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Coexistence of single and double quantum vortex lines
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We discuss the configurations in which singly and doubly quantized vortex lines coexist in a rotating
superfluid. General principles of energy minimization lead to the conclusion that in equilibrium the two vortex
species segregate within a cylindrical vortex cluster in two coaxial domains where the singly quantized lines
are in the outer annular region. This is confirmed with simulation calculations on discrete vortex lines. Ex-
perimentally the coexistence can be studied in rotating superfluid3He-A. With cw NMR techniques we find
the radial distribution of the two vortex species to depend on how the cluster is prepared:~i! By cooling
through Tc in rotation, coexistence in the minimum energy configuration is confirmed.~ii ! A disordered
agglomerate is formed if one starts with an equilibrium cluster of single quantum vortex lines and adds to it
sequentially double quantum lines, by increasing the rotation velocity in the superfluid state. This proves that
the energy barriers, which separate different cluster configurations, are too high for metastabilities to anneal.
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I. INTRODUCTION

Superfluid 3He-A is the only known quantum system
where topologically stable vortex lines with different qua
tization appear simultaneously. The doubly quantized vor
~DQV! is formed at low critical velocity and is usually ob
tained when superfluid3He-A is accelerated to rotationa
flow.1 The singly quantized vortex~SQV! may have lower
energy, depending on the magnitude of the magnetic fi
and rotation velocity, but because of its large critical velo
ity, it is in practice only formed on cooling through the s
perfluid transition in rotation.2

Normally one finds either double or single quantum v
tex lines in a rotating container, depending on how the s
has been prepared. In the homogeneous rotating super
transitions between different vortex textures are of first or
and in principle sharp. However, topological stability forbi
a transition from one type of existing vortex lines to anoth
Thus SQV and DQV lines, once they have been formed,
persist in the rotating container, as long as they are not
moved by deceleration and annihilation on the container w
or by warming up to the normal phase. By exploiting th
metastability, for instance, one can prepare rotating st
where both types of vortex lines are simultaneously pres

A priori it is not clear what configuration a rotating sta
with two different vortex species would take: Do the arra
always have the same configuration or does this depen
the process by which the state has been created? Sim
questions have been studied in the case of pointlike obje
namely, trapped ions in a two- or three-dimensional po
charge system.3 Here we investigate the coexistence of SQ
and DQV lines both theoretically and experimentally.

Two methods have been found to prepare states with
coexisting two vortex species:~1! By cooling slowly in ro-
tation from the normal phase to3He-A in the parameter re
gime of the transition between the two vortex species. A
ally symmetric configurations are then observed where
SQV lines are in an outer annulus which surrounds a cen
PRB 620163-1829/2000/62~9!/5865~12!/$15.00
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domain of DQV lines.~2! The second technique is to ad
DQV lines to an existing equilibrium state of SQV lines, b
slowly increasing the rotation velocity in the superfluid sta
Also in this case segregated configurations are obtained
now they do not have full axial rotation symmetry.

II. ROTATING 3He-A

Rotating vortex states are driven and stabilized by sup
fluid counterflow~CF!, the difference in the velocities of th
normal and superfluid fractions,v5vn2vs . The equilibrium
states are found by minimizing the free energy functiona4

which controls the spatial distribution of the order parame
On the macroscopic scale, vortex textures in3He-A are rec-
tilinear structures, oriented parallel to the rotation ax
which extend from the top to the bottom of the rotating co
tainer. These vortex cells are confined by the Magnus fo
to a regular array, a cluster of vortex lines. The cluster
coaxial with the cylinder5 and isolated from the cylindrica
wall by an annular layer of vortex-free CF. Within the clust
the areal density of linear vortex cells has the solid-bo
rotation valuen52V/k. Herek5nk0 is the circulation of a
vortex line with the quantum numbern and the circulation
quantumk05h/(2m3)50.0662 mm2/s.

In a vortex cluster of infinite diameter a transverse cro
section would display a two-dimensional~2D! lattice with
triangular nearest-neighbor coordination, which arises fr
the intervortex repulsion. In a finite cluster the central reg
is also expected to be a triangular lattice, but towards
outer boundary it is deformed by the surrounding annular
more and more to a configuration of concentric rings of v
tex lines.6 Due to the competition between volume and s
face interactions, long-range order is thus relatively poor
finite-size arrays at the usual experimentally accessible r
tion velocities. Here the total number of lines is typically
few hundred, the radiusR of the container a few mm, the
radius of the Wigner-Seitz~WS! cell of the vortex lattice
r 0;100 mm, and the vortex core radiusj;10 mm.7
5865 ©2000 The American Physical Society
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The order-parameter texture within a unit cell of the p
riodic vortex lattice has been derived from numerical mi
mization of the free energy as a function of the rotation
locity V and the applied fieldH.2,8,9 These calculations
reveal a complex phase diagram,2,9 with quantized vorticity
organized in several topologically and structurally differe
vortex textures.10 SQV vortex textures, which include a sin
gular vortex core, have only been described approximat
by solving for the order parameter distribution with analy
cal trial functions.11 Of these different vortex textures w
shall here only be concerned with two, the continuous DQ
and the singular SQV.

In an array consisting of DQV lines the intervortex di
tance is larger byA2 than in one formed from SQV lines
With coexisting SQV and DQV lines this large differenc
opens the question whether a ‘‘chemical’’ structure mig
result where both species occupy fixed positions within e
unit cell of a periodic vortex lattice. Or could it perhaps le
to a disordered state? A third possibility is an array cons
ing of segregated domains of one species only. These ar
questions which we shall discuss next.

III. ENERGY MINIMIZATION

A. Continuum approximation

On the macroscopic level the energy difference betw
SQV and DQV arrays depends on the difference in the qu
tization numbers and intervortex distances, if the latter
much larger that the core sizes. Here we neglect the sm
energy contributions associated with the structure of the v
tex core. Consider the free energy of the rotating superfl

Ẽ$vs%5Ekin2LV5
rs

2 Er ,R
~vs

222vsvrot!d
2r , ~1!

wherevrot5V @ ẑ3r #, V is the rotation velocity, andL the
angular momentum of the fluid. We express the superfl
velocity vs in the continuum approximation and assume
logarithmic approximation for the vortex line energy. In th
laboratory frame we then have12

Ẽ5
rs

2 E Fvs
21

1

2p
k @curlvs#z lnS r 0

j D
22Vvsr 2

k

p
VG d2r . ~2!

