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There are five distinct collective modes in the recently discovpre@ve superconductor sRRuQ,; phase
and amplitude modes of the order parameter, clapping rfredéand imaginary and spin wave. The first two
modes also exist in the ordinasywave superconductors, while the clapping mode with the engBgy(T) is
unique to SgRuG, and couples to the sound wave. Here we report a theoretical study of the sound propagation
in a two-dimensionap-wave superconductor. We identified the clapping mode and study its effects on the
longitudinal and transverse sound velocities in the superconducting state. In contrast to the tésetioére
is no resonance absorption associated with the collective mode, since in atal$g|) <1, wherev is the
Fermi velocity,q is the wave vector, and is the frequency of the sound wave. However, the velocity change
in the collisionless limit gets modified by the contribution from the coupling to the clapping mode. We
compute this contribution and comment on the visibility of the effect. In the diffusive limit, the contribution
from the collective mode turns out to be negligible. The behaviors of the sound velocity change and the
attenuation coefficient nedr, in the diffusive limit are calculated and compared with the existing experimental
data wherever it is possible. We also present the results for the attenuation coefficients in both of the colli-
sionless and diffusive limits at finite temperatures.

I. INTRODUCTION ferent order parameters with line notfeHowever, since
there are three bands labeled dyg, andy which cross the
Shortly after the discovery of superconductivity in Fermi surface, it is not yet clear whether the order parameter
Srb,RuQ,, the possibility of spin triplet pairing was given by Eq.(1) is compatible with more recent specific heat
discussed.Possible pairing symmetries were also classifieddata or not. For example, it is possible that the pairing sym-
based on the crystal symmefryOn the experimental front, metry associated with the band is still given by Eq(1)
there have been attempts to single out the right pairing symwhile the order parameter symmetry associated witnd 8
metry among these possibilities. Recent measurement d&fands can be quite different. In this case, the low-
170-Knight shift in NMR for the magnetic field parallel to temperature specific heat will be dominated by the excita-
the a-b plane showed no change acrdgs, which can be tions froma and 3 bands. In order to resolve the issue, it is
taken as the evidence of the spin triplet pairing with the important to examine other predictions of the given order
vector parallel to the axis® Hered is called the spin vector Parameter and compare the results with future experiments.
which is perpendicular to the direction of the spin associated ©On€ way of identifying the correct order parameter among
with the condensed palruSR experiment found spontane- possible candidates is to investigate the_ unique colle(_:t_lve
ous magnetic field in the superconductingr0,, which ~ Modes supported by the ground state with a given pairing
seems to indicate broken time reversal symmetry in the symmetry. The ob;ervatlon_of .the effects of these collgctlve
perconducting staf®These experiment may be compatible modes would provide convincing evidence for a particular

ith the followi d tér: order parameter symmetry. If we assume that the order pa-
W € Tollowing order parameter rameter of Eq(1) is realized in SfRuQ,, the superconduct-
AK)=Ad(k, *iky), (1) ing state would support unique collective modes, the so-

called clapping mode and spin waves as well as the phase

whereA is the magnitude of the superconducting order pa-and amplitude modes of the order parameter which exist also
rameter. Notice that this state is analogous toAlghase of in swave superconductors. Previously we studied the dy-
3He and there is a full gap on the Fermi surface. namics of spin wavek-12 A possible way to distinguish the

On the other hand, there also exist experiments that carerder parameter of the band from those of thex (or B)
not be explained by a naive application of the order paramband was also proposed in the context of spin wave
eter given by Eq.(1). Earlier specific heat measurement dynamics'®
found residual density of states at low temperatures below In this paper, we study the dynamics of the sound wave
T.,® which provokes the ideas of orbital dependentand its coupling to the clapping modes assuming that the
superconductivity and even a nonunitary superconductingorder parameter is given by E@l). As in *He, only the
state® However, more recent specific heat experiment on alapping mode can couple to the sound wave and affects its
cleaner sample reports no residual density of states and dlynamics. Here we study the sound velocities and attenua-
was found that the specific heat behaves Td&sat low tion coefficients of the longitudinal and transverse sound
temperature$ This result stimulated a speculation about dif- waves. In particular, we identify the clapping mode with the
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frequencyw= \2A(T), and examine the effects of this mode ible if velg|~2—-3A(0). This implies thatw~0O(1) GHz.

