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Collective phase oscillation in two-dimensionald-wave superconductors
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Institute of Physics, University of Tsukuba, Ibaraki 305, Japan
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We theoretically investigate the Carlson-Goldman~CG! mode in two-dimensionaldx22y2-wave supercon-
ductivity. In conventionals-wave superconductors, it is known that the CG mode is observed as a peak in the
structure function of the pair field susceptibilityS(q,v) only just below the transition temperatureTc and only
in dirty systems. On the other hand, in thed-wave state, we show that the peak structure can be observed down
to T.0.2Tc in clean systems. Furthermore, we also show that the peak splits into two when the direction of the
momentumq deviates from theqx or qy axes, or nodal directions of the order parameter. These features
originate from a singularity in the charge-density fluctuation due to the presence of the nodes of thed-wave
order parameter: It enhances the screening of the long-range Coulomb interaction so that the CG mode can
exist far belowTc . We also investigate a quasi-two-dimensional system, and show that the Josephson plasma
can be observed inS(q,v) whenq is parallel to thec direction.
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I. INTRODUCTION

The Goldstone mode which accompanies the spontan
gauge-symmetry breaking is one of the most fundame
phenomena in superconductivity. In neutral systems, i
known as the Anderson-Bogoliubov mode~phason!.1 In
charged systems, it is the Carlson-Goldman~CG! mode.2,3

Both modes have linear dispersions, and they are the co
tive phase oscillations of the superconducting order par
eter. In the language of the two-fluid picture, they are
oscillations of the superfluid component.

Besides the superfluid component, the quasipartic
which are excited thermally are also crucial, particularly
the CG mode. For conventional~isotropic! s-wave supercon-
ductors, the following important roles have been clarified

~i! Screening effect: In charged superconductors,
Goldstone mode does not exist atT50 because of the long
range Coulomb interaction between electrons~Anderson-
Higgs mechanism!.4 In order for the CG mode to appear, th
Coulomb interaction between superfluid carriers must
screened out by the quasiparticles. Thus the CG mode
pears only just below the transition temperature (Tc) where a
large number of quasiparticles are excited thermally.2,3,5–14

~ii ! Landau damping: The CG mode is observed as a p
in the structure function of the pair field susceptibili
S(q,v); it is experimentally measured by a tunneling expe
ment under a magnetic field.15–18 Since the quasiparticle
cause the Landau damping which makes the CG mode o
damped, the suppression of the damping effect is neede
observing the CG mode. In clean superconductors, the L
dau damping is so strong that the peak does not appe
S(q,v),14 even if the Coulomb interaction is screened out
is observed only in dirty systems, because the Landau da
ing is suppressed by potential scatterings.5–8,11,12,14

Since the discovery of high-Tc cuprates, thedx22y2-wave
superconductivity has attracted much attention.19 In this
state, since a large number of the quasiparticles can be
cited thermally around the nodes of thed-wave order param-
eter, the Landau damping should be stronger than that in
conventionals-wave one. Furthermore, when we introdu
potential scatterings in order to suppress the damping,
PRB 620163-1829/2000/62~9!/5971~13!/$15.00
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depairing effect by the scatterings increases the quasip
cles in thed-wave state, which may cause the Landau dam
ing. Thus, when only the smearing effect on the CG mod
considered, observation of this collective mode seems m
difficult in the d-wave state than in thes-wave one.

However, in addition to the stronger Landau damping,
can also expect a stronger screening effect by the quas
ticles around the nodes in thed-wave state. Then if the CG
mode can survive by the screening effect down to the lo
temperature region where the Landau damping is weak
may be observed as a peak inS(q,v) overwhelming the
Landau damping. Thus it is a crucial problem whether
nodes work positively or negatively for the CG mode at lo
temperatures. At the present stage, within a pole analysi
is reported that the CG mode is overdamped nearTc in the
d-wave state even in the presence of the poten
scatterings.20 However, the CG mode at low temperatur
has not been investigated yet.

In this paper, we present a microscopic theory for the C
mode in two-dimensionald-wave superconductors in orde
to clarify nodal effects on this mode. We assume a circu
Fermi surface, and calculateS(q,v) within the random
phase approximation~RPA! in terms of the pairing and the
long-range Coulomb interactions. Nonmagnetic impur
scatterings are taken into account within thet-matrix ap-
proximation. We also consider a quasi-two-dimensional s
tem, and investigateS(q,v) in the case when the momentu
q is parallel to thec axis.

This paper is organized as follows: We present our f
mulation in Sec. II. We investigate the CG mode in cle
systems and dirty ones, respectively, in Secs. III and IV.
extend our theory to a quasi-two-dimensional system in S
V, which is followed by the summary in Sec. VI. Througho
this paper, the clean system means the one in which pote
scatterings are absent. When the potential scattering
present, the system is called the dirty one.

II. FORMULATION

A. Model two-dimensional d-wave superconductor

We investigate the two-dimensionald-wave superconduc
tivity which is described by the Hamiltonian13,14,21
5971 ©2000 The American Physical Society



h

by

he

,
te
-

ty

c-

on

-

e

c-

e

be-

ith
we

e

5972 PRB 62Y. OHASHI AND S. TAKADA
H5(
p

Cp
†~jpt32Dpt1!Cp

1
1

2(q
FV~q!r3qr32q

2
g

2
~r1qr12q1r2qr22q!G1H imp , ~2.1!

whereCp
†5(cp↑

† ,c2p↓) is the Nambu field operator in whic
cps

† is an electron creation operator with spins; t i( i
51,2,3) is the Pauli matrix. The kinetic energy is given
jp5p2/(2m)2«F (p25px

21py
2) with «F being the Fermi

energy.
We put the long-range Coulomb interactionV(q)

54pe2/q2 assuming a three-dimensional material with t
two-dimensional electronic bandjp .22 As for the pairing in-
teraction, we assume the separable interactionHpair5
2g(p,p8gpgp8cp↑

† c2p↓
† c2p8↓cp8↑ , wheregp5A2 cos(2up) is

the basis function of thedx22y2-wave superconductivity;up
is the polar angle ofp around thepz axis measured from the
px axis. In this case, the order parameter has the formDp
5gpD. We have chosenDp being real and proportional to
the t1-component in Eq.~2.1!.