The second term in the integral represents the energy
vortex line. If different vortex species are present, the cir
lation ka5nak0, the intervortex distancer 0a , and the core
radiusja become functions of the spatial coordinates~here
a51 or 2!.

Let us consider a configuration withN1 SQV lines andN2
DQV lines. The overall radiusRv of the vortex cluster is
determined by the total circulation:

N1k11N2k252pVRv
2 . ~3!

In the stationary state the area of the unit cell is proportio
to its circulation,
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, pr 2

25
k2

2V
. ~4!

The average velocity field isvs5vs0 where

vs05H vrot , if r ,Rv,

V @ ẑ3r # Rv
2/r 2, if r .Rv. ~5!

The free energy in Eq.~2! is now given by

Ẽ

E0
5S Rv

R D 4F3

4
2 lnS Rv

R D2S R

Rv
D 2G1

S1e11S2e2

S
, ~6!

whereE05prsV
2R4, S5pR2, andSa5kaNa /(2V) is the

area occupied by SQV or DQV lines, such thatS11S2

5pRv
2 . The normalized vortex-line energy densities in t

logarithmic approximation are

e15
r 1

2

R2
lnS r 1

Aej1
D , e25

r 2
2

R2
lnS r 2

Aej2
D . ~7!

These are proportional to the first power ofka as distinct
from the single-vortex energy which is proportional toka

2

~wherea51 or 2!.
These expressions are valid whenr 0a@ja .7 The energy

densities of SQV and DQV arrays become equal when

S k1

2pVej1
2D k1

5S k2

2pVej2
2D k2

.

The corresponding rotation velocity is given by

V* 5
2k0

pe

j1
2

j2
4. ~8!

To explore the consequences from the continuum
proximation further, we minimize the energy in Eq.~6! with
respect to variations of bothN1 andN2. This gives the equi-
librium configuration, which one would expect to find aft
an adiabatic transition at constant rotation from the norma
the superfluid state. Several conclusions follow.

~1! If e2.e1, only SQV lines remain sinceS2 shrinks to
zero @Eq. ~6!#. In the opposite case,S1 shrinks to zero, and
only DQV lines remain. The DQV becomes more favorab
when V.V* . According to our measurements this occu
above 0.6 rad/s~Sec. V A 1!.

~2! The radiusRv of the cluster has its equilibrium valu
when the width of the surrounding vortex-free CF annu
becomes

da(eq)5RAea/2, ~9!

where the outer boundary of the cluster consists of typa
vortices.

~3! The energy in Eq.~6! does not depend on the configu
ration of the vortex cluster with givenN1 and N2. Conse-
quently, the continuum approximation in the logarithm
limit does not discriminate between different vortex clus
configurations.
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B. Discrete vortex lines

1. Sequentially formed arrays

The continuum approximation in Eq.~6! does not include
the surface energies at the interfaces between the vortex
ter and the vortex-free region or between segregated dom
occupied by different vortex species. Nor does it account
interactions between individual vortex lines and the co
tainer wall. To identify configuration-dependent contrib
tions to the free energy, we need to look at vortex clust
composed of discrete vortex lines. We perform numeri
calculations on vortex arrays which consist ofNj discrete
rectilinear vortex lines with coordinatesr j , circulationsk j
5n jk0, wheren j51,2, and core radiij( j ). The superfluid
velocity produced by the lines is

vs5 ẑ3(
j

k j

2p F ~r2r j !

ur2r j u2
2

~r2r j8!

ur2r j8u
2G . ~10!

The last term accounts for the image vortices with coor
natesr j85r jR

2/r j
2 , of which each one corresponds to o

true vortex located atr j .
The interaction potential for vortex lines in the rotatin

superfluid is equivalent to the Coulomb potential betwe
charged lines immersed into a uniform background charg
opposite sign. The density of the background charge is p
portional toV. The potential acting on each line is the su
of the potentials of the background charge, of the direct lo
rithmic Coulomb interline interaction, and the interactio
with the wall reflections.

The equation describing the dynamics of vortex lines
the form

ṙ j5~12b8!vs82b@ ẑ3vs8#, ~11!

where ṙ j is the velocity of thej th vortex line andvs8 the
superfluid velocity produced by all other vortices at the p
sition of the j th reference line, whileb and b8 are the re-
duced Hall-Vinen mutual friction parameters.13

To illustrate the dynamic simulation in vortex array fo
mation, we consider a standard experiment when a vo
array is formed in the superfluid state by increasing slow
the rotation velocity linearly from zero.1 In this process one
vortex line is formed after another periodically, every tim
when the CF velocity at the cylindrical wall exceeds a co
stant critical value. Figure 1 illustrates a typical final co
figuration for such a cluster which includes only one spec
of vortex lines. They are introduced at a fixed nucleat
center, once the CF velocity reaches the critical value.

To simplify matters we may here think of the nucleati
center in the form of a line source parallel to the rotati
axis, located close to the cylindrical wall of the containe1

From the nucleation center the newly created rectilinear v
tex line moves to the edge of the vortex cluster under
action of the background potential of uniform rotation alo
a spiral trajectory, which depends on the values of the mu
friction parametersb and b8. The line is incorporated into
the cluster by pushing via the repulsive interactions, wh
leads to plastic deformations in the existing array. The fi
structure of the array resembles in the central region a h
agonal lattice with a large number of dislocations. The lin
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in the periphery form circular rings which are separated b
wide transition region from the central crystal.

A second variation of the same calculation, but now fo
two-component vortex array, is shown in Fig. 2. Again t
final state is shown, after DQV lines have been accumula
one by one into an existing cluster of SQV lines. Desp
large plastic deformations in the cluster, the injected DQ
vortex lines form a compact drop. We observe neither a
riodic ~chemical! or irregular structure of single DQV line
inside the SQV array. Instead this simulation procedure gi
a disordered vortex agglomerate with hexagonal coord
tion, which is consistent with the experimental situation
3He-A ~compare, e.g., with Fig. 14!.