and disorder on the sound wave propagation. SinceC33 does not couple to the clapping mode, the velocity
In a recent paper, Higashitani and Né@aibtained the change is simply given by

clapping mode with the frequenay=\2A, and discussed

the possible coupling to the sound wave independent of us. 5CF3 1l

However, as we shall see the coupling to the sound wave is ﬁz —A 5_2

extremely small, because/v:<1 in metals. HereC is the !

sound velocity. Indeed the recent measurement of the sound gjnce the velocity of the transverse wave is much smaller

velocity in the normal and superconducting states Of,an that of the longitudinal one and the coupling to the
SrRuQ, reported in Ref. 15 shows thal/ve<1. They  gjeciron system is weaker than the longitudinal case as well,
measured the sound velocities of the longitudinal mddigs e expect that the change of the transverse sound velocity is
(9,ul|[100]) andC33 (q,u([[001]) and the transverse modes narg to observe. In order to complete the discussion, we also
Ca4 (q][100], u[[001]) andCes (ql|[100], u[010]), where  present the results for these small changes in transverse ve-

g andu are the directions of propagation and the polarizationgities. Here onlyCg mode couples to the clapping mode,
of ultrasound, respectively. They found that the longitudinaly g4 C., mode does not. We found

sound velocitiesCy; and Cg3, decrease with a kink at

C|33)2
— (1-1)

Ur

. 3

=T,., while the transverse sound velocities do not exhibit Plot 1 86) 2

any effect of the onset of superconductivity. We estimate = 65[§+2 —) (1—f+ > )]

from their experimental data th& /v~ 102, whereC, is C UF 4{1+(2A/veq)%}

the longitudinal sound velocity. It can be also seen that the (4)

transverse sound velocitg,; , is much smaller than the lon-

gitudinal one'® sct 1 5 C\? ;
Incorporating the correct limi€/vg<1, we obtained the cl =AM v (1=0], ®)

sound velocities and attenuation coefficients for both colli-
sionless and diffusive limits. In the diffusive limit, the qua- where the\, is the transverse coupling constant. We also
siparticle scattering due to impurities should be properlyfound that the leading contribution to the attenuation coeffi-
taken into account. One can show that, in a metal such agent is the same as that efwave superconductors in the

Sr,RuQ,, the collisionless limit is rather difficult to reach collisionless limit.

because it can be realized only fer-O(1) GHz. For more

practical range of frequencies, kH¥Hz, the diffusive limit B. Diffusive limit

may be easier to achieve. On the other hand, we found that it Thi ds o <T. whereT is th
is much easier to see the effects of the coupling between the IS case corresponds ..’UF|Q| L, where L Is the
sound waves and the clapping mode in the collisionless limit>cattering rate due to impurities. As in the case of the colli-

Therefore it is worthwhile to study both regimes. Here Wesmnle_ss limit, in prin_cipld:ll and Ceg modes co_uple to th(_e
summarize our main results clapping mode, but it turns out that the effect is almost im-

possible to detect. Neglecting the coupling to the clapping
mode and working in the limit #T.>2I'>v¢|q|,», we ob-

A. Collisionless limit tain the following results nedr,:
In the absence of the coupling to the clapping mode, the 2 3
longitudinal sound velocity decreases in the superconducting & - 1[ 1_(ﬂ) 1— 4m I(l_ l)“
state because the effect of the screening of the Coulomb C; '2 2r 7¢3) T Te)l)’
potential increases, which happens in th&ave supercon-
ductors as well. However, one of the important features of a 2 T T
the p-wave order parameter in consideration is that the sound a—ln =1- 74(3) f( - T_c> , (6)

wave can now couple to the clapping mode. This effect is

absent inswave superconductors. One can show thatyherew anda, are the attenuation coefficients in the super-
among longitudinal waves;,, mode can couple to the clap- conducting and the normal states, respectively. The shift of
ping mode, buC33; mode cannot. We found that the longi- the sound velocity and attenuation coefficient decrease lin-

tudinal sound velocityC,; decreases as early in (1~ T/T,) asT—T,. This result for the longitudinal
sound wave is consistent with the experimental observation
6C|11 a1 C|11 2 reported in Ref. 15. _
= N 5—2 e In the case of the transverse sound waves, the leading
Ci F behaviors of the sound velocity and the attenuation coeffi-

cient can be obtained simply by replaci@y and A, by C;