In Eq. ~2.1!, r iq5(pgp2q/2
i Cp2q

† t iCp ( i 51,2,3), where
gp

i 5(gp
1 ,gp

2 ,gp
3)[(gp ,gp,1). Physically,r3q is the charge-

density operator, whiler1q and r2q describe, respectively
the amplitude and phase fluctuation of the order parame

The last term in Eq.~2.1! represents the nonmagnetic im
purity scatterings:

H imp5u (
Ri ,p,p8

e2 i (q2q8)•RiCp
†t3Cp8 , ~2.2!

whereu is an impurity potential atRi . For simplicity, we
have assumed thes-wave scattering in Eq.~2.2!.

B. Structure function of pair field susceptibility

The structure function of the pair field susceptibili
S(q,v) is given by

S~q,v!5
1

v
Im@P22~q,v!#, ~2.3!

whereP22(q,v) is the correlation function of the phase flu
tuation of the order parameter:

P i j ~q,v!52 i E
0

`

dteivt^@r iq~ t !,r j 2q~0!#& ~ i , j 51,2,3!.

~2.4!

Equation ~2.4! also defines the charge-density fluctuati
P33, the amplitude fluctuationP11 and the coupling of dif-
ferent kinds of fluctuationsP i j : iÞ j .

In calculatingP22, it is convenient to introduce the fol
lowing polarization function in the Matsubara formalism

P i j ~q,inn!52E
0

b

dteinnt^Tt$r iq~t!r j 2q~0!%&, ~2.5!

and the thermal one-particle Green’s function
r.

G~p,ivm!5
1

ivm2jpt31Dpt1
, ~2.6!

where b51/T, while nn and vm express, respectively, th
Boson and the Fermion Matsubara frequencies.P i j (q,v) is
related to P i j (q,inn) as P i j (q,v)5P i j (q,inn→v1[v
1 id).

1. Clean system

In the clean system, the lowest-order polarization fun
tions in terms of the interactions are obtained as13,14

P22
0 ~q,v!5(

p
gp

2S 12
j1j21Dp

2

E1E2
D

3
E12E2

~E12E2!22v1
2 @ f ~E1!2 f ~E2!#

2(
p

gp
2S 11

j1j21Dp
2

E1E2
D E11E2

~E11E2!22v1
2

3@12 f ~E1!2 f ~E2!#, ~2.7!

P33
0 ~q,v!5(

p
S 11

j1j22Dp
2

E1E2
D E12E2

~E12E2!22v1
2

3@ f ~E1!2 f ~E2!#

2(
p

S 12
j1j22Dp

2

E1E2
D E11E2

~E11E2!22v1
2

3@12 f ~E1!2 f ~E2!#, ~2.8!

where f is the Fermi distribution function;E65Aj6
2 1Dp

2,
andj65jp6vF•q/2 (vF : Fermi velocity!. In Eqs.~2.7! and
~2.8!, we have expandedjp6q/2 up to O(q) assumingq
&O(1/j) (j5vF /Tc : superconducting coherenc
length!.13,14 We have also expandedDp1q/2 as Dp1q/2.Dp
6(q/2)•,pDp , and have neglected the second term,
cause it is smaller than the first one byO(D/«F) for q
&O(1/j).21,23

Under these approximations forjp and Dp , we find
P12

0 (q,v) 5 P21
0 (q,v) 5 P13

0 (q,v)5P31
0 (q,v)50.10,13,14

Then, since the amplitude fluctuation does not couple w
the charge-density fluctuation nor the phase fluctuation,
do not needP11

0 in studying P22. On the other hand, the
phase-charge couplingP23

0 is finite as

P23
0 ~q,v!52P32

0 ~q,v!

52 iv1(
p

gp

Dp

E1E2

E12E2

~E12E2!22v1
2

3@ f ~E1!2 f ~E2!#

2 iv1(
p

gp

Dp

E1E2

E11E2

~E11E2!2iv1
2

3@12 f ~E1!2 f ~E2!#. ~2.9!

Taking into account the interactions within RPA, w
obtain13,14
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P22~q,v!5
P̄22~q,v!

11~g/2!P̄22~q,v!
, ~2.10!

where

P̄22~q,v!5P22
0 ~q,v!1P23

0 ~q,v!
V~q!

12V~q!P33
0 ~q,v!

3P32
0 ~q,v!. ~2.11!

The gap equation can be written withP22
0 as13,14

11
g

2
P22

0 ~0,0!50. ~2.12!

The CG mode is obtained as a pole ofP22(q,v). From
Eqs. ~2.10! and ~2.12!, the equation of the CG mode i
P̄22(q,v)2P22

0 (0,0)50. In this paper, however, we solv
the real part of this equation13,14 when we calculate the dis
persion and the velocity of the CG mode; this treatment
glects the damping of the CG mode. We consider the da
ing by examining how the mode appears as a peak in
spectrum ofS(q,v).

In numerical calculations, we transform thep summation
in P i j

0 into thej and angular integrations. Then the Coulom

interaction always appears asV(q)N(0)([V̄) in Eq. ~2.11!,
whereN(0)5m/(2p) is the density of states~DOS! at the
Fermi level. We writeV̄ with use of the plasma energyvp

5A4pne2/m (n: carrier density! as V̄5(vp /Tc
0)2/(qj0)2,

wherej05vF /Tc
0 with Tc

0 being the transition temperature
the clean system, and putvp5104Tc

0@D. Although we do
not show thevp dependence of our results explicitly, the
are almostvp independent as far asvp@D.

2. Dirty system

~a! Renormalized Matsubara frequency and gap equati
We calculate the nonmagnetic impurity scatterings within
t-matrix approximation. The renormalized one-partic
Green’s function is then given by Eq.~2.6! with ivm being
replaced by24–28

i ṽm5 ivm1g
L~ ivm!

C22L~ ivm!2 , ~2.13!

where

L~ ivm!5K i ṽm

Aṽm
2 1Dp

2L
F

. ~2.14!

Here,g5ni /(pN(0)), C51/(puN(0)), andni is the num-
ber density of the impurities;̂•••&F represents the averag
-
p-
e

.
e

of p over the Fermi surface. Although our theory can tre
arbitrary scattering strength, as typical cases we conside~i!
the Born scattering (C@1), and ~ii ! the unitarity limit (C
50). Equation~2.13! is solved together with the gap equ
tion

ln
T

Tc
0

5
2p

b
(

m>0 F K gp
2

Aṽm
2 1Dp

2L
F

2
1

vm
G . ~2.15!

