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Elasticity and melting of vortex crystals in anisotropic superconductors:
Beyond the continuum regime
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The elastic moduli of vortex crystals in anisotropic superconductors are frequently involved in the investi-
gation of their phase diagram and transport properties. We provide a detailed analysis of the harmonic eigen-
values~normal modes! of the vortex lattice for general values of the magnetic field strength, going beyond the
elastic continuum regime. The detailed behavior of these wave-vector-dependent eigenvalues within the Bril-
louin zone~BZ!, is compared with several frequently used approximations that we also recalculate. Throughout
the BZ, transverse modes are less costly than their longitudinal counterparts, and there is an angular depen-
dence which becomes more marked close to the zone boundary. Based on these results, we propose an analytic
correction to the nonlocal continuum formulas which fits quite well the numerical behavior of the eigenvalues
in the London regime. We use this approximate expression to calculate thermal fluctuations and the full
melting line ~according to Lindeman’s criterion! for various values of the anisotropy parameter.
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I. INTRODUCTION

Among the fascinating aspects of the new hig
temperature superconducting materials, there are m
which are due to the rich and complex behavior of vor
lines.1,2 These quanta of magnetic flux penetrate the sup
conductor above a certain threshold value of the exte
magnetic field H, the so-called lower critical fieldHc1

~roughly 1022 T, and their concentration increases withH
up to the upper critical fieldHc2

~approximately 102 T),

above which the material is normal.3,4 In a classic work,
Abrikosov showed that the minimum energy arrangemen
flux lines in a conventional superconductor is a triangu
lattice, with a lattice spacinga which varies with the mag-
netic field strength.5

Recently, with the discovery of high-temperature cupr
superconductors, there has been a resurgence of intere
the properties of vortex matter. The relative flexibility
vortex lines in these materials makes them susceptible
distortions by thermal fluctuations, and other sources of
order~oxygen impurities, grain boundaries, etc.!. The regular
lattices obtained in mean-field theory are thus distorted, g
ing rise to a rich variety of vortex-matter phases.6,7 It is thus
necessary to understand the elastic response of vortex la
to distortions, a subject that has been intensely studied in
context of conventional superconductors. The stability of
triangular lattice against small distortions is guaranteed
long as the characteristic length of the field variations,
so-called penetration depthl, remains smaller than the siz
of the system.8 ~An infinite l renders the lattice of vortex
lines unstable against fluctuations or, more precisely, aga
shear deformations.! At low temperatures, fluctuations ar
well described by small corrections to the mean-field resu

The elastic properties of the triangular vortex lattice
long distances are characterized by its compressional, s
and tilt moduli. These moduli are frequently involved in th
theoretical and experimental determination of the proper
PRB 620163-1829/2000/62~9!/5942~15!/$15.00
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of the material, such as, for example, the intricate vor
phase diagrams. As such, the derivation of the elastic en
and the elastic moduli has been undertaken in sev
publications.9–19 While it is well known that the elastic
moduli of the vortex lattice depend strongly on the magne
field strength, the values currently presented in the literat
are only strictly useful in certain limiting situations. Mos
frequently, results are obtained in the so-called continu
limit, in which one disregards the discrete nature of the u
derlying vortex lattice. Obviously, this description is n
suitable for the whole range of possible flux-line densities
the mixed state, which extends fromHc1

up to the upper

critical field Hc2
, at which the magnetic field penetrates un

formly into the material. The elastic properties of the vort
lattice, and hence its stability against thermal fluctuatio
depend sensitively on the value of the magnetic field in t
range. Furthermore, the important fluctuations sometimes
cur at short wavelengths, where a simple elastic descrip
may not be appropriate. It is thus worthwhile to obtain t
general dependence of the energy cost of harmonic dis
tions of the vortex lattice.

As temperature is increased, thermal fluctuations ca
the vortex lattice tomelt into a vortex liquid. Several experi
ments employing quite different techniques have provid
firm evidence for such a transition.20–28 In the new cuprate
superconductors, the melting transition can occur at temp
tures well below the mean field point, so that the Abrikos
lattice is melted over a substantial portion of the phase d
gram. Furthermore, the vortex lattice can melt not only
increasing temperature, but also by decreasing the magn
field to the vicinity of Hc1

(T). In this region of the phase
diagram, the concentration of vortices is very dilute; t
separationa between neighboring flux lines is larger than t
penetration lengthl, and the vortex-vortex interaction de
cays exponentially. As a consequence, the elastic moduli
come exponentially small, and correspondingly, therm
fluctuations are greatly enhanced. This behavior gives ris
5942 ©2000 The American Physical Society
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an interesting reentrant behavior of the melting line at l
fields.

In this paper, we take up the computation of the elas
properties of a vortex lattice, in a systematic manner whic
not restricted to the most commonly considered continu
limit. Our analysis allows the illustration of some of th
subtleties involved in the calculation, and to successfully
solve some of the unclear points that we encountered in
review of the literature, and which may also have puzz
other investigators of the subject. The paper is organize
follows. In Sec. II, we introduce the Ginzburg-Landa
Hamiltonian for an anisotropic superconductor. This mo
is commonly used in the literature as the starting point
studying the effects of fluctuations and disorder. Minimiz
tion of this Hamiltonian gives the optimal lattice configur
tion, around which we then study the cost of distortions
the harmonic approximation. This section also introduces
main parameters and notation used throughout the pape
Sec. III, we provide an expression for the harmonic kerne
terms of a sum over Bravais lattice vectors or, equivalen
over reciprocal lattice vectors. The normal mode eigenval
are explicitly written in terms of this kernel. Section IV
composed of subsections in which we introduce certain l
iting situations, corresponding to a single line, local, loc
continuum, and nonlocal-continuum limits. These limitin
cases are often quoted in the literature, and are widely u
in studies of vortex matter in high-temperature supercond
ors. Within our framework, we recalculate the analytic v
ues of the elastic eigenvalues in these limits before disc
ing our more general results in Sec. V, where the harmo
eigenvalues are numerically evaluated. Our results
graphically presented in several plots, and compared to
limits introduced in Sec. IV, to easily visualize the accura
of the approximations involved. As a practical illustration
the potential applications of our results, we use the harmo
eigenvalues to calculate the thermal distortions of the vo
lattice in Sec. VI. The leading contribution to flux-line fluc
tuations in real space comes from the transverse mode
conjunction with the Lindeman’s criterion, we can then fi
the full form of the melting line as a function of the magne
field. This is one of many potential applications that o
general analysis makes possible, without the need to extr
late the elastic behavior of the lattice to regimes beyond t
range of validity. Finally, in the last section we summari
our main conclusions.

II. GENERAL FORMULATION

Our starting point is the continuum Ginzburg-Landau fr
energy for an anisotropic superconductor in the Lond
limit.3 In this limit, the penetration lengthl (;103 Å ) is
much larger than the coherence length of the supercondu
j (;10 Å ), and fluctuations in the magnitude of the ord
parameterC0 are neglected. The phase degree of freedom
then the only variable that needs to be considered. For
anisotropic superconductors under consideration, this
proximation breaks down in a narrow band close toHc2

,
where the separation between vortices becomes compa
to j. The Ginzburg-Landau Hamiltonian in this limit is give
by
c
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H5E d3rFaS ¹'u2
2p

f0
A'D 2

1ae2S ]zu2
2p

f0
AzD 2

1
b2

8p
2

b•H

4p G . ~1!