, (20 andiin the diffusive limit. However, the absolute value of
the transverse sound velocity is much smaller than the lon-
gitudinal one and the coupling to the electron system is also

where\, is the couping constant arids the superfluid den- much weaker than the case of the longitudinal sound waves.

sity. 6C,/C, is the relative shift in the sound velocity. We Thus, it would be hard to observe any changd atT, for
estimated the frequency regime where one can observe thke transverse wave. This may explain the experimental find-
effect of the clapping mode and found that the effect is vis-ing that the transverse velocity does not show any change

NPT N—
A{1+(2A(T)/veq)?}



PRB 62 COLLECTIVE MODES AND SOUND PROPAGATION INA.. .. 5879

acrossT.. We also obtained the attenuation coefficient forand the current operator
all temperatures below, . It is given by Eq.(36) and Fig. 2
shows its behavior.

The rest of the paper is organized as follows. In Sec. Il, (ry= 2(,: [ 2im
the clapping mode is briefly discussed. In Sec. Ill, we make
a short summary of the result in Ref. 16 to explain how the  Assuming that the wave vector of the sound wave is in the
sound velocity and the attenuation coefficient are related tg direction,q=qX, the sound velocity shiftsC, at low fre-
autocorrelation function of stress tensor, which help for read-

uencies can be computed from

ers to understand the physical quantities that we present i 91
this paper. Then we show the results of the study on the 8C, Cyw)—C,
sound propagation in the collisionless and diffusive limits in =

)‘wrtwa(r bl . 10

r'=r

Secs. IV and V, respectively. We conclude in Sec. VI. Fur- G G 0=C/|q|
ther details which are not presented in the main text are
relegated to Appendices A and B. _
I'n|onC |q| Rq[hl I]>(q @) w:C||q|’
Il. COLLECTIVE MODES IN Sr ,Ru0O,
As in the swave superconductors, the phase and ampli- &: Cilw)—C
tude modes of the order parameter also exist inpteave C Ci w=Cq|
superconductors. On the other hand, due to the internal struc- '
ture of the Cooper pair in thp-wave superconductor, there
exist other types of collective mode associated with the order - m|onc MonCelal Re([ht,hi]) (9, @) )
parameter. The nature of these modes is determined by the ©=Cyll
structure of the order parameter. where

There are collective modes associated with the oscillation

of the spin vectord, which we have already discussed in
Refs. 11 and 12. There exists another collective mode asso-
ciated with the orbital part. Using the notati@t'¢=(k;

+ik,)/|k|, the oscillation of the orbital pare™'¢—e™'?

gives rise to the clapping mode with= \2A(T). This mode hy(r,t) = —Txy(q t)—mjy(r,t). (12)

couples to the sound waves as we will see in the next section.

Therefore, the detection of the clapping mode will provide aHere C, and C, represent the longitudinal and transverse

unique evidence for th@-wave superconducting order pa- sound velocities in the normal state, respectivedy,, andm

rameter. The derivation of the clapping mode and the couare the mass of ions and the mass of electron, respectively.

pling to the sound wave is discussed in Appendix A. On the other hand, the attenuation coefficienét low fre-
quencies is obtained from

q wm
h|(r,t)= ZTxx(qvt)_Tn(ryt)y

IIl. DYNAMICS OF SOUND WAVE VIA STRESS TENSOR

In ordinary liquids, the sound wave is a density wave. In a = Im([h| h 1) (g,0)
superconductors, the density is not only coupled to the lon- ionC
gitudinal component of the normal velocity, but also to the

superfluid velocity and to temperature. The role of these cou-

U’ZCHQ‘

Im<[htv 1) (9, ) (13

plings and their consequences in the dynamics of sound =

wave can be studied by looking at the autocorrelation func-

on w=Cld

tion ([ ;; ,m;]) of stress tensor; :