~b! P22(q,v) in dirty system.In the dirty system,P i j
0 in

Eq. ~2.11! is replaced byP i j
G which is given by

S P22
G P23

G

P32
G P33

G D 5S 0 0

0 P33
GND 1

N~0!

p i E
2`

`

dv8tanh
bv8

2

3@J1~q,v,v8!2J2~q,v,v8!#. ~2.16!

~The derivation ofP i j
G is explained in Appendix A.! Here

P33
GN representsP33

G in the normal state:

P33
GN~q,v!522N~0!F12

v

A~v1 iG!22~vFq!22 iG
G ,

~2.17!

whereG52g/(11C2) is the damping rate of electrons. Th
matrix J6(q,v,v8) in Eq. ~2.16! is given by

J6~q,v,v8!5Â6~q,v,v8!2Ā6~q,v,v8!

3
1

11a6~v,v8!A6~q,v,v8!

3a6~v,v8!Ã6~q,v,v8!. ~2.18!

We write the matrix elements ofA6 , Â6 , Ā6 , andÃ6 as,
for example,

A65S A6
22 A6

23

A6
32 A6

33D . ~2.19!

Then their matrix elements are given by

5
A6

i j ~q,v,v8!5^W6
i j ~p,q,v,v8!&F ,

Â6
i j ~q,v,v8!5^gp

i W6
i j ~p,q,v,v8!gp

j &F ,

Ā6
i j ~q,v,v8!5^gp

i W6
i j ~p,q,v,v8!&F ,

Ã6
i j ~q,v,v8!5^W6

i j ~p,q,v,v8!gp
j &F .

~2.20!

The definition ofW6
i j is as follows:
S W6
22 W6

23

W6
32 W6

33D 5p i
AZ~v18 1v!22Dp

26AZ~v68 !22Dp
2

h22@AZ~v18 1v!22Dp
26AZ~v68 !22Dp

2#2

3F t36
Z~v18 1v!Z~v68 !2Dp

21@Z~v18 1v!2Z~v68 !#Dpt2

AZ~v18 1v!22Dp
2AZ~v68 !22Dp

2 G , ~2.21!
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whereh5(pF /m)•q, andZ(v6) is the renormalized frequency in Eq.~2.13! in which the analytic continuation,inn→v6 , is
taken. In Eq.~2.18!, a6(v,v8) is defined by

a6~v,v8!5
G

2p
3H t3 ~Born!,

21

L~ ivm→v18 1v!L~ ivm→v68 !
~unitarity!.

~2.22!
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III. COLLECTIVE PHASE OSCILLATION IN
CLEAN SYSTEM

A. Dispersion

Figure 1 shows the dispersion of the CG mode atuq
50. (uq : polar angle of the momentum of the CG mo
measured from theqx axis.! The CG mode has a linear dis
persion for small momenta as the phason in the neutral
tem. When temperature is lowered, the dispersion of the
mode disappears from the high-energy region and disapp
completely belowT.0.45Tc

0 . This is because the screenin
of the Coulomb interaction by quasiparticles is weaker
lower temperatures.

In neutral d-wave superconductivity, on the other han
the phason exists down toT50. In particular, atT50 we
obtainv5(vF /A2)•q for smallq irrespective ofuq ~Appen-
dix B!.

In addition to the CG mode, we obtain the other soluti
which has higher energy than the CG mode.14 ~In the follow-
ing, it is referred as the upper mode.! At the present stage
the character of this mode is unclear except that, as show
Fig. 2, the CG mode disappears with the upper mode at a
temperature. Since the upper mode does not appear as a
in the spectrum ofS(q,v), we do not investigate it in this
paper.

B. Velocity

Figure 2 shows the velocities of the CG modevCG and the
phasonvf . The difference between the two is small nearTc

0 ,
because the Coulomb interaction is screened out by the
siparticles. The anisotropy ofvCG becomes remarkable wit
decreasing temperature. Sinceuq dependence ofvf is weak
compared with that ofvCG, we find that the effect of the

FIG. 1. Dispersion of the CG mode atuq50.
s-
G
ars

t

,

in
w
eak

a-

charge-density fluctuation which is described by the last te
in Eq. ~2.11! ([V2332) is the dominant origin of this anisot
ropy.

The temperature region where the CG mode exists is v
wide compared with that in the isotropics-wave case as
shown in Fig. 2~a!. ~For the isotropics-wave state, we put
gp51.! This is because the quasiparticles around the no
can screen the Coulomb interaction down to lower tempe
tures in thed-wave state. We also find that, whilevCG in-
creases with decreasing temperature in the isotropics-wave
state, it saturates at a value ([vS) depending onuq in the
d-wave one. The increase ofvCG in the former can be under
stood as that the phase of the order parameter beco

FIG. 2. Temperature dependence of the velocity of the coll
tive phase oscillations. We have obtained the velocity asv5v/q at
qj050.2. In thes-wave case, the CG mode and the upper mode
shown with the same dashed-dotted line.
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‘‘hard’’ owing to the recovery of the long-range Coulom
interaction at low temperatures. On the other hand,vS is well
described byvS5vF cosu1, whereu1[uq2p/4 is the angle
of q measured from the nodal direction atu5p/4. Indeed,
this equation gives

vS5vF3H 0.707 ~0.715 atT50.6Tc
0! :uq50,

0.831 ~0.833 atT50.6Tc
0! :uq5p/16,

1 ~0.99 atT50.4Tc
0! :uq5p/4,

~3.1!

where the numbers in the parentheses isvCG in Fig. 2. Thus
we find that the saturation ofvCG is deeply related to the
nodes of the order parameter. We investigate this effec
detail in Sec. III.D.

C. Structure function of pair field susceptibility: S„q,v…

Figure 3 shows the temperature dependence ofS(q,v).
At T50.99Tc

0 , the anisotropy ofS(q,v) is weak, because
the thermal excitation of the quasiparticles is not restric
around the nodes but occurs in all directions in moment

FIG. 3. Temperature dependence ofS(q,v) at qj050.2 in
chargedd-wave superconductivity. SinceS(q,v) at T50.99Tc

0 is
almostuq independent, only the spectrum atuq50 is shown in the
inset in ~a!.
in

d

space. Apart from slight difference, the spectrum is given
the inset in Fig. 3~a! irrespective ofuq . We find that there is
no peak structure except for the central peak atv50.

