIT,(N)=RgI15,(q,®)
—115(0,0] and  6ll,(C)=Re 135(q,w) ~115,0,0)]= 411,
+R{ V,335]. The zeros of the former and the latter give the phason
and the CG mode, respectively.
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(U/Tg ofTc
FIG. 9. I" dependence d8(q,w) in the unitarity limit. We put FIG. 10.T" dependence 08(q,w) in the case of the Born scat-
T=0.2T, andqé,=0.2. The inset shows the superconducting DOStering. We putT=0.2T, andqé,=0.2. The inset shows the super-
normalized byN(0) for F=0.1T2. conducting DOS normalized by(0) for F:O.lTS.

Figs. §a) and (b), we find that, as in the above simple dis- 0
cussion the Coulomb interaction is suppressed arawnd ”e“tora' system, thew d.ependence. of REl>(q,v)
I155(0,0)] aroundw=wv 4q is almostT independent at low

. At 6,=0, the effect of the two bands appears around
0= qu cos(77/4) 0.141°, while it appears o temperatures Wherad,—vF/JZ Furthermore, R&/533,] is

= v¢q cos(37/16)=0. 1661'0 and v g cos(5m/16)=0.111T° always suppressed around the same energyn;. There-
for 9,=m/16. Then the CG mode is obtained evenTat fore the energy of the CG mode is always located around
=0. 5I' [ST1,,(C)=0 in Figs. 8a) and 8b)]. On the other @= 7 at low temperatures.

hand, since this screening effect is absent in the isotropic B€fore ending this section, we briefly note that the same
swave statesIT,,(C) does not cross zero in Fig(®. nodal effect occurs also in the extendediave state charac-

The imaginary part oV,ss, increases rapidly for= 7, terized byy,= f|cos(29p)| because the basis function ap-

as a result of the singularity ii13;, as shown in the insets in PEars asy, and ypA, in I
Figs. 8a) and(b). Thus the imaginary part of the denomina-
tor of Eq. (2.17) also increases rapidly fap= #; . In addi-
tion, Re{sz(q w)—11I 2(O 0)] equals zero at the pole, and it
is small also around=0.111T° at 0= m/16. ThusS(q, w)
has a peak ab=»; and decreases drastically for= 7; .

The saturation ob g in Fig. 2 is also attributed to the The peak inS(q,w) is smeared by the impurity scatter-
one-dimensional bands. Let us rewrlte the equation of thengs as shown in Fig. 9Born scatteringand Fig. 10(uni-
CG mode as F{fﬂzz(q ) —T13,(0,0)]+ R V33,]=0. taritylimit). When we again assume the two one-dimensional
Since RéEII 2(q w)— 1'[22(0 0)]=0 gives the phason in the bands in Fig. 6, we obtain

IV. COLLECTIVE PHASE OSCILLATION IN DIRTY
SYSTEM
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( 2_;2) 2+( 2_;2) 2
118)(q,@) = — 4N;(0) noYme e @

5 (4.1)

(P2 —0?) (=0, 0)+(PB— ) (-0, o)

where w=w+iI'. We find that the singularity ab=7; is  treat the impurity scattering more correctly. Thus, at least
eliminated byl". As a result, the peak structure is suppressediualitatively, we expect that the present tendency is not al-
by the impurity scatterings. tered by more improved theories.

In the unitarity limit, the zero-energy bound states are
induced around impurities, so that the superconducting
DOS becomes finite around=0 (inset in Fig. 9. The in- V. S(q,w) IN C DIRECTION: JOSEPHSON PLASMA
duced quasiparticles arouna=0 then cause the damping,
which smears the peak structure $iq,w). On the other
hand, the Born scattering does not cause the zero—energyI hi . ke | K three di
bound state; the effect mainly appears around the region near h this section, we take Into account a weak three dimen-

the energy gapy = \2A as far ad” is small(see the inset in slonality, and investigat&(q, ) in the case wheq is par-

Fig. 10. Thus the smearing effect by the Born scattering OnaIIeI to thec axis. It is known that the plasma energy can be

the CG mode being located in the low-energy region isVe"Y '0"‘{_3'2 the ¢ direction of quasi-two-dimensional
weaker than that in the case of the unitarity limit. systems~*° This low-frequency plasma, the so-called Jo-