To explain these results let us first consider the energy
mixing in different periodic vortex structures, with two type
of vortices in the unit cell. Figure 3 shows the differen
between the free energies~per vortex line! of some periodic
structures~with up to nine vortices per unit cell! and the sum
of the energies of two separate perfect hexagonal crys
formed from SQV and DQV lines. The values in Fig. 3 ha
been obtained using the planar summation method from R
14. We see that for all these structures the energy of mix
is positive—the lowest energy corresponds to two segreg
hexagonal lattices. This fact explains the tendency to form
compact pocket of DQV lines inserted into the SQV arra

The second feature of the simulation is that the equa
of motion @Eq. ~11!# does not include a thermal annealin
process. This, in fact, seems to correspond to the situatio
superfluid 3He: Thermal fluctuations are weak, because
the very low temperatures compared to the high-energy
riers, associated with variations in the superfluid veloc
field, and thus the optimal structure of the global free ene
minimum might not be achieved.

2. Equilibrium arrays

The above simulations correspond to experiments
which the container with superfluid3He-A is slowly accel

FIG. 1. Computer simulation of vortex array formation. He
N15127 rectilinear SQV lines have been accumulated one by
to form a cluster, by increasingV slowly in the superfluid state
The equation of motion~11! with b850 has been used. The nucle
ation center, from where the lines are injected, is located at
cylinder wall atx5R ~not shown! and y50. The final configura-
tion of the array in the cylindrical container is shown. The dash
circle marks the edge of the cluster atr 5Rv . In the center the lines
form a 2D hexagonal crystal with a large number of dislocatio
whereas towards the perimeter the configuration deforms to circ
concentric rings.
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erated to rotation at constant temperature belowTc . Cooling
the container throughTc in rotation at constantV is expected

FIG. 2. Simulation calculation of an array with 100 SQV and
DQV lines. The DQV lines have been accumulated one by on
an existing equilibrium array of SQV lines, similar to the expe
ment in Fig. 14. The nucleation center, from where the DQV lin
are injected, is located on the cylindrical wall (x5R,y50) and is
marked with a cross in the inset where the final configuration of
array at 0.49 rad/s is shown. With this number of vortices the a
would correspond to equilibrium circulation at 0.34 rad/s. The t
curves in the main panel represent the radial locations of the S
and DQV lines in the array:Na(r )5( j (xa, j

2 1ya, j
2 ). They illustrate

how the locations of the vortex lines concentrate with increas
radius more and more on concentric rings, although the nea
neighbor coordination is still triangular, as seen in the inset. T
thick curves correspond to deceleration records (V: 0.49 rad/s
→0), similar to those measured in the experiment~Fig. 14!, and
give the average radial distributionsN1(r 2) andN2(r 2).

FIG. 3. Energy of mixingdE of different periodic 2D vortex
line lattices, formed from SQV and DQV lines. The zero lev
corresponds to the energy of two separated hexagonal SQV
DQV lattices. The unit cell includesN1 SQV andN2 DQV lines.
The horizontal axis gives the fractionp5N2 /Nc , whereNc5N1

1N2. The energy of mixing dE is expressed in units o
rsk0

2/(2pNc). The lattices withNc52 andNc54 have a square
unit cell, while all other lattices are obtained by inserting the ad
tional vortex lines into a hexagonal cell.
to produce a different situation, the global free-energy mi
mum. To find this state, we now compare the free energie
different vortex array configurations. First we note that f
evaluating integrals such as those in Eq.~10! it is useful to
introduce a vortex-core cutoff at short distances such
close to the core of thej th vortex we replace

r2r j

ur2r j u2
→ r 2r j

j j
2

, ~12!

where ur2r j u,j j . Using Eq.~10! and performing an inte-
gration by parts, while neglecting all terms of ord
(ja /r 0a)2, sinceja!r 0a is assumed, we can rewrite Eq.~1!
in the form

Ẽ~vs!5(
j

Frsk j
2

4p S lnUr j
22R2

Rj j
U1 1

4D
1(

j Þ l

rsk jk l

4p
lnS ur l2r j8ur j

ur l2r j uR
D G1(

j

rsVk j

2
~r j

22R2!.

~13!

Next it becomes useful to introduce a vortex lattice e
ergy which provides a more sensitive measure of the c
figuration dependent energy differences. Let us construct
same free energy as in Eq.~1! but with the superfluid veloc-
ity written in the continuum approximation withvs5vs0,
wherevs0 is defined in Eq.~5!. The free energy in the con
tinuum approximation is then@cf. Eq. ~6!#

Ẽ$vs0%5
rs

2 E0

R

~vs0
2 22vs0vrot!d

2r

5E0S Rv

R D 4F3

4
2 lnS Rv

R D2S Rv

R D 22G . ~14!

The difference of the two energies is the Madelung ener

EM5Ẽ$vs%2Ẽ$vs0%. ~15!

The Madelung energy represents the vortex lattice contr
tion and includes the interactions with the image vortices
one neglects the differencevs2vs0 in the vortex-free region,

EM5
rs

2 E0

Rv
~vs2vs0!2d2r . ~16!

Within the logarithmic approximation it reduces to the la
term in Eq.~6!.

An important feature is the interaction with walls. B
moving the wall further from the vortex cluster its influenc
is reduced and the vortex cluster starts to approach ‘‘id
matter’’ with more universal properties, similar to poin
charges in an ion trap. Consider the outermost ring of vor
lines in an ideal coaxial cluster. Nonuniformities in the v
locity field around the cluster, which arise from the discre
nature of the vortex lines in the outer ring, decay
;exp(22pdr/r0a) with distance dr from the outer
boundary.15 Conversely, the interaction of the outermost vo
tex ring with its reflection is of order exp(24pd/r0a), where
d is the distance between the ring and the container wall.
reduce this effect, we take the container radiusR to be
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clearly larger thanRv in our simulation calculations. We the
obtain an estimate for the Madelung energy which does
depend on the interaction of the particular vortex array w
the container wall.

