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Intermittent synchronization of resistively coupled chaotic Josephson junctions

James A. Blackburn
Department of Physics and Computing, Wilfrid Laurier University, Waterloo, Ontario, Canada

Gregory L. Baker
Division of Mathematics and Science, Bryn Athyn College of the New Church, Bryn Athyn, Pennsylvania 19009

H. J. T. Smith
Department of Physics, University of Waterloo, Waterloo, Ontario, Canada

~Received 31 January 2000; revised manuscript received 31 May 2000!

Numerical simulations have been used to investigate the dynamics of a pair of resistively linked Josephson
junctions with ac bias. For suitable choices of parameters, the chaotic states of the two junctions become
intermittently synchronized. Intervals of synchronization are interleaved between bursts of desynchronized
activity. The distributions of these laminar times and their dependence on the coupling strength are determined.
The role of phase winding in the definition of synchronization intervals is considered.
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I. INTRODUCTION

In a previous numerical study1 we examined the case of
coupled pair of forced pendulums and found that intermitt
synchronization of the chaotic motions occurred. We a
reported2 experimental results from a pair of chaotic pend
lums coupled through their differential angular velocitie
Again, intermittent synchronization was observed.

The possibility that intermittent synchronized chaos a
might appear in configurations of linked Josephson juncti
arises from the well-known isomorphism between the eq
tion governing a torque-driven pendulum and that of
current-biased junction.3 That is the question addressed
this paper. Thus, two phenomena which have been stu
extensively but separately in connection with Joseph
junctions—synchronized oscillations4 and chaotic
dynamics5–10—appear here in combination.

As a by-product of this investigation, we reflect on t
manner in which the condition of synchronization is conve
tionally defined and suggest an alternative definition tha
suitable for systems with a periodicity attribute.

II. THEORY

A. Coupled parallel-connected Josephson junctions

The arrangement shown in Fig. 1 consists of a pair
Josephson junctions wired inparallel with a linking resistor
Rs . Each junction is characterized by an order parame
phase differencew, a critical currenti c , capacitanceC, and
normal resistanceR. The junctions are biased with identic
ac current sourcesi 0 cosvt, but no dc source is included
This ac-only driving scenario is commonly adopted to pro
essential chaotic behavior in Josephson systems5,8,11–14and
in driven pendulums.15

The dynamical equations for the two junctions are, in t
case,

\C1

2e

d2w1

dt2
1

\

2eR1

dw1

dt
1 i c1 sinw15 i 0 cosvt2 i s , ~1!
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\C2

2e

d2w2

dt2
1

\

2eR2

dw2

dt
1 i c2 sinw25 i 0 cosvt1 i s , ~2!

where the current flowing through the coupling resistor
given by

i s5
\

2eRs
Fdw1

dt
2

dw2

dt G . ~3!

The junction plasma frequencies are

vJ15A2eic1

\C1
and vJ25A2eic2

\C2
. ~4!

For this case, choose the normalized time scale

t* 5vJ1t. ~5!

The dimensionless damping parameter usually associ
with the resistively shunted junction~RSJ! model is defined
as

bJ5
1

R1
A \

2eic1C1
. ~6!

Therefore withi 0* 5 i 0 / i c1 , V5v/vJ1 and

as5
R1

Rs
bJ , ~7!

FIG. 1. Two Josephson junctions connected in parallel a
linked by a resistorRs .
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Eqs.~1! and ~2! become

ẅ11bJẇ11sinw15 i 0* cosVt* 2as@ẇ12ẇ2#, ~8!

ẅ21FR1

R2

C1

C2
GbJẇ21FvJ2

vJ1
G2

sinw2

5FC1

C2
G i 0* cosVt* 2FC1

C2
Gas@ẇ22ẇ1#. ~9!

For the special case of junctions which areidentical,

ẅ11bJẇ11sinw15 i 0* cosVt* 2as@ẇ12ẇ2#, ~10!

ẅ21bJẇ21sinw25 i 0* cosVt* 2as@ẇ22ẇ1#. ~11!

Note that the coupling arises naturally as a direct con
quence of the exchange of current through the resistorRS

and that it depends on the differential voltage (ẇ12ẇ2).16 In
the pendulum analog,2 this translates to a differential angula
velocity term which in that instance was generated by
magnet–eddy-current linkage module.

B. Shunted series-connected Josephson junctions

For completeness, we also present an obvious alter
configuration for linking a pair of Josephson junctions
illustrated in Fig. 2. In this case the devices are connecte
series.17–21The appropriate equations for the phase variab
are now

\C1

2e

d2w1

dt2
1

\

2eR1

dw1

dt
1 i c1 sinw15 i 0 cosvt2 i s ,

~12!

\C2

2e

d2w2

dt2
1

\

2eR2

dw2

dt
1 i c2 sinw25 i 0 cosvt2 i s ,

~13!

where i s , the current flowing through the shunt resistor,
given by

i s5
\

2eRs
Fdw1

dt
1

dw2

dt G . ~14!

