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The elastic moduli of vortex crystals in anisotropic superconductors are frequently involved in the investi-
gation of their phase diagram and transport properties. We provide a detailed analysis of the harmonic eigen-
values(normal modekof the vortex lattice for general values of the magnetic field strength, going beyond the
elastic continuum regime. The detailed behavior of these wave-vector-dependent eigenvalues within the Bril-
louin zone(BZ), is compared with several frequently used approximations that we also recalculate. Throughout
the BZ, transverse modes are less costly than their longitudinal counterparts, and there is an angular depen-
dence which becomes more marked close to the zone boundary. Based on these results, we propose an analytic
correction to the nonlocal continuum formulas which fits quite well the numerical behavior of the eigenvalues
in the London regime. We use this approximate expression to calculate thermal fluctuations and the full
melting line (according to Lindeman'’s criterigrfor various values of the anisotropy parameter.

[. INTRODUCTION of the material, such as, for example, the intricate vortex
phase diagrams. As such, the derivation of the elastic energy
Among the fascinating aspects of the new high-and the elastic moduli has been undertaken in several
temperature superconducting materials, there are maryublications’™*® While it is well known that the elastic
which are due to the rich and complex behavior of vortexmoduli of the vortex lattice depend strongly on the magnetic
lines}? These quanta of magnetic flux penetrate the superfield strength, the values currently presented in the literature
conductor above a certain threshold value of the externaire only strictly useful in certain limiting situations. Most
magnetic fieldH, the so-called lower critical field—|cl frequently, results are obtained in the so-called continuum

(roughly 102 T, and their concentration increases with  limit, in which one disregards the discrete nature of the un-
up to the upper critical fieldd. (approximately 18 T), derlying vortex lattice. Obviously, this description is not
above which the material is ni)mfa‘f In a classic work suitable for the whole range of possible flux-line densities in

i - he mixed state, which extends frohh. up to the upper
Abrikosov showed that the minimum energy arrangement of . . ) . L .
flux lines in a conventional superconductor is a triangulf';lrc”t'caI field He, at which the magnetic field penetrates uni-
lattice, with a lattice spacing which varies with the mag- formly into the material. The elastic properties of the vortex
netic field strengtfi. lattice, and hence its stability against thermal fluctuations,

Recenﬂy, with the discovery of high_temperature Cupratéjepend sensitively on the value of the magnetic field in this
superconductors, there has been a resurgence of interest'@nge. Furthermore, the important fluctuations sometimes oc-
the properties of vortex matter. The relative flexibility of cur at short wavelengths, where a simple elastic description
vortex lines in these materials makes them susceptible tg1ay not be appropriate. It is thus worthwhile to obtain the
distortions by thermal fluctuations, and other sources of disgeneral dependence of the energy cost of harmonic distor-
order(oxygen impurities, grain boundaries, ¢t@he regular  tions of the vortex lattice.
lattices obtained in mean-field theory are thus distorted, giv- AS temperature is increased, thermal fluctuations cause
ing rise to a rich variety of vortex-matter phadedt is thus ~ the vortex lattice taneltinto a vortex liquid. Several experi-
necessary to understand the elastic response of vortex latticB¥nts employing quite different techniques have provided
to distortions, a subject that has been intensely studied in th&m evidence for such a transitigh->® In the new cuprate
context of conventional superconductors. The stability of thesuperconductors, the melting transition can occur at tempera-
triangular lattice against small distortions is guaranteed atres well below the mean field point, so that the Abrikosov
long as the characteristic length of the field variations, thdattice is melted over a substantial portion of the phase dia-
so-called penetration depify remains smaller than the size gram. Furthermore, the vortex lattice can melt not only by
of the systenf. (An infinite A renders the lattice of vortex increasing temperature, but also by decreasing the magnetic
lines unstable against fluctuations or, more precisely, againéeld to the vicinity ofH; (T). In this region of the phase
shear deformations At low temperatures, fluctuations are diagram, the concentration of vortices is very dilute; the
well described by small corrections to the mean-field resultsseparatiora between neighboring flux lines is larger than the

The elastic properties of the triangular vortex lattice atpenetration lengti\, and the vortex-vortex interaction de-
long distances are characterized by its compressional, sheaays exponentially. As a consequence, the elastic moduli be-
and tilt moduli. These moduli are frequently involved in the come exponentially small, and correspondingly, thermal
theoretical and experimental determination of the propertiefluctuations are greatly enhanced. This behavior gives rise to
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fields.

In this paper, we take up the computation of the elastic
properties of a vortex lattice, in a systematic manner which is
not restricted to the most commonly considered continuum
limit. Our analysis allows the illustration of some of the
subtleties involved in the calgulation, and to successful!y reliere 6(r, ,2) is the phase of the complex order parameter
solve some of the unclear points that we encountered in oUW g W(r, ,2)=W,e D A(r, z) is the magnetic vector

review of the literature, and which may also have puzzleq,,ienial related to the magnetic induction through, ,2)
other investigators of the subject. The paper is organized a§V><A(rL 2), a=(hVy)22m, $o=hci2e is the flux

follows. In Sec. Il, we introduce the Ginzburg-Landau quantum, ande?=m/M is the usual anisotropy parameter,

Hamiltonian for an anisotropic superconductor. This mode(Nith mandM being the effective masses in the Cu-O planes

IS cor_nmonly used in the Iltera_ture as ”“? starting point forof the material, and along the perpendicuwaxis chosen to
studying the effects of fluctuations and disorder. Minimiza-

i : o . : ) ) coincide with thez direction, respectively. The external mag-
tion of this Hamiltonian gives the optimal lattice configura-

tion, around which we then study the cost of distortions inn€tic fieldH is also oriented paraliel to treaxis H=He, .

the harmonic approximation. This section also introduces th&/0te thatV, , 1, , andA, , denote the planar components of
main parameters and notation used throughout the paper. v [» @1dA, respectively. _

Sec. Ill, we provide an expression for the harmonic kernel in Consider a configuration with vortex lines, and decom-
terms of a sum over Bravais lattice vectors or, equivalentlyP95€ sthe corresponding phase field into two parts:
over reciprocal lattice vectors. The normal mode eigenvaluegnzlon[rl — Ry, 1(2),z], which represents the singular phase
are explicitly written in terms of this kernel. Section IV is dué to the N vortices passing through point&,(z)
composed of subsections in which we introduce certain lim=R, , (z)+zz(n=1, ... N) on independent planes at each
iting situations, corresponding to a single line, local, local-z and ¢", a regular phase field accounting for the relaxation
continuum, and nonlocal-continuum limits. These limiting due to the couplings between the planes. By construction,
cases are often quoted in the literature, and are widely usesach 6;, is the solution of a two-dimensional problem with
in studies of vortex matter in high-temperature superconductthe circulation constrainf.d¢; =21 on any closed circui€

ors. Within our framework, we recalculate the analytic val- ground thenth vortex. We have chosen the coordinat®

ues of the elastic eigenvalues in these limits before discusparametrize the trajectories of the different flux lines. None-
ing our more general results in Sec. V, where the harmonigheless, one has to bear in mind that the results should be
eigenvalues are numerically evaluated. Our results argwariant under an arbitrary reparametrization.

