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Collective modes and sound propagation in ap-wave superconductor: Sr2RuO4
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There are five distinct collective modes in the recently discoveredp-wave superconductor Sr2RuO4; phase
and amplitude modes of the order parameter, clapping mode~real and imaginary!, and spin wave. The first two
modes also exist in the ordinarys-wave superconductors, while the clapping mode with the energyA2D(T) is
unique to Sr2RuO4 and couples to the sound wave. Here we report a theoretical study of the sound propagation
in a two-dimensionalp-wave superconductor. We identified the clapping mode and study its effects on the
longitudinal and transverse sound velocities in the superconducting state. In contrast to the case of3He, there
is no resonance absorption associated with the collective mode, since in metalsv/(vFuqu)!1, wherevF is the
Fermi velocity,q is the wave vector, andv is the frequency of the sound wave. However, the velocity change
in the collisionless limit gets modified by the contribution from the coupling to the clapping mode. We
compute this contribution and comment on the visibility of the effect. In the diffusive limit, the contribution
from the collective mode turns out to be negligible. The behaviors of the sound velocity change and the
attenuation coefficient nearTc in the diffusive limit are calculated and compared with the existing experimental
data wherever it is possible. We also present the results for the attenuation coefficients in both of the colli-
sionless and diffusive limits at finite temperatures.
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I. INTRODUCTION

Shortly after the discovery of superconductivity
Sr2RuO4, the possibility of spin triplet pairing was
discussed.1 Possible pairing symmetries were also classifi
based on the crystal symmetry.2 On the experimental front
there have been attempts to single out the right pairing s
metry among these possibilities. Recent measuremen
17O-Knight shift in NMR for the magnetic field parallel t
the a-b plane showed no change acrossTc , which can be
taken as the evidence of the spin triplet pairing with thed̂

vector parallel to thec axis.3 Hered̂ is called the spin vecto
which is perpendicular to the direction of the spin associa
with the condensed pair.4 mSR experiment found spontane
ous magnetic field in the superconducting Sr2RuO4, which
seems to indicate broken time reversal symmetry in the
perconducting state.5 These experiment may be compatib
with the following order parameter:2

D̂~k!5Dd̂~k16 ik2!, ~1!

whereD is the magnitude of the superconducting order
rameter. Notice that this state is analogous to theA phase of
3He and there is a full gap on the Fermi surface.

On the other hand, there also exist experiments that c
not be explained by a naive application of the order para
eter given by Eq.~1!. Earlier specific heat measureme
found residual density of states at low temperatures be
Tc ,6 which provokes the ideas of orbital depende
superconductivity7 and even a nonunitary superconducti
state.8 However, more recent specific heat experiment o
cleaner sample reports no residual density of states an
was found that the specific heat behaves asT2 at low
temperatures.9 This result stimulated a speculation about d
PRB 620163-1829/2000/62~9!/5877~9!/$15.00
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ferent order parameters with line node.10 However, since
there are three bands labeled bya, b, andg which cross the
Fermi surface, it is not yet clear whether the order param
given by Eq.~1! is compatible with more recent specific he
data or not. For example, it is possible that the pairing sy
metry associated with theg band is still given by Eq.~1!
while the order parameter symmetry associated witha andb
bands can be quite different. In this case, the lo
temperature specific heat will be dominated by the exc
tions froma andb bands. In order to resolve the issue, it
important to examine other predictions of the given ord
parameter and compare the results with future experime

One way of identifying the correct order parameter amo
possible candidates is to investigate the unique collec
modes supported by the ground state with a given pair
symmetry. The observation of the effects of these collect
modes would provide convincing evidence for a particu
order parameter symmetry. If we assume that the order
rameter of Eq.~1! is realized in Sr2RuO4, the superconduct-
ing state would support unique collective modes, the
called clapping mode and spin waves as well as the ph
and amplitude modes of the order parameter which exist
in s-wave superconductors. Previously we studied the
namics of spin waves.11,12 A possible way to distinguish the
order parameter of theg band from those of thea ~or b)
band was also proposed in the context of spin wa
dynamics.13

In this paper, we study the dynamics of the sound wa
and its coupling to the clapping modes assuming that
order parameter is given by Eq.~1!. As in 3He, only the
clapping mode can couple to the sound wave and affect
dynamics. Here we study the sound velocities and atten
tion coefficients of the longitudinal and transverse sou
waves. In particular, we identify the clapping mode with t
5877 ©2000 The American Physical Society
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frequencyv5A2D(T), and examine the effects of this mod
and disorder on the sound wave propagation.