These relations are extensively discussed in the work of

<[Tij ,Tij]>(r_r,,t_t,)5_i0(t_t,)<[7'ij(r,t),7'ij(r,,t,)]>, Kadanoff and Falkdﬁ

7
Y IV. SOUND PROPAGATION
where IN THE COLLISIONLESS LIMIT
¢ 2 (V V )i (V ) ) p As discussed in the Introduction, in a metal such as
mij(r.t) = ¢ (ROP,(r',1) . Sr,RuQ, the collisionless limit is somewhat difficult to reach
' 4(8) because we need the sound wave with the frequancy

~0O(1) GHz. However, we will also see that this is the

Here y, is the electron creation operator with spin regime where one has the best chance to observe the effect of
The other operators whose correlation functions arghe collective mode.

needed for the ultrasonic attenuation and the sound velocity |n superconductors the density wave is not only coupled

change are the density operator to the longitudinal component of the normal velocity, but
also to the superfluid velocity and to temperature. The role of

(9) these couplings and their consequences in the dynamics of
sound wave can be studied by looking at the autocorrelation

n(r,t>=2 Pl P(rb)
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function([ 7; ,7;;]) of stress tensor;; presented in the pre- I
vious section.

We will use the finite temperature Green’s function
techniqué’ to compute these correlation functions. The 0.9
single particle Green’s functio(i w,,k) in the Nambu
space is given by

G Yiwy k) =iwy,—&ps—A(k-p)oy, (14)

wherep; ando; are Pauli matrices acting on the particle-hole 0.7
and spin space, respectively,=(2n+1)#T is the fermi-
onic Matsubara frequency, adgg=k?/2m— . Then, for ex-

ample, the irreducible correlation function can be computed 0.6
from

([7ij»7ij Dooli @, , ) 0.5

2 ;

PiPj

=T 2 2 T 7] psG(p,wn) %
n P m 0.4
0.7 0.8 0.9 t
P FIG. 1. The functionl representing the reduction in the sound
XpsG(p—Qion=iw,), (19 velocity as a function of the reduced temperattireT/T. with

] ] 0.7<t<1.0 for vg|g|/A(0)=0 (thin solid line), 1 (dotted ling, 2
wherew ,=2v7T is the bosonic Matsubara frequency. (dashed ling 3 (thick solid line.

A. Longitudinal sound wave |Ongitudinal sound VelOCity. In 5RUO4, S= 10_2<1 which
is very different froms>1 of 3He.

Let us consider the longitudinal wave withjq|x, which Now let us consider the correction due to the collective

corresponds to th€,; mode. Since the stress tensor couplesmodes_ The additional renormalization @, ,h,]) (in the
to the density, the autocorrelation functigfh,,h]) is ’

. . . C,1 mode due to the collective mode is computed in Appen-
renormalized by the Coulomb interaction. In the long wave- ;! 9 o P PP
- ) dix B 2 and the result is given by
length limit and fors=w/v¢|q|<1, the renormalized corre-

lation function([h;,h;]1)q can be reduced to q\2 pt 1
([h ah|]>:(;) WN(O) 5—252

I
Re([h ,h|])0%(;) Rem<0032¢),005{2¢)>

pr 1 2
:WZC,ZN(O) 572s%(1-0)|, (16

2
X(l_f_ f(velal) H
4{(vela))2+4A(T)2 - 207

11
. mionCI

where al(w)- (20)
As one can see from the above equation, there is no reso-
(AB)=T X > TAp3G(p,w,)BpsG(p—q,iw,—iw,)],  nance because<uve|q|. However, we will be able to see a
noe 17) shadow of the collective mode in the sound velocity change,
which we discuss in the following.
with A andB being some functions ap or operators. Here In the limit s<1 and settings= C,“/vF , the above equa-
is the angle betweep andq, N(0)=m/27 is the density of tion leads to the sound velocity shift given by
states at the Fermi level arfids the superfluid density in the