Notice that the cross-coupling of these equations now
pends on thesum (ẇ11ẇ2), in contrast to the parallel
connected case which involved thedifference(ẇ12ẇ2) as in

FIG. 2. Two Josephson junctions connected in series
shunted by a resistor.
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Eqs. ~10! and ~11!. Our interest in this paper lies with thi
latter form of interaction, and we will not pursue the serie
connected case further.

It could be added that other coupling schemes lead to
different types of terms. For example, Doedelet al.22 consid-
ered a system in which the mixing depended on the diff
ence in the phases rather than in the phase derivatives.

III. NUMERICAL SIMULATIONS

Equations~10! and~11! were solved using a fourth-orde
Runge-Kutta routine in double-precision arithmetic. A
noted in the Introduction, the principal goal is to explo
possible modes of synchronized chaos. Clearly, this requ
that parameters be chosen so that the individual junctions
operating chaotically. Confirmation of this state was p
vided by the appearance of the time seriesẇ(t) and by the
manifestation of strange attractors in the phase plane. Fo
the simulations reported here, we selectedbJ50.25, i 0*
51.20, andV50.60. The computational time gridDt* was
set at 0.005 of a drive cycle.

A troublesome computational artifact can appear wh
and if the precise equalityw15w2 occurs. Then the mutua
interaction terms exactly vanish and the pair of equatio
~10! and ~11! become identical. It has been observed1,23,24

that finite-precision calculations may indeed ‘‘find’’ suc
special solutions and when they do the junctions exactly m
ror each other indefinitely. A protection against this spurio
locking is afforded by the addition of very small levels
random noise to the ac drive terms.

IV. SYNCHRONIZATION

A representative time series for the voltage differen
(ẇ12ẇ2) is shown in Fig. 3. As the figure clearly reveal
the junctions exhibitintermittent synchronizatonof their cha-
otic motions. When synchronized, (ẇ12ẇ2) is small. Desyn-
chronizing bursts interrupt these laminar intervals in an
viously irregular fashion.

While it is intuitively sensible to associate the conditio
of being synchronized with something like smallness in
differential voltage, i.e.,u(ẇ12ẇ2)u<d, the selection of a
specific threshold is problematic. In a situation where s
tems become synchronized and then remain synchroni
the particular value assigned tod affects only the moment o
the onset of locking. But when systems move in and out
synchronization, such as the case presented here, the c
has an impact on the perceived distribution of locking int
vals.

This point is illustrated by the inset of Fig. 3 which show
a magnified view of the portion of the time series in the b
and also two possible threshold levels:d560.01 andd5
60.001. If voltage differences which do not fall outside t
range60.01 are regarded as meeting the test for synchro
zation, then clearly the junctions would be considered
have a laminar interval stretching from about 14.0 to ab
16.7. However, thresholds set atd560.001 would imply
much shorter laminar runs.

Further evidence of the difficulties posed by thresho
based testing is provided by the following results. Lo
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simulation runs (106 drive cycles! were carried out. Using
various thresholdsd, the time series was tested for the o
currence of different laminar intervals. Figure 4 shows h
the choice ofd alters the apparent distribution of lamin
times. In such a semilogarithmic plot, the inverse slope

FIG. 3. Portion of the time seriesẇ12ẇ2 showing intermittent
synchronization between the junctions. The box highlights a reg
of strong locking. Inset: magnified portion of the time series. T
dotted horizontal lines are at thresholdsd560.01 and d
560.001.

FIG. 4. Distribution of laminar times for coupled junction
Laminar lengths are measured in forcing drive cycles. Results
a50.15 and four different threshold values (d) are shown.
f

the approximately linear portion of the data beyond sm
laminar values is proportional to the mean laminar tim1

Figure 5 displays the manner in which the apparent m
laminar duration decreases as a function of the sele
threshold value.

In connection with these issues, we note that to achi
synchronization, real physical systems require feedback
nals~however small! which are produced from differences i
corresponding dynamical coordinates. One might think
such differences as providing an ongoing exchange of in
mation about the respective dynamical states of each
system. Without this exchange, inherent noise will decou
even perfectly matched trajectories, resulting in eventual
synchronization. In essence, then, physical systems are n
absolutely synchronized.

An alternative definition of laminar intervals can be co
structed as follows. First note that as with voltage diffe
ences, the phase differences (w12w2) also wander, even in
intervals of obviously high-quality synchronization~see the
upper portion of Fig. 6!. Let the domain of (w12w2) be
divided into zones •••(23p,2p)(2p,p)(p,3p)•••.
Then synchronization can be viewed as continued reside
within any zone. A shift from one zone to an adjacent o
defines aphase windingevent and every such event mar
both the end of one synchronizing intervaland the beginning
of the next. Thus laminar times are the intervals betwe
phase winding events, and so are defined uniquely and w
out recourse to an arbitrarily chosen threshold value.