Here u(r' ,z) is the phase of the complex order parame
field C(r' ,z)5C0eiu(r' ,z), A(r' ,z) is the magnetic vector
potential related to the magnetic induction throughb(r' ,z)
5¹3A(r' ,z), a5(\C0)2/2m, f05hc/2e is the flux
quantum, ande25m/M is the usual anisotropy paramete
with m andM being the effective masses in the Cu-O plan
of the material, and along the perpendicularc axis chosen to
coincide with thez direction, respectively. The external ma
netic fieldH is also oriented parallel to thez axis H5Hêz .
Note that¹' , r' , andA' , denote the planar components
¹, r, andA, respectively.

Consider a configuration withN vortex lines, and decom
pose the corresponding phase field into two pa
(n51

N un
s@r'2Rn,'(z),z#, which represents the singular pha

due to the N vortices passing through pointsRn(z)
5Rn,'(z)1zẑ (n51, . . . ,N) on independent planes at eac
z andu r , a regular phase field accounting for the relaxati
due to the couplings between the planes. By construct
eachun

s is the solution of a two-dimensional problem wit
the circulation constraintrCdun

s52p on any closed circuitC
around thenth vortex. We have chosen the coordinatez to
parametrize the trajectories of the different flux lines. Non
theless, one has to bear in mind that the results should
invariant under an arbitrary reparametrization.

Variations of Eq.~1! with respect to the phaseu r , and the
vector potentialA, provide the differential equations fo
these quantities, whose solutions~after considering the Cou
lomb gauge¹•A50) minimize the energy in Eq.~1!. Sub-
stituting these solutions for a given distortion of the flu
lattice into the Ginzburg-Landau free energy, results in
energy cost of the form

H5
f0

2

32p3E d3k

~2p!3 H q2

~lc
2q21l2kz

211!
U(

n51

N

F nU2

1
k2

~l2k211!
U(

n51

N

PnU2J 2L
f0NH

4p
, ~2!

wherek5q1kzẑ, and we have introduced the squared pe
etration depths in a plane perpendicular to thec axis, l2

5f0
2/(32p3a)5mc2/(16pe2C0

2), and along thec axis of
the superconductorlc5l/e. The functions

Fn~k!52
2p i

q2
~q3 ẑ!•E dzeikzzeiq•Rn,'(z)

dRn,'~z!

dz
,

~3!

Pn~k!5
2p i

q2
~q3 ẑ!E dzeikzzeiq•Rn,'(z), ~4!
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represent the Fourier transforms of the vortex functions]zun
s

and ¹'un
s , respectively. Because of its singular nature,

Fourier transform of the latter actually has a compon
which is perpendicular toq.

Let us now assume that the position vectorRn,'(z) is the
sum of a perfect lattice vector, plus a small displacem
field due to fluctuations, i.e.,Rn,'(z)5Rn

01un(z). Up to sec-
ond order in the displacementsun(z), the energy cost can
then be expressed as

H5H 01DH. ~5!

The first termH 0, gives the free energy of an array ofN
straight flux lines oriented parallel to the external field, a
located at positionsRn

0 ,

H 05NL
f0

4p
~Hc1

2H !1Le0 (
n,mÞn

K0S dnm

l D . ~6!

HereL is the sample thickness,Hc1
5f0 /(4pl2)ln(k) is the

lower critical field,k5l/j is the Ginzburg-Landau param
eter,H is the magnetic field strength,e05f0

2/(4pl)2 is an
interaction energy per unit length,K0(x) is the modified
Bessel function of zeroth order, anddnm5Rn

02Rm
0 are the

relative position vectors of any pair of flux lines. On a pe
fect triangular lattice, these vectors are of the formdnm

5a(nê11mê2), (n,m50,61,62, . . . ), with a the lattice
spacing,ê1 oriented, for instance, along thex axis, ê15 x̂,
and ê25cos(p/3)x̂1sin(p/3)ŷ ~see Fig. 1!. The modulus of
one of these vectors is then given bydnm5a(n21m2

1nm)1/2.
The first term on the right-hand side of Eq.~6! represents

the energy cost of a single vortex line in a type II superc
ductor, times the number of linesN. The last term is due to
the interactions among flux lines, which naturally depend
the interline separations. The penetration lengthl, sets the
extent of the interaction potentialK0(x), which diverges
logarithmically at short distances, and decays exponenti
for x@1.

The quantityDH represents theharmoniccontribution of
fluctuations to the free energy. After writing the displac
ment fieldsun(z) in terms of Fourier modes

un~z!5E dkz

~2p!
E

BZ

d2Q

~2p!2
ei (Q•Rn

0
1kzz)u~Q,kz!, ~7!

FIG. 1. Lattice vectors with a common origin at the lattice po
P, and with the same modulusd.
e
t

t

d

-

-

n

ly

-

and taking advantage of the translational symmetry of
lattice, the energyDH can be written as

DH5E dkz

~2p!
E

BZ

d2Q

~2p!2
ua~Q,kz!Mab~Q,kz!

3ub~2Q,2kz!, ~8!

where the index BZ indicates that the integration is p
formed over the first Brillouin zone in reciprocal space.

All the relevant information is therefore contained in th
harmonic kernelMab(Q,kz). Formally, we have to find the
eigenvalues and eigenvectors of this matrix, and we can t
calculate the extent of fluctuations in real space, the fluct
tion corrections to the free energy, and other relevant qu
tities. In Fourier space, the eigenvectors ofMab(Q,kz) areN

longitudinal modes,uL(Q,kz)5Q̂•u(Q,kz), andN transver-
sal modes,uT(Q,kz)5uQ̂3u(Q,kz)u, with corresponding ei-
genvaluesLL(Q,kz) andLT(Q,kz). In practice, it turns out
that the analytic expressions for these eigenvalues is ra
complex. That is why in the literature only certain limitin
regimes are usually treated. We shall describe these lim
later on in Sec. IV, and then go on to discuss their accur
in comparison to our more general results.

III. LONGITUDINAL AND TRANSVERSAL MODES

The longitudinal elastic eigenvalueLL(Q,kz) is typically
expressed in the literature in terms of the so-called comp
sional c11(Q,kz) and tilt c44(Q,kz) elastic moduli as
c11(Q,kz)Q

21c44(Q,kz)kz
2 . In general, however, we sha

see that this decomposition may be inaccurate. In term
the matrixMab(Q,kz), the longitudinal eigenvalue is give
by

LL~Q,kz!5Q̂aMab~Q,kz!Q̂b , ~9!

where, as usual, a repeated index is summed over. On
other hand, the transversal eigenvalueLT(Q,kz), commonly
written in the literature in terms of the shearc66(Q,kz) and
tilt moduli asc66(Q,kz)Q

21c44(Q,kz)kz
2 , is

LT~Q,kz!5Maa~Q,kz!2Q̂aMab~Q,kz!Q̂b . ~10!

There are two alternative ways of expressing the inter
tion kernelMab(Q,kz): in terms of a sum over the Bravai
lattice vectors, or as a sum over the reciprocal lattice vect
The former yields

Mab~Q,kz!5
ne0

l2 H 1

2
E~kz!dab

1 (
mÞn

@cos~Q•dnm!Rab~dnm ,kz!

2Rab~dnm,0!#J , ~11!

where we have introduced the areal density of flux linesn
5N/A. For compactness of notation, let us also introduce
dimensionless variablesx5Al2kz

211, and xc5ex. In Eq.

t
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~11!, the quantityne0E(kz)/l
2 represents the line tension o

each vortex, which, in general, contains contributions fr
both the Josephson coupling between the different Cu-O
ers in the material, and the magnetic interlayer interactio
as

E~kz!5
1

2
e2l2kz

2 lnS k2

xc
2

11D 1 ln~x!. ~12!

The interaction kernelRab(d,kz) is given by

Rab~d,kz!5
l

dx
K1S dx

l D dab2K2S dx

l Ddadb

d2

1e2l2kz
2H FK0S dxc

l D1
l

dxc
K1S dxc

l D Gdab

2K2S dxc

l Ddadb

d2 J . ~13!