graphically presented in several plots, and compared to the Vvariations of Eq.(1) with respect to the phag#, and the
limits introduced in Sec. 1V, to easily visualize the accuracyyector potentialA, provide the differential equations for
of the approximations involved. As a practical illustration of these quantities, whose solutiofater considering the Cou-
the potential applications of our results, we use the harmonipmb gaugeV - A=0) minimize the energy in Eq1). Sub-
eigenvalues to calculate the thermal distortions of the vortextituting these solutions for a given distortion of the flux-
lattice in Sec. VI. The leading contribution to flux-line fluc- |attice into the Ginzburg-Landau free energy, results in an
tuations in real space comes from the transverse modes. Bhergy cost of the form
conjunction with the Lindeman’s criterion, we can then find

the full form of the melting line as a function of the magnetic

field. This is one of many potential applications that our ¢S J d3k [ o}

an interesting reentrant behavior of the melting line at low 2 \2
H:f dsl' o VLH—?AL)
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general analysis makes possible, without the need to extrapo- - 32,3

3 2.2 21,2
! ) . . . + + =1
late the elastic behavior of the lattice to regimes beyond their (2m)* L (Aea™ AT+ 1) [n
range of validity. Finally, in the last section we summarize K2 N 2 BoNH
our main conclusions. N | t—L , )
(N%K?+1) |n=1 4w
Il. GENERAL FORMULATION wherek=g+k,z, and we have introduced the squared pen-

Our starting point is the continuum Ginzburg-Landau free®tralion dgpths in a pIane2 perpendicular to thexis, \?
energy for an anisotropic superconductor in the Londor~ %o/ (327 @) =mc?/(16me* W), and along thec axis of
limit.3 In this limit, the penetration length (~10° A) is  the superconductar.=\/e. The functions
much larger than the coherence length of the superconductor
£ (~10 A), and fluctuations in the magnitude of the order o dR. | (2)
parametet', are neglected. The phase degree of freedomis 7 (k)= — _z(qxi). f dzekzdaRa () 0
then the only variable that needs to be considered. For the dz
anisotropic superconductors under consideration, this ap- (3
proximation breaks down in a narrow band closeHg,

where the separation between vortices becomes comparable o
to £. The Ginzburg-Landau Hamiltonian in this limit is given P.(K)= il(qXE)f dzekz2d @R, (D (4)
by o’ '
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and taking advantage of the translational symmetry of the
lattice, the energ\AH can be written as

dk, d?Q
AH: f (27T) fBZ(Zﬂ_)Zua(Qlkz)MalB(Q,kZ)

Xuf(=Q,—ky), ®

where the index BZ indicates that the integration is per-
formed over the first Brillouin zone in reciprocal space.

All the relevant information is therefore contained in the
harmonic kerneM ,4(Q,k,). Formally, we have to find the
eigenvalues and eigenvectors of this matrix, and we can then
calculate the extent of fluctuations in real space, the fluctua-

FIG. 1. Lattice vectors with a common Origin at the lattice point tion corrections to the free energy, and other relevant quan-
P, and with the same modulus tities. In Fourier space, the eigenvectorswfs(Q.k,) areN

P L -A. -
represent the Fourier transforms of the vortex functieyes !;;:gr:EZZ]:;TTSdke)SE |(QQ><kE|)(5Qk )T((v?\/,ilt(;)(,::r?((ejs,\pl)ct);a;i?g;e;i
1Rz) — AV AR -

andV, 65, respectively. Because of its singular nature, the

Fourier transform of the latter actually has a componengenvalueg\L(Q’kz) andA.T(Q’kZ)' In pracpce, It turns. out
which is perpendicular ta. that the analytic expressions for these eigenvalues is rather

Let us now assume that the position vedgar, (2) is the complex. That is why in the literature only certain limiting
L

sum of a perfect lattice vector, plus a small displacemenf:?e'rmoe:iﬁrge?lf\s;”);rt]rdeﬁz(: Vg%;?glgi‘:ijggbtﬁeti??;l:ggs
field due to fluctuations, i.eR, , (z) = Rﬂ+ us(2). Up to sec- L 9 y

. : in comparison to our more general results.
ond order in the displacements(z), the energy cost can P 9
then be expressed as

H=H"+AH. (5)
The first termH°, gives the free energy of an array bif The longitudinal elastic eigenvalu®, (Q,k;) is typically
straight flux lines oriented parallel to the external field, andeXPressed in the literature in terms of the so-called compres-

located at positionﬁeﬁ, sional cll(?,kz) and tgt C44(Q,k,) elastic moduli as
€11(Q, k) Q7+ cu(Q,k)Ks . In general, however, we shall

Ill. LONGITUDINAL AND TRANSVERSAL MODES

bo dnm see that this decompositi be i te. In t f
o_ny 2o . Ynm position may be inaccurate. In terms o
H=NLg - (He, H)+L60n%;en Kol %) ©  the matrixM ,4(Q,k,), the longitudinal eigenvalue is given
HerelL is the sample thicknesslclz ol (47N?)In(k) is the by

lower critical field, x=N\/¢ is the Ginzburg-Landau param- AL(kaz):QaMaﬁ(Q1kz)QB1 (9)

eter,H is the magnetic field strengtlag= ¢>S/(47-r>\)2 is an

interaction energy per unit length,(x) is the modified where, as usual, a repeated.index is summed over. On the
Bessel function of zeroth order, amtj,=R0—RY, are the ~Other hand, the transversal eigenvalug(Q k,), commonly
relative position vectors of any pair of flux lines. On a per-Written in the literature in terms of the sheay(Q.k,) and

fect triangular lattice, these vectors are of the fody, tilt moduli asce(Q,k)Q+caQ k)K: , is

= =0+1+ ~ ~
a(r_leltmez), (n,m 0,__ 1,£2,...),with a theAIaitlfze AT(Qk) =M o(Q k)~ QM os(Qk) Oy (10)

spacing,e; oriented, for instance, along theaxis, e;=Xx,

and e, = cos(@/3)x+sin(w/3)y (see Fig. L The modulus of There are two alternative ways of expressing the interac-

one of these vectors is then given l,=a(n®>+m?  tion kernelM ,4(Q,k,): in terms of a sum over the Bravais

+nm)2. lattice vectors, or as a sum over the reciprocal lattice vectors.
The first term on the right-hand side of E§) represents The former yields

the energy cost of a single vortex line in a type Il supercon-

ductor, times the number of lindsé. The last term is due to Neg (1

the interactions among flux lines, which naturally depend on Map(Q.kz)= 7[55( Kz) bap

the interline separations. The penetration lengttsets the

extent of the interaction potentiddy(x), which diverges

logarithmically at short distances, and decays exponentially +n§n [co Q- thm)Rap(dym Kz)
for x>1.
The quantityA’H represents thBarmoniccontribution of
fluctuations to the free energy. After writing the displace- _Raﬁ(dnmao)]}v (11

ment fieldsu,(z) in terms of Fourier modes
5 where we have introduced the areal density of flux lines
Un(Z)IJ dk, d"Q é(Q-RngkZz)u(Q,kZ), @) =N/A. For compactness of notation, let us also introduce the
(2m) JBz(27)? dimensionless variables= \A\%k?+1, andx.=ex. In Eq.
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(11), the quantityne,£(k,)/\? represents the line tension of I’12¢S
each vortex, which, in general, contains contributions fromM ,4(Q,k,) = e
both the Josephson coupling between the different Cu-O lay- ™

2 [G(G—Qk,)—G4(G0)]
G

ers in the material, and the magnetic interlayer interactions,

1 d%q
as _z S (q— _
nJ'(ZW)Z[GaB(q Q.k) = Gup(aka)] |-

K2 1
—+
X2

c

(16)

The symbol® indicates symmetrization with respect @
i, Giu(G—Qk)=[G,4(G—Qk,)+G,4(G+Qk,)1/2.
[The second term on the right-hand side of the expression is
included to properly account for the particular casem