These ideas are illustrated in lower portion of Fig. 6. T
winding numberW increments and decrements according
the direction of the 2p slips in angle between the oscillator

The definition of synchronization just proposed is perha
somewhat counterintuitive in that it does not associate
near equality of coordinates with thecondition of being
synchronized—but only with thequality of the synchroniza-
tion. That is to say, synchronization is considered to h
even in situations where motions do not track very closely

n
e

r

FIG. 5. Dependence of apparent mean laminar time on
choice of threshold.
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is broken only when a phase slip event occurs.
A seeming paradox in this approach is posed by the

pothetical case of two lossless uncoupled pendulums w
are both performing classical small oscillations. Neither p
dulum achieves phase winding and there can be no p
slippage. Hence our test would say that they are sync
nized even though there is no linkage connecting them.
the other hand, according to the more conventional thresh
criterion, the pendulums might or might not be considered
be synchronized depending on the arbitrary choice of thre
old magnitude. No matter how small a chosen threshold,
smaller uncoupled oscillations could be contrived wh
would still be judged to be synchronized according to
conventional test. In other words, to the question of whet
these two uncoupled pendulums are synchronized, the p
winding test would say yes while the threshold test could
either yes or no.

Now consider a second pendulum pair to which so
amount of interpendulum coupling has been added.
phase winding test applied to small oscillations in this n
situation would yield the same answer as before
synchronized. The intuitive notion that synchronization is
behavior brought about by interaction may suggest that
verdict for the just-mentioned coupled case is accepta
while the verdict for the uncoupled case is unphysical. T
point of view presupposes special knowledge of the relati
ship between system components. What if it was not kno
which pendulum pair was being observed?

In general, the available information concerning two o
cillators is only that which is contained in simulation or e
perimental data setsw1(t) andw2(t) and thus the verdict a
to their seeming synchronization~or absence of it! must be
reached purely on the basis of tests executed on the obs

FIG. 6. Upper: time series for (w12w2) computed witha
50.15. Lower: winding number corresponding to the upper tra
The locations of the first few transitions are indicated.
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tional data. Therefore, synchronization must be strictly
property of finite observational records. The quality and
bustness of the synchronization, and its physical sources
separate issues. This underscores the subtlety of the notio
synchronization.

Long simulations (106 drive cycles! were carried out for
various values of the coupling coefficienta. In each case,
data were accumulated on the relative frequency of occ
rence of laminar lengths as now defined by the intervals
tween winding number transitions. The results are presen
in Fig. 7. While the general form of these laminar time d
tributions is similar to that found when using the conve
tional threshold test, the winding number criterion is una
biguous and generates only one possible distribution for e
selected value ofa.

It is apparent that the mean laminar times~reciprocal
slopes! decrease as the coupling decreases. In the limi
negligible coupling, the oscillators are essentially fre
running independent chaotic systems whoseapparent re-
sidual synchronization is merely an artifact of differenci
two chaotic data sets which exhibit occasional acciden
proximity of respective points in phase space.

V. SYNCHRONIZATION QUALITY

For Josephson devices, phase derivatives are of ce
importance because they are proportional to the junc
voltages. If the two junctions could be perfectly synchr
nized, thenẇ1(t)5ẇ2(t). However, as explained earlie
ẇ1(t)5” ẇ2(t) will always be the case for a physical syste

. FIG. 7. Relative probability of occurrence of laminar time
where laminar intervals are defined as the time between transit
of the winding number. Data for four values of coupling streng
are plotted.
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and therefore a differential voltage will exist across the c
pling resistor. The magnitude of this differential voltage is
manifestation of thequality of synchronization. For Joseph-
son junctions, measurements are complicated by the
high speed of the phase dynamics. Thus, feasible reading
junction voltages are in reality smoothed averages. The
served root-mean-squared differential voltage across the
pling resistor is represented by the quantity

A^~ ẇ12ẇ2!2&.

FIG. 8. Root-mean-squared differential voltage across the c
pling resistor vs coupling strength. Numerical data for two no
amplitudes are plotted.
tt
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Numerical simulations extending to 500 000 drive cyc
were used to find values of this rms differential voltag
These calculations were repeated for different values of
coupling coefficienta. The results shown in Fig. 8 indicat
that the quality of synchronization improves as the coupl
is increased.~We note that the quality factor plays a role th
is somewhat analogous to that of the percentage of lock
time as defined when using a traditional threshold criterio!
As noted earlier, small amounts of noise prevent false lo
ing of the two chaotic oscillators. Figure 8 illustrates wh
happens when two different noise levels are injected. N
surprisingly, the smaller noise amplitude leads to improv
synchronization quality, but the effect is only pronounc
once the coupling strength exceeds about 0.15.

VI. CONCLUDING REMARKS

A pair of resistively coupled, parallel-connected Josep
son junctions has been shown to exhibit intermittent s
chronization of their chaotic states. The important dynam
considered here are intimately related to the attendant q
tions of laminar event definitions. In the present work w
have sought a definition of synchronization which avoids
pitfall of arbitrariness associated with the notion of thres
olds. Intervals of synchronization can be defined as peri
which begin and end with phase-winding events. While d
veloped here for coupled Josephson junctions, these id
should be applicable to synchronization in any system p
sessing a coordinate with a wrapping property analogou
phase periodicity. Indeed, we have successfully used just
criterion to analyze synchronization in a coupled Ro¨ssler
system.
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