Note that we use the symbold5udu to indicate the distance
between a pair of lattice points. The sum in Eq.~11! runs
over all such separations from a specific point on the latt
as illustrated in Fig. 1.

The matrixR(d,kz) depends on the different relative po
sition vectorsd5dnm of the perfect triangular lattice. Whe
summing over all lattice vectors with a common origin a
point P, we can take advantage of the lattice symmetries.
example, the sum over products of an odd number of ve
components vanishes, as in

(
dÞ0

da50 and (
dÞ0

dadbdg50. ~14!

On the other hand, the sums involving products of an e
number of components are nonvanishing and constraine
the symmetries; for example,

(
dÞ0

dadb5dab(
dÞ0

d2

2
,

(
dÞ0

dadbdgdd5~dabdgd1dagdbd1daddbg!(
dÞ0

d4

8
.

~15!

~Higher order terms have a more complex structure.! The
sums(dÞ0 on the right-hand side of Eqs.~15!, are equivalent
to (dÞ0g(d), with a degeneracy factorg(d), which counts
the number of vectors whose modulus isd.

Equivalently, we can express the kernel as a sum o
reciprocal lattice vectorsG. The same symmetries~14!-~15!
are, of course, valid for these vectors, which, according
our choice of dnm , are given by G54p/(A3a)(pĝ1

1qĝ2), (p,q50,61,62, . . . ),where 4p/A3a is the recip-
rocal lattice spacing, and the unit vectors areĝ15sin(p/3)x̂
2cos(p/3)ŷ, andĝ25 ŷ. In terms of these vectors, the inte
action kernel reads
y-
s,

e,

r
or

n
by

er

o

Mab~Q,kz!5
n2f0

2

8p H (
G

@Gab
S ~G2Q,kz!2Gab~G,0!#

2
1

nE d2q

~2p!2
@Gab

S ~q2Q,kz!2Gab~q,kz!#J .

~16!

The symbol S indicates symmetrization with respect toQ,
i.e., Gab

S (G2Q,kz)5@Gab(G2Q,kz)1Gab(G1Q,kz)#/2.
@The second term on the right-hand side of the expressio
included to properly account for the particular casen5m
andz5z8 in Eq. ~2!.# In addition, from Eq.~2! we obtain

Gab~q,kz!5
kz

2

~lc
2q21l2kz

211!
S dab2

qaqb

q2 D
1

k2

~l2k211!

qaqb

q2
. ~17!

Our goal is to provide accurate values of the harmo
eigenvalues as a function ofQ andkz within the BZ, and for
different concentrations of flux lines. The dimensionless
rametera/l will be used as the indicator of the areal dens
of flux lines. A small value ofa/l, corresponds to a highly
dense regime with strong and nonlocal interactions am
the flux lines. On the other hand, fora/l@1 the concentra-
tion of flux lines is very low, and interactions among the
very weak. In this dilute limit, the elastic behavior of th
lattice reflects to properties of a single flux line. We th
evaluate numerically the harmonic eigenvalues as a func
a/l throughout the BZ. The equivalence of expressions~11!
and ~16! renders the use of one or the other a matter
convenience. For instance, for very high areal densities
vorticesn, it is common to disregard the discreteness of
underlying arrangement and approximate the sums over
tice positions by integrals. This so-called continuum limit
very often used in the literature.15–18 The elastic moduli
which follow from this approximation can be read direct
from Eq. ~17!, when only the reciprocal lattice vectorG50
is taken into account. We shall comment on the accuracy
this limit in the following sections.

IV. LIMITING REGIMES

In this section, we first present some special cases pr
ously discussed in the literature. By comparing these lim
to our numerical results, one can then see their range
validity and the accuracy of the approximations involved
their formulation. We shall also emphasize the roles play
by the interline distance, the penetration lengthl, and the
symmetries of the triangular lattice.

A. Single line

At very low areal densities, i.e.,a/l@1, the kernel
Mab(Q,kz) should be justN times the result obtained for
single flux line. All the modified Bessel functions appeari
in Eq. ~13! decay exponentially fast for large values of the
argument~which is proportional toa/l), and only weakly
contribute to the final values of the harmonic eigenvalues
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other words, in Eq.~11! only the line tension partE(kz) is
important for large values ofa/l. In Sec. V, we show tha
the single-line approximation indeed provides the best
scription of the elastic properties of the system at very l
concentrations of flux lines.

B. Elastic moduli

The energy cost of long wavelength distortions is d
scribed by an elastic theory, whose form is constrained
symmetries. The triangular lattice is isotropic, and govern
by the compressionalc11, shearc66, and tilt c44, moduli. In
terms of the Fourier modes, the elastic energy is

DH5
1

2E dkz

2p E
BZ

d2Q

~2p!2
@c44kz

2dab1c11QaQb1c66~Q2dab

2QaQb!#ua~Q,kz!ub~2Q,2kz!, ~18!

and the harmonic eigenvalues have the simple forms

LL
l ~Q,kz!5~c11Q

21c44kz
2!/2,

LT
l ~Q,kz!5~c66Q

21c44kz
2!/2. ~19!

Formally, Eq.~8! together with Eqs.~11! or ~16! provide the
harmonic eigenvalues throughout the Brillouin zone. Na
rally, the elastic limit is regained by expanding these res
up to second order inQ andkz . Neglecting the higher orde
terms is referred to as thelocal limit, as it is usually obtained
by including only short-range interactions. Sometimes,non-
local elastic moduli are introduced which depend onQ. This
is not always useful, as it constrains the form of the h
monic eigenvalues as in Eqs.~19!, whereas symmetry allow
higher order powers ofQ to appear in other forms.

After expanding the cosine, and using the symmetry pr
erties of a triangular lattice in Eqs.~14!,~15!, as well as cer-
tain relationship among the modified Bessel functions,29 we
arrive at

Mab~Q,kz!5
ne0

l2 F1

2
E l~kz!dab1

~lkz!
2

2 (
dÞ0

Fe2K0S ed

l D
1

1

2 S d

l DK1S d

l D Gdab1
Q2

2 (
dÞ0

d2

4 H FK0S d

l D
1

1

2
K2S d

l D GQaQb

Q2
1FK0S d

l D2
1

2
K2S d

l D G
3S dab2

QaQb

Q2 D J G , ~20!

whereE l(kz) is the single line tension in the local approx
mation, E l(kz)5(elkz)

2 ln(k/e)1(lkz)
2/2 ~valid for k@1

@e).
Comparing this expression with Eq.~18! allows us to

identify the compressional modulus

c115
ne0

4 (
dÞ0

FcS d

l D , ~21!

with
-

-
y
d

-
ts

-

-

FcS d

l D5
d2

l2 FK0S d

l D1
1

2
K2S d

l D G , ~22!

the shear modulus

c665
ne0

4 (
dÞ0

FsS d

l D , ~23!

with

FsS d

l D5
d2

l2 FK0S d

l D2
1

2
K2S d

l D G , ~24!

and the tilt modulus

c445ne0F e2 lnS k

e D1
1

2
1(

dÞ0
FtS d

l D G , ~25!

with

FtS d

l D5Fe2K0S ed

l D1
1

2 S d

l DK1S d

l D G . ~26!