1
E(ky) = Eezxzkg In +In(x). (12

The interaction kerneR,, 5(d,k,) is given by

A dx dx|d,dg andz=2z' in Eq. (2).] In addition, from Eq.(2) we obtain
Rup(dhke) = gKa| 5] dus=Ko| 7] = 2
Gu(qk) = K 90
P ATEDY dx, BT N2 ak2+ 1)\ P 2
+ 62)\2k§| {KO(T) + &Kl(T) 5aﬁ cd , z q
k szqﬁ
+— ", (17
dx.\d.dg (A\K2+1) QP
| % "

Our goal is to provide accurate values of the harmonic

Note that we use the symbdi=|d| to indicate the distance €igenvalues as a function Qf andk, within the BZ, and for
between a pair of lattice points. The sum in Efjl) runs different concentrations of flux lines. The dimensionless pa-

over all such separations from a specific point on the latticef@metera/A will be used as the indicator of the areal density
as illustrated in Fig. 1. of flux lines. A small value ofa/\, corresponds to a highly
The matrixR(d,k,) depends on the different relative po- dense regime with strong and nonlocal interactions among
sition vectorsd= d,, of the perfect triangular lattice. When the flux lines. On the other hand, fafA>1 the concentra-
summing over all lattice vectors with a common origin at ation of flux lines is very low, and interactions among them
point P, we can take advantage of the lattice symmetries. Foy€ry weak. In this dilute limit, the elastic behavior of the

example, the sum over products of an odd number of vectd@ttice reflects to properties of a single flux line. We thus
components vanishes, as in evaluate numerically the harmonic eigenvalues as a function

a/\ throughout the BZ. The equivalence of expressidris

and (16) renders the use of one or the other a matter of
2 d,=0 and d,dgd,=0. (149 convenience. For instance, for very high areal densities of
d#0 d#0 vorticesn, it is common to disregard the discreteness of the

underlying arrangement and approximate the sums over lat-

On the other hand, the sums involving products of an evelyee sitions by integrals. This so-called continuum limit is

number of components are nonvanishing and constrained t{)'ery often used in the literatuf@-® The elastic moduli
the symmetries; for example, i

which follow from this approximation can be read directly
from Eq. (17), when only the reciprocal lattice vect@=0

d2 . .

S dd,=s,,S — is taken into account. We shall comment on the accuracy of
& P TPy 2 this limit in the following sections.

d4 IV. LIMITING REGIMES
g.

c;o Aatlpdyds=(Sapdyst dayOpst 5“55‘37)(;0 In this section, we first present some special cases previ-
(15 ously discussed in the literature. By comparing these limits
to our numerical results, one can then see their range of
(Higher order terms have a more complex strucjuiiéhe  validity and the accuracy of the approximations involved in
Sumsz 4. o on the right-hand side of EqéL5), are equivalent  their formulation. We shall also emphasize the roles played

to 24.09(d), with a degeneracy factg(d), which counts by the interline distance, the penetration lengthand the
the number of vectors whose moduluddis symmetries of the triangular lattice.

Equivalently, we can express the kernel as a sum over
reciprocal lattice vector&. The same symmetrigd4)-(15)
are, of course, valid for these vectors, which, according to

our, choice _Of i”m'+ ;re glve;: by G/\/A—m/.(\/ia)(pgl M, 5(Q,k;) should be jusiN times the result obtained for a
+0%), (p.q=0+1,£2,...), where 47 3‘:" Is the recip- single flux line. All the modified Bessel functions appearing
rocal lattice spacing, and the unit vectors gie=sin(@/3)x  in Eq. (13) decay exponentially fast for large values of their
—cos@@/3)y, andg,=Y. In terms of these vectors, the inter- argument(which is proportional toa/\), and only weakly
action kernel reads contribute to the final values of the harmonic eigenvalues. In

A. Single line
At very low areal densities, i.e.a/A>1, the kernel
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other words, in Eq(11) only the line tension par€(k,) is
important for large values ad/\. In Sec. V, we show that

the single-line approximation indeed provides the best de-

M.-CARMEN MIGUEL AND MEHRAN KARDAR

scription of the elastic properties of the system at very lowmthe shear modulus

concentrations of flux lines.

B. Elastic moduli

The energy cost of long wavelength distortions is de-yth
scribed by an elastic theory, whose form is constrained by

symmetries. The triangular lattice is isotropic, and governed

by the compressional;;, shearcgg, and tiltc,,, moduli. In
terms of the Fourier modes, the elastic energy is

1( dk d?
AH= _f _Zf 4

2 2 52(277-)2

—Q.Qp)Jua(QK)ug(—Q,—Ky), (18)
and the harmonic eigenvalues have the simple forms

AL(Q.Ky) = (€11Q%+Chkd)/2,

AT(Qkp) = (CoeQ%+ Cadk) /2. (19
Formally, Eq.(8) together with Eqs(11) or (16) provide the

[C44k§ Supt€11Q,Qp+ Coel Q? Sup

harmonic eigenvalues throughout the Brillouin zone. Natu-
rally, the elastic limit is regained by expanding these results

up to second order i@ andk,. Neglecting the higher order
terms is referred to as tHecal limit, as it is usually obtained
by including only short-range interactions. Sometines-
local elastic moduli are introduced which depend@nThis

is not always useful, as it constrains the form of the har
monic eigenvalues as in Eq4.9), whereas symmetry allows
higher order powers o to appear in other forms.

After expanding the cosine, and using the symmetry prop
erties of a triangular lattice in Eqél4),(15), as well as cer-
tain relationship among the modified Bessel functithsie
arrive at

(AK

N

Neg 1 |
Ma,B(Qrkz)z 2 55 (kz)éaﬁ+

(20

X( 5aﬁ_

where&'(k,) is the single line tension in the local approxi-
mation, £'(k,) = (e\k,)? In(x/€)+(\k,)%/2 (valid for x>1
>€).

Comparing this expression with E¢18) allows us to
identify the compressional modulus

> Fc(

d+#0

d

J,

I

nGO

2 (21)

C11=

with
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F d)—dz K(d lK d 22
VIR VAL VAL 22

_nGO d
Cos= 7 2 Fs(;), (23
F d —d2 K d 1K d 24
sin )=z Kol X~ 2Ka X ) (24)
and the tilt modulus
Lo (kL d
C44—n60-€ In E +2+;0 Ft()\ y (25)
with
d\ [, [ed| 1(d| [d
FIX:EK()T'i‘Exle. (26)

Note that the mean-field lattice spaciagis related to the
strength of the applied fieldl through the relationship

HEE

which is obtained fromyH% 9a|,=0. Then, by comparison,
the local tilt modulus for an isotropic materiad€ 1) can be
written asc,,=n¢oH/4r, in agreement with the result ex-

d

EiDY

1
"2

d

A

d

A

%o

47\? §70

(27)

H=H, +

pected for the local tilt modulus of a rotationally invariant
superconductot! Strictly speaking, in Eq(25) there is an
extra factor of 1/2, coming from the local line tension. How-
ever, as pointed out by Fish&r,one could chose a short
distance cutoff (Ref. 30 inside Inj\/&) to reproduce exactly
the local isotropic limit.