static limit (w<vg|q|) given by 6C|11__)\11 1 (_Ill)z L ¢
* 1 1 cit 2 e 4{1+(20Mve)?}) |
f=2aTA%Y, . (19 @y
n=0 wﬁ+ A2 \/wﬁ+ A%+ (veq)2l4 Note that the sound wave gets soften more by the collective

mode. In Fig. 1, we show
The derivation of the result in E¢16) is given in Appendix

B 1. Therefore, the sound velocity shi#C, is given by 1 f
5C 1 4[1+(2A(T)/velq))?]
— 2
C __)‘I[E_ZS (1_”}' 19 for velgl/A(0)=0,1,2,3 for 0.Kt<1.0 wheret=T/T,.

Note that the coupling to the collective mode can be ob-
where \;=pg/(8mmm,,C?) is the longitudinal coupling served for vg|g|~2—3A(0) which corresponds tow
constant. Here we set= w/vg|q|=C,/vg, whereC, is the  ~O(1) GHz.
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The attenuation coefficient, is given by plicity that the quasiparticle scattering is due to impurities.
Unlike the case of-wave superconductors, we treat the im-
a(w) 1Joc ’ o' (0'+w)—A? purity scattering in the unitary limit. Then the effect of the
= w . . . . . ~ .
n wla 2 A2 ; 22 impurity is incorporated by changing, to w,, (renormalized
o) Vo'?-a \/(w Tw) -A Matsubara frequnegyn Eq. (14).*® The impurity renormal-
w+o’ ' 1 ized complex frequencw, is determined from
X | tanh————tanh—| — (0w —2A) —
2T 2T 0]
0—A o' (0'—w0)—A2 - Voi+A2
Xf do’ o=+ ——m——, (26)
A \/(U’Z—AZ\/((;)'—Q))Z—AZ (O
w!
X | tanh—1, (220 wherel is the quasiparticle scattering rate and the quasipar-
2T ticle mean free path is given by=v/(2I'). In order to

where a!! is the attenuation coefficient in the normal state.compare the results in the normal state and those in the su-
This form is the same as the one in tawave superconduct- Perconducting state, let us first work out the correlation func-
ors. tions in the normal state, where=0.

We can carry out a parallel analysis for the longitudinal
wave withul|g||z which corresponds to th@&;; mode. Unfor-
tunately, this sound wave does not couple to the clapping A. Normal state
mode. Therefore, the velocity shift of this sound wave is We can use Eq(B5) to compute([h;,h;])o. In the limit
simply given by of w,vpq<2I', we get

ﬁ)z_)\%{l_z(_ﬁa)il_f)} (23
c® 12 vE : o2 ( 1) )
<COS(2¢),00512¢)>—<C0 (2¢) 1_w+TF—§

1

B. Transverse sound wave 2

. (27)

1 w \? S w
“lar) T'ar
Here we consider first th€gs mode that hasi|y andg||x.

In this case, the sound velocity change can be obtained from . . .
the evaluation of[ h;,h;]). Assuming that the current con- One can show thatcos(24),1) is of higher order inw/2l

tribution is negligible at low frequencies and following the 2Ndvelal/2l" while (1,1)~2(cos(2$),cos(24)) to the low-

same procedure used in the case of the longitudinal sourfgft Order- Thus, as in the previous sectigiiy ,h]) is well
wave, we obtain approximated by cos(2p),cos(2p)) times a multiplicative

factor. This gives us
1 (C?G

Flore
2 UF 4{1+(2AIveq)?

66
C

66|
t

ble 1 w\?