In a recent paper, Higashitani and Nagai14 obtained the
clapping mode with the frequencyv5A2D, and discussed
the possible coupling to the sound wave independent of
However, as we shall see the coupling to the sound wav
extremely small, becauseC/vF!1 in metals. HereC is the
sound velocity. Indeed the recent measurement of the so
velocity in the normal and superconducting states
Sr2RuO4 reported in Ref. 15 shows thatC/vF!1. They
measured the sound velocities of the longitudinal modesC11
(q,ui@100#) andC33 (q,ui@001#) and the transverse mode
C44 (qi@100#, ui@001#) andC66 (qi@100#, ui@010#), where
q andu are the directions of propagation and the polarizat
of ultrasound, respectively. They found that the longitudi
sound velocities,C11 and C33, decrease with a kink atT
5Tc , while the transverse sound velocities do not exh
any effect of the onset of superconductivity. We estim
from their experimental data thatCl /vF;1022, whereCl is
the longitudinal sound velocity. It can be also seen that
transverse sound velocity,Ct , is much smaller than the lon
gitudinal one.15

Incorporating the correct limitC/vF!1, we obtained the
sound velocities and attenuation coefficients for both co
sionless and diffusive limits. In the diffusive limit, the qu
siparticle scattering due to impurities should be prope
taken into account. One can show that, in a metal such
Sr2RuO4, the collisionless limit is rather difficult to reac
because it can be realized only forv;O(1) GHz. For more
practical range of frequencies, kHz2MHz, the diffusive limit
may be easier to achieve. On the other hand, we found th
is much easier to see the effects of the coupling between
sound waves and the clapping mode in the collisionless lim
Therefore it is worthwhile to study both regimes. Here w
summarize our main results.

A. Collisionless limit

In the absence of the coupling to the clapping mode,
longitudinal sound velocity decreases in the superconduc
state because the effect of the screening of the Coulo
potential increases, which happens in thes-wave supercon-
ductors as well. However, one of the important features
thep-wave order parameter in consideration is that the so
wave can now couple to the clapping mode. This effec
absent in s-wave superconductors. One can show th
among longitudinal waves,C11 mode can couple to the clap
ping mode, butC33 mode cannot. We found that the long
tudinal sound velocityC11 decreases as

dCl
11

Cl
11

52l l
11F1

2
22S Cl

11

vF
D 2

3S 12 f 2
f

4$11~2D~T!/vFq!2%
D G , ~2!

wherel l is the couping constant andf is the superfluid den-
sity. dCl /Cl is the relative shift in the sound velocity. W
estimated the frequency regime where one can observe
effect of the clapping mode and found that the effect is v
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ible if vFuqu;223D(0). This implies thatv;O(1) GHz.
SinceC33 does not couple to the clapping mode, the veloc
change is simply given by

dCl
33

Cl
33

52l l
33F1

2
22S Cl

33

vF
D 2

~12 f !G . ~3!

Since the velocity of the transverse wave is much sma
than that of the longitudinal one and the coupling to t
electron system is weaker than the longitudinal case as w
we expect that the change of the transverse sound veloci
hard to observe. In order to complete the discussion, we
present the results for these small changes in transverse
locities. Here onlyC66 mode couples to the clapping mod
andC44 mode does not. We found

dCt
66

Ct
66

52l t
66F1

2
12S Ct

66

vF
D 2S 12 f 1

f

4$11~2D/vFq!2%
D G ,

~4!

dCt
44

Ct
44

52l t
44F1

2
12S Ct

44

vF
D 2

~12 f !G , ~5!

where thel t is the transverse coupling constant. We a
found that the leading contribution to the attenuation coe
cient is the same as that ofs-wave superconductors in th
collisionless limit.

B. Diffusive limit

This case corresponds tov,vFuqu!G, where G is the
scattering rate due to impurities. As in the case of the co
sionless limit, in principleC11 andC66 modes couple to the
clapping mode, but it turns out that the effect is almost i
possible to detect. Neglecting the coupling to the clapp
mode and working in the limit 4pTc@2G@vFuqu,v, we ob-
tain the following results nearTc :

dCl

Cl
52l l

1

2 H 12S v

2G D 2F12
4p3

7z~3!

T

G S 12
T

Tc
D G J ,

a l

a l
n

512
2p3

7z~3!