In Figs. 2a) and 2b), we depict the functions. andF,
for different values of the dimensionless quantityA, to
illustrate some subtleties associated with the estimation of
the shear modulus, often forgotten or misunderstood in the
literature. As shown in Fig.(®), for small values ofl/\ the
function F4 is negative, whereas d/\>2 it becomes posi-
tive and then decays exponentially to zero. The implications
of this functional form for the shear modulus are as follows:
As indicated before, the range of interactions among vortex
lines is determined by the penetration lengthFor a dilute
vortex lattice whose lattice spacirggis comparable or even
greater thar, almost all the terms in the sum in E@.3) are
positive, and as they rapidly decay to zero, only the first few
lattice vectors for neighboring sites are needed to calculate
the shear modulus. On the other hand, in a dense system
there are many neighboring vortices within the interaction
range\, contributing anegativeamount to the sum in Eq.
(23). It is then clearly not sufficient to consider only interac-
tions among a few neighboring lines, and to account for the
stability of a dense lattice against shear deformations, we
need to sum over many lattice vectdfmally giving rise to
a positive shear modulus

In Figs. 2a) and Zb), we also indicate with a dashed line
the limit A\ —oo (for a finite value ofd). In this case there is
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FIG. 2. (a) Behavior of F; in Eq. (22) as a function of the
dimensionless parametef\. (b) Behavior of the functiorF in
Eqg. (24) as a function of the dimensionless parametéx. The FIG. 3. (8) Normalized compressional and shear moduli as a
long-dashed lines represent the-« limit of these functions. function of the dimensionless parame#¢k , obtained by numerical

evaluation of the sums in Eq$21) and (23). (b) Normalized tilt
a logarithmic interaction among the vortices, as in the twomodulus as a function of the dimensionless paramatgr from
dimensional Coulomb gef’é.Note that in this limit, all fac- numerical evaluation of the sum in E®5).
tors in the sum for the shear modulus are negative, and the
lattice is unstable to shear deformati¢hhis is a manifesta- troducing the appropriate unit ared,.= \/532/2, i.e., the
tion of the more general instability of a system of point area of the primitive cell. We have also defined the average
charges in the absence of external potenials. magnetic inductionB=ngo, with n=N/A=1/A4,.. Simi-

Figure 3 depicts the compressional, shear, and tilt moduliarly, the long wavelength shear modulus is

as a function of/\, obtained by numerical evaluation of the

sums in Eqs(21), (23), and(25), respectively. These moduli ~ heg d?d d
have been normalized by their respective values in the local Ce6= 4~ _Fs(d*OHJ' st N
continuum limit, which for the long wavelength compres- be
sional modulus is defined as Neg Beoo
:T(1+0): > (29
~ neo{ d?d (d)] (87\)
c=——Fd—>0+J'—Ff . .
g (d=0) Ape SN and, for the tilt modulus we obtain
Neo 16m\2) B2 B¢, - d’d _(d 4m\? B?
=—| -1+ = 28 = —F{<|=neg——=—.
S e @ Cumneo] SRR e g

where we have replaced the sums by integrals, after firdlote that for the latter, the terih— 0 is already included in
adding and susbtracting thie- 0 element explicitly, and in-  Eq. (25).
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Similar results for the continuum local limit have been w6
previously reported in the literatuteé®!?In Ref. 12, Kogan /8
and Campbell calculated the shear modulus of a flux lattice % ggi
in different situations. Essentially, they provided an expres- - 0
sion for the shear modulusg in terms of a sum over com- aQ

ponents of the reciprocal lattice vectors. Because of the sym- ) o )
metry relations of Eq(15) quoted in the previous section, all FIG. 4. Irreducible Brillouin zone of a regular vortex lattice.
the terms included in their sums cancel each other out, and ) ) ,

should yield a shear modulus equal to zero. Kogan andPy comparing with Eq(18), we can now directly read off

Campbell numerically evaluated this sum over reciprocal latih€ nonlocal continuurfagain, up to the approximation car-
tice vectors, and reported a value close to E2). They ried out to evaluate the integjalalues of the elastic moduli

argued that there is a contribution due to the specific form of*S
the cutoff at short distancéSHowever, in view of the above

derivation of Eq.(29), it is clear that cutoffs are not relevant B2 1
to the local continuum value of the shear modulus. ch=  PCIRNETE , (33
As soon as the lattice spacing is greater than the penetra- 4T (NZQ7+ Nk +1)

tion length, a>\, all the compressional, shear, and tilt
moduli deviate strongly from the continuum results. The

2 2
compressional and shear moduli then decay exponentially to n|:|3_2 [N(Q*+K;)+1] B
zero, while the tilt modulus attains a constant value of "' 47 [\2(Q?+k?) +1](A\2Q%+\2%k2+1) (8m\)2’
neol €2 In(x/€)+1/2]. [This is why when normalized by its (34)

continuum value of Eq(30) the ratio grows asa/\)?.] As
we shall demonstrate in Se@/l), under these circumstances

the lattice again becomes rather soft and liable to melting, as ~ Boo
its fluctuations are greatly enhanced for large interline sepa- Ce6— 2" (35
rations (8m))

Note that, up to second order @2 and kﬁ, Egs.(33)—(35
C. (Nonlocal) continuum limit reproduce the local limits calculated in the previous section
The continuum limit refers to a situation in which the from the real space expression of the interaction kernel.

concentration of flux lines is high. In this limit, one disre-
gards the underlying triangular lattice arrangement and treats V. NUMERICAL RESULTS
the array of vortices as a continuous mediti In the
continuum limit, the sum of Eq(11) over Bravais lattice
vectors is approximated by an integral, or equivalently, in th
sum over reciprocal lattice vectors in E@6) only the vector
G=0 s considered. As a result, the elastic kernel reduces t

In this section, we present and discuss our results from
numerical evaluations of Eq$9),(10) using, in particular,
She real space expression of the interaction matrix in Eqg.
11). In most cases, we selected a Ginzburg-Landau param-
terx equal to 100, and an anisotropy ratioesf 0.1. How-
ever, later in this section, we present some results for differ-
n2¢g (Q%+ kf) Q.Qp ent values ofe, which may be more appropriate to describe
Map(Qkr) = DN(Q2 kD) +1] Q7 materials with stronger anisotropy. For the sake of simplic-

z ity, we introduce the dimensionless eigenvaluds'

T

k2 Q.Q;s =A_/(neg/\?) and AZ=A1/(ney/\?), and discuss their
t S o Oap™ —5 behavior throughout this section.
(NZQ%+\%KE+1) Q
1 2q A. Angular dependence
S
n ﬁf (zw)z[Gaﬁ(q_ Q kz)_Gaﬁ(q’kz)]J- Because of the point group symmetries of the triangular

lattice, it is sufficient to consider only the irreducible Bril-
(31 louin zone(IBZ), indicated in black in Fig. 4. In particular,

we have chosen five paths corresponding to values of the
The last term in this equation is a rather intricate integralangle« (defined within the figureequal to 0/24,7/12 /8,
which, on the other hand, can be easily evaluated in the locaind /6. Figure 5 shows the numerically evaluated eigenval-
approximation, i.e., when keeping terms up @3 and k§ ues along these paths within the IBZ. The horizontal axis is

only. With this approximation, we obtain the dimensionless quantit@Q)?. The plots also correspond
to the choice ofAk,=1.0. The dotted lines represent the
2q longitudinal eigenvalue\} , while we use dashed lines for
f S[G54(a-Qky) — G p(aky)] the transversal eigenvalues .
(2m) The different plots in Fig. &) clearly show that there is
25 an angular dependence, which becomes more marked as we
= QuQp — Q" 0up (32) approach the edge of the BZ. This fact was already pointed

8mA2  16mA? out by Brandt in his early work on the elastic properties of
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FIG. 5. Dimensionless elastic eigenvalues andA} as a func-
tion of (aQ)?, for Ak,=1.0, and afa) a/»=0.2, (b) a/A=1.0, and

(c) a/\=5.0. The dotted lines correspond to the longitudinal eigen-
value, while dashed lines indicate the transversal eigenvalue. T
different lines are obtained for different paths along the IBZ, at

anglesa=0,7/24,m/12,7/8, and=/6. The two solid lines ifa) and

(b) depict eigenvalues from the nonlocal continuum limit in

Sec. IV.

vortex latticesi® The anisotropy is more pronounced in the
dense regime, and diminishes as we increabe. In the
concentrated case with/A=0.2, the relative differences
|A(a)— A(w/12)|/A(/12) are up to 20% for the longitu-
dinal eigenvalue, and 60% for the transversal one. These
ratios decrease in the intermediate region with=1.0, and

are of the order of 10 and 15 %, respectively, &k =5.0,
within the dilute regime. We also observe that the longitudi-
nal eigenvalue is largest along the=0 direction, while the
transversal eigenvalue attains its smallest valuenferO.