Let us consider an array consisting of only one type
vortex lines~e.g.,a). We expect that ideally the minimum
energy at largeNa is reached with a configuration with hex
agonal structure in the center of the cluster, circular ring
the outer boundary, and an intermediate irregular region
tween these two regimes. In Eq.~16!, vs0 is the average
superfluid velocity within the cluster, equal to the velocity
rotation @Eq. ~5!#, and thusvs2vs0 represents the deviatio
from the average in the rotating coordinate system. In
ideal periodic structure this velocity is also a periodic fun
tion of the coordinates and the integration in Eq.~16! is
reduced to one over a single unit cell:

EM /Na5
rs

2 Ecell
~vs2vs0!2d2r . ~17!

As a first approximation we may replace the hexagonal
tice cell with a cylindrical Wigner-Seitz cell of the sam
area. The area per vortex isba

2A3/25pr 0a
2 , which givesba

51.9046r 0a as the relation between the lattice constantsba
of a 2D hexagonal lattice andr 0a of a cylindrical WS lattice.
We refer to this approximation as the WS cylinder. The p
riodicity of the lattice requires that the component ofvs
2vs0, which is normal to the border of the unit cell, vanish
at the border. In the rotating coordinate frame the superfl
velocity has only an azimuthal component and we may w

uvs2vs0u5H kar /~2pja
2!, if r ,ja,

ka /~2pr !2Vr , if ja,r ,r 0a. ~18!

The Madelung energy can then be written as the energy
single vortex,

EM /Na5
rska

2

4p F ln
r 0a

ja
2aM G , ~19!

whereaM will be referred to as the Madelung constant. F
the WS-cylinder approximation in Eq.~18!, aM51/2. Com-
paring Eqs.~6! and ~19! we obtain the expression for th
energy densityea through the Madelung energy as in Eq.~7!.
The Madelung constantaM and the Madelung energy can b
calculated exactly using the method of planar summation
in Ref. 14. For an ideal hexagonal structure it yieldsaM
50.498 77. This value is very close to that of the W
cylinder approximation:aM51/2.

The Madelung energy in Eq.~15! for large, but finiteNa
can be expanded in powers of the small variableba /Rv :

EM5
rska

2

2p F1

2 S ln
r 0a

ja
2aM DNa12pbRv /baG . ~20!

Here the first term within the square brackets is the volu
contribution, and the term proportional tob is the surface
energy per unit vortex length:

sa5
rska

2b

2pba
. ~21!
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The number of vortex lines in the outermost ring
2pRv /ba , where the intervortex distanceba is roughly
equal to the lattice constant of the ideal hexagonal struct
ba'1.90r 0a . One can check that the factorb is independent
of the type of vortex as long as the interaction of the vor
lines with the cylinder wall can be neglected.

To determine the surface energy factorb, we calculate
EM numerically for different values ofNa . This requires
minimization of the free energy in Eq.~13! for different val-
ues of Na . Here we use the simulated annealing meth
from Ref. 15 where it was applied to calculate the energy
a large 3D ion cluster in an ion trap. First the vortex lin
with a fictitious mass are heated to some ‘‘temperatur
which is modeled by a random force. The cooling is mode
by inserting a small viscous term in a ‘‘Newtonian equati
of motion.’’ The heating-cooling cycles are repeated, to
low the array to converge, as a function of time, towar
some minimum-energy configuration with a fixed number
vortex lines. Equation~13! is then used to calculate the fre
energy of the final converged optimum configuration.
Madelung energy is obtained from Eq.~15!. Note that plastic
deformations play an important role in making relaxati
possible towards the energy minimum. The~logarithmic! 2D
Coulomb interaction can be regarded as a soft-core poten
in contrast to a hard-sphere interaction of, e.g., the Lenn
Jones type. This simplifies the relaxation of the vortex ar
towards an optimal structure. Moreover, in contrast to
Coulomb systems, where many crystal structures~bcc, fcc,
hcp! have nearly the same energy, the energy of a 2D h
agonal crystal is lower than the energy of most other str
tures.

Figure 4 shows the Madelung energyEM /N1 per vortex
as a function ofr 1 /Rv51/AN1, for arrays consisting of SQV
lines. We start the simulation from an ideal hexagonal latt
within a circle r ,Rv and after many (;102) heating-

FIG. 4. Madelung energyEM for an equilibrium cluster of SQV
lines, plotted as a function ofr 1 /Rv51/AN1 ~whereN15 55, 85,
151, 199, and 253!. The calculations represent the minimum val
of EM /N1 ~in units of rsk0

2/2p) after a large number of simulate
annealing cycles. The container radius is set atR540r 1 while the
core radius is fixed toj1 /r 150.218. The latter corresponds to SQ
lines with j1532 mm at V50.5 rad/s. The dashed line represen
the linear dependence of Eq.~20! and the fitted slope gives forb
the value:b50.010. The extrapolationEM /N150.512 to an infi-
nite vortex array equals that which one obtains from Eq.~19! for an
ideal hexagonal lattice.
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cooling cycles we arrive at the structure which correspo
to a stable minimum of Eq.~13!. By repeating this procedur
for different values ofRv ~or N1), we obtainb in Eq. ~20!
from the fitted slope in Fig. 4:b50.010. The calculated
optimal structure of these vortex clusters~Fig. 5! approaches
that of an ideal hexagonal lattice in the center, but then
torts to a quasicircular structure towards the outer bound
with a transition region between these two extremes.