T

G S 12
T

Tc
D , ~6!

wherea andan are the attenuation coefficients in the sup
conducting and the normal states, respectively. The shif
the sound velocity and attenuation coefficient decrease
early in (12T/Tc) asT→Tc . This result for the longitudinal
sound wave is consistent with the experimental observa
reported in Ref. 15.

In the case of the transverse sound waves, the lea
behaviors of the sound velocity and the attenuation coe
cient can be obtained simply by replacingCl and l l by Ct
andl t in the diffusive limit. However, the absolute value o
the transverse sound velocity is much smaller than the
gitudinal one and the coupling to the electron system is a
much weaker than the case of the longitudinal sound wa
Thus, it would be hard to observe any change atT5Tc for
the transverse wave. This may explain the experimental fi
ing that the transverse velocity does not show any cha



fo

I
k

th

ad
t
th
in

ur
ar

pl

tru
e
d
t

tio
in
ss

tio

-
ou

In
on
he
o
un
nc

ar
c

the

se

ely.

of

as
h
y
e
ct of

led
ut
of

s of
tion
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acrossTc . We also obtained the attenuation coefficient
all temperatures belowTc . It is given by Eq.~36! and Fig. 2
shows its behavior.

The rest of the paper is organized as follows. In Sec.
the clapping mode is briefly discussed. In Sec. III, we ma
a short summary of the result in Ref. 16 to explain how
sound velocity and the attenuation coefficient are related
autocorrelation function of stress tensor, which help for re
ers to understand the physical quantities that we presen
this paper. Then we show the results of the study on
sound propagation in the collisionless and diffusive limits
Secs. IV and V, respectively. We conclude in Sec. VI. F
ther details which are not presented in the main text
relegated to Appendices A and B.

II. COLLECTIVE MODES IN Sr 2RuO4

As in the s-wave superconductors, the phase and am
tude modes of the order parameter also exist in thep-wave
superconductors. On the other hand, due to the internal s
ture of the Cooper pair in thep-wave superconductor, ther
exist other types of collective mode associated with the or
parameter. The nature of these modes is determined by
structure of the order parameter.

There are collective modes associated with the oscilla
of the spin vectord̂, which we have already discussed
Refs. 11 and 12. There exists another collective mode a
ciated with the orbital part. Using the notatione6 if5(k1

6 ik2)/uku, the oscillation of the orbital parte6 if→e7 if

gives rise to the clapping mode withv5A2D(T). This mode
couples to the sound waves as we will see in the next sec
Therefore, the detection of the clapping mode will provide
unique evidence for thep-wave superconducting order pa
rameter. The derivation of the clapping mode and the c
pling to the sound wave is discussed in Appendix A.

III. DYNAMICS OF SOUND WAVE VIA STRESS TENSOR

In ordinary liquids, the sound wave is a density wave.
superconductors, the density is not only coupled to the l
gitudinal component of the normal velocity, but also to t
superfluid velocity and to temperature. The role of these c
plings and their consequences in the dynamics of so
wave can be studied by looking at the autocorrelation fu
tion ^@t i j ,t i j #& of stress tensort i j :

^@t i j ,t i j #&~r2r 8,t2t8![2 iu~ t2t8!^@t i j ~r ,t !,t i j ~r 8,t8!#&,
~7!

where

t i j ~r ,t !5(
s

F ~¹2¹8! i

2i

~¹2¹8! j

2im
cs

†~r ,t !cs~r 8,t !G
r85r

.

~8!

Herecs
† is the electron creation operator with spins.

The other operators whose correlation functions
needed for the ultrasonic attenuation and the sound velo
change are the density operator

n~r ,t !5(
s

cs
†~r ,t !cs~r ,t ! ~9!
r

I,
e
e
to
-
in
e

-
e

i-

c-

er
he

n

o-

n.
a

-

-

u-
d
-

e
ity

and the current operator

j ~r ,t !5(
s

F ~¹2¹8! j

2im
cs

†~r ,t !cs~r 8,t !G
r85r

. ~10!

Assuming that the wave vector of the sound wave is in
x̂ direction,q5qx̂, the sound velocity shift,dC, at low fre-
quencies can be computed from

dCl

Cl
5

Cl~v!2Cl

Cl
U

v5Cl uqu

52
v

mionCl uqu
Rê @hl ,hl #&~q,v!U

v5Cl uqu
,

dCt

Ct
5

Ct~v!2Ct

Ct
U

v5Ctuqu

52
v

mionCtuqu
Rê @ht ,ht#&~q,v!U

v5Ctuqu
, ~11!

where

hl~r ,t !5
q

v
txx~q,t !2

vm

q
n~r ,t !,

ht~r ,t !5
q

v
txy~q,t !2m jy~r ,t !. ~12!