(@4 o=l
where the\ = pg/(87mmm,,C?) is the transverse coupling
constant. Note that the transverse sound velocity increases
upon entering the superconducting state. However, due to théherew is set toC|q.
fact that the transverse velocity is rather small and the cou- It is not difficult to see that the results of the transverse
pling to the electron system is also weak compared to theound wave is essentially the same as the longitudinal case
longitudinal case, it will be hard to observe the change of thelp to the lowest order with a simple replacementpfand
transverse sound velocity @t=T,. C, by A andC,. Therefore, in the diffusive limit, the longi-

Another transverse sound mod@,,, that hasulz and  tudinal and transverse sound velocities have the same form
qllx, does not couple to the clapping mode. Thus the sounwith different coupling constants.
velocity change in this case is given by

P lona 1 (C

RN t

i = M5 +2 -
t

aponl ) 29

(29

44) 2 B. Superconducting state nearT
(1-1)].

Now we turn to the case of the superconducting state near
T., where the correlation functions can be computed from

Eq. (B6) after replacingw, by w,. In this section, we will

V. THE DIFFUSIVE LIMIT assume 4T.>2I'>vg|q| and useA/27T<1 nearT.. As

In the frequency range kHz—MHz, the diffusive limit is in the previous sections, the leading contributio[in, ,h,1)
more realistic. In this limit, the incorporation of the quasi- can be computed froricos(2¢),cos(2p)).
particle damping is very important. Here we assume for sim- After some algebra, we finally obtain
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(cog2¢),co82¢))
1 1/ w)? A? 1 T
SEClIS ane
2 2lor al'T 2 mT o
r (2)<1 r) _1(w) A?
“eat P\ 2 a2\ 2T )| Y 2aTT
1 T r 1 T 0.
@[ = @
¢1<2+2WT) 4WT¢2(2+2WT)” 3
29
Q0.
where
d\n 1
N (7)=| — n+lp - 0.
¥ (2) (dz) W2)=(-1) 'EO o
(30

Here y{"(z) is the poly-gamma function ang(z) is the
di-gamma function. This leads to

1

FIG. 2. The normalized attenuation coefficient as a function of

5CI,t:_)\ 1 12 ? 1— ? e 1+ I the reduced temperatute=T/T, for I'/T;=0,0.1,0.2,0.3,0.4.
Ci 2 2r alT" 2 2#T _ _ _
C. Ultrasonic attenuation for all temperature regimes
@ A2 1 T The general expression of the sound attenuation coeffi-
— =1 yv —+—), (31)  cient for T<T, can be obtained by following the procedure
n 27al'T 2 27T .
@it of Kadanoff and Falko and Tsunetd.To obtain the ultra-

sonic attenuation coefficient;, we compute the imaginary

wherea,, is the ultrasonic attenuation coefficient in the nor- part of the correlation fUnctiof] 7, , m,,]). We finally arrive

mal state. Here we combined the subscripasdt, because
the above analysis applies to the case of the transverse sound

wave as well. Only the coupling constamns, are different. p &n
In particular, whenl'/27T~I'/27T,<1, the above equa- Im([rxy,rxy])=—FN(O)wf do F)
tions can be further reduced to m? - e

4773 T T g(:u) 1+y2/2_ \/1+y2
— — >< 1
72(3) F(l )“ ima2— a2 y*

6Cii N 1 [ 21
C. M2 2r T,
a ¢ 27 T T
_’:1_—_ -
af' 743 T Te)

(33

(32 wherey=vrq/2imy@2— A2 andng () =1/(e”’T+1) is the
Fermi distribution function. The coherence fact(w) is
Note that the sound velocity change and the attenuatiodiVe" PY

coefficients decrease linearly in ¢IT/T.;) asT—T,.. This ~i2

result, Eq.(32), for the longitudinal sound wave is consistent o(o) = }( 1 |~X| -1 ) 34
with the experimental observation reported in Ref. 15 How- 2 [x 2—1|

ever, in the experiment, the transverse sound velocity does

not show any change acrods. The absolute value of the Wherex=w/A is determined from

transverse sound velocity is much smaller than the longitu-

dinal one and the coupling to the electron system is also ~ o T {yx?*-1

much weaker than that of the longitudinal sound waves. X:KJ” A T (39)