Similar simulations for the equilibrium state of a clust
with two coexisting vortex species are more delicate. Fi
we have already noted that the energy of a mixture of S
and DQV lines is higher than that of two segregated
mains. Second, it follows from Eq.~21! that the surface en
ergy of a DQV cluster is 2A2 times larger than that of a
SQV cluster with the same value ofRv , i.e., s2 /s152A2
becausek252k1 andr 25A2 r 1. Hence, the only configura
tions which were found to converge towards a sta
minimum-energy state are coaxial clusters with the DQ
lines in the center, surrounded by an outer annulus of S
lines. In Fig. 6 the Madelung energyEM /N per circulation
quantum of such clusters has been plotted vsr 1 /Rv
51/AN, whereN5N112N2 is the total number of circula
tion quanta. We take hereN152N2 and thus the interface
separating the two types of vortex lines lies atr'Rv /A2.
The optimal structure~Fig. 7! turns out to consist of a nearl
ideal hexagonal lattice of DQV lines, which extends all t
way from the center to the inner interface. At the inner
terface the mismatch in periodicity between the two vor
species,b25A2b1, creates an abrupt break, but the sma
SQV lines very effectively compensate for the faults on
boundary of the central hexagonal DQV crystal. Also t
SQV lines fulfill the boundary condition and on approachi
the outer boundary of the cluster a perfect circular ring str
ture is established.

Simulation attempts on the inverse initial state, name
on segregated coaxial domains but with the SQV lines in
center, were not successful. Such calculations are slow
convergence since they start to drift towards the ideal st

FIG. 5. Calculated minimum-energy structure of a SQV clus
with N15253 lines. This is one of the examples in Fig. 4. T
dashed circle marks the edge of the cluster atr 5Rv . The container
wall is further out atR52.5Rv . This is thus a metastable state wi
less than the equilibrium number of vortex lines, but with the cl
ter itself at equilibrium density. All calculated clusters in Fig. 4 a
of this type, to reduce the influence of the cylinder wall on t
simulation calculations. Compared to Fig. 1, this cluster displ
improved long-range order.
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ture where the SQV lines are in the outer periphery. T
same applies to asymmetric starting configurations, such
the one where the cluster is divided along its diameter i
equal halves with only SQV and DQV lines in each. Th
arrangement does not minimize the outer surface energ
allow for the presence of a symmetric hexagonal crysta
the center of the array.

We can use the results in Fig. 6 to estimate the surf
energy of the inner interfaces12. The dashed line shows
fit to the calculations: EM(DQV1SQV)/N50.7294

r

-

s

FIG. 6. Calculated Madelung energy per circulation quantu
EM /N, for segregated coaxial minimum-energy clusters, compo
of SQV and DQV lines, plotted as a function of the inverse of t
normalized cluster radius:r 1 /Rv51/AN. In the minimum energy
configuration the DQV lines are in the center. Here the total cir
lation of the DQV lines has been taken to be equal to that of
SQV lines ~i.e., N152N25N/2). EM is expressed in units o
rsk0

2/2p and is calculated for five cluster radiiN2555, 85, 121,
151, and 199. The parameters arej1 /r 150.218, j2 /r 150.236,
which correspond toj1532 mm andj2549 mm atV50.5 rad/s.
The container radius is set toR540 r 155.8 mm. The arrow indi-
cates the sum of the Madelung energies in Eq.~20! for infinite SQV
and DQV lattices, (EM11EM2)/N in the limit N→`, when the
surface energy can be neglected. The solid line has the same
as the line in Fig. 4 and represents the surface energy of the o
boundary of a cluster with SQV lines. The dashed line is a linea
through the data points.

FIG. 7. Calculated minimum-energy structure of a cluster w
N25199 andN152N2 lines. This is one of the examples from Fig
6. The dashed circle denotes the edge of the cluster atr 5Rv while
the container wall is atR51.4Rv .
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10.0462r 1 /Rv ~in units of rsk
2/2p). The same fit to the

SQV clusters in Fig. 4 givesEM(SQV)/N50.5122
10.0348r 1 /Rv . Since the outer shell in both cases consi
of SQV lines only, we can associate the difference in slo
with the surface energy of the inner interface between
SQV and DQV domains. This gives dE12/N
50.012r 1 /Rv . Taking into account the length 2pR2

'2pRv /A2 of the interface, we obtains12/s1'0.48. Re-
membering thats2 /s152.83, we find thats2.s11s1,2.
Thus the contact angle between the SQV domain and
vortex-free CF annulus has to be zero: the SQV dom
‘‘wets’’ completely the vortex-free region. The most prefe
able configuration is therefore one where the DQV domai
completely surrounded by SQV lines.

Interestingly the reduced surface energy with SQV lin
makes the coexistence of DQV and SQV lines possible e
in a region of the SQV-DQV phase diagram where the glo
energy minimum corresponds to that of DQV lines only. T
energy of a cluster consisting of DQV lines only is given
Eq. ~20!, i.e.,

EM
(2)5

rsk2
2Rv

2

4pr 2
2 S ln

r 2

j2
2aM D12pRvs2 ,

while the energy of a cluster with a central DQV doma
surrounded by SQV lines is

EM
(21)5

rsk2
2R2

2

4pr 2
2 S ln

r 2

j2
2aM D1

rsk1
2~Rv

22R2
2!

4pr 1
2 S ln

r 1

j1
2aM D

12pRvs112pR2s12.

EM
(21) as a function ofR2 has a minimum atR250 for V

,V* , when a SQV cluster is more favorable. However, d
to a finites12, there is still a minimum atR250 even when
V.V* , i.e., when a DQV cluster is more favorable. In th
second case another minimum appears atR25Rv which cor-
responds to a DQV cluster surrounded by a thin surface la
of SQV lines. Indeed, the energyEM

(21) is a decreasing func
tion of R2 in the regionR2;Rv . For R25Rv it is smaller
than EM

(2) becauses2.s11s12. The differencedE5EM
(21)

2EM
(2) for V.V* is shown in Fig. 8 as a function o

FIG. 8. Free-energy differencedE between a DQV cluster with
radiusR2 and one which has an outer surface layer of SQV lines
the regionR2,r ,Rv , whenV.V* . Within the idealized model
of Eq. ~20!, there exists a steplike energy reduction by 2pRv(s2

2s12s12) ~dotted line!, when a thin layer of SQV lines is place
on the outer surface of a DQV cluster. Decreasing the radiusR2 of
the DQV domain further results in an increase in the free ene
~dashed curve! until it reaches a maximum followed by anoth
minimum at R250. The solid curve indicates schematically th
dependence with a SQV surface layer of finite width.
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R2 /Rv . The two local minima atR250 andR2'Rv have
the same energy when

V†5V* F11
8pbr 1

2

Rvb1

s12

s1
G . ~22!