Here Cl and Ct represent the longitudinal and transver
sound velocities in the normal state, respectively.mion andm
are the mass of ions and the mass of electron, respectiv
On the other hand, the attenuation coefficienta at low fre-
quencies is obtained from

a l5
v

mionCl
Im^@hl ,hl #&~q,v!U

v5Cl uqu
,

a t5
v

mionCt
Im^@ht ,ht#&~q,v!U

v5Ctuqu
. ~13!

These relations are extensively discussed in the work
Kadanoff and Falko.16

IV. SOUND PROPAGATION
IN THE COLLISIONLESS LIMIT

As discussed in the Introduction, in a metal such
Sr2RuO4 the collisionless limit is somewhat difficult to reac
because we need the sound wave with the frequencv
;O(1) GHz. However, we will also see that this is th
regime where one has the best chance to observe the effe
the collective mode.

In superconductors the density wave is not only coup
to the longitudinal component of the normal velocity, b
also to the superfluid velocity and to temperature. The role
these couplings and their consequences in the dynamic
sound wave can be studied by looking at the autocorrela
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function ^@t i j ,t i j #& of stress tensort i j presented in the pre
vious section.

We will use the finite temperature Green’s functio
technique17 to compute these correlation functions. T
single particle Green’s functionG( ivn ,k) in the Nambu
space is given by

G21~ ivn ,k!5 ivn2jkr32D~ k̂• r̂ !s1 , ~14!

wherer i ands i are Pauli matrices acting on the particle-ho
and spin space, respectively,vn5(2n11)pT is the fermi-
onic Matsubara frequency, andjk5k2/2m2m. Then, for ex-
ample, the irreducible correlation function can be compu
from

^@t i j ,t i j #&00~ ivn ,q!

5T (
n

(
p

TrF S pipj

m D 2

r3G~p,vn!

3r3G~p2q,ivn2 ivn!G , ~15!

wherevn52npT is the bosonic Matsubara frequency.

A. Longitudinal sound wave

Let us consider the longitudinal wave withuiqix, which
corresponds to theC11 mode. Since the stress tensor coup
to the density, the autocorrelation function̂@hl ,hl #& is
renormalized by the Coulomb interaction. In the long wav
length limit and fors[v/vFuqu!1, the renormalized corre
lation function^@hl ,hl #&0 can be reduced to

Rê @hl ,hl #&0'S q

v D 2

Re
pF

4

4m2 ^cos~2f!,cos~2f!&

5
pF

4

4m2Cl
2 N~0!F1

2
22s2~12 f !G , ~16!

where

^A,B&[T (
n

(
p

Tr@Ar3G~p,vn!Br3G~p2q,ivn2 ivn!#,

~17!

with A andB being some functions off or operators. Heref
is the angle betweenp andq, N(0)5m/2p is the density of
states at the Fermi level andf is the superfluid density in the
static limit (v!vFuqu) given by

f 52pTD2(
n50

` 1

vn
21D2

1

Avn
21D21~vFq!2/4

. ~18!

The derivation of the result in Eq.~16! is given in Appendix
B 1. Therefore, the sound velocity shiftdCl is given by

dCl

Cl
52l lF1

2
22s2~12 f !G , ~19!

where l l5pF
4/(8pmmionCl

2) is the longitudinal coupling
constant. Here we sets5v/vFuqu5Cl /vF , whereCl is the
d

s

-

longitudinal sound velocity. In Sr2RuO4, s51022!1 which
is very different froms@1 of 3He.

Now let us consider the correction due to the collect
modes. The additional renormalization of^@hl ,hl #& ~in the
C11 mode! due to the collective mode is computed in Appe
dix B 2 and the result is given by

^@hl ,hl #&5S q

v D 2 pF
4

4m2 N~0! F1

2
22s2

3S 12 f 2
f ~vFuqu!2

4$~vFuqu!214D~T!222v2%
D G

1 i
mionCl

11

v
a l~v!. ~20!

As one can see from the above equation, there is no r
nance becausev!vFuqu. However, we will be able to see
shadow of the collective mode in the sound velocity chan
which we discuss in the following.