When the temperature increases, the quasiparticles iiePhson plasma, is observed in hifheuprates®“* The
duced by the Born scattering around the energy gap begin @bserved plasma energy is lower than the energy*g&pr-
excite. Thus, even in the case of the Born scattering, the pedkermore, the temperature dependence of the plasma energy
structure is smeared out by weaeat higher temperatures. in high-T. cuprates indicates the presence of a scattering
As an example, we show tHe dependence oB(q,w) atT ~ mechanism in the-axis charge dynamics.In the following,

A. Extension to quasi-two-dimensional system

=0.5T; in Fig. 11. we investigate how the Josephson plasma aff8fisw) in
Figure 12 shows th& dependence d8(q,w) just below  dirty quasi-two-dimensionad-wave superconductivity.
T. where, in the case of isotropgwave superconductivity, In order to take into account weak three dimensionality of

the CG mode appears 8(q, ») in the dirty systen{insetin  the system, we assume a simple effective-mass nfod&f
Fig. 12.51%n thed-wave superconductivity, only the cen- We add a dispersion in thedirectionp,/(2m,)(m,>m) to
tral peak is observed ai= 0. This is because the singularity the kinetic energy,. Then we cut the Fermi surface at the
in T13; is eliminated byl", and is because the depairing effect Brillouin-zone boundary gp,= = 7 to obtain an open quasi-
by the impurity scattering increases the quasiparticles whicltwo-dimensional Fermi surface.
contribute to the damping of the CG motfe. In the dirty system, the formulation for the two-
Although our theory is based on tienatrix approxima-  dimensional system is still valid except that! in Eq.(2.20
tion, the singularity inl13; should be suppressed even if we is replaced by

\A 722 \A/23
W We i

e W ] VZ(o! + )2 = A2+ \Z(w!)?-A3-vq
w# w375
* =+ vq

VZ(0! +0)?= A2+ \Z(0))2-A2+vq

Z(0) +0)Z(0]) = AZH[Z(0) + )~ Z(w])]A T

X| 13+ , (5.0
: VZ(0) +0) 2= A2\Z(w )P~ A2
|
wherev=m/m,, and we have pug=(0,00). We express B. S(q,®) in c direction
V with use of the plasma energy along theaxis in the Figure 13 shows the temperature dependenc8(qfw)

Z_ Amoneim. v (2 T0N2 whenq is parallel to thec axis. As in the case of the in-plane
cIean2 2?/3??4”1 a;]p ;h-rfn //?’mz 73 V. (?;(12) (wpg—")t./ direction, we find a peak structure at low temperatures. How-
(ag,)%, where dn=(m/3)(m mz)_ls € COnaucliveé  ayer, this mode does not have a linear dispersion, but has the

carrier denSity in the direction an%ZEU/Tg . Sincedn can finite energyw== w? at q:o (F|g 14; Thus this is the Jo-

be much smaller than the total carrier densitin the quasi-  sephson plasma gscmaﬁon_

two-dimensional systemep, can be much lower than the  Although there are fouline nodes running along the
plasma energy in the in-plane direction. In the following, weaxis, there is no remarkable nodal effect in Figs. 13 and 14;
put wf,=0.05|'2 in order to describe the low-frequency results similar to these figures are obtained also in the dirty
plasma. quasi-two-dimensional isotropgwave superconductivity®
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0 004 008 0.12 016 02 024 0 004 008 012 016 02

0 0
ofTc o/Tc
FIG. 13. Temperature dependence &(q,0) for q
:(0,0,0.%;1). The figure shows the case of the Born scattering.

We putl’'=0.1T2.

FIG. 11.T dependence d§(q,w) at T=0.5T; and 6,= 7/16 in
the case of the Born scattering.