Note that both eigenvalues, for all anglas have the
same value a =0, determined byk, anda/\. (Since this
is not immediately apparent from Fig. 5, the intersection
point is marked with a black dot on the vertical axi8way
from Q=0, the transversal eigenvalue drops sharply, more
so in the dense regime. Transversal modes are therefore less
costly than longitudinal modes. Figure 5 also indicates that at
a finite value ofAk, (equal to 1.0 in this cagethe minimum
cost is obtained for a finite value of the rescaled wave vector
aQ, which depends on the density of flux lines.

The solid lines in Figs. @) and 3b) are the results of the
nonlocal continuum approximation introduced in Sec. IV C,
i.e., A =(cliQ?+chk?)/2 andA = (CeeQ?+ chik2)/2, with
the appropriate parameters. From these figures, one can con-
clude that(at least fornk,=1.0) the continuum approxima-
tion reproduces extremely well the behavior of both eigen-
values along ther= 7r/12 direction. This is certainly the case
at the highest concentration of flux linea/§=0.2), and
even at the intermediate concentrationsadk =1.0. How-
ever, the approximation fails at lower densities, and is not
even included in Fig. @), as the predicted eigenvalues fall
well outside the range of our plot.

Similar angular variations are obtained for other values of
Nk, including the special casek,=0 (straight flux lines.
Note that if k,=0, the corresponding compressional and
shear moduli can be unambigously identified from the longi-
tudinal A, =cy1(Q,k,=0)Q?%2 and transversal At
=Cee(Q.k,=0)Q?%/2 eigenvalues, respectively. Numerical
evaluations of these particular nonlocal moduli have already
been carried out by Brand?, and by Nieber and
Kronmiller,'® along particular directions @,=0 or Q,
=0) within the BZ. Our results agree with those reported in
Refs. 10,19 for a magnetic field parallel to tbexis. Once
again, we find angular variations in magnitude similar to
those for Ak,=1.0. In Fig. 6, we plot the modulus
¢11(Q,k,=0) in a semilogarithmic scale. We show the re-
sults obtained fora/A=0.2,1.0, and 5.0 along the various
directions defined above. We have normalized the modulus
by its local limit c;, [see Eqs(21),(22)]. The k,=0 com-
pressional modulus decreases as we move towards the IBZ
boundary in any direction. The shear modulog(Q,k,
=0) is also shown in Fig. 7 normalized by its local linaig
[see Eqgs(23),(24)]. We only show results foa/\ =0.2 for
the sake of clarity of the figure. Depending on direction, this
modulus increases or decreases with respect to its local
value. In particular, it seems to remain constant along the

Ingath a=1/12.

B. Variations with k,

To explore thek, dependence of the results, in Fig. 8 we
plot the longitudinal and transversal eigenvalues as a func-
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FIG. 6. Compressional modules,(Q,k,=0) normalized by its (GQ)2
local valuecy; [Eg. (21)], for paths at anglea=0,7/24,7/12 /8,
and 7/6, anda/A=0.2,1.0,5.0. 10 b) T T
S a/A=1.0
tion of (aQ)? for a fixed anglex= 7/12, and for a number of T ———
values ofa/\ and\k,. From these figures, we see that, not 8 4‘ ________________________ .
surprisingly, both eigenvalues increase as a functiokkof, | 10.0
and consequently, modes with higherare in general costly. \‘ e 1
For the smallest value af/A=0.2 in Fig. 8a), the \k, de- 6L * ‘ il
pendence is most pronounced in a small region close to the N
BZ center. This region becomes larger as we increase either /‘)\/'/,,/"‘ — 10
Nk, ora/\. We also note that both eigenvalues show a linear / . - 10m
dependence ona@Q)? for a large fraction of the IBZ. The 4y e T
slope of this line is almost constant within each plot, i.e., for / Ak,
a given value ofa/\. The transversal eigenvalue fak, /
=0 is a straight line throughout the whole range of values of 2 b 10 1
(aQ)?, as is the longitudinal eigenvalue for high enough , e 00
values of Nk,. These features are qualitatively well ac- : IR e
counted for by the continuum limit results. According to Egs. . \_ozemmm= T |

(33), (34), and(35), the transversal eigenvalue

15

(a@)?
2.0 T T T
FIG. 8. Elastic eigenvalues as a function ai@)? for «
/A =02 =7/12, and(a) a/A=0.2 and(b) a/A=1.0. The different lines
: w6 correspond to values afk,=0.0,1.0,10.0, and 50.0 only in pl¢d).
L3 r ] Dotted and dashed lines correspond to: longitudinal and transversal
2 eigenvalues, respectively.
=
o
| 10 1 1~ 2, i 2
<& A1(Q.kp)=5[ceeQ+ C2s(Q kK ]
S5
© 21,2
03T l = @Q2+ 2mn2e, MK (36)
0 8 (N2Q%+\%k2+1)
*%0 1.0 20 3.0 40 reduces toceQ?/2 for \k,=0, i.e., grows linearly with
a® (aQ)?, with a slopeney/8a2. In addition, for suficiently

FIG. 7. Shear modulusgg(Q,k,=0) normalized by its local
value cgg [EQ. (23)], for paths at angles=0,7/24,7/12,7/8, and
/6, anda/A=0.2.

large values ofk,>\.Q, chy(Q.k,)k? reaches a saturation

value, rendering the terimyQ?%/2 as the leading contribution
depending orQ. Similarly, the longitudinal eigenvalue
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10° . . . are compared to two limiting cases defined in Sec. IV: The
''''' > dashed line in this figure is the outcome of a nonlocal con-

NN afA=5.0 tinuum approximation foae/\ =0.2 (almost the same curve
1wt L ) is obtained fora/A=1.0). The dotted-dashed line is the
graphical representation of E(L2) properly normalized for
the casea/\=5.0, i.e., of the single line behavior expected
o L a/A=1.0 | at very low densities of flux lines. Our results are in good
agreement with the numerical evaluation of this particular
modulus performed in Ref. 19.

C. Comparison to analytic approximations

We observe in Fig. 9 that,,(Q=0Kk,) decreases mo-
\ 3 notonously with\k,, with the single-line behavior of(k,)
\ in Eq. (12) eventually taking over for values aofk, greater
\ than a characteristia k¢, proportional to €a/\) 1. The
h - n 0 contribution of the nonzero reciprocal lattice vectors in Eq.
AL, (16) becomes relevant foxk,>\k;. In the nonlocal con-
tinuum approximation, i.e., considering ony=0, cjy(Q
FIG. 9. Tilt modulus,c,(Q=0k,) normalized by its local =0k,) decreases roughly &/(4m\%k?) at large values of
valuec,, [Eq. (25)], as a function ohk, for a/A=0.2,a/A=1.0,  )k,. Indeed, for high areal densities afA=0.2, our nu-
anda/A=5.0. The dashed and dotted-dashed lines correspond tgerical outcome is very close to the nonlocal continuum
the nonlocal c_ontinuuma(/)\:O.Z), and single line limits g/\ approximation only up toakS. On the other hand, at low
=5.0), respectively. areal densities, such as faf\ =5.0, the numerical data are
obviously much closer to the single-line limit, than to any of
the other forms, over the whole range of values\&f. As
shown in Fig. §c), the variations ofA; and At with (aQ)?
in the latter case are very weak. The eigenvalues throughout
the IBZ essentially coincide with their values on tQe=0
axis, which is set by the form of(k,). In the interval be-
tween these two values dfi/\, C4(Q=0k,) gradually
crosses over from the power lawK,) ~? type behavior to
the power-log dependence of the single line tension. The
results of the local approximation naturally fit well the be-
havior of both eigenvalues for small values@fandk,, as
expected.
for the sake of clearity of the figuteFor the larger value of In discussing Fig. 8, we noted that V\.’h”.e the nonlocal
continuum expressions capture the qualitative form of the