In the limit s!1 and settings5Cl
11/vF , the above equa-

tion leads to the sound velocity shift given by

dCl
11

Cl
11

52l l
11F1

2
22S Cl

11

vF
D 2S 12 f 2

f

4$11~2D/vFq!2%
D G .

~21!
Note that the sound wave gets soften more by the collec
mode. In Fig. 1, we show

I 512 f 2
f

4@11~2D~T!/vFuqu!2#

for vFuqu/D(0)50,1,2,3 for 0.7,t,1.0 where t5T/Tc .
Note that the coupling to the collective mode can be o
served for vFuqu;223D(0) which corresponds tov
;O(1) GHz.

FIG. 1. The functionI representing the reduction in the soun
velocity as a function of the reduced temperaturet5T/Tc with
0.7,t,1.0 for vFuqu/D(0)50 ~thin solid line!, 1 ~dotted line!, 2
~dashed line!, 3 ~thick solid line!.
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The attenuation coefficienta l is given by

a l~v!

a l
n~v!

5
1

v
E

D

`

dv8
v8~v81v!2D2

Av822D2A~v81v!22D2

3S tanh
v1v8

2T
2tanh

v8

2T
D 2u~v22D!

1

v

3E
D

v2D

dv8
v8~v82v!2D2

Av822D2A~v82v!22D2

3S tanh
v8

2T
D , ~22!

wherea l
n is the attenuation coefficient in the normal sta

This form is the same as the one in thes-wave superconduct
ors.

We can carry out a parallel analysis for the longitudin
wave withuiqiz which corresponds to theC33 mode. Unfor-
tunately, this sound wave does not couple to the clapp
mode. Therefore, the velocity shift of this sound wave
simply given by

dCl
33

Cl
33

52l l
33F1

2
22S Cl

33

vF
D 2

~12 f !G . ~23!

.

B. Transverse sound wave

Here we consider first theC66 mode that hasuiy andqix.
In this case, the sound velocity change can be obtained f
the evaluation of̂ @ht ,ht#&. Assuming that the current con
tribution is negligible at low frequencies and following th
same procedure used in the case of the longitudinal so
wave, we obtain

dCt
66

Ct
66

52l t
66F1

2
12S Ct

66

vF
D 2S 12 f 1

f

4$11~2D/vFq!2%
D G ,

~24!

where thel t5pF
4/(8pmmionCt

2) is the transverse couplin
constant. Note that the transverse sound velocity incre
upon entering the superconducting state. However, due to
fact that the transverse velocity is rather small and the c
pling to the electron system is also weak compared to
longitudinal case, it will be hard to observe the change of
transverse sound velocity atT5Tc .

Another transverse sound mode,C44, that hasuiz and
qix, does not couple to the clapping mode. Thus the so
velocity change in this case is given by

dCt
44

Ct
44

52l t
44F1

2
12S Ct

44

vF
D 2

~12 f !G . ~25!

V. THE DIFFUSIVE LIMIT

In the frequency range kHz–MHz, the diffusive limit
more realistic. In this limit, the incorporation of the quas
particle damping is very important. Here we assume for s
.

l

g

m

nd

es
he
u-
e
e

d

-

plicity that the quasiparticle scattering is due to impuritie
Unlike the case ofs-wave superconductors, we treat the im
purity scattering in the unitary limit. Then the effect of th
impurity is incorporated by changingvn to ṽn ~renormalized
Matsubara frequnecy! in Eq. ~14!.18 The impurity renormal-
ized complex frequencyṽn is determined from

ṽn5v1G
Aṽn

21D2

ṽn

, ~26!

whereG is the quasiparticle scattering rate and the quasip
ticle mean free path is given byl 5vF /(2G). In order to
compare the results in the normal state and those in the
perconducting state, let us first work out the correlation fu
tions in the normal state, whereD50.

A. Normal state

We can use Eq.~B5! to computê @hl ,hl #&0. In the limit
of v,vFq!2G, we get

^cos~2f!,cos~2f!&5 K cos2~2f!S 12
v

v12iG2z D L
'

1

2 F12S v

2G D 2

1 i
v

2GG . ~27!