Note that the mean-field lattice spacinga, is related to the
strength of the applied fieldH through the relationship

H5Hc1
1

f0

4pl2 (
dÞ0

FK0S d

l D1
1

2 S d

l DK1S d

l D G , ~27!

which is obtained from]H0/]aua50. Then, by comparison
the local tilt modulus for an isotropic material (e51) can be
written asc445nf0H/4p, in agreement with the result ex
pected for the local tilt modulus of a rotationally invaria
superconductor.11 Strictly speaking, in Eq.~25! there is an
extra factor of 1/2, coming from the local line tension. How
ever, as pointed out by Fisher,17 one could chose a shor
distance cutoffj ~Ref. 30! inside ln(l/j) to reproduce exactly
the local isotropic limit.

In Figs. 2~a! and 2~b!, we depict the functionsFc andFs ,
for different values of the dimensionless quantityd/l, to
illustrate some subtleties associated with the estimation
the shear modulus, often forgotten or misunderstood in
literature. As shown in Fig. 2~b!, for small values ofd/l the
function Fs is negative, whereas ifd/l.2 it becomes posi-
tive and then decays exponentially to zero. The implicatio
of this functional form for the shear modulus are as follow
As indicated before, the range of interactions among vor
lines is determined by the penetration lengthl. For a dilute
vortex lattice whose lattice spacinga is comparable or even
greater thanl, almost all the terms in the sum in Eq.~23! are
positive, and as they rapidly decay to zero, only the first f
lattice vectors for neighboring sites are needed to calcu
the shear modulus. On the other hand, in a dense sys
there are many neighboring vortices within the interact
rangel, contributing anegativeamount to the sum in Eq
~23!. It is then clearly not sufficient to consider only intera
tions among a few neighboring lines, and to account for
stability of a dense lattice against shear deformations,
need to sum over many lattice vectors~finally giving rise to
a positive shear modulus!.

In Figs. 2~a! and 2~b!, we also indicate with a dashed lin
the limit l→` ~for a finite value ofd). In this case there is
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a logarithmic interaction among the vortices, as in the t
dimensional Coulomb gas.31 Note that in this limit, all fac-
tors in the sum for the shear modulus are negative, and
lattice is unstable to shear deformation.~This is a manifesta-
tion of the more general instability of a system of po
charges in the absence of external potentials.!

Figure 3 depicts the compressional, shear, and tilt mo
as a function ofa/l, obtained by numerical evaluation of th
sums in Eqs.~21!, ~23!, and~25!, respectively. These modu
have been normalized by their respective values in the lo
continuum limit, which for the long wavelength compre
sional modulus is defined as

c̃115
ne0

4 H 2Fc~d→0!1E d2d

Apc
FcS d

l D J
5

ne0

4 S 211
16pl2

Apc
D5

B2

4p
2

Bf0

~8pl!2
, ~28!

where we have replaced the sums by integrals, after
adding and susbtracting thed→0 element explicitly, and in-

FIG. 2. ~a! Behavior of Fc in Eq. ~22! as a function of the
dimensionless parameterd/l. ~b! Behavior of the functionFs in
Eq. ~24! as a function of the dimensionless parameterd/l. The
long-dashed lines represent thel→` limit of these functions.
o

he

li

al

st

troducing the appropriate unit areaApc5A3a2/2, i.e., the
area of the primitive cell. We have also defined the aver
magnetic inductionB5nf0, with n5N/A51/Apc . Simi-
larly, the long wavelength shear modulus is

c̃665
ne0

4 H 2Fs~d→0!1E d2d

Apc
FsS d

l D J
5

ne0

4
~110!5

Bf0

~8pl!2
, ~29!

and, for the tilt modulus we obtain

c̃445ne0E d2d

Apc
FtS d

l D5ne0

4pl2

Apc
5

B2

4p
. ~30!

Note that for the latter, the termd→0 is already included in
Eq. ~25!.

FIG. 3. ~a! Normalized compressional and shear moduli as
function of the dimensionless parametera/l, obtained by numerical
evaluation of the sums in Eqs.~21! and ~23!. ~b! Normalized tilt
modulus as a function of the dimensionless parametera/l, from
numerical evaluation of the sum in Eq.~25!.
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Similar results for the continuum local limit have bee
previously reported in the literature.1,10,12In Ref. 12, Kogan
and Campbell calculated the shear modulus of a flux lat
in different situations. Essentially, they provided an expr
sion for the shear modulusc66 in terms of a sum over com
ponents of the reciprocal lattice vectors. Because of the s
metry relations of Eq.~15! quoted in the previous section, a
the terms included in their sums cancel each other out,
should yield a shear modulus equal to zero. Kogan
Campbell numerically evaluated this sum over reciprocal
tice vectors, and reported a value close to Eq.~29!. They
argued that there is a contribution due to the specific form
the cutoff at short distances.30 However, in view of the above
derivation of Eq.~29!, it is clear that cutoffs are not relevan
to the local continuum value of the shear modulus.

As soon as the lattice spacing is greater than the pen
tion length, a.l, all the compressional, shear, and t
moduli deviate strongly from the continuum results. T
compressional and shear moduli then decay exponential
zero, while the tilt modulus attains a constant value
ne0@e2 ln(k/e)11/2#. @This is why when normalized by its
continuum value of Eq.~30! the ratio grows as (a/l)2.# As
we shall demonstrate in Sec.~VI !, under these circumstance
the lattice again becomes rather soft and liable to melting
its fluctuations are greatly enhanced for large interline se
rations.

C. „Nonlocal… continuum limit

The continuum limit refers to a situation in which th
concentration of flux lines is high. In this limit, one disr
gards the underlying triangular lattice arrangement and tr
the array of vortices as a continuous medium.15–18 In the
continuum limit, the sum of Eq.~11! over Bravais lattice
vectors is approximated by an integral, or equivalently, in
sum over reciprocal lattice vectors in Eq.~16! only the vector
G50 is considered. As a result, the elastic kernel reduce

Mab~Q,kz!5
n2f0

2

8p H ~Q21kz
2!

@l2~Q21kz
2!11#

QaQb

Q2

1
kz

2

~lc
2Q21l2kz

211!
S dab2

QaQb

Q2 D
2

1

nE d2q

~2p!2
@Gab

S ~q2Q,kz!2Gab~q,kz!#J .

~31!

The last term in this equation is a rather intricate integ
which, on the other hand, can be easily evaluated in the l
approximation, i.e., when keeping terms up toQ2 and kz

2

only. With this approximation, we obtain

E d2q

~2p!2
@Gab

S ~q2Q,kz!2Gab~q,kz!#

5FQaQb

8pl2
2

Q2dab

16pl2G . ~32!
e
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By comparing with Eq.~18!, we can now directly read off
the nonlocal continuum~again, up to the approximation ca
ried out to evaluate the integral! values of the elastic modul
as

c44
nl5

B2

4p

1

~lc
2Q21l2kz

211!
, ~33!

c11
nl5

B2

4p

@lc
2~Q21kz

2!11#

@l2~Q21kz
2!11#~lc

2Q21l2kz
211!

2
Bf0

~8pl!2
,

~34!

c̃665
Bf0

~8pl!2
. ~35!

Note that, up to second order inQ2 andkz
2 , Eqs.~33!–~35!

reproduce the local limits calculated in the previous sect
from the real space expression of the interaction kernel.

V. NUMERICAL RESULTS

In this section, we present and discuss our results fr
numerical evaluations of Eqs.~9!,~10! using, in particular,
the real space expression of the interaction matrix in
~11!. In most cases, we selected a Ginzburg-Landau par
eterk equal to 100, and an anisotropy ratio ofe50.1. How-
ever, later in this section, we present some results for dif
ent values ofe, which may be more appropriate to descri
materials with stronger anisotropy. For the sake of simp
ity, we introduce the dimensionless eigenvaluesLL*
5LL /(ne0 /l2) and LT* 5LT /(ne0 /l2), and discuss their
behavior throughout this section.