Ak,=50.0, although the qualitative form of the functions is : . L .
: ; . . numerical results, there are also important quantitative dif-
quite well approximated by these equations, there are majqr . o ) .
o : ; . erences. Using the insights gained from the numerics, we
guantitative differences with respect to the numerical results

. ) shall now present an analytic form that corrects some of
mainly due to a smaller value of both eigenvaluefat0. h discrepancies. One difference from the continuum re-
In Fig. 8(b) with a/\ = 1.0, there are important differences in these discrep T P .

sults arises from the limiting slope in Fig. 8: In the con-
the value atQ=0 already forak,=10.0, as well as small o ~ )
deviations from the value of the slope of the linear part of thdinuum limit, the termceQ/2 eventually determines the
curves. These deficiencies of the continuum approximatio/OP€ ©f the linear regime of the transversal eigenvalues.
are even more evident for a dilute systémt shown, where ~ HOWwever, as shown in Fig(8), the actual shear modulegg
we note the emergence of single-line characteristics: The efan be quite different from the limiting value ofg used in
genvalues are clearly mostly a function kf, with only  the continuum approximation. The differences in slope thus
small variations with 4Q)?. merely reflect the differences betweeg andcgg as a func-

To better emphasize this discussion, consider the elastifon of a/\, as already discussed in Sec. IV B. This defi-
eigenvalues along th@=0 axis, i.e., the point highlighted ciency of the continuum eigenvalues is thus removed by us-
by a black dot in the previous figures, as a function\ & . ing the exact value ofgg from Fig. 3a).

Again note that ifQ=0, the corresponding tilt modulus can A second difference is an overall shift of the eigenvalues
be unambigously identified from either the longitudinal orfrom the continuum limit prediction, which becomes more
the transversah | = At=¢c4(Q=0k,) k§/2 eigenvalues. The pronounced at largexk,. This clearly originates in the dif-
results, for the valuea/A=0.2, 1.0, and 5.0, are plotted in ferences appearing already in Fig. 9 fon(Q=0k,) atQ

Fig. 9 in a double logarithmic scale. The tilt modulus =0 and sufficiently largé,. Since the continuum approxi-
c.(Q=0k,) has been normalized by its local valligee mation uses only the term wit8=0 in Eqg. (16), we intro-
Eqgs.(25),(26)]. The numerical results indicated by solid lines duce a correction by replacing the sum over all the remaining

1
AL(Q.k) = 5[eT1(Q kp) Q7+ iy Q k) K]

)\Z(Qz kg) nfo
= 2 2
2mn 60[)\2( 2 kg) 1] ) Q (3”

reaches a saturation value fak,>\Q, so that the term
—neyQ?/8 controls essentially th® dependence of the ei-
genvalue at large values ak,. Equations36),(37) fit very
well the numerical resuls obtained fa/\=0.2 and\k,
=0.0,1.0,10.dwe are not showing these results in Figa)8
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reciprocal lattice vectors with an integral. These corrections
result in the following expression for the transversal eigen-
value

1 2 ~nlp2 B A A
A1(Q,ky)= 5[066Q +CaK7 ]+ E(%ﬁ_ Q.Qp)

XJIdZG G,3(G k) —G,5(G,0 38
~/4_BZ[ aB( 1Z) aﬂ( 1)] ( )

In this equation, the correct local shear modulus, which de-
pends on the field strength or lattice spacathrough Eq.
(23), is used in place of its continuum limit. Also the non-
linear moduluscy, is corrected by the additional integral
over the nonzero reciprocal lattice vectors, properly normal-
ized by the BZ aredg,=872/(/3a?). To exclude the point %0 50 100 150 200 250
at G=0, the radial component d& in the above integral Ak,

goes fromC, defined byAg,= 7C?, to« (or, if necessary, to
the short distance cutoff ). After evaluating the integral,
we obtain

~E 2 nl,2
A+(Q k)= 2[C66Q +Caik?]

nEO
21,2
+TE kz In

K2+ \2K2+1
N2C? 2+ %K2+1

(39

Nr(Ak, =10.0,0 = 7/12)

ney [ N2kG+A2C%+1
_ln - -
4)\? N2C2+1

We have ascertained that this expression provides an excel-
lent fit to the numerically obtained results far+(Q,k,)
along thea= /12 direction. In the next section we provide
explicit comparisons of the analytic expression and numerics (@Q)?
for different values of the anisotropy. The longitudinal eigen-

value along thew= /12 direction can also be reasonably  FIG. 10. (a) Elastic eigenvalues along tl@@=0 axis as a func-
well fitted by a similar analytic expression, which replacestion of Ak,. (b) Transversal eigenvalue along the= 7/12 direc-
the term[ cggQ?+ chik2]/2 in Eq.(39) with the expression in tion in the IBZ as a function ofdQ)?, and for \k,=10.0. The

Eqg. (37), with a further substitution 0¢56Q2/2 for neoQ2/8 dashed lines are numerical results fe=0.02 (BiSCCO, 0.1
:EseQz/Z, as (YBCO), and 0.5, while the solid lines depict the corresponding
results from the analytic expression in E§9).

A2(Q%+k2) 1

AL(Q,kZ)zzwnzeo[)\z(Q2+ k2)+1] B ECﬁﬁQZ materials, the discreteness of their layered structure becomes
z important, and one may well question the validity of a three-
neo 21 €2+ \2k2+ 1 dimensional Landau-Ginzburg description. An alternative
+ —62k§ In z 5 ) model is a set of weaklyJosephsoncoupled superconduct-
4 N?C?l e+ N\k;+1 ing layers. The applicability of the three-dimensional de-

scription is typically assessed by comparing the coherence
length along thes axis .= €&, with the distanceal between
the Cu-O layers in the materialA coherence lengtht,
larger than the layer spacing usually justifies a continuous
description along the direction®? This is certainly the case
for YBCO, but not necessarily for BiSCCO. Nevertheless,
We conclude this section by discussing the dependence @trapolating the results of the continuous description may
our results on the anisotropy of the superconductor. The realso provide insights into the elastic properties of highly an-
sults presented so far correspond to a particular value of thigotropic superconductors such as BiSCCO. To this end, we
anisotropy parameter, namedy=0.1, which falls within the  compare results obtained for three different values of the
range(from 1/10-1/5) reported for YBsgCu;O; (YBCO) in  anisotropy parameter, namely=0.02,0.1, and 0.5, for the
the literature: However, smaller values of, in the interval  usual areal densities @f/\ =0.2,1.0,5.0.
1/100-1/50, characterize highly anisotropic materials such In Figs. 1Qa) and 1@b), we plot the elastic eigenvalues
as BipSr,CaCyOg (BiSCCO. For such highly anisotropic along theQ=0 axis, and the transversal eigenvalue along

ney [ A2K2+A2C2+1
— s (40

—In
4\2 N2C%+1

D. Anisotropy
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the o= #/12 direction inside the IBZ, respectively, for dif- keT [ dk d2Q
ferent choices ot. There is clearly a strong dependence on <|u(ro)|2>= TJ 5 z —Z(A[1+A{l). (42
€, mainly originating from thes dependence of the line ten- (2m) Joz(2m)

sion 5(I§Z) in Eqg. (12). Nz_;\turglly, the most-pronourjceOI ten- The Lindeman criterion now provides a rough estimate of the
dency is the decrease in eigenvalues wdttreflecting the  mejting temperaturd@,,, through the relationship
general softening of the vortex lattice. It is worth pointing

out, however, that the slopes of the linear part of the curves kBTmJ— dk, d?Q

in Fig. 1Qb) are independent dof, reflecting merely the fact 5 (AL ATH~cla® (49
that the shear modulussg is independent of the anisotropy
parameter. The dashed lines in Fig(d0correspond to the

analytic expression of Eq39) (for the appropriate param-

(2m) Jez(27)?