When we regard them as twwo-dimensional normal elec- his | ithmic di . i H b
tron bands, and extract their contribution frdi;, we ob- case. This logarithmic divergence Is easily suppressell by
tain ’ 3 and the angular integration which we have neglected in Eg.
(5.2.
Figure 15 shows thé&'-dependence 08(q,w). We find

w+iF—v_q that the plasma peak is not smeared by the impurity scatter-
In| ——— ings in contrast to the peak of the CG mode in theiave
1@ = — 4N,(0) 1+& o+il'+vq state. This is because, in the dirty system;«T), the
33 2 2qu ir w+iF—;q ' plasma is the oscillation of only the superfluid component
1+ —In| ——— which is not accompanied by dissipatidit* On the other
2vq |wtil'tvq hand, since the depairing effect decreases the superfluid car-

(5.2) rier density, the peak energy in Fig. 15, or the plasma energy,
is lowered byI".

whereN,(0) is DOS of one of the two-dimensional bands at
the Fermi level. At'=0, Eq. (5.2) divergespositivelyand V1. SUMMARY AND DISCUSSION

logarithmically forw—w_q— 8. Thus the strong screening ef-

fect which is obtained in Eq(3.3) is absent in the present In this paper, we showed that the character of the CG

mode is much different in-between tldevave and isotropic
swave superconductors. In the former state, the CG mode

800000 oo — ' | can be observed i6(q,w) at low temperatures in the clean
_ system. This is due to the presence of four “Fermi points” at
’§ the nodes of thel-wave order parameter. They work as if
=~ 600000 there are two one-dimensional normal electric bands, which
%’ \ cause a singularity in the charge-density fluctuation to lead to
: B a strong screening effect. This effect is suppressed in the
QN 400000 [
T
ol : 0.3
17200000 | I/Tc=0.80 — -
I[/Te=1.75 ===- 0.25 | charged system —
I'/Te=3.86 ----- neutral system -----

0.2t

0.05 0.075 0.1

O
/TS % 0.15 |

FIG. 12. I dependence of5(q,w) at T=0.999T, and q¢&, 0.1
=0.2 in chargedd-wave superconductivity. Since results for the
Born scattering and the unitarity limit are almost the same, only the 0.05 e
former case is shown. We note that the value$” afhown in this o
figure are normalized by, noTS, but T, which is the transition 0 0 0'1 0'2 0'3 0'4 05
temperature in the presence of the impurity scatterings. When we ) ) ) ) ’
normalizeI" by TS, 0.80, 1.75, 3.86 become 0.6, 1.0, and 1.4, qéz
respectively. The inset showS(q,») at T=0.999r0 and gé&,
=0.2 in the case of two-dimensional chargedave superconduc- FIG. 14. Dispersion of the collective modplasma oscillation

tivity with y,=1. A peak at a finite energy is the CG mode. For- in the c direction which is obtained from Eq2.20. We put T
mulation for thes-wave state is explained in Appendix C. =0.2T,, '=0.1TY, and the Born scattering is assumed.
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B~ 600000 |
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400000 t FIG. 16. Feynman diagram f(ﬂﬁ within the t-matrix approxi-

mation. The solid line represents the renormalized Green'’s function,
| G, which includes the self-energy part. The bare veme)ép is
200000 expressed by the solid circle, whileX” represents an impurity.
The four point verteXtd describes the multiscattering by impurities
0 2 h (dashed ling
0 004 008 012 016 02
0 i . . i
ofTe wherel'}, . o2, g2 iS the vertex correction for; y;, ; we have

simply written p+qg/2=(p+0/2,w,+v,), P—a/2=(p
—0/2,0y)- In the following, we consideﬂﬂ(q,ivn) with
i,j=0,1,2,3; fori=0 and/orj =0, 7y=1 andyp=1 are used

. . in Eq. (AL).
dirty system. On the other hand, the CG mode is observed

just below T, in the dirty system in the isotropis-wave
state. We also showed that, wheiis toward thec direction, 1. Vertex correction
instead of the CG mode, the plasma oscillation can be ob-

served inS(q, w). LT T . : . .
proximation is diagrammatically given by Fig. 16. Summing

When we a_lpply the present resglts to higheuprates, we . up the impurity scatterings ibJ in Fig. 16, we obtain
should take into account the anisotropy of the electronic

state: If DOS in the normal state is negligibly small around

the nodes compared with DOS arounc 4,0) and (O, ] j ~ . o~
+ 1) in real systems, the nodal effect discussed in this paper I'p+azp-a2=7j¥p T ”i; U(iom+ivg G
is suppressed. In other cases, it should remain. In the latter

FIG. 15. " dependence 085(q,w) for q:(O,O,O.%Z’l) atT
=0.2T..