A peak structure begins to appear at a finite energy
pending onuq for T&0.8Tc

0 : The peak splits into two for
uqÞ0 as shown in Fig. 3~b!. At uq5p/4, the higher peak is
located nearv50.2Tc

0 , while the lower one disappears.
We compare the peak energy atT50.5Tc

0 with v
5vCGq in which vCG is given in Fig. 2:

v

Tc
0

5H 0.144 ~0.141! :uq50,

0.168 ~0.112, 0.166! :uq5p/16,

0.197 ~0.196! :uq5p/4,

~3.2!

where the numbers in the parentheses are the peak ene
in Fig. 3. Thus except for the lower peak in Fig. 3~b!, we find
that the peaks correspond to the CG mode. We mention
this result is qualitatively different from that in the clea
isotropics-wave case in which, as shown in Fig. 4, the C
mode does not appear in the spectrum ofS(q,v).14

There is no pole which corresponds to the lower peak
Fig. 3~b!. We note that it is not the ‘‘upper mode.’’ Instead
we find that the lower peak energy is well fitted withv
5vS8q, wherevS85vF cosu2. @u2[uq2(2p/4): angle ofq
measured from the nodal direction atu52p/4]: It gives v
50.111Tc

0 at uq5p/16. This agreement indicates that th
node of the order parameter is a key also in understand
the lower peak. Furthermore, since the splitting of the pea
not observed in the neutral system~Fig. 5!, V2332 is crucial
also for the lower peak in Fig. 3~b!.

D. Nodal effect on the CG mode

Now we investigate how the nodes of the order parame
affect the CG mode andS(q,v). Focusing onDp50 at the
nodes, we regard the nodes as twoone-dimensional normal-
state electronic bandstoward u56p/4, as schematically
shown in Fig. 6.

These ‘‘normal bands’’ do not affectP22
0 and P23

0 , be-
cause the basis function,gp5A2 cos(2up) in Eqs. ~2.7! and
~2.9! equals 0 at the nodes. On the other hand, they af

FIG. 4. Temperature dependence ofS(q,v) at qj050.2 in two-
dimensional chargeds-wave superconductivity withgp50.
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P33
0 , becausegp is absent in Eq.~2.8!. To see the effect of

the normal bands, we extract only their contributions fro
P33

0 (q,v):

P33
(1)~q,v![22N1~0! (

i 51,2

h i
2

h i
22v1

2 , ~3.3!

whereh i5vFqi with qi5q cosui ; N1(0) is DOS of one of
the one-dimensional bands at the Fermi level. Clearly,
~3.3! diverges negatively in the limitv→h i2d. In this limit,
the screened Coulomb interactionV/(12VP33

(1)) is com-

FIG. 5. Temperature dependence ofS(q,v) at qj050.2 in neu-
tral d-wave superconductivity.

FIG. 6. Schematic picture of two one-dimensional normal el
tron bands ind-wave superconductivity.
q.

pletely suppressed. Although the angular integration in
~2.8! weakens the singularity, it still remains inP33

0 as
shown in Fig. 7.

Figure 8 shows the spectrum of the real part ofV2332. In

-

FIG. 7. Real part ofP33
0 (q,v) in chargedd-wave superconduc-

tivity. We put T50.5Tc
0 andqj050.2.

FIG. 8. Real part of V23325P23
0 @V/(12VP33

0 )#P32
0 at T

50.5Tc
0 and qj050.2. We also showdP22(N)[Re@P22

0 (q,v)

2P22
0 (0,0)# and dP22(C)[Re@P̄22

0 (q,v)2P22
0 (0,0)#5dP22

N

1Re@V2332#. The zeros of the former and the latter give the phas
and the CG mode, respectively.
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PRB 62 5977COLLECTIVE PHASE OSCILLATION IN TWO- . . .
Figs. 8~a! and ~b!, we find that, as in the above simple di
cussion, the Coulomb interaction is suppressed arounv
5h i : At uq50, the effect of the two bands appears arou
v5vFq cos(p/4)50.141Tc

0 , while it appears v
5vFq cos(3p/16)50.166Tc

0 and vFq cos(5p/16)50.111Tc
0

for uq5p/16. Then the CG mode is obtained even atT
50.5Tc

0 @dP22(C)50 in Figs. 8~a! and 8~b!#. On the other
hand, since this screening effect is absent in the isotro
s-wave state,dP22(C) does not cross zero in Fig. 8~c!.

The imaginary part ofV2332 increases rapidly forv*h i

as a result of the singularity inP33
0 , as shown in the insets in

Figs. 8~a! and~b!. Thus the imaginary part of the denomin
tor of Eq. ~2.11! also increases rapidly forv*h i . In addi-
tion, Re@P̄22(q,v)2P22

0 (0,0)# equals zero at the pole, and
is small also aroundv50.111Tc

0 at uq5p/16. ThusS(q,v)
has a peak atv.h i and decreases drastically forv*h i .

The saturation ofvCG in Fig. 2 is also attributed to the
one-dimensional bands. Let us rewrite the equation of
CG mode as Re@P22

0 (q,v)2P22
0 (0,0)#1Re@V2332#50.

Since Re@P22
0 (q,v)2P22

0 (0,0)#50 gives the phason in th

FIG. 9. G dependence ofS(q,v) in the unitarity limit. We put
T50.2Tc andqj050.2. The inset shows the superconducting DO
normalized byN(0) for G50.1Tc

0 .
d

ic

e

neutral system, thev dependence of Re@P22
0 (q,v)

2P22
0 (0,0)# aroundv5vfq is almostT independent at low

temperatures wherevf.vF /A2. Furthermore, Re@V2332# is
always suppressed around the same energyv5h i . There-
fore the energy of the CG mode is always located arou
v5h i at low temperatures.

Before ending this section, we briefly note that the sa
nodal effect occurs also in the extendeds-wave state charac
terized bygp5A2ucos(2up)u because the basis function a
pears asgp

2 andgpDp in P i j
0 .

IV. COLLECTIVE PHASE OSCILLATION IN DIRTY
SYSTEM

The peak inS(q,v) is smeared by the impurity scatte
ings as shown in Fig. 9~Born scattering! and Fig. 10~uni-
taritylimit!. When we again assume the two one-dimensio
bands in Fig. 6, we obtain

FIG. 10. G dependence ofS(q,v) in the case of the Born scat
tering. We putT50.2Tc andqj050.2. The inset shows the supe
conducting DOS normalized byN(0) for G50.1Tc

0 .
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P33
(1)~q,v!524N1~0!