The leading contribution to the fluctuations comes from
¢ ) d d clearl id llent f h the transversal modes, which as discussed in Sec. IV are
etersa/A ande), and clearly provide an excellent fit to the 5 au5 smaller than the longitudinal modes. We also ignore

nhumgricr?l ((jj?ta along ]EhQZO axisf. Sir;]ilarly in Fig.l 1(.13)’ the angular dependence observed in Figs. 5, which is rather
the dashed lines are from EB9) for the transveral eigen- .weak, and should not give rise to qualitatively different re-

value, again showing fairly good agreement with the numeriy, s “rrthermore, we assume that the transversal eigenvalue
cal data. Analogous results are obtained for other flux lin

< o X 8s isotropic, and given by Eq39). This expression can be
densities and for the longitudinal eigenvalmt shown. integrated analytically over the two-dimensional BZ, result-
ing in a rather long expression, that we have finally inte-
grated numerically ovehk,. The numerical integral over
Mk, is, in all cases, between a long wavelength cutoff equal

The melting of a vortex lattice by thermal fluctuations hast© 1(T36 and the e-dependent short scale cutoff of/ .
attracted considerable attention in the context of high-=«/€™".
temperature superconductors. This transition has been ob- Provided that we are sufficiently far away from the criti-
served by means of several experimental techniques such &8l temperaturd¢, one can further assume that the penetra-
bulk magnetization, local induction, and latent heattion length is independent of temperature, (T) ~\(0).
measurement®~ 2 The linelike nature of the constituent el- As we get closer tol;, however, one must consider the
ements provides intriguing challenges to theoretical analysigemperature dependence Xfin order to obtain sensible re-
Important features of the melting transition are the negativéults. For the sake of consistency of our analysis, within the
slope of the melting curv@& ,(B) at high fields, its reentrant Ginzburg-Landau critical regime, we then use the mean-field
behavior at low fields, and its marked dependence on anisotemperature dependences of bokh and &, i.e., N(T)
ropy. Some of these features can be extracted from simple ANO)(1-T/T) Y2 and &(T)=£(0)(1-T/T) 2 we
models of the vortex lattice, as in the so-calk¥y® Bose®®, ~ expect this approximation to fail in close vicinity % due
and cag& models. These models agree in the prediction ofto critical fluctuations.
certain universal features, such as the scaling of the melting In Figs. 11, 12, and 13, we depict the resulting melting
temperature with the anisotropy parameter, or the magnetitnes for different values of the anisotropy parameter
field, in the high field region of the phase diagram. =0.02 (BiSCCO, and e=0.1 (YBCO). Note that some of

In the absence of a rigurous theory for three-dimensionathe data are presented in a log-log or in a log-linear plot in
melting, the position and shape of the vortex lattice meltingorder to emphasize the scaling with the magnetic field in the
line is usuallyestimatedusing the so-called Lindeman crite- high field region, as well as to better visualize the lower part
rion. According to this criterion, the lattice melts when ther- of the melting line, i.e., the reentrant portion of the phase
mally induced fluctuations of a lattice point become compadiagram. The dotted line in the last two figures represents the
rable to the lattice spacing. This condition can be written asipper critical field HQ"ZF(T)= do(1—TITo)/27wE%(0), with

T.=93 K and£(0)=14 A. Close toHy (T) the ampli-

[(U2(rg))]¥2~c,a, (41) tude of the order parameter is strongly reduced due to the
overlap of the vortex cores and these results are no longer
valid. However, well below this line, the London limit pro-

where ¢, ~0.1-0.2 is the (empirically chosen Lindeman vides a good description of the system. In Fig. 11, we repre-
parameter. The extent of fluctuations is measured by the agent the results obtained assumingl)=X\(0)=1400 A,
tocorrelation functioqu(r)). This quantity was calculated for e=0.02,0.1,0.5. At high fielda/x <1, the melting tem-
by Nelson and Seungin the local limit, and by Brandf  perature decreases BS°>%i

VI. THE MELTING LINE

in all cases, consistent with the
and Houghtoret al** for the nonlocal continuum limit, and prediction of T,,~B~ 2 common to the above mentioned
in more general circumstances including variations of themodels®*334We have also checked that the melting tem-
amplitude of the order parameter in the Ginzburg-Landawerature decreases linearly wihfor various values o&/\
Hamiltonian. within the high field region, i.e.T,~eB~ %% This is an-

In the preceeding sections, we calculated the harmoniother feature which is in agreement with previous predic-
energy cost of fluctuations of the vortex lattice. In a classications, and with available experimental data. In this figure we
equilibrium state, each independent harmonic mode acquiresso encounter some unreasonably high melting temperatures
a thermal energy okgT/2. By adding the corresponding which are the consequence of the assumpkin) =X\ (0).
squared amplitudes of the normal modes, the autocorrelation Figure 12 shows the results obtained for the melting line
function is obtained as Tr assuming\ (T)=X(0)(1—T/T,)~*2 We have used the



5954 M.-CARMEN MIGUEL AND MEHRAN KARDAR PRB 62

21
|
I
B
|
of |
]
- & b
g g L
= <
m ;@ I
£ = !
& E"—z I
|
L
|
|
b
—31 é L ;1 -4 - - 0

3 -2
log,, T(K) ' log,, (1-T/T,)

FIG. 11. The melting linéT (B), for €=0.02,0.1,0.5, from the FIG. 13. The low-field region of the reentrant melting liBg,,
Lindeman criterion, assuming a temperature independent penetrglotted as a function of (3 T/T,), for €=0.02,0.1. Close to the
tion depth\. At high fields, the melting temperature decreases withcritical temperaturd’¢, the melting induction grows as a power of
the magnetic induction aB~ %53 as indicated by the asymptotic the reduced temperature-Ir/T,, as indicated by the asymptotic
dashed lines, and linearly with the anisotropy parameteThe dashed lines. As in Fig. 11, the dotted-dashed lines show the melt-
dotted-dashed lines show the melting lines resulting from the localng lines resulting from the local elastic moduli.
elastic moduli. While the latter agrees quite well with the reentrant
low field part of the curve, it yields a very different behavior at At the scale of Fig. 12, the high and low field portions of
higher fields. the melting curveT ,(B) appear almost discontinuous close

to T.. However, as indicated in the blow-up of this region in
values of T,=90 for BiSCCO =0.02), andT.=93 for  Fig. 13, this is in reality a sharp but continuous turn around.
YBCO (e=0.1). As in the previous figure, within the high Following the literaturé?~*"we fit the melting fieldsB(T)
field region of the phase diagram, the melting temperaturé0 power laws in the reduced temperattzel —T/T., with
decreases as the external field is increased. Quantitative agél €xponent ok. The dashed lines in Figure 13 indicate the
qualitative differences between the new curves and the coextent of this power law regime for each valuesofVe note
responding results for(T) =\ (0) (depicted as dashed lines that even though we are using the input valueTgf the
in the figure can be observed even at low temperatures. Neapower law regime extends at most over two decades. We
the critical temperature, the low-field portion of the melting naturally obtain different exponents for the upper and lower
curves has a negative slogas for their high field counter- branches of the melting curve. The apparent exponent of the
part9, but at low temperatures the slope is positive, so thatipper branch actually depends on the paramettaking the
the melting temperature decreases with the external field atalue ofa, (e=0.1)=1.91 for YBCO, and a slightly smaller
very low densities of flux lines. value of e, (e=0.02)=1.67 for BiSCCO. Both curves over-
lap in the reentrant region at very dilute concentrations
where we can fit to an effective exponent®f =0.75.