A. Angular dependence

Because of the point group symmetries of the triangu
lattice, it is sufficient to consider only the irreducible Bri
louin zone~IBZ!, indicated in black in Fig. 4. In particular
we have chosen five paths corresponding to values of
anglea ~defined within the figure! equal to 0,p/24,p/12,p/8,
andp/6. Figure 5 shows the numerically evaluated eigenv
ues along these paths within the IBZ. The horizontal axis
the dimensionless quantity (aQ)2. The plots also correspon
to the choice oflkz51.0. The dotted lines represent th
longitudinal eigenvalueLL* , while we use dashed lines fo
the transversal eigenvalueLT* .

The different plots in Fig. 5~a! clearly show that there is
an angular dependence, which becomes more marked a
approach the edge of the BZ. This fact was already poin
out by Brandt in his early work on the elastic properties

FIG. 4. Irreducible Brillouin zone of a regular vortex lattice.
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FIG. 5. Dimensionless elastic eigenvaluesLT* andLL* as a func-
tion of (aQ)2, for lkz51.0, and at~a! a/l50.2, ~b! a/l51.0, and
~c! a/l55.0. The dotted lines correspond to the longitudinal eig
value, while dashed lines indicate the transversal eigenvalue.
different lines are obtained for different paths along the IBZ,
anglesa50,p/24,p/12,p/8, andp/6. The two solid lines in~a! and
~b! depict eigenvalues from the nonlocal continuum limit
Sec. IV.
vortex lattices.10 The anisotropy is more pronounced in th
dense regime, and diminishes as we increasea/l. In the
concentrated case witha/l50.2, the relative differences
uL(a)2L(p/12)u/L(p/12) are up to 20% for the longitu
dinal eigenvalue, and 60% for the transversal one. Th
ratios decrease in the intermediate region witha/l51.0, and
are of the order of 10 and 15 %, respectively, fora/l55.0,
within the dilute regime. We also observe that the longitu
nal eigenvalue is largest along thea50 direction, while the
transversal eigenvalue attains its smallest value fora50.

Note that both eigenvalues, for all anglesa, have the
same value atQ50, determined bylkz anda/l. ~Since this
is not immediately apparent from Fig. 5, the intersecti
point is marked with a black dot on the vertical axis.! Away
from Q50, the transversal eigenvalue drops sharply, m
so in the dense regime. Transversal modes are therefore
costly than longitudinal modes. Figure 5 also indicates tha
a finite value oflkz ~equal to 1.0 in this case!, the minimum
cost is obtained for a finite value of the rescaled wave vec
aQ, which depends on the density of flux lines.

The solid lines in Figs. 5~a! and 5~b! are the results of the
nonlocal continuum approximation introduced in Sec. IV
i.e., LL.(c11

nlQ21c44
nlkz

2)/2 andLT.( c̃66Q
21c44

nlkz
2)/2, with

the appropriate parameters. From these figures, one can
clude that~at least forlkz51.0) the continuum approxima
tion reproduces extremely well the behavior of both eige
values along thea5p/12 direction. This is certainly the cas
at the highest concentration of flux lines (a/l50.2), and
even at the intermediate concentrations ofa/l51.0. How-
ever, the approximation fails at lower densities, and is
even included in Fig. 5~c!, as the predicted eigenvalues fa
well outside the range of our plot.

Similar angular variations are obtained for other values
lkz , including the special caselkz50 ~straight flux lines!.
Note that if kz50, the corresponding compressional a
shear moduli can be unambigously identified from the lon
tudinal LL5c11(Q,kz50)Q2/2 and transversal LT
5c66(Q,kz50)Q2/2 eigenvalues, respectively. Numeric
evaluations of these particular nonlocal moduli have alre
been carried out by Brandt,10 and by Nieber and
Kronmüller,19 along particular directions (Qx50 or Qy
50) within the BZ. Our results agree with those reported
Refs. 10,19 for a magnetic field parallel to thec axis. Once
again, we find angular variations in magnitude similar
those for lkz51.0. In Fig. 6, we plot the modulus
c11(Q,kz50) in a semilogarithmic scale. We show the r
sults obtained fora/l50.2,1.0, and 5.0 along the variou
directions defined above. We have normalized the modu
by its local limit c11 @see Eqs.~21!,~22!#. The kz50 com-
pressional modulus decreases as we move towards the
boundary in any direction. The shear modulusc66(Q,kz
50) is also shown in Fig. 7 normalized by its local limitc66
@see Eqs.~23!,~24!#. We only show results fora/l50.2 for
the sake of clarity of the figure. Depending on direction, t
modulus increases or decreases with respect to its l
value. In particular, it seems to remain constant along
patha5p/12.

B. Variations with kz

To explore thekz dependence of the results, in Fig. 8 w
plot the longitudinal and transversal eigenvalues as a fu
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5950 PRB 62M.-CARMEN MIGUEL AND MEHRAN KARDAR
tion of (aQ)2 for a fixed anglea5p/12, and for a number o
values ofa/l andlkz . From these figures, we see that, n
surprisingly, both eigenvalues increase as a function oflkz ,
and consequently, modes with higherkz are in general costly
For the smallest value ofa/l50.2 in Fig. 8~a!, the lkz de-
pendence is most pronounced in a small region close to
BZ center. This region becomes larger as we increase e
lkz or a/l. We also note that both eigenvalues show a lin
dependence on (aQ)2 for a large fraction of the IBZ. The
slope of this line is almost constant within each plot, i.e.,
a given value ofa/l. The transversal eigenvalue forlkz
50 is a straight line throughout the whole range of values
(aQ)2, as is the longitudinal eigenvalue for high enou
values of lkz . These features are qualitatively well a
counted for by the continuum limit results. According to Eq
~33!, ~34!, and~35!, the transversal eigenvalue

FIG. 6. Compressional modulusc11(Q,kz50) normalized by its
local valuec11 @Eq. ~21!#, for paths at anglesa50,p/24,p/12,p/8,
andp/6, anda/l50.2,1.0,5.0.

FIG. 7. Shear modulusc66(Q,kz50) normalized by its local
value c66 @Eq. ~23!#, for paths at anglesa50,p/24,p/12,p/8, and
p/6, anda/l50.2.
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LT~Q,kz!.
1

2
@ c̃66Q

21c44
nl~Q,kz!kz

2#

5
ne0

8
Q212pn2e0

l2kz
2

~lc
2Q21l2kz

211!
~36!

reduces toc̃66Q
2/2 for lkz50, i.e., grows linearly with

(aQ)2, with a slopene0/8a2. In addition, for suficiently
large values oflkz@lcQ, c44

nl(Q,kz)kz
2 reaches a saturatio

value, rendering the termc̃66Q
2/2 as the leading contribution

depending onQ. Similarly, the longitudinal eigenvalue

FIG. 8. Elastic eigenvalues as a function of (aQ)2 for a
5p/12, and ~a! a/l50.2 and ~b! a/l51.0. The different lines
correspond to values oflkz50.0,1.0,10.0, and 50.0 only in plot~a!.
Dotted and dashed lines correspond to: longitudinal and transve
eigenvalues, respectively.
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LL~Q,kz!.
1

2
@c11

nl~Q,kz!Q
21c44

nl~Q,kz!kz
2#

52pn2e0

l2~Q21kz
2!