The vertex correctioﬁ{,+q,2’p,q,2 within the t-matrix ap-

case, since the high; cuprate superconductors are known to X (K+ q/Z)I‘fH ok apG(K—a/2)U(i wpy),
be near the clean limit in the in-plane directitmean free aeked
path |~10Q A]>¢~10 A]), and since, far belowl, the (A2)

inelastic scattering by the antiferromagnetic spin fluctuations

is suppressed by the presence of the excitation gap, the C@here k+q/2=(k+q9/2,0,+v,), and k—g/i2=(k
mode may be observed in the in-plane direction of high- _ /2 ,, ). The functionl is given by

cuprates. In addition, since the detailed Fermi surface in the

in-plane direction is not crucial for the Josephson plasma in

the c direction, we can expect that the Josephson plasma - 1

which has been observed by the microwave experiments may U(lwm)=urs ~

be observed in high-, cuprates also by the tunneling experi- 1- uz G(p,iwy) T3
P

ment which was developed for the CG mode.
1 Cr—Aliwy)

= - . (A3)
APPENDIX A: CALCULATION OF I1%, IN DIRTY 7N(0) C*—A%(iwy)
SYSTEM
The polarization functiorﬂﬂ is given by \?vlrri]t(;e the last term in EqA2) is independent op, we can
. 1 o~ . ~ i _ i .
ILj(quivy) =5 pEw T 7 7,G(P+ AT 422G Torap-a2= 7i7p* fi(Qiom), (A4)
»@m

X(p—ql2)], (A1) wheregq=(q,iv,), and
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f,—(q,iwm)=ni; Ui o +ivy)Gk+a/2) 7 v,G

x(k—q/Z)D(iwm)Jrni; U(iwn+iv, G

X (k+0/2)7;t;(0,i 0 G(k—a/2)U(i wp).

(A5)
When we expand fi(q,ioy) as fj(q,ion)
=37 oFi(aiom T, Fj satisfied0 14
3
Z (0 iwn)| 6 in nN(O)E SiEmn
3
=niN(0) 2, §¢Ery, (A6)
where
Si = ZN(O)ETr[G(Hq/Z)T.G(k ai2)7 ],
S, = 2N(0 ; T G(k+q/2) 7Y, G(k—q/2) 7],
: S 1~ . ~
E|r(la)m+lvn,la)m)=ETr[u(lwm-i-lVn)T|U(Iwm)Tr]. (A7)

In Eq. (A7), the trace is taken with respect to the Pauli ma-

trices. Introducing &4 matrices,F={F;}, S={S;}, S
=(5,}, and E={E;} (i,j=0~3), F is obtained asF
=n;N(0)SE[1—n;N(0)SE] 1.

2. 10§
Substituting Eq(A4) into Eq. (A1), we obtain

_ 1 .~ ~
I} (q,i Vn):E pE Tl 77,G(p+0a/2) 7y v,G(p—a/2)]

+Ep’w2m'| Fii(aiom,ivy)

X T 7%,G(p+al2)nG(p—al2)].  (A8)

When we rewrite the last term in EGA8) with use of

1 . - ~
S, ~5N0) % YT G(p+a/2)7G(p—a/2) 7],
(A9)

only the term withi=r remains because of [I#7,]

=26, . In the following, we simply erte‘SII as SI, . Equa-
tion (A8) then becomes

2N(0)

HF
B

E {A+n,N(0)A[1—n;N(0)EA]1EA},
(A10)
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wherell"'= {H }, A='S, A='S, A={S;}, and the matrix
element ofA is given by

1 .
Ai=an) 2 TTn%G(P+ a2 77Gip-a/2)].
(A11)

3. Expressions for Born scattering and unitarity limit
a.E
In the cases of the Born scatterin@%$ 1) and the unitar-
ity limit (C=0), Eq.(A3) is respectively reduced to

1
N(0)C

1
mN(0) A (iwm)

3=ury (Born),

U(iwy) = (A12)

(unitarity).