X
Therefore, it is difficult to observe any changeTat T, for

the transverse wave, which may explain the experimentabimilar analysis can be also done fey.
results. In the limit of |g|l <1, the above result leads to the fol-
Here we neglect the coupling to the collective mode. In-lowing ratio between the attenuation coefficients in the su-
deed, even in the diffusive limitC,; and Cs modes do perconducting state, ; and the normal state/, .
couple to the collective mode. However, our investigation
showed that the coupling to the collective mode in these a, T fao do ( w) g(w)
sec

cases is almost impossible to detect although we do not —= — — |
T 2T |m~Fx2—1

=— 36
al', 2AJo (36

present the details of the analysis here.
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Notice that the Eq(36) applies for both of the transverse and (SA,c082¢))(iw,,q)
longitudinal sound waves. This result is evaluated numeri-

cally and shown in Fig. 2 for severdl/T'; where I'; _

=A(0)/2 is the critical scattering rate which drivds to =T En: Ep: TL8ApsG(p,@n)
zero.

Xc0g2¢)p3G(p—Q,ivy—iv,)],
VI. CONCLUSION

We have identified a unique collective mode called the ~ (34,8A)(iw, q)=T > > Tr[5ApsG(p,wp)
clapping mode in g-wave superconductor with the order noP
parameter given by Eq1). This collective mode couples to X 8Ap3G(p—q,iw,—iw,)].
the sound wave and affects its dynamics.

The effect of the clapping mode on the sound waves was
calculated in the collisionless limit. However, unlike the caseafter summing ovelp, we get
of 3He, the detection of the collective mode appears to be
rather difficult. One needs, at least, the high frequency ex- e A
periment withw~0O(1) GHz. (8A,co82¢))={ #TN(0)>, ‘

In the diffusive limit, we worked out the sound velocity n 2\/wﬁ+ AZ\/w§+V+ A2
change neal =T, and found that it decreases linearly in 1

(A1)

—T/T. which is consistent with the experiment reported by Val+ A2+ w2, +A2
Matsui et al'® We also obtained the ultrasonic attenuation X—— - ,
coefficient for the whole temperature range, which can be (Nol+ A%+ o, + 2422+ 2

tested experimentally. On the other hand, the coupling of the

collective mode is almost invisible in the diffusive limit. 0w
n“n+v
(8A,8M)=( #TN(O)Y, | 1+
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(6A,cos{2¢>))=N(0)<EF>,

APPENDIX A: CLAPPING MODE AND ITS COUPLING

TO THE STRESS TENSOR. §2+ 2A2— 2
—q-1l_ > =
The fluctuation of the order parameter corresponding to (6A,00)=9g N(O)< 4A2 F>' (A3)
the clapping mode can be written 88 p3~e~? %o, p5. The
relevant correlation functions for the couplings are whereF is given by
= tani E/2T) (%= w?)2—4E?(w?+ %)+ 472N
F(wyg):4A2(§2—w2)f dE—=—— 2_ 22 2, 2_ 2 2A272 2e2 2 22 (A4)
A VE =A% [({— o) +4E“ (0= ) +4{°A°]— 16w E“({ — w°)

In the limit of w<vg|q|, the contribution(in ([h,,h|]);  wheres=w/vg|q| and f=limg_qlim, _o(F) is the super-
see Appendix B Rdue to the coupling with the clapping fluid density and given by Eq(18). We can see that the

mode becomes frequency of the clapping mode is given bj2A from
(6A,8A).
(94,c082¢))° _ N(0) w*(F)° APPENDIX B:
g '—(5A,50) 4((LP+2A0% - w?)F)

1. Longitudinal sound wave in the collisionless limit

s°f (A5) The longitudinal sound velocity shift is given by the real
2 oy’ part of([ h,h,]). The irreducible correlation function for the
2[1+(2Alveq)"~ 257] stress tensor can be obtained from

~N(0)
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pe Summing overp leads to
([romoddo=T 2 2 Tr[mﬁ(cos@APsG(p,wn)

X psG(p—Qyiwn—iw,)

wnwny,+ A2 )

: (B1) <1,1>:< 7TN(0) >, ( 1

Vol+a2w2, +A2
whered is the angle betwegmandg. Since the stress tensor
couples to the density, the correlation function is renormal- \/w§+ A2+ \/w§+y+ A2
ized as X , (B7)
(N2 + A%+ w2, +A2)2+ 2

V(q)<[h| 7n]><[nvh|]>

1-V(a)}[n.n]) ° . . .