@l2~Q21kz
2!11#

2
ne0

8
Q2 ~37!

reaches a saturation value forlkz@lQ, so that the term
2ne0Q2/8 controls essentially theQ dependence of the ei
genvalue at large values oflkz . Equations~36!,~37! fit very
well the numerical resuls obtained fora/l50.2 and lkz
50.0,1.0,10.0@we are not showing these results in Fig. 8~a!
for the sake of clearity of the figure#. For the larger value of
lkz550.0, although the qualitative form of the functions
quite well approximated by these equations, there are m
quantitative differences with respect to the numerical res
mainly due to a smaller value of both eigenvalues atQ50.
In Fig. 8~b! with a/l51.0, there are important differences
the value atQ50 already forlkz510.0, as well as smal
deviations from the value of the slope of the linear part of
curves. These deficiencies of the continuum approxima
are even more evident for a dilute system~not shown!, where
we note the emergence of single-line characteristics: The
genvalues are clearly mostly a function ofkz , with only
small variations with (aQ)2.

To better emphasize this discussion, consider the ela
eigenvalues along theQ50 axis, i.e., the point highlighted
by a black dot in the previous figures, as a function oflkz .
Again note that ifQ50, the corresponding tilt modulus ca
be unambigously identified from either the longitudinal
the transversalLL5LT5c44(Q50,kz)kz

2/2 eigenvalues. The
results, for the valuesa/l50.2, 1.0, and 5.0, are plotted i
Fig. 9 in a double logarithmic scale. The tilt modulu
c44(Q50,kz) has been normalized by its local value@see
Eqs.~25!,~26!#. The numerical results indicated by solid line

FIG. 9. Tilt modulus,c44(Q50,kz) normalized by its local
valuec44 @Eq. ~25!#, as a function oflkz for a/l50.2, a/l51.0,
and a/l55.0. The dashed and dotted-dashed lines correspon
the nonlocal continuum (a/l50.2), and single line limits (a/l
55.0), respectively.
or
ts

e
n

i-

tic

are compared to two limiting cases defined in Sec. IV: T
dashed line in this figure is the outcome of a nonlocal c
tinuum approximation fora/l50.2 ~almost the same curve
is obtained fora/l51.0). The dotted-dashed line is th
graphical representation of Eq.~12! properly normalized for
the casea/l55.0, i.e., of the single line behavior expecte
at very low densities of flux lines. Our results are in go
agreement with the numerical evaluation of this particu
modulus performed in Ref. 19.

C. Comparison to analytic approximations

We observe in Fig. 9 thatc44(Q50,kz) decreases mo
notonously withlkz , with the single-line behavior ofE(kz)
in Eq. ~12! eventually taking over for values oflkz greater
than a characteristiclkz

c , proportional to (ea/l)21. The
contribution of the nonzero reciprocal lattice vectors in E
~16! becomes relevant forlkz.lkz

c . In the nonlocal con-
tinuum approximation, i.e., considering onlyG50, c44

nl(Q
50,kz) decreases roughly asB2/(4pl2kz

2) at large values of
lkz . Indeed, for high areal densities ofa/l50.2, our nu-
merical outcome is very close to the nonlocal continuu
approximation only up tolkz

c . On the other hand, at low
areal densities, such as fora/l55.0, the numerical data ar
obviously much closer to the single-line limit, than to any
the other forms, over the whole range of values oflkz . As
shown in Fig. 5~c!, the variations ofLL andLT with (aQ)2

in the latter case are very weak. The eigenvalues through
the IBZ essentially coincide with their values on theQ50
axis, which is set by the form ofE(kz). In the interval be-
tween these two values ofa/l, c44(Q50,kz) gradually
crosses over from the power law (lkz)

22 type behavior to
the power-log dependence of the single line tension. T
results of the local approximation naturally fit well the b
havior of both eigenvalues for small values ofQ andkz , as
expected.

In discussing Fig. 8, we noted that while the nonloc
continuum expressions capture the qualitative form of
numerical results, there are also important quantitative
ferences. Using the insights gained from the numerics,
shall now present an analytic form that corrects some
these discrepancies. One difference from the continuum
sults arises from the limiting slope in Fig. 8: In the co
tinuum limit, the term c̃66Q

2/2 eventually determines th
slope of the linear regime of the transversal eigenvalu
However, as shown in Fig. 3~a!, the actual shear modulusc66

can be quite different from the limiting value ofc̃66 used in
the continuum approximation. The differences in slope th
merely reflect the differences betweenc66 and c̃66 as a func-
tion of a/l, as already discussed in Sec. IV B. This de
ciency of the continuum eigenvalues is thus removed by
ing the exact value ofc66 from Fig. 3~a!.

A second difference is an overall shift of the eigenvalu
from the continuum limit prediction, which becomes mo
pronounced at largerlkz . This clearly originates in the dif-
ferences appearing already in Fig. 9 forc44(Q50,kz) at Q
50 and sufficiently largekz . Since the continuum approxi
mation uses only the term withG50 in Eq. ~16!, we intro-
duce a correction by replacing the sum over all the remain

to
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reciprocal lattice vectors with an integral. These correctio
result in the following expression for the transversal eig
value

LT~Q,kz!.
1

2
@c66Q

21c44
nlkz

2#1
B2

8p
~dab2Q̂aQ̂b!

3E 8d2G

ABZ
@Gab~G,kz!2Gab~G,0!#. ~38!

In this equation, the correct local shear modulus, which
pends on the field strength or lattice spacinga through Eq.
~23!, is used in place of its continuum limit. Also the no
linear modulusc44

nl is corrected by the additional integra
over the nonzero reciprocal lattice vectors, properly norm
ized by the BZ areaABZ58p2/(A3a2). To exclude the point
at G50, the radial component ofG in the above integra
goes fromC, defined byABZ5pC2, to ` ~or, if necessary, to
the short distance cutoffj21). After evaluating the integral
we obtain

LT~Q,kz!.
1

2
@c66Q

21c44
nlkz

2#

1
ne0

4
e2kz

2 lnS k2/e21l2kz
211

l2C2/e21l2kz
211

D
1

ne0

4l2
lnS l2kz

21l2C211

l2C211
D . ~39!

We have ascertained that this expression provides an e
lent fit to the numerically obtained results forLT(Q,kz)
along thea5p/12 direction. In the next section we provid
explicit comparisons of the analytic expression and nume
for different values of the anisotropy. The longitudinal eige
value along thea5p/12 direction can also be reasonab
well fitted by a similar analytic expression, which replac
the term@c66Q

21c44
nlkz

2#/2 in Eq.~39! with the expression in
Eq. ~37!, with a further substitution ofc66Q

2/2 for ne0Q2/8
5 c̃66Q

2/2, as

LL~Q,kz!.2pn2e0

l2~Q21kz
2!

@l2~Q21kz
2!11#

2
1

2
c66Q

2

1
ne0

4
e2kz

2 lnS k2/e21l2kz
211

l2C2/e21l2kz
211

D
1

ne0

4l2
lnS l2kz

21l2C211

l2C211
D . ~40!

D. Anisotropy

We conclude this section by discussing the dependenc
our results on the anisotropy of the superconductor. The
sults presented so far correspond to a particular value of
anisotropy parameter, namelye50.1, which falls within the
range~from 1/1021/5) reported for YBa2Cu3O7 ~YBCO! in
the literature.1 However, smaller values ofe, in the interval
1/10021/50, characterize highly anisotropic materials su
as Bi2Sr2CaCu2O8 ~BiSCCO!. For such highly anisotropic
s
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-

l-

el-

s
-

s

of
e-
he

h

materials, the discreteness of their layered structure beco
important, and one may well question the validity of a thre
dimensional Landau-Ginzburg description. An alternat
model is a set of weakly~Josephson! coupled superconduct
ing layers. The applicability of the three-dimensional d
scription is typically assessed by comparing the cohere
length along thec axis jc5ej, with the distanced between
the Cu-O layers in the material.1 A coherence lengthjc
larger than the layer spacing usually justifies a continu
description along thec direction.32 This is certainly the case
for YBCO, but not necessarily for BiSCCO. Nevertheles
extrapolating the results of the continuous description m
also provide insights into the elastic properties of highly a
isotropic superconductors such as BiSCCO. To this end,
compare results obtained for three different values of
anisotropy parameter, namely,e50.02,0.1, and 0.5, for the
usual areal densities ofa/l50.2,1.0,5.0.