~h1
22v̄2!h2

21~h2
22v̄2!h1

2

~h1
22v̄2!~h2

22v1v̄ !1~h2
22v̄2!~h1

22v1v̄ !
, ~4.1!
se

r
g

,

er
ne

o
i

in
e
.

,

-
y
c
ic

e

ast
al-

en-

be
l
o-

ergy
ring

of

e
-

-

where v̄5v1 iG. We find that the singularity atv5h i is
eliminated byG. As a result, the peak structure is suppres
by the impurity scatterings.

In the unitarity limit, the zero-energy bound states a
induced around impurities,29 so that the superconductin
DOS becomes finite aroundv50 ~inset in Fig. 9!. The in-
duced quasiparticles aroundv50 then cause the damping
which smears the peak structure inS(q,v). On the other
hand, the Born scattering does not cause the zero-en
bound state; the effect mainly appears around the region
the energy gap,v5A2D as far asG is small~see the inset in
Fig. 10!. Thus the smearing effect by the Born scattering
the CG mode being located in the low-energy region
weaker than that in the case of the unitarity limit.

When the temperature increases, the quasiparticles
duced by the Born scattering around the energy gap beg
excite. Thus, even in the case of the Born scattering, the p
structure is smeared out by weakerG at higher temperatures
As an example, we show theG dependence ofS(q,v) at T
50.5Tc in Fig. 11.

Figure 12 shows theG dependence ofS(q,v) just below
Tc where, in the case of isotropics-wave superconductivity
the CG mode appears inS(q,v) in the dirty system~inset in
Fig. 12!.5,12,14In thed-wave superconductivity, only the cen
tral peak is observed atv50. This is because the singularit
in P33

0 is eliminated byG, and is because the depairing effe
by the impurity scattering increases the quasiparticles wh
contribute to the damping of the CG mode.30

Although our theory is based on thet-matrix approxima-
tion, the singularity inP33

0 should be suppressed even if w
e
e

y

d

e

gy
ar

n
s

in-
to
ak

t
h

treat the impurity scattering more correctly. Thus, at le
qualitatively, we expect that the present tendency is not
tered by more improved theories.

V. S„q,v… IN C DIRECTION: JOSEPHSON PLASMA

A. Extension to quasi-two-dimensional system

In this section, we take into account a weak three dim
sionality, and investigateS(q,v) in the case whenq is par-
allel to thec axis. It is known that the plasma energy can
very low in the c direction of quasi-two-dimensiona
systems.31–35 This low-frequency plasma, the so-called J
sephson plasma, is observed in high-Tc cuprates:36–43 The
observed plasma energy is lower than the energy gap.43 Fur-
thermore, the temperature dependence of the plasma en
in high-Tc cuprates indicates the presence of a scatte
mechanism in thec-axis charge dynamics.21 In the following,
we investigate how the Josephson plasma affectsS(q,v) in
dirty quasi-two-dimensionald-wave superconductivity.

In order to take into account weak three dimensionality
the system, we assume a simple effective-mass model:21,33,34

We add a dispersion in thec directionpz /(2mz)(mz@m) to
the kinetic energyjp . Then we cut the Fermi surface at th
Brillouin-zone boundary atpz56p to obtain an open quasi
two-dimensional Fermi surface.

In the dirty system, the formulation for the two
dimensional system is still valid except thatW6

i j in Eq. ~2.20!
is replaced by
S W̄6
22 W̄6

23

W̄6
32 W̄6

33D 5
p i

2v̄q
lnFAZ~v18 1v!22Dp

26AZ~v68 !22Dp
22 v̄q

AZ~v18 1v!22Dp
26AZ~v68 !22Dp

21 v̄q
G

3F t36
Z~v18 1v!Z~v68 !2Dp

21@Z~v18 1v!2Z~v68 !#Dpt2

AZ~v18 1v!22Dp
2AZ~v68 !22Dp

2 G , ~5.1!
e
w-
the

14;
irty
where v̄5p/mz , and we have putq5(0,0,q). We express

V̄ with use of the plasma energy along thec axis in the

clean systemvp
z5A4pdne2/mz as V̄5(3/2)•(vp

z/Tc
0)2/

(qjz)
2,21,33,34 where dn5(p/3)(m/mz) is the conductive

carrier density in thec direction andjz[ v̄/Tc
0 . Sincedn can

be much smaller than the total carrier densityn in the quasi-
two-dimensional system,vp

z can be much lower than th
plasma energy in the in-plane direction. In the following, w
put vp

z50.05Tc
0 in order to describe the low-frequenc

plasma.
B. S„q,v… in c direction

Figure 13 shows the temperature dependence ofS(q,v)
whenq is parallel to thec axis. As in the case of the in-plan
direction, we find a peak structure at low temperatures. Ho
ever, this mode does not have a linear dispersion, but has
finite energyv.vp

z at q50 ~Fig. 14!. Thus this is the Jo-
sephson plasma oscillation.

Although there are fourline nodes running along thec
axis, there is no remarkable nodal effect in Figs. 13 and
results similar to these figures are obtained also in the d
quasi-two-dimensional isotropics-wave superconductivity.33
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When we regard them as twotwo-dimensional normal elec
tron bands, and extract their contribution fromP33

G , we ob-
tain

P33
(2)524N2~0!F 11

v1

2v̄q

lnFv1 iG2 v̄q

v1 iG1 v̄q
G

11
iG

2v̄q
lnFv1 iG2 v̄q

v1 iG1 v̄q
GG ,

~5.2!

whereN2(0) is DOS of one of the two-dimensional bands
the Fermi level. AtG50, Eq. ~5.2! divergespositivelyand
logarithmically forv→ v̄q2d. Thus the strong screening e
fect which is obtained in Eq.~3.3! is absent in the presen

FIG. 11. G dependence ofS(q,v) at T50.5Tc anduq5p/16 in
the case of the Born scattering.

FIG. 12. G dependence ofS(q,v) at T50.999Tc and qj0

50.2 in chargedd-wave superconductivity. Since results for th
Born scattering and the unitarity limit are almost the same, only
former case is shown. We note that the values ofG shown in this
figure are normalized by, notTc

0 , but Tc which is the transition
temperature in the presence of the impurity scatterings. When
normalize G by Tc

0 , 0.80, 1.75, 3.86 become 0.6, 1.0, and 1
respectively. The inset showsS(q,v) at T50.999Tc

0 and qj0

50.2 in the case of two-dimensional chargeds-wave superconduc
tivity with gp51. A peak at a finite energy is the CG mode. Fo
mulation for thes-wave state is explained in Appendix C.
t

case. This logarithmic divergence is easily suppressed bG
and the angular integration which we have neglected in
~5.2!.