HereV* is determined by Eq.~8! where, however,e should
be replaced with the more accurate expressione2aM of an
ideal vortex lattice.V† is only slightly higher thanV* be-
cause of the large value ofRv /r 1.

Equation~22! states the condition for the global equilib
rium between SQV and DQV lines. However, because of
minimum atR'Rv , the model allows for the coexistence o
the two vortex species: A ‘‘monolayer’’ in the form of a
outer circle of SQV lines could surround a DQV cluste
whenV.V* . Evidently, our idealized model only applies
the vortex layer is at least a few intervortex distances wi
With this warning we note that the qualitative behavior
dE is shown in Fig. 8 by the solid line, when an outer boun
ary layer of SQV lines is present.

Summarizing our analysis we conclude that t
minimum-energy configuration for coexisting SQV an
DQV lines in a rotating cylinder can only be established
considering discrete vortex arrays. The optimal configurat
~1! consists of segregated domains,~2! has cylindrical sym-
metry, ~3! and the SQV lines form the outer boundary of t
cluster.

IV. EXPERIMENTAL METHOD

The structure of the vortex cluster in the rotating co
tainer is probed with cw NMR. It allows one to determin
the average radial composition, i.e.,N1(r 2) andN2(r 2). The
NMR method is based on a measurement of the absorp
spectrum to which SQV and DQV lines each contribute
characteristic satellite peak. These satellites have freque
shifts which are different from each other and from the bu
liquid NMR line.16 Both the peak height and the integrate
intensity of the satellites are proportional to the total num
Na of vortex lines of the species~a! and can be calibrated to
give the absolute value ofNa .

To measure the composition of a vortex cluster we mo
tor the peak height of a satellite as a function of the rotat
velocity V during slow deceleration, when the cluster e
pands and the outermost vortex lines annihilate one by on
the cylinder wall.17 The change in peak height as a functio
of V gives the number of the annihilating vortex lines as
function of r 2. We can thus reconstruct the cumulative nu
ber of both types of vorticesNa(r 2), which gives the number
of vortex lines of type~a! inside a radiusr. Indeed, for re-
constructing the radial distributions only one of the pe
height dependencesNa(r 2) needs to be measured. The r
quirement of solid-body rotation of the superfluid compone
within the vortex cluster gives the relation:N1(r )12N2(r )
52pr 2V/k0.

The measurements have been performed with two cy
drical containers, one fabricated from epoxy and the ot
from fused quartz.18 Both are right circular cylinders 7 mm
long andR52.5 mm in radius. They are closed off, exce
for an orifice of 0.5 mm in diameter, located in the center
the flat bottom plate. The orifice connects to a long tubu
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channel which provides via its liquid3He column the ther-
mal contact to the refrigerator. The3He-A temperature in the
container is determined from the calibrated temperatu
dependent frequency shift of the bulk liquid NMR absorpti
peak.

Two controlled ways exist for preparing a vortex clust
~1! The sequential addition of vortex lines one by one to
cluster by acceleratingV slowly ~in the presence of a con
stant critical velocity! and~2! by cooling in rotation through
Tc . One might expect in the latter case that a sufficien
slow cool down throughTc , one which approaches the adi
batic limit, will lead to an equilibrium state, where the num
ber and type of vortex lines as well as the configuration
the cluster adjust such that the total energy becomes m
mized. This has been experimentally checked with respec
the type of lines2 and the number of lines.17

In 3He-A the transition between the SQV and DQV lin
occurs in the presence of an applied magnetic field7 as a
function of V2. Experimentally we find that there exists
region of coexistence around this transition; i.e., the tran
tion has a width as a function ofV within which both species
of vortex lines are present simultaneously, but where th
relative amounts depend onV. Ideally the transition should
be sharp and therefore our experimental situation cannot
resent the homogeneous adiabatic limit. Nevertheless, in
coexistence regime the energy difference between the
vortex species is small, and, in principle, it can be sma
than the energies associated with the vortex cluster confi
ration. Therefore, in addition to trying to identify what typ
of inhomogeneity controls the width of the transition, w
may investigate the vortex-array configurations in the co
istence regime and ask whether these energy contribut
are minimized in the transition.

The sequentially formed coexistence clusters are more
vious. Only one type of cluster is possible: Due to their mu
higher critical velocity, SQV lines can only be formed b
cooling throughTc in rotation. Thus by cooling slowly
throughTc at low V an equilibrium cluster of SQV lines is
formed, to which DQV lines can be added sequentially
increasingV slowly at constant temperature belowTc .

The first observation from our measurements was that
radial distributions turned out to be different in the equili
rium and sequentially constructed clusters. This means
in superfluid 3He a common cluster configuration is not r
alized, but metastable states are long lived and the struc
of a vortex cluster depends on how it has been prepared

V. MEASUREMENTS

A. Coexistence regimes of SQV and DQV

1. Dependence on rotation while cooling through Tc

When the rotating sample is cooled in the NMR fie
throughTc , an equilibrium vortex state with only SQV line
is formed at low rotation,V<0.62. Above this velocity also
DQV lines are created. Their relative number increases w
V until above 3 rad/s no more SQV lines are observed. T
number of DQV lines is shown in the coexistence regime
a function ofV in Fig. 9, where each data point (s) repre-
-
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sentsI v /I tot , the integrated NMR absorptionI v of the DQV
satellite normalized to the total absorptionI tot in the NMR
spectrum.

The normalized absorptionI v(V)/I tot can be translated to
vortex line numbersN2(V) by comparing to an equilibrium
state with only DQV lines. The equilibrium number of vo
tex lines~of type a only! is given by

Na(eq)~V!5p~R2da(eq)!
2

2V

ka
}

I v~V!

I tot
, ~23!

where the widthda(eq) of the equilibrium CF annulus is de
fined in Eq.~9!. The calibration measurement,N2(eq)(V), is
plotted (d) in Fig. 9. In practice, the equilibrium number o
vortex lines is equal to that at the annihilation threshold.17 In
Fig. 9 the data forN2(eq)(V) were measured by first slowly
increasingV from zero to some high velocityV.3.5 rad/s
at T50.81Tc and by then decelerating sequentially to low
V values and recording there at constantV the respective
value of I v(V)/I tot . The difference between the two curve
in Fig. 9 gives the number of SQV lines in the metasta
coexistence regime:N1(V)52@N2(eq)(V)2N2(V)#.