In Figs. 10~a! and 10~b!, we plot the elastic eigenvalue
along theQ50 axis, and the transversal eigenvalue alo

FIG. 10. ~a! Elastic eigenvalues along theQ50 axis as a func-
tion of lkz . ~b! Transversal eigenvalue along thea5p/12 direc-
tion in the IBZ as a function of (aQ)2, and for lkz510.0. The
dashed lines are numerical results fore50.02 ~BiSCCO!, 0.1
~YBCO!, and 0.5, while the solid lines depict the correspondi
results from the analytic expression in Eq.~39!.
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the a5p/12 direction inside the IBZ, respectively, for di
ferent choices ofe. There is clearly a strong dependence
e, mainly originating from thee dependence of the line ten
sion E(kz) in Eq. ~12!. Naturally, the most pronounced ten
dency is the decrease in eigenvalues withe, reflecting the
general softening of the vortex lattice. It is worth pointin
out, however, that the slopes of the linear part of the cur
in Fig. 10~b! are independent ofe, reflecting merely the fac
that the shear modulusc66 is independent of the anisotrop
parameter. The dashed lines in Fig. 10~a! correspond to the
analytic expression of Eq.~39! ~for the appropriate param
etersa/l ande), and clearly provide an excellent fit to th
numerical data along theQ50 axis. Similarly in Fig. 10~b!,
the dashed lines are from Eq.~39! for the transveral eigen
value, again showing fairly good agreement with the num
cal data. Analogous results are obtained for other flux l
densities and for the longitudinal eigenvalue~not shown!.

VI. THE MELTING LINE

The melting of a vortex lattice by thermal fluctuations h
attracted considerable attention in the context of hi
temperature superconductors. This transition has been
served by means of several experimental techniques suc
bulk magnetization, local induction, and latent he
measurements.20–28 The linelike nature of the constituent el
ements provides intriguing challenges to theoretical analy
Important features of the melting transition are the nega
slope of the melting curveTm(B) at high fields, its reentran
behavior at low fields, and its marked dependence on an
ropy. Some of these features can be extracted from sim
models of the vortex lattice, as in the so-calledXY,31 Bose,33,
and cage34 models. These models agree in the prediction
certain universal features, such as the scaling of the me
temperature with the anisotropy parameter, or the magn
field, in the high field region of the phase diagram.35

In the absence of a rigurous theory for three-dimensio
melting, the position and shape of the vortex lattice melt
line is usuallyestimatedusing the so-called Lindeman crite
rion. According to this criterion, the lattice melts when the
mally induced fluctuations of a lattice point become com
rable to the lattice spacing. This condition can be written

@^u2~r 0!&#1/2;cLa, ~41!

where cL;0.120.2 is the ~empirically chosen! Lindeman
parameter. The extent of fluctuations is measured by the
tocorrelation function̂ u2(r 0)&. This quantity was calculated
by Nelson and Seung11 in the local limit, and by Brandt13

and Houghtonet al.14 for the nonlocal continuum limit, and
in more general circumstances including variations of
amplitude of the order parameter in the Ginzburg-Land
Hamiltonian.

In the preceeding sections, we calculated the harmo
energy cost of fluctuations of the vortex lattice. In a classi
equilibrium state, each independent harmonic mode acqu
a thermal energy ofkBT/2. By adding the correspondin
squared amplitudes of the normal modes, the autocorrela
function is obtained as
s
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^uu~r0!u2&5
kBT

2 E dkz

~2p!
E

BZ

d2Q

~2p!2
~LL

211LT
21!. ~42!

The Lindeman criterion now provides a rough estimate of
melting temperatureTm , through the relationship

kBTm

2 E dkz

~2p!
E

BZ

d2Q

~2p!2
~LL

211LT
21!;cL

2a2. ~43!

The leading contribution to the fluctuations comes fro
the transversal modes, which as discussed in Sec. IV
always smaller than the longitudinal modes. We also ign
the angular dependence observed in Figs. 5, which is ra
weak, and should not give rise to qualitatively different r
sults. Furthermore, we assume that the transversal eigenv
is isotropic, and given by Eq.~39!. This expression can be
integrated analytically over the two-dimensional BZ, resu
ing in a rather long expression, that we have finally in
grated numerically overlkz . The numerical integral ove
lkz is, in all cases, between a long wavelength cutoff eq
to 1026 and the e-dependent short scale cutoff ofl/jc
5k/e32.

Provided that we are sufficiently far away from the cri
cal temperatureTc , one can further assume that the penet
tion length is independent of temperature, i.e.,l(T);l(0).
As we get closer toTc , however, one must consider th
temperature dependence ofl in order to obtain sensible re
sults. For the sake of consistency of our analysis, within
Ginzburg-Landau critical regime, we then use the mean-fi
temperature dependences of bothl and j, i.e., l(T)
5l(0)(12T/Tc)

21/2 and j(T)5j(0)(12T/Tc)
21/2. We

expect this approximation to fail in close vicinity ofTc due
to critical fluctuations.

In Figs. 11, 12, and 13, we depict the resulting melti
lines for different values of the anisotropy parametere
50.02 ~BiSCCO!, and e50.1 ~YBCO!. Note that some of
the data are presented in a log-log or in a log-linear plot
order to emphasize the scaling with the magnetic field in
high field region, as well as to better visualize the lower p
of the melting line, i.e., the reentrant portion of the pha
diagram. The dotted line in the last two figures represents
upper critical field Hc2

MF(T)5f0(12T/Tc)/2pj2(0), with

Tc593 K and j(0)514 Å . Close toHc2

MF(T) the ampli-

tude of the order parameter is strongly reduced due to
overlap of the vortex cores and these results are no lon
valid. However, well below this line, the London limit pro
vides a good description of the system. In Fig. 11, we rep
sent the results obtained assumingl(T)5l(0)51400 Å ,
for e50.02,0.1,0.5. At high fieldsa/l!1, the melting tem-
perature decreases asB20.53 in all cases, consistent with th
prediction of Tm;B21/2, common to the above mentione
models.31,33,34 We have also checked that the melting te
perature decreases linearly withe, for various values ofa/l
within the high field region, i.e.,Tm;eB20.53. This is an-
other feature which is in agreement with previous pred
tions, and with available experimental data. In this figure
also encounter some unreasonably high melting temperat
which are the consequence of the assumptionl(T)5l(0).

Figure 12 shows the results obtained for the melting l
Tm assumingl(T)5l(0)(12T/Tc)

21/2. We have used the
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values ofTc590 for BiSCCO (e50.02), andTc593 for
YBCO (e50.1). As in the previous figure, within the hig
field region of the phase diagram, the melting temperat
decreases as the external field is increased. Quantitative
qualitative differences between the new curves and the
responding results forl(T)5l(0) ~depicted as dashed line
in the figure! can be observed even at low temperatures. N
the critical temperature, the low-field portion of the meltin
curves has a negative slope~as for their high field counter
parts!, but at low temperatures the slope is positive, so t
the melting temperature decreases with the external fiel
very low densities of flux lines.

FIG. 11. The melting lineTm(B), for e50.02,0.1,0.5, from the
Lindeman criterion, assuming a temperature independent pen
tion depthl. At high fields, the melting temperature decreases w
the magnetic induction asB20.53, as indicated by the asymptoti
dashed lines, and linearly with the anisotropy parametere. The
dotted-dashed lines show the melting lines resulting from the lo
elastic moduli. While the latter agrees quite well with the reentr
low field part of the curve, it yields a very different behavior
higher fields.