Figure 15 shows theG-dependence ofS(q,v). We find
that the plasma peak is not smeared by the impurity sca
ings in contrast to the peak of the CG mode in thed-wave
state. This is because, in the dirty system (vp

z!G), the
plasma is the oscillation of only the superfluid compone
which is not accompanied by dissipation.33,34 On the other
hand, since the depairing effect decreases the superfluid
rier density, the peak energy in Fig. 15, or the plasma ene
is lowered byG.

VI. SUMMARY AND DISCUSSION

In this paper, we showed that the character of the
mode is much different in-between thed-wave and isotropic
s-wave superconductors. In the former state, the CG m
can be observed inS(q,v) at low temperatures in the clea
system. This is due to the presence of four ‘‘Fermi points’’
the nodes of thed-wave order parameter. They work as
there are two one-dimensional normal electric bands, wh
cause a singularity in the charge-density fluctuation to lea
a strong screening effect. This effect is suppressed in

e

e
,

FIG. 13. Temperature dependence ofS(q,v) for q
5(0,0,0.2jz

21). The figure shows the case of the Born scatteri
We putG50.1Tc

0 .

FIG. 14. Dispersion of the collective mode~plasma oscillation!
in the c direction which is obtained from Eq.~2.20!. We put T
50.2Tc , G50.1Tc

0 , and the Born scattering is assumed.
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dirty system. On the other hand, the CG mode is obser
just below Tc in the dirty system in the isotropics-wave
state. We also showed that, whenq is toward thec direction,
instead of the CG mode, the plasma oscillation can be
served inS(q,v).

When we apply the present results to high-Tc cuprates, we
should take into account the anisotropy of the electro
state: If DOS in the normal state is negligibly small arou
the nodes compared with DOS around (6p,0) and (0,
6p) in real systems, the nodal effect discussed in this pa
is suppressed. In other cases, it should remain. In the la
case, since the high-Tc cuprate superconductors are known
be near the clean limit in the in-plane direction~mean free
path l;100@A#@j;10@A#), and since, far belowTc , the
inelastic scattering by the antiferromagnetic spin fluctuati
is suppressed by the presence of the excitation gap, the
mode may be observed in the in-plane direction of highTc
cuprates. In addition, since the detailed Fermi surface in
in-plane direction is not crucial for the Josephson plasma
the c direction, we can expect that the Josephson plas
which has been observed by the microwave experiments
be observed in high-Tc cuprates also by the tunneling expe
ment which was developed for the CG mode.

APPENDIX A: CALCULATION OF P22
G IN DIRTY

SYSTEM

The polarization functionP i j
G is given by

P i j
G~q,inn!5

1

b (
p,vm

Tr@t igp
i G̃~p1q/2!Gp1q/2,p2q/2

j G̃

3~p2q/2!#, ~A1!

FIG. 15. G dependence ofS(q,v) for q5(0,0,0.2jz
21) at T

50.2Tc .
d

b-

c

er
ter

s
G

e
in
a

ay

whereGp1q/2,p2q/2
j is the vertex correction fort jgp

j ; we have
simply written p1q/25(p1q/2,vm1nn), p2q/25(p
2q/2,vm). In the following, we considerP i j

G (q,inn) with
i , j 50,1,2,3; fori 50 and/orj 50, t051 andgp

051 are used
in Eq. ~A1!.

1. Vertex correction

The vertex correctionGp1q/2,p2q/2
j within the t-matrix ap-

proximation is diagrammatically given by Fig. 16. Summin
up the impurity scatterings inU in Fig. 16, we obtain

Gp1q/2,p2q/2
j 5t jgp

j 1ni(
k

ũ~ ivm1 inn!G̃

3~k1q/2!Gk1q/2,k2q/2
j G̃~k2q/2!ũ~ ivm!,

~A2!

where k1q/25(k1q/2,vm1nn), and k2q/25(k
2q/2,vm). The functionũ is given by

ũ~ ivm!5ut3

1

12u(
p

G̃~p,ivm!t3

5
1

pN~0!

Ct32L~ ivm!

C22L2~ ivm!
. ~A3!

Since the last term in Eq.~A2! is independent ofp, we can
write

Gp1q/2,p2q/2
j 5t jgp

j 1 f j~q,ivm!, ~A4!

whereq5(q,inn), and

FIG. 16. Feynman diagram forP i j
G within the t-matrix approxi-

mation. The solid line represents the renormalized Green’s funct

G̃, which includes the self-energy part. The bare vertext igp
i is

expressed by the solid circle, while ‘‘3 ’’ represents an impurity.
The four point vertexU describes the multiscattering by impuritie
~dashed line!.
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f j~q,ivm!5ni(
k

ũ~ ivm1 inn!G̃~k1q/2!t jgk
j G̃

3~k2q/2!ũ~ ivm!1ni(
k

ũ~ ivm1 inn!G̃

3~k1q/2!t j f j~q,ivm!G̃~k2q/2!ũ~ ivm!.

~A5!

When we expand f j (q,ivm) as f j (q,ivm)
5( l 50

3 F jl (q,ivm)t j , F jl satisfies10,14

(
l 50

3

F jl ~q,ivm!Fd jn2niN~0!(
r 50

3

Slr ErnG
5niN~0!(

r 50

3

S̃jr Ern , ~A6!

where

Slr 5
1

2N~0! (
k

Tr@G̃~k1q/2!t l G̃~k2q/2!t r #,

S̃jr 5
1

2N~0! (
k

Tr@G̃~k1q/2!t jgk
j G̃~k2q/2!t r #,

Elr ~ ivm1 inn ,ivm!5
1

2
Tr@ ũ~ ivm1 inn!t l ũ~ ivm!t r #. ~A7!

In Eq. ~A7!, the trace is taken with respect to the Pauli m
trices. Introducing 434 matrices,F[$Fi j %, S[$Si j %, S̃

[$S̃i j %, and E[$Ei j % ( i , j 50;3), F is obtained asF

5niN(0)S̃E@12niN(0)SE#21.