The phase diagram of Fig. 12 is qualitatively similar to
the predictions of Ref. 7, where the power law forms for the
phase boundary close Tq were also first discussed. In par-
ticular, it is reasonably straightforward to estimate the shape
of the phase boundary in the low field region, where the
leading contributions to the transversal modascome from
the shear modulusgg (which decays exponentially wit/\,
and does not depend af), and from the last term in Eq.
(39). As expected for very low densities of flux lines, the last
two terms in this equation tend to the single line tension
&(k,) [see Eq(12)] which, for small values ok, , is in turn
dominated by the-independent magnetic contribution. This
leads toB,,~\(T) 2In"2\(T)], and consequently to an ex-

, ponent ofa_=1 with logarithmic correction$.The effec-
80 100 tive exponent ofe_~0.75 obtained in Fig. 13 is different
from thea_ =1 expected on the basis of our mean field form

FIG. 12. The melting lineT (B), for e=0.02,0.1, assuming a for A(T) indicating the difficulty of determining the true ex-
mean-field temperature dependent penetration depfhe dashed ponent from such fits.
lines show the results obtained assuming\ (0) up to the point in For the upper portion of the mean-field line, the melting
which they are still reasonable. field is estimatefto scale asB,,~\(T) 4, leading toa.

-5

0 2 m %
T (K)



PRB 62 ELASTICITY AND MELTING OF VORTEX CRYSTALS . .. 5955

=2 for our choice of a mean field(T). While the observed sults, we propose analytic corrections to the nonlocal con-
value of @, (e=0.1)=1.91 is not far from this expectation, tinuum limit, which fit quite well the behavior of the elastic

the smaller value of, (e=0.02)=1.67 indicates the diffi- eigenvalues throughout the London regime. Other limiting
culty of finding a good asymptotic regime. Naturally, in forms for the elastic energy often quoted in the literature,

close vicinity of the critical point we can no longer use theSuch as the single line, local, and local continuum approxi-
mean field forms for the divergence bf<&o|t| Y2 Using ~ mations, are reconsidered within our framework, and their

the scaling formsg=|t|~"«\2, with the XY critical expo- 'ange of validity is examined. We have plotted some of these
nent of v~ 2/3. leads tow —2,a —2,.7 Indeed. the values limits, together with our numerical results, for better ease of
1 + = - . ’

of the exponent of the upper branch(~1.33- 1.36) re- COT/]VF)eag?gg.consider different values of the anisotro a-
ported from measurements of the melting transition in single . . . Py P
crystals of YBCO? 2 are consistent with this prediction fametere, in particular corresponding to values quoted in the

¥ . the difficulti f extracti v K literature for high-temperature superconductors such as
owever, given the difliculiies of extracting exactly Known ygeq or BiSCCO. The latter is the paradigm of a highly

%nisotropic superconductor with softer elastic eigenvalues.
. : This fact can be corroborated in our analysis and is ulti-

WetV\{DOUIde;k? t% efmphatﬁzel tha;[ m(TSt of tfh(irs]e rE'}Smgsmately responsible for strengthening the magnitude of ther-
cannot be obtained from the jocal values of the elastiGy, f,cryations. We have made use of our proposed analyti-

moduli given in Sec. IV B. The results obtained from such acal expression to calculate the extent of thermal fluctuations

Ilgcal (?Llistlcdaggro_ﬁl]ma}tut)tn are plotted aT do.’[-dash(;c.i lr']nfe.sl' r different e. The full form of the melting curve is then
gS. an - 1he fatter curves overiap in the nign MelG, ;0 using the Lindeman criterion, capturing the follow-

region, where neither the local t".t’ nor the §1k1/2ear modulugng salient features of ,,(B): (i) It decreases at high tem-
depend one. Rather than decreasing dg,~B "% the re- o3¢ res with the magnetic field, approximatelyBig®->3

sulting melting temperature reaches a constant value for hig i) It decreases with the anisotropy parameter, and conse-

i ~B9¢0 i - L .
B(’a:.;tur-[am r(?vigésog\:g(ra Otgﬁah:ndr'oi?ﬁ];i%ﬂ ?;etlrt:ggmtgmn quently the molten vortex liquid covers a large fraction of
b P Y9 bp Yhe equilibrium phase diagram at small(iii) There is reen-

line at very dilute concentrations, in the reentrant low fleldtrant melting at low fields due to the weak interactions be-

portion of the curve. tween widely separated flux lines. The reentrant phase
boundary is itself a nonmonotonic function of temperature.
(iv) Close to the critical temperatufg., both branches of

In conclusion, we have obtained the elastic moduli of thethe melting lineBy, can be fitted to power laws in the re-
flux line lattice in a systematic and detailed way which is notduced temperature-1T/T. However, the power law is ob-
restricted to the most commonly considered continuum limitServed at most over two decades, and the resulting effective
The transversal and longitudinal harmonic eigenvalues haveéxponents are different from the expectations from mean
been computed numerically for different areal densities ofi€ld theory, casting doubt upon the effectiveness of this
flux lines, and as a function of (within the irreducible method®~ _ _ _ _ _ _
Brillouin zone and k,. Several features emerge from the Another interesting potential extension of this work is to
analysis of our resultsi) There is a weak angular depen- include entropic contrlputlons to the free energy, in order to
dence of the harmonic eigenvalues which becomes more pr&xplore the fluctuation induced effects which have been pro-
nounced on approaching the BZ boundalij) Throughout ~POsed to be important in the low field region of the phase
the BZ, transversal modes are less costly than longitudingliagram= Our analysis has been applied to a conventional
modes, and are the main cause of lattice fluctuatiGiig. Swave super_conductor v_wth a triangular Iz_ittlce_ of flux lines.
Not surprisingly, both eigenvalues increase witk,, and A square lattice of flux lines is also possible in d-wave su-
modes with highek, are more costly(iv) Rather surpris- Perconductors, where similar approach and phenomenology
ingly, due to a rapid decrease df}, the energy of a trans- Can be carried out, although the details of the harmonic en-
versal mode with a nonzerio, actually goes down witl®). ergy, as dictated by symmetry, v_V|II be different. Again, cal-
The minimum cost occurs for a fini® which depends on culat_lon of the entropic contributions to the free energy may
\k,, and the density of flux linegiv) For a large portion of provide a better estimate of the transition between triangular

the IBZ, both eigenvalues exhibit a linear dependence ofNd Sauare lattice¥.
(aQ)?, whose slope depends on the local shear moduyyis
which can be calculated as a functionaii.

Some of the above features are qualitatively well ac- We are grateful to R. Pastor-Satorras for a critical reading
counted for by the nonlocal continuum limit results recalcu-of the manuscript. This research was supported by grants
lated in Sec. IV. Nevertheless, beyond a characteristic valurom the DireccioGeneral de Recero@eneralitat de Cata-
of \k,, there are major differences between this analytidunya), and the National Science Foundati¢&rant No.
form and those calculated numerically. Guided by our re-DMR-98-05833.

robustness of this procedure.

VIl. CONCLUSIONS
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