FIG. 12. The melting lineTm(B), for e50.02,0.1, assuming a
mean-field temperature dependent penetration depthl. The dashed
lines show the results obtained assumingl5l(0) up to the point in
which they are still reasonable.
re
nd
r-

ar

t
at

At the scale of Fig. 12, the high and low field portions
the melting curveTm(B) appear almost discontinuous clos
to Tc . However, as indicated in the blow-up of this region
Fig. 13, this is in reality a sharp but continuous turn arou
Following the literature,25–27we fit the melting fieldsBm(T)
to power laws in the reduced temperaturet[12T/Tc , with
an exponent ofa. The dashed lines in Figure 13 indicate th
extent of this power law regime for each value ofe. We note
that even though we are using the input value ofTc , the
power law regime extends at most over two decades.
naturally obtain different exponents for the upper and low
branches of the melting curve. The apparent exponent of
upper branch actually depends on the parametere, taking the
value ofa1(e50.1)51.91 for YBCO, and a slightly smalle
value ofa1(e50.02)51.67 for BiSCCO. Both curves over
lap in the reentrant region at very dilute concentratio
where we can fit to an effective exponent ofa250.75.

The phase diagram of Fig. 12 is qualitatively similar
the predictions of Ref. 7, where the power law forms for t
phase boundary close toTc were also first discussed. In pa
ticular, it is reasonably straightforward to estimate the sh
of the phase boundary in the low field region, where t
leading contributions to the transversal modesLT come from
the shear modulusc66 ~which decays exponentially witha/l,
and does not depend one), and from the last term in Eq
~39!. As expected for very low densities of flux lines, the la
two terms in this equation tend to the single line tens
E(kz) @see Eq.~12!# which, for small values ofkz , is in turn
dominated by thee-independent magnetic contribution. Th
leads toBm

2;l(T)22 ln22@l(T)#, and consequently to an ex
ponent ofa251 with logarithmic corrections.7 The effec-
tive exponent ofa2'0.75 obtained in Fig. 13 is differen
from thea251 expected on the basis of our mean field fo
for l(T) indicating the difficulty of determining the true ex
ponent from such fits.

For the upper portion of the mean-field line, the melti
field is estimated7 to scale asBm;l(T)24, leading toa1

ra-
h

al
t

FIG. 13. The low-field region of the reentrant melting lineBm ,
plotted as a function of (12T/Tc), for e50.02,0.1. Close to the
critical temperatureTc , the melting induction grows as a power o
the reduced temperature 12T/Tc , as indicated by the asymptoti
dashed lines. As in Fig. 11, the dotted-dashed lines show the m
ing lines resulting from the local elastic moduli.
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52 for our choice of a mean fieldl(T). While the observed
value ofa1(e50.1)51.91 is not far from this expectation
the smaller value ofa1(e50.02)51.67 indicates the diffi-
culty of finding a good asymptotic regime. Naturally,
close vicinity of the critical point we can no longer use t
mean field forms for the divergence ofl}j}utu21/2. Using
the scaling forms,j}utu2n}l2, with the XY critical expo-
nent ofn'2/3, leads toa152a252n.7 Indeed, the values
of the exponent of the upper branch (a1;1.3321.36) re-
ported from measurements of the melting transition in sin
crystals of YBCO,25–27 are consistent with this prediction
However, given the difficulties of extracting exactly know
exponents from the data of Fig. 13, we may well question
robustness of this procedure.

We would like to emphasize that most of these resu
cannot be obtained from the local values of the ela
moduli given in Sec. IV B. The results obtained from such
local elastic approximation are plotted as dot-dashed line
Figs. 11 and 13. The latter curves overlap in the high fi
region, where neither the local tilt, nor the shear modu
depend one. Rather than decreasing asTm;B21/2, the re-
sulting melting temperature reaches a constant value for
B, i.e., Tm;B0e0. On the other hand, the local melting tem
perature provides a very good approximation to the melt
line at very dilute concentrations, in the reentrant low fie
portion of the curve.

VII. CONCLUSIONS

In conclusion, we have obtained the elastic moduli of
flux line lattice in a systematic and detailed way which is n
restricted to the most commonly considered continuum lim
The transversal and longitudinal harmonic eigenvalues h
been computed numerically for different areal densities
flux lines, and as a function ofQ ~within the irreducible
Brillouin zone! and kz . Several features emerge from th
analysis of our results.~i! There is a weak angular depe
dence of the harmonic eigenvalues which becomes more
nounced on approaching the BZ boundary.~ii ! Throughout
the BZ, transversal modes are less costly than longitud
modes, and are the main cause of lattice fluctuations.~iii !
Not surprisingly, both eigenvalues increase withlkz , and
modes with higherkz are more costly.~iv! Rather surpris-
ingly, due to a rapid decrease ofc44

nl , the energy of a trans
versal mode with a nonzerokz actually goes down withQ.
The minimum cost occurs for a finiteQ which depends on
lkz , and the density of flux lines.~iv! For a large portion of
the IBZ, both eigenvalues exhibit a linear dependence
(aQ)2, whose slope depends on the local shear modulusc66
which can be calculated as a function ofa/l.

Some of the above features are qualitatively well
counted for by the nonlocal continuum limit results recalc
lated in Sec. IV. Nevertheless, beyond a characteristic va
of lkz , there are major differences between this analy
form and those calculated numerically. Guided by our
e
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sults, we propose analytic corrections to the nonlocal c
tinuum limit, which fit quite well the behavior of the elasti
eigenvalues throughout the London regime. Other limiti
forms for the elastic energy often quoted in the literatu
such as the single line, local, and local continuum appro
mations, are reconsidered within our framework, and th
range of validity is examined. We have plotted some of th
limits, together with our numerical results, for better ease
comparison.

We also consider different values of the anisotropy p
rametere, in particular corresponding to values quoted in t
literature for high-temperature superconductors such
YBCO or BiSCCO. The latter is the paradigm of a high
anisotropic superconductor with softer elastic eigenvalu
This fact can be corroborated in our analysis and is u
mately responsible for strengthening the magnitude of th
mal fluctuations. We have made use of our proposed ana
cal expression to calculate the extent of thermal fluctuati
for different e. The full form of the melting curve is then
obtained using the Lindeman criterion, capturing the follo
ing salient features ofTm(B): ~i! It decreases at high tem
peratures with the magnetic field, approximately asB20.53.
~ii ! It decreases with the anisotropy parameter, and con
quently the molten vortex liquid covers a large fraction
the equilibrium phase diagram at smalle. ~iii ! There is reen-
trant melting at low fields due to the weak interactions b
tween widely separated flux lines. The reentrant ph
boundary is itself a nonmonotonic function of temperatu
~iv! Close to the critical temperatureTc , both branches of
the melting lineBm can be fitted to power laws in the re
duced temperature 12T/Tc . However, the power law is ob
served at most over two decades, and the resulting effec
exponents are different from the expectations from me
field theory, casting doubt upon the effectiveness of t
method.25–27

Another interesting potential extension of this work is
include entropic contributions to the free energy, in order
explore the fluctuation induced effects which have been p
posed to be important in the low field region of the pha
diagram.36 Our analysis has been applied to a conventio
s-wave superconductor with a triangular lattice of flux line
A square lattice of flux lines is also possible in d-wave s
perconductors, where similar approach and phenomeno
can be carried out, although the details of the harmonic
ergy, as dictated by symmetry, will be different. Again, ca
culation of the entropic contributions to the free energy m
provide a better estimate of the transition between triang
and square lattices.37
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