The critical rotation velocityV* for the transition from
SQV to DQV lines lies thus according to Fig. 9 within th

FIG. 9. Coexistence of SQV and DQV lines in the high-fie
@dipole-unlocked~Ref. 7!# regime as a function of rotation velocit
V. (s) Normalized DQV satellite intensityI v /I tot plotted as a
function of the rotation velocity at which the sample was coo
through Tc . On the right vertical axis the intensity has been e
pressed in terms of line numbers,N2(V), by means of the calibra-
tion, N2(eq) . At low V only SQV lines are formed andN2(V
,0.6 rad/s! 5 0. Above 0.6 rad/s the coexistence regime sta
where the fraction of the total circulation in DQV lines increas
with V, until well above 3 rad/s no more SQV lines are formed.
a guide for the eye, the solid curve representsI v /I tot50.033(V
20.6)10.0084(V20.6)3. The cooldown rate atTc has been kept
at udT/dtuTc

&5 mK/min, except for the data point marked with a
open square (h), for which the cooling rate was (dT/dt)Tc

5218 mK/min. (d) Calibration measurement ofI v /I tot with the
equilibrium number of DQV lines,N2(eq) . The fitted result gives
I v(V)/I tot52.74•1024 N2(eq)(V)'0.0806 V (120.1/AV) (V
in rad/s!. The inset shows the radius of the central DQV cluster
relative units in the coexistence regime, together with a guide
the eye: R2 /(R2d1(eq))50.618 (V20.6)0.41. Other conditions:
P529.3 bar,H59.91 mT, the satellite intensities have been me
sured atT50.81Tc .
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interval 0.6–3 rad/s. An estimate forV* can be worked out
from Eq. ~8! using the normalized satellite intensityI v /I tot .
It measures the effective vortex-core area compared to
of the WS cell7 or

I v

I tot
'S ja

r 0a
D 2

5
2pja

2

ka
V. ~24!

For the sake of comparison we neglect the temperature
pendence of the core radii7 and use the best values for th
satellite intensities, which come from measurements
0.50Tc ~11.7 mT, and 33.9 bars!: In the equilibrium state the
coefficient in front ofV in Eq. ~24! was found to be 0.094
for SQV and 0.114 for DQV lines. These values give for t
soft-core radiij1'32 mm andj2'49 mm. From Eq.~8!
we now getV* '2.8 rad/s, in qualitative agreement with th
experiment. The estimate forV* in Eq. ~8! is based on the
differences in quantization number, core size, and the cr
approximation for vortex energy in Eq.~7!. A more sophis-
ticated numerical calculation in Ref. 9 placesV* in the in-
terval 0.54–1.4 rad/s.

2. Dependence on magnetic field while cooling through Tc

In addition to V, the second important variable of th
vortex phase diagram is the applied magnetic fieldH ~Ref.
19!: When it exceeds the equivalent of the spin-orbit co
pling, as is the case in our NMR measurements, the SQV
DQV structures display well-separated vortex cores, w
r 0a@ja .7 At lower fields the spin-orbit interaction dom
nates and these vortex structures are not stable. Instead
vorticity appears in the form of extended periodic vort
textures with no core or a much expanded core, such

FIG. 10. Coexistence of SQV and DQV lines as a function
magnetic fieldH below 0.6 rad/s: Normalized DQV satellite inten
sity I v /I tot plotted vs the fieldH, which was applied during cooling
throughTc at 0.5 rad/s. On the right vertical axis the NMR abso
tion intensity has been converted to DQV vortex numbers,N2(H),
using the calibration in Fig. 9. The horizontal dashed line repres
the equilibrium numberN2(eq) of DQV lines. The shaded region
marks the width of the coexistence regime around the critical fi
Hc'0.6 mT. In this measurement the field was increased to
NMR value 9.91 mT in the superfluid state belowTc , while the
sample was cooling to 0.81Tc , where the intensityI v /I tot was mea-
sured. Other conditions were the same as in Fig. 9. In the trans
throughTc the equilibrium value of total circulation is created an
thus at high fieldH.Hc , where N2→0 in accordance with the
results in Fig. 9, the deficit fromN2(eq) represents the SQV lines.
at
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r 0a;ja . The dominant low-field vortex texture has a squa
lattice and a unit cell with four quanta of circulation.2,9 These
vortex textures are separated from the high-field structu
by a transition of first order.

The transition between the low- and high-field regimes
a function ofH is illustrated by the measurements in Fig. 1
Our NMR is performed at a fixed frequency in the high-fie
limit. Therefore the measurements in Fig. 10 have to foll
a particular routine. First, the container is cooled throughTc
at 0.5 rad/s, with the fieldH adjusted to the value given o
the horizontal axis. Next, at a temperature around~0.8–0.9!
Tc the field is increased to the NMR value of 9.91 m
During the field sweep the low-field vortex texture unde
goes a topological transition to the high-field DQV structu
with well-separated vortex cores. The SQV has differe
topology7 and any vortices of this kind will remain singl
quantized during the field sweep. After the field sweep,
container is cooled to lower temperatures, to improve
resolution in the NMR measurement, and the DQV satel
intensity is measured.

As shown in Fig. 10, we find a critical fieldHc'0.6 mT.
Above Hc the SQV lines dominate, as required whenV
<0.6 rad/s. BelowHc only DQV lines are found, which
represent the transformed low-field vortex textures after
field sweep. Centered aroundHc there is a coexistence re
gime with a width of 0.5 mT, where both types of vorte
lines are present. Within the coexistence regime, the rela
abundance of SQV lines increases continuously with incre
ing H, similar to the situation in Fig. 9 as a function ofV.