ThenEj is given by

T3 O
‘=Born_

E;

i (0 _7'3)'

_— 1 [ 1 ) (1 o)
Egnlarlty: i _ i .
] Aliop+iv)Aioy)| 7N(0)/ |0 1

(A13)
b. £ integration

We transform thep summation inlI" into the £ and an-
gular integrations, and execute the former integration. In this
procedure, we mention that, in principle, we must execute
the w,, summation before thé integration, because the com-
mutability of the two calculations is not guaranteed. Thus,
when we exchange the two procedures in our calculation, we
must carefully treat the commutability. In the present case,
the uncommutability occurs |ﬁ[F ¥ In order to avoid this
uncommutability, we writd 15, as'L4

H§3=[H§3

e TILY, (A14)

where I15Y representsily, in the normal state, which is
given by Eq.(2.17).% Since[ I15,— I153'] well converges, we
can execute thé integration before the,,, summation in it;
the subscript in Eq. (A14) represents this exchange.

When we execute thé integration, we find tha\, A, A,
andA have the block-diagonalized form as

ap ag 0 O
app ag 0 O
0 O
0 O

azy Ay (A15)

az; ass

Thus, as far as EqA13) is considered, the upper and the
lower blocks in Eq.(A15) do not mix with each other in
calculating Eq.(A10). Since we need only the lowerx2
block inII' [« Eq. (2.16)], we extract this part;
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r r APPENDIX B: PHASON AT T=0 IN TWO-DIMENSIONAL
Mo s} 2n(0) SYSTEM
T
p om The equation of the phason 1§3,(g, ®) —I15,(0,0)=0.
R o . At T=0, the first line in the right-hand side of E.7) is
X{A-All+a(ioy,iv)A]l a absent. We pub=v ,q, and then expand the second line in

X (iwg i vn)ﬂ}, (AL6) Eq. (2.7) in terms ofq up to the second order:
wherea(iwy,,iv,) is given by Eq.(2.22. In Eq. (A16), A, 0 0 NO/| , 1 |,

— = N 1549, 0) —11540,0=— —|v5— 5 .

A, A, andA are now 2<2 matrices with the matrix elements 20 @)~ 12,(0.0 287 |%¢" 2 (ve)]d

being arranged as EqR.19; their expressions are given by (B1)
Eqg. (2.20 in which the subscript %" being eliminated,w Thus we obtairv¢=vF/\/§.

i ndo’'—ioq,. .
—ivn, ande’—ion In the charged system, when we expawg,, as in the

C. w,, summation and analytic continuation above, we obtainVyzs=N(0)/(24%)- (vced)® at T=0.

o Then we obtai cg=2, which means the absence of the CG
We calculate thes,, summation in the same way as that yode afT=0.

in the case of the-wave superconductivit} We transform
the summation into the complex integration in the ordinary
manner. After avoiding branch cuts on the complex plane,
we putiv,—w+id. Then, except forl'[£3§, Eqg. (Al6) is
reduced to the second term in E8.16). In 1}, , in addition The derivation ofl1,, for a dirty two-dimensionas-wave

to the second term in E@2.16), there is an extra term com- superconductivity is the same as that in our previous paper
ing from a complex integration along the infinitely large for a three-dimensional onfé:We replace the second term in
contour** however, it is canceled bﬂgé“g in EqQ. (A14).  the right-hand side of Eq2.16 by II}, which is given by
Thus[H£3—H£§,“]§ gives the second term in E.16). Tak-  Eq.(B.20) in Ref. 14. In Eq(B.20), the average is now taken
ing account the last term in E¢A14), we obtain Eq(2.16). over the two-dimensional Fermi surface. Then we obtain

APPENDIX C: II,, IN DIRTY TWO-DIMENSIONAL
SWAVE SUPERCONDUCTIVITY

! (0 +o)o',—A%’+AwT,

+
: \/(w;-i-w)z—Az\/w;z—Az

T

r * ’ Bw
IT,=—N(0) B dw’tanh >

1

X
VIV + @)= A%+ o, 2= A2+IT 12— (veq)>—iT

o B’ (0 +w)o —A?’+AwT,
+ N(O)f dw'tanh

T3— .
2 |7 Vi rwr-at o a2

1

(CD

X .
VIV +0)7— 82— o 2= AZ+iT 2= (0q)?—iT
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