One can show that̂cos(2f),1& is of higher order inv/2G
andvFuqu/2G while ^1,1&'2^cos(2f),cos(2f)& to the low-
est order. Thus, as in the previous section,^@hl ,hl #& is well
approximated bŷ cos(2f),cos(2f)& times a multiplicative
factor. This gives us

dCl
n

Cl
'2l l

1

2 F12S v

2G D 2G , a l
n'l l uquS v

2G D , ~28!

wherev is set toCl uqu.
It is not difficult to see that the results of the transver

sound wave is essentially the same as the longitudinal c
up to the lowest order with a simple replacement ofl l and
Cl by l t andCt . Therefore, in the diffusive limit, the longi-
tudinal and transverse sound velocities have the same f
with different coupling constants.

B. Superconducting state nearTc

Now we turn to the case of the superconducting state n
Tc , where the correlation functions can be computed fr
Eq. ~B6! after replacingvn by ṽn . In this section, we will
assume 4pTc@2G@vFuqu and useD/2pT!1 nearTc . As
in the previous sections, the leading contribution in^@hl ,hl #&
can be computed from̂cos(2f),cos(2f)&.

After some algebra, we finally obtain
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^cos~2f!,cos~2f!&

'
1

2
2

1

2S v

2G D 2F12
D2

pGT H c (1)S 1

2
1

G

2pTD
2

G

8pT
c (2)S 1

2
1

G

2pTD J G1 i
1

2 S v

2G D F12
D2

2pGT

3H c (1)S 1

2
1

G

2pTD2
G

4pT
c (2)S 1

2
1

G

2pTD J G ,
~29!

where

c (n)~z!5S d

dzD
n

c~z!5~21!n11n! (
k50

`
1

~z1k!n11
.

~30!

Here c (n)(z) is the poly-gamma function andc(z) is the
di-gamma function. This leads to

dCl ,t

Cl ,t
52l l ,t

1

2 F12S v

2G D 2S 12
D2

pGT
c (1)S 1

2
1

G

2pTD D G ,
a l ,t

a l ,t
n

512
D2

2pGT
c (1)S 1

2
1

G

2pTD , ~31!

wherean is the ultrasonic attenuation coefficient in the no
mal state. Here we combined the subscriptsl and t, because
the above analysis applies to the case of the transverse s
wave as well. Only the coupling constantsl l ,t are different.
In particular, whenG/2pT'G/2pTc!1, the above equa
tions can be further reduced to

dCl ,t

Cl ,t
52l l ,t

1

2 H 12S v

2G D 2F12
4p3

7z~3!

T

G S 12
T

Tc
D G J ,

a l ,t

a l ,t
n

512
2p3

7z~3!

T

G S 12
T

Tc
D . ~32!

Note that the sound velocity change and the attenua
coefficients decrease linearly in (12T/Tc) as T→Tc . This
result, Eq.~32!, for the longitudinal sound wave is consiste
with the experimental observation reported in Ref. 15 Ho
ever, in the experiment, the transverse sound velocity d
not show any change acrossTc . The absolute value of the
transverse sound velocity is much smaller than the long
dinal one and the coupling to the electron system is a
much weaker than that of the longitudinal sound wav
Therefore, it is difficult to observe any change atT5Tc for
the transverse wave, which may explain the experime
results.

Here we neglect the coupling to the collective mode.
deed, even in the diffusive limit,C11 and C66 modes do
couple to the collective mode. However, our investigat
showed that the coupling to the collective mode in the
cases is almost impossible to detect although we do
present the details of the analysis here.
nd

n

-
es

-
o
.

al

-

e
ot

C. Ultrasonic attenuation for all temperature regimes

The general expression of the sound attenuation co
cient for T,Tc can be obtained by following the procedu
of Kadanoff and Falko and Tsuneto.16 To obtain the ultra-
sonic attenuation coefficient,a t , we compute the imaginary
part of the correlation function̂@txy ,txy#&. We finally arrive
at

Im^@txy ,txy#&5
pF

4

m2 N~0!vE
2`

`

dvS 2
]nF

]v
D

3
g~ṽ !

ImAṽ22D2

11y2/22A11y2

y4
,

~33!

wherey5vFq/2ImAṽ22D2 andnF(v)51/(ev/T11) is the
Fermi distribution function. The coherence factorg(ṽ) is
given by

g~ṽ !5
1

2 S 11
ux̃u221

ux̃ 221u
D , ~34!

wherex̃5ṽ/D is determined from

x̃5
v

D
1 i

G

D

Ax̃ 221

x̃
. ~35!

Similar analysis can be also done fora l .
In the limit of uqu l !1, the above result leads to the fo

lowing ratio between the attenuation coefficients in the
perconducting statea l ,t and the normal statea l ,t

n .

a l ,t

a l ,t
n

5
G

2D
E

0

` dv

T
sech2S v

2T
D g~ṽ !