The same behavior is verified in Fig. 11 at a higher ro
tion velocity of 1 rad/s. On comparing Figs. 10 and 11 it

f

-

ts

,
e

n

FIG. 11. Coexistence of SQV and DQV lines as a function
magnetic field above 0.6 rad/s: The normalized intensitiesI v /I tot of
the DQV satellite (s, left vertical axis! and I s /I tot of the SQV
satellite (d, right vertical axis! have been plotted as a function o
the magnetic fieldH, which was applied during cooling throughTc

at 1 rad/s. The horizontal dashed line on the left represents
equilibrium value expected for DQV lines, after a superfluid tra
sition at low fields (H,Hc) and a subsequent increase of the fie
to 9.91 mT. On the right (H.Hc), the dashed lines give the mea
values for the SQV and DQV lines:N1'440 andN2'48. The
shaded region marks the width of the transition regime around
critical field, Hc'1.2 mT. The coexistence regime includes bo
the shaded and the high field regions,H.Hc . The same conditions
apply as in Fig. 9, including the calibration for the DQV satelli
intensity. The calibration for the SQV satellite intensity
N1(eq)(V)}I s(V)/I tot'0.43 V (120.089/AV) (V in rad/s!.
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noted that bothHc and the width of the coexistence regim
increase withV.2 In the measurements of Fig. 11 both th
DQV and SQV satellite intensities were determined se
rately. On the low-field side only DQV lines are found. O
the high-field side both types of lines are formed, with a
times larger share of the circulation carried by the SQV lin
This is the same ratio as was already seen in Fig. 9 at 1 ra

In a magnetic field the superfluid transition splits intoTc1
andTc2. The former is the transition from the normal to th
A1 phase and the latter fromA1 to theA2 phase~which is the
regular 3He-A). The thermal width of theA1 region is nar-
row, approximately 0.6mK at 10 mT. We might wonder
what effect the intermediateA1 phase has on the DQV t
SQV ratio aboveHc in Figs. 9–11: Are more changes to b
expected at fields much larger than those shown in Figs
and 11? We find that at least a cool down in 60 mT field
1.4 rad/s gives the same result as at 10 mT.

3. Dependence on cooling rate at Tc

In Fig. 9 one data point deviates from the typical behav
~denoted with (h) at 1.6 rad/s!. The only distinction that can
be appended to its measurement is a larger cooling rate
ing the superfluid transition: The five data points measure
cooling ratesudT/dtuTc

51 –5 mK/min give for the relative

amount of DQV linesN2/N2(eq)'0.38 while the anomalous
point at a cooling rate of 18.5mK/min falls on the equilib-
rium curveN2(eq) , with no SQV lines detected at all.

Additional evidence is shown in Fig. 12 on how a fas
cooling rate atTc shifts vorticity from SQV to DQV lines.
Here a fused quartz container was used in which3He-A
could be supercooled to below 0.49Tc . At lower tempera-
tures the measuring resolution improves as the NMR

FIG. 12. Influence of cooling rate atTc on the relative number
of SQV and DQV lines. The left vertical axis gives the normaliz
DQV satellite intensityI v /I tot as a function of cooling rate during
the transition throughTc at 1.4 rad/s. The satellite intensities a
measured at~0.49–0.51! Tc , where the calibration for the DQV line
satellite isN2(eq)(V)}I v(V)/I tot'0.078 V (120.11/AV) (V in
rad/s!. In this expressionI v includes only the primary satellite pea
~the secondary peak, which is also visible at these low temperat
is not included in the absorption!. On the right vertical axis the
calibration has been used to list the fraction of the total circulat
in DQV lines,N2 /N2(eq) , while the rest, 12N2 /N2(eq) , is carried
by SQV lines.
-
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quency shifts grow larger.16 When the cooling rate in Fig. 12
at 1.4 rad/s reaches 5mK/min a change over takes plac
from SQV to DQV lines: at lower rates only one fourth o
the total circulation is in DQV lines~which is the same frac-
tion as in Fig. 9!, while above 6mK/min, only few SQV
lines are formed. Similar measurements at 0.6 rad/s w
cooling rates up to 16mK/min did not yet produce a DQV
satellite of measurable height.

In the measurements of Fig. 12 the quartz container w
thermally connected to the refrigerator via an orifice of 0
mm in diameter. Later measurements with another qu
cylinder with a small and long channel of 0.4 mm diame
displayed appreciably smaller fractions of SQV lines, even
the regimeV<0.6 rad/s whereN250 in Fig. 9. With an
increased thermal resistance at the entrance to the sa
container, the normal-to-superfluid transition becomes m
irreversible and the transition velocity cannot be control
externally. This suggests that a larger cooling rate and n
equilibrium conditions enhance the formation of DQV lin
at the expense of SQV lines.

B. Vortex cluster in coexistence regime

The radial composition of a cluster with both SQV an
DQV lines can be determined by recording the amplitudes
the satellites as a function ofV while the rotation is slowly
decelerated. In Fig. 13 the result is shown for an array wh
has been created by cooling throughTc at 1 rad/s. Here the
distributions of the two vortex species are segregated:
SQV lines annihilate first and the DQV lines follow late
This behavior corresponds to the coaxial array structure

es,

n

FIG. 13. Radial distributionsN1(r 2) and N2(r 2) after cooling
throughTc at 1 rad/s and 1.1 mT. The deceleration from 1 rad/s
zero is performed at 0.81Tc and 9.91 mT. Other conditions are th
same as in Fig. 14.N2(eq) shows for comparison the deceleration f
an array consisting of only DQV lines. It is prepared by cooli
throughTc at V.1.5 rad/s in zero field and by then sweeping t
field up to 9.91 mT at 0.81Tc . The final part of the deceleration
below 0.7 rad/s is shown here. As demonstrated in Ref. 17, du
a slow deceleration (dV/dt521.531023 rad/s2) the total circu-
lation at any value ofV corresponds roughly to that in the equilib
rium state. The inset illustrates schematically a transverse c
section through the rotating container with the coaxial array c
figuration: the SQV lines~small dots! are in the outer annulus an
the DQV lines~large dots! in the center.
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the inset of Fig. 13. It consists of a central region with 1
DQV lines, a peripheral annulus with 140 SQV lines, and
exterior vortex-free CF region of equilibrium width. Th
boundary between the DQV and SQV regions is relativ
sharp