2. P i j
G

Substituting Eq.~A4! into Eq. ~A1!, we obtain

P i j
G~q,inn!5

1

b (
p,vm

Tr@t igp
i G̃~p1q/2!t jgp

j G̃~p2q/2!#

1
1

b (
p,vm ,l

F jl ~q,ivm ,inn!

3Tr@t igp
i G̃~p1q/2!t l G̃~p2q/2!#. ~A8!

When we rewrite the last term in Eq.~A8! with use of

S̄lr
i 5

1

2N~0! (
p

gp
i Tr@G̃~p1q/2!t l G̃~p2q/2!t r #,

~A9!

only the term with i 5r remains because of Tr@t it r #

52d ir . In the following, we simply writeS̄li
i as S̄li . Equa-

tion ~A8! then becomes

PG5
2N~0!

b (
vm

$Â1niN~0!Ā@12niN~0!ĒA#21ĒÃ%,

~A10!
-

wherePG[$P i j
G%, A5 tS, Ã5 tS̃, Ā5$S̄j i %, and the matrix

element ofÂ is given by

Âi j 5
1

2N~0! (
p

Tr@t igp
i G̃~p1q/2!t jgp

j G̃~p2q/2!#.

~A11!

3. Expressions for Born scattering and unitarity limit

a. Ē

In the cases of the Born scattering (C@1) and the unitar-
ity limit ( C50), Eq. ~A3! is respectively reduced to

ũ~ ivm!5H 1

pN~0!C
t35ut3 ~Born!,

1

pN~0!L~ ivm!
~unitarity!.

~A12!

Then Ēi j is given by

Ēi j
Born5u2S t3 0

0 2t3
D ,

Ēi j
unitarity5

1

L~ ivm1 inn!L~ ivm!S 1

pN~0! D
2S 1 0

0 1D .

~A13!

b. j integration

We transform thep summation inPG into thej and an-
gular integrations, and execute the former integration. In
procedure, we mention that, in principle, we must exec
thevm summation before thej integration, because the com
mutability of the two calculations is not guaranteed. Th
when we exchange the two procedures in our calculation,
must carefully treat the commutability. In the present ca
the uncommutability occurs inP33

G .14 In order to avoid this
uncommutability, we writeP33

G as14

P33
G 5@P33

G 2P33
GN#j1P33

GN , ~A14!

where P33
GN representsP33

G in the normal state, which is
given by Eq.~2.17!.14 Since@P33

G 2P33
GN# well converges, we

can execute thej integration before thevm summation in it;
the subscriptj in Eq. ~A14! represents this exchange.

When we execute thej integration, we find thatA, Ã, Ā,
and Â have the block-diagonalized form as

S a00 a01 0 0

a10 a11 0 0

0 0 a22 a23

0 0 a32 a33

D . ~A15!

Thus, as far as Eq.~A13! is considered, the upper and th
lower blocks in Eq.~A15! do not mix with each other in
calculating Eq.~A10!. Since we need only the lower 232
block in PG @↔ Eq. ~2.16!#, we extract this part:
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S P22
G P23

G

P32
G P33

G D
j

5
2N~0!

b
(
vm

3$Â2Ā@11a~ ivm ,inn!A#21a

3~ ivm ,inn!Ã%, ~A16!

wherea( ivm ,inn) is given by Eq.~2.22!. In Eq. ~A16!, A,
Ā, Ã, andÂ are now 232 matrices with the matrix element
being arranged as Eq.~2.19!; their expressions are given b
Eq. ~2.20! in which the subscript ‘‘6 ’’ being eliminated,v
→ inn , andv8→ ivm .

c. vm summation and analytic continuation

We calculate thevm summation in the same way as th
in the case of thes-wave superconductivity:14 We transform
the summation into the complex integration in the ordina
manner. After avoiding branch cuts on the complex pla
we put inn→v1 id. Then, except forP33j

G , Eq. ~A16! is
reduced to the second term in Eq.~2.16!. In P33j

G , in addition
to the second term in Eq.~2.16!, there is an extra term com
ing from a complex integration along the infinitely larg
contour;14 however, it is canceled byP33j

GN in Eq. ~A14!.
Thus@P33

G 2P33
GN#j gives the second term in Eq.~2.16!. Tak-

ing account the last term in Eq.~A14!, we obtain Eq.~2.16!.
.

y
,

APPENDIX B: PHASON AT TÄ0 IN TWO-DIMENSIONAL
SYSTEM

The equation of the phason isP22
0 (q,v)2P22

0 (0,0)50.
At T50, the first line in the right-hand side of Eq.~2.7! is
absent. We putv5vfq, and then expand the second line
Eq. ~2.7! in terms ofq up to the second order:

P22
0 ~q,v!2P22

0 ~0,0!.2
N~0!

2D2 Fvf
2 2

1

2
~vF!2Gq2.

~B1!

Thus we obtainvf5vF /A2.
In the charged system, when we expandV2332 as in the

above, we obtainV23325N(0)/(2D2)•(vCGq)2 at T50.
Then we obtainvCG5`, which means the absence of the C
mode atT50.

APPENDIX C: P22 IN DIRTY TWO-DIMENSIONAL
S-WAVE SUPERCONDUCTIVITY

The derivation ofP22 for a dirty two-dimensionals-wave
superconductivity is the same as that in our previous pa
for a three-dimensional one:14 We replace the second term i
the right-hand side of Eq.~2.16! by PM

G which is given by
Eq. ~B.20! in Ref. 14. In Eq.~B.20!, the average is now take
over the two-dimensional Fermi surface. Then we obtain
PM
G 52N~0!E

2`

`

dv8tanh
bv8

2 F t31
~v18 1v!v18 2D21Dvt2

A~v18 1v!22D2Av18
22D2G

3
1

A@A~v18 1v!22D21Av18
22D21 iG#22~vFq!22 iG

1N~0!E
2`

`

dv8tanh
bv8

2 F t32
~v18 1v!v28 2D21Dvt2

A~v18 1v!22D2Av28
22D2

.G
3

1

A@A~v18 1v!22D22Av28
22D21 iG#22~vFq!22 iG

. ~C1!
s.