(B2)  where {=vg-q and N(0)=m/27 is the two-dimensional
density of states. Similar equations can obtained for
(cos(2¢$),1) and{cos(2p),cos(2p)) with additional angle
factors cos(2) and cod(2¢), respectively. After summing
over w, and analytic continuationw,— w+1i68, we get the
([ 7 NN, 7] following results in the limit ofo<vg|q|.

([ 7 Tl oo™ {[n,n])

(Chy s Do=<Chy . hi oot

where V(q)=2me?/|q| is the Coulomb interation. This
equation can be simplified in the long wave length limit
(lg[—0) as

(I, ,h.]>o~(%)2

(B3) 2 2

It is useful to define the following quantity for notational ~ (1,1)=N(0){ ——— ) ~N(0)
convenience: = (0+id)?

1-i

s(l—f)]
1-s2|

(AB)=T X X TAp3G(p,w,)BpsG(p—a,iwy—iw,)],
n p gz_wa
(B4) <cos{2¢),1>=N(0)< cog2¢) 2—>

_ i 5)2
where A and B can be some functions ap or operators. = (0+id)
Using this notation, Eq(B3) can be rewritten as

1-2¢?
2 4 ~N(0) 252(1—f)(1+i—)],
<[h|,h|]>o*<%) %(Cos%,cosz(ﬁ) 2sy1—s?
(cog¢,1)(1,cod¢)
- 1.1 P~ w?f
(L, (c0529).c0826)=N(O)| cod(20) -~
2 4 —(wTlI
=2 ) (cos20).c0520) ) e
~ _— 2 — —
_<cos(2¢),1><1,co$2¢>>} - MO )
(1,1) ’ (B8)

Then, each correlation function can be computed from

We find that the second term in the last line of E8H) is

(LD (w, q)=T > > TrpsG(p,w,) of higher order inw/ve|g|(=s) so that we can ignore it. In
nor Sr,RuQ, or metals,s<1. Thus the effect of the coupling to

X p3G(p—Qiw,—iw,)], the density is merely to change the vertex associatedwyjth

from (p2/m)coS ¢ to (p2/2m)cos(2p) as far as the lowest
(1,c082¢))(iw,,q) order contribution is concerned. Evaluation of

(cos(2¢p),cos(2p)) leads to
=T 2 2 Tr{cos2)psG(p.wn)

2 4
Xp3G(p—giioy—iw,)], Re([h, ,h,])0~(%) Re%(cos(w),cosz(ﬁ))
(cog2¢),c082¢))(iw,,q) g2 pt 1
=(—) ﬁN(O)[E—ZSZ(l—f)}, (B9)

=T zn: Ep: Tr[coS(2¢)pso1G(p,w,)

Xp3G(p—Qiw,—iw,)]. (B6)  wheref is the superfluid density.
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2. Contribution coming from the coupling p
to the clapping mode ([h ’h']>:(w> —F 5| (C0g2¢),c082¢))
The correction due to the collective mode leads to the
renormalized correlation function as follows: + (c032¢),6A)(5A,c042¢))
“*—(8A,8M)
(i, 68p3])([8Ap3,hy]) _[a)? pe G\
(Chi b =(he b ot ——= =% 2mNO)| 3 __2
g~ —([5Ap3, A ps)) U
(B10)

f 2
X(l_f_4 Z(UZTDTZ 2 2)
whereg is the coupling constant between the stress tensor {(velal)*+4A(T) o}

and the collective modeiA p; represents the fluctuation as- e
sociated with the clapping mode. Using the fact that = a(w), (B11)
(1,%%)=0 andsA~e? %o, the above equation can be fur-
ther reduced to wheref is the superfluid density and given by EG8).
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