ImAx̃221
. ~36!

FIG. 2. The normalized attenuation coefficient as a function
the reduced temperaturet5T/Tc for G/Gc50,0.1,0.2,0.3,0.4.
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Notice that the Eq.~36! applies for both of the transverse an
longitudinal sound waves. This result is evaluated num
cally and shown in Fig. 2 for severalG/Gc where Gc
5D(0)/2 is the critical scattering rate which drivesTc to
zero.

VI. CONCLUSION

We have identified a unique collective mode called
clapping mode in ap-wave superconductor with the orde
parameter given by Eq.~1!. This collective mode couples t
the sound wave and affects its dynamics.

The effect of the clapping mode on the sound waves w
calculated in the collisionless limit. However, unlike the ca
of 3He, the detection of the collective mode appears to
rather difficult. One needs, at least, the high frequency
periment withv;O(1) GHz.

In the diffusive limit, we worked out the sound velocit
change nearT5Tc and found that it decreases linearly in
2T/Tc which is consistent with the experiment reported
Matsui et al.15 We also obtained the ultrasonic attenuati
coefficient for the whole temperature range, which can
tested experimentally. On the other hand, the coupling of
collective mode is almost invisible in the diffusive limit.
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APPENDIX A: CLAPPING MODE AND ITS COUPLING
TO THE STRESS TENSOR.

The fluctuation of the order parameter corresponding
the clapping mode can be written asdDr3;e62ifs1r3. The
relevant correlation functions for the couplings are
g

i-

e

s
e
e
x-

e
e

r
r

l
-

o

^dD,cos~2f!&~ ivn ,q!

[T (
n

(
p

Tr@dDr3G~p,vn!

3cos~2f!r3G~p2q,ivn2 ivn!#,

^dD,dD&~ ivn ,q![T (
n

(
p

Tr@dDr3G~p,vn!

3dDr3G~p2q,ivn2 ivn!#.

~A1!

After summing overp, we get

^dD,cos~2f!&5K pTN~0!(
n

S 2 ivnD

2Avn
21D2Avn1n

2 1D2D
3

Avn
21D21Avn1n

2 1D2

~Avn
21D21Avn1n

2 1D2!21z2L ,

^dD,dD&5K pTN~0!(
n

S 11
vnvn1n

Avn
21D2Avn1n

2 1D2D
3

Avn
21D21Avn1n

2 1D2

~Avn
21D21Avn1n

2 1D2!21z2L , ~A2!

where ^•••& on the right hand side of the equations rep
sents the angle average. Now summing overvn and analytic
continuationivn→v1 id lead to

^dD,cos~2f!&5N~0!K v

4D
F L ,

^dD,dD&5g212N~0!K z212D22v2

4D2
FL , ~A3!

whereF is given by
F~v,z!54D2~z22v2!E
D

`

dE
tanh~E/2T!

AE22D2

~z22v2!224E2~v21z2!14z2D2

@~z22v2!214E2~v22z2!14z2D2#2216v2E2~z22v2!2
. ~A4!
al
e

In the limit of v!vFuqu, the contribution~in ^@hl ,hl #&;
see Appendix B 2! due to the coupling with the clappin
mode becomes

^dD,cos~2f!&2

g212^dD,dD&
5N~0!

v2^F&2

4^~z212D22v2!F&

'N~0!
s2f

2@11~2D/vFq!222s2#
, ~A5!
where s5v/vFuqu and f 5 limq→0 limv→0^F& is the super-
fluid density and given by Eq.~18!. We can see that the
frequency of the clapping mode is given byA2D from
^dD,dD&.

APPENDIX B:

1. Longitudinal sound wave in the collisionless limit

The longitudinal sound velocity shift is given by the re
part of ^@hl ,hl #&. The irreducible correlation function for th
stress tensor can be obtained from
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^@txx ,txx#&005T (
n

(
p

TrF pF
4

m2~cosf!4r3G~p,vn!

3r3G~p2q,ivn2 ivn!G , ~B1!

wheref is the angle betweenp andq. Since the stress tenso
couples to the density, the correlation function is renorm
ized as

^@hl ,hl #&05^@hl ,hl #&001
V~q!^@hl ,n#&^@n,hl #&

12V~q!^@n,n#&
,

~B2!

where V(q)52pe2/uqu is the Coulomb interation. This
equation can be simplified in the long wave length lim
(uqu→0) as

^@hl ,hl #&0'S q

v D 2F ^@txx ,txx#&002
^@txx ,n#&^@n,txx#&

^@n,n#& G .
~B3!