-

1P. W. Anderson, Phys. Rev.110, 827 ~1958!; 112, 1900~1958!.
2R. V. Carlson and A. M. Goldman, Phys. Rev. Lett.31, 880

~1973!; 34, 11 ~1975!; J. Low Temp. Phys.25, 67 ~1976!.
3F. E. Aspen and A. M. Goldman, J. Low Temp. Phys.43, 559

~1981!.
4P. W. Anderson, Phys. Rev.130, 439 ~1963!.
5A. Schmid and G. Scho¨n, Phys. Rev. Lett.34, 941 ~1975!.
6S. N. Artemenko and A. F. Volkov, Zh. E´ksp. Teor. Fiz.69, 1764

~1975! @ Sov. Phys. JETP42, 896 ~1975!#.
7C. J. Pethick and H. Smith, Ann. Phys.~N.Y.! 119, 133 ~1979!.
8A. M. Kadin, L. N. Smith, and W. J. Skocpol, J. Low Temp

Phys.38, 497 ~1980!.
9M. Dinter, J. Low Temp. Phys.26, 557 ~1974!; 32, 529 ~1978!;
Phys. Rev. B18, 3163~1978!.

10I. O. Kulik, Entin-Wohlman, and R. Orbach, J. Low Temp. Phy
43, 591 ~1981!.

11O. D. Cheishvili, J. Low Temp. Phys.48, 445 ~1982!.
12G. Schön, Nonequilibrium Superconductivity, edited by D. N.

Langenberg and A. I. Larkin~Elsevier Science Publishers, Am
sterdam, 1986!, Chap. 13, and references therein.

13K. Y. M. Wong and S. Takada, Phys. Rev. B37, 5644~1988!.
14Y. Ohashi and S. Takada, J. Phys. Soc. Jpn.66, 2437~1997!.
15R. A. Ferrel, J. Low Temp. Phys.1, 423 ~1969!.
16D. J. Scalapino, Phys. Rev. Lett.24, 1052~1970!.
17H. Takayama, Prog. Theor. Phys.46, 1 ~1971!.



e,

tro
,
-
t

A
s

tt.

v.

.

c

fo
ng

ring

d

B.

.

-

v.

S.

.
c,
,

.

PRB 62 5983COLLECTIVE PHASE OSCILLATION IN TWO- . . .
18S. R. Shenoy and P. A. Lee, Phys. Rev. B10, 2744~1974!.
19D. J. van Harlingen, Rev. Mod. Phys.67, 515 ~1995!.
20S. N. Artemenko and A. G. Kobelkov, Phys. Rev. B55, 9094

~1997!.
21Y. Ohashi and S. Takada, J. Phys. Soc. Jpn.67, 551 ~1998!.
22The expression ofV(q) depends on a model. For exampl

V(q)52pe2/q for a purely two-dimensional case, while

V~q!5
2pde2

qi

sinh~dqi!

cosh~dqi!2 cos~dqz!
~qi5Aqx

21qy
2!

for a layered system in the absence of the interlayer elec
tunneling (d: interlayer spacing! @H. A. Fertig and S. D. Sarma
Phys. Rev. B44, 4480 ~1991!#. However, the detailed expres
sion is not crucial for the CG mode, because it appears when
Coulomb interaction is screened out by the quasiparticles.
though we do not show theV(q) dependence of our result
explicitly, they do not depend on the choice ofV(q).

23C. Bruder, Phys. Rev. B41, 4017~1990!.
24S. Schmitt-Rink, K. Miyake, and C. M. Varma, Phys. Rev. Le

57, 2575~1986!.
25P. J. Hirschfeld, D. Vollhardt, and P. Wo¨lfle, Solid State Com-

mun.59, 111 ~1986!.
26P. J. Hirschfeld, P. Wo¨lfle, and D. Einzel, Phys. Rev. B37, 83

~1988!.
27P. J. Hirschfeld, W. O. Putikka, and D. J. Scalapino, Phys. Re

50, 10 250~1994!.
28P. J. Hirschfeld, S. M. Quinlan, and D. J. Scalapino, Phys. Rev

55, 12 742~1997!.
29Y. Onishi, Y. Ohashi, Y. Shingaki, and K. Miyake, J. Phys. So

Jpn.65, 675 ~1996!.
30At the present stage, we cannot exclude the possibility that,

larger G than 3.86Tc , the suppression of the Landau dampi
n

he
l-

B

B

.

r

overwhelms the increase of the quasiparticles by the depai
effect, and the CG mode appears inS(q,v) even in d-wave
superconductors. However, since thed-wave superconductivity
is absent for G>1.76Tc

0 and G53.86Tc corresponds toG

51.4Tc
0 ~namely, the superconductivity is almost suppresse!,

this possibility seems difficult.
31H. A. Fertig and S. D. Sarma, Phys. Rev. B44, 4480~1991!.
32M. Tachiki, T. Koyama, and S. Takahashi, Phys. Rev. B50, 7065

~1994!.
33Y. Ohashi and S. Takada, Phys. Rev. B59, 4404~1999!.
34Y. Ohashi and S. Takada, Phys. Rev. B61, 4276~2000!.
35T. Koyama, J. Phys. Soc. Jpn.68, 2010~1999!.
36K. Tamasaku, Y. Nakamura, and S. Uchida, Phys. Rev. Lett.69,

1455 ~1992!.
37Ophelia K. C. Tsui, N. P. Ong, Y. Matsuda, Y. F. Yan, and J.

Peterson, Phys. Rev. Lett.73, 724 ~1994!.
38Y. Matsuda, M. B. Gaifullin, K. Kumagai, K. Kadowaki, and T

Mochiku, Phys. Rev. Lett.75, 4512~1995!.
39K. Kadowaki, I. Kakeya, M. B. Gaifullin, T. Mochiku, S. Taka

hashi, T. Koyama, and M. Tachiki, Phys. Rev. B56, 5617
~1997!.

40M. B. Gaifullin, Y. Matsuda, and L. N. Bulaevski, Phys. Re
Lett. 81, 3551~1998!.

41K. Kadowaki, I. Kakeya, T Wakabayashi, R. Nakamura, and
Takahashi~unpublished!.

42A. A. Tsvetkov, D. van der Marel, K. A. Moler, J. R. Kirtley, J
L. de Boer, A. Meetsma, Z. F. Ren, N. Koleshnikov, D. Duli
A. Damascelli, M. Gru¨ninger, J. Schu¨tzmann, J. W. van der Eb
H. S. Somal, and J. H. Wang, Nature~London! 395, 360~1998!.

43M. B. Gaifullin, Y. Matsuda, N. Chikumoto, J. Shimoyama, K
Kishio, and R. Yoshizaki, Phys. Rev. Lett.83, 3928~1999!.