It is useful to define the following quantity for notation
convenience:

^A,B&5T (
n

(
p

Tr@Ar3G~p,vn!Br3G~p2q,ivn2 ivn!#,

~B4!

where A and B can be some functions off or operators.
Using this notation, Eq.~B3! can be rewritten as

^@hl ,hl #&0'S q

v D 2 pF
4

m2F ^cos2f,cos2f&

2
^cos2f,1&^1,cos2f&

^1,1& G
5S q

v D 2 pF
4

4m2F ^cos~2f!,cos~2f!&

2
^cos~2f!,1&^1,cos~2f!&

^1,1& G . ~B5!

Then, each correlation function can be computed from

^1,1&~ ivn ,q!5T (
n

(
p

Tr@r3G~p,vn!

3r3G~p2q,ivn2 ivn!#,

^1,cos~2f!&~ ivn ,q!

5T (
n

(
p

Tr@cos~2f!r3G~p,vn!

3r3G~p2q,ivn2 ivn!#,

^cos~2f!,cos~2f!&~ ivn ,q!

5T (
n

(
p

Tr@cos2~2f!r3s1G~p,vn!

3r3G~p2q,ivn2 ivn!#. ~B6!
l-

Summing overp leads to

^1,1&5K pTN~0!(
n

S 12
vnvn1n1D2

Avn
21D2Avn1n

2 1D2D
3

Avn
21D21Avn1n

2 1D2

~Avn
21D21Avn1n

2 1D2!21z2L , ~B7!

where z5vF•q and N(0)5m/2p is the two-dimensional
density of states. Similar equations can obtained
^cos(2f),1& and ^cos(2f),cos(2f)& with additional angle
factors cos(2f) and cos2(2f), respectively. After summing
over vn and analytic continuationivn→v1 id, we get the
following results in the limit ofv!vFuqu.

^1,1&5N~0!K z22v2f

z22~v1 id!2L 'N~0!F12 i
s~12 f !

A12s2G ,

^cos~2f!,1&5N~0!K cos~2f!
z22v2f

z22~v1 id!2L
'N~0!F2s2~12 f !S 11 i

122s2

2sA12s2D G ,

^cos~2f!,cos~2f!&5N~0!K cos2~2f!
z22v2f

z22~v1 id!2L
'N~0!F1

2
22s2~12 f !2 i

~12 f !s

2A12s2G .

~B8!

We find that the second term in the last line of Eq.~B5! is
of higher order inv/vFuqu([s) so that we can ignore it. In
Sr2RuO4 or metals,s!1. Thus the effect of the coupling to
the density is merely to change the vertex associated withtxx

from (pF
2/m)cos2f to (pF

2/2m)cos(2f) as far as the lowes
order contribution is concerned. Evaluation
^cos(2f),cos(2f)& leads to

Rê @hl ,hl #&0'S q

v D 2

Re
pF

4

4m2^cos~2f!,cos~2f!&

5S q

v D 2 pF
4

4m2 N~0!F1

2
22s2~12 f !G , ~B9!

wheref is the superfluid density.
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2. Contribution coming from the coupling
to the clapping mode

The correction due to the collective mode leads to
renormalized correlation function as follows:

^@hl ,hl #&5^@hl ,hl #&01
^@hl ,dDr3#&^@dDr3 ,hl #&

g212^@dDr3 ,dDr3#&
,

~B10!

whereg is the coupling constant between the stress ten
and the collective mode.dDr3 represents the fluctuation a
sociated with the clapping mode. Using the fact th
^1,e2if&50 anddD;e2ifs1, the above equation can be fu
ther reduced to
g,

.

3

J

1

e

or

t

^@hl ,hl #&5S q

v D 2 pF
4

4m2 F ^cos~2f!,cos~2f!&

1
^cos~2f!,dD&^dD,cos~2f!&

g212^dD,dD&
G

5S q

v D 2 pF
4

4m2 N~0! F1

2
22S Cl

vF
D 2

3S 12 f 2
f ~vFuqu!2

4$~vFuqu!214D~T!222v2%
D G

1 i
mionCl

v
a l~v!, ~B11!

wheref is the superfluid density and given by Eq.~18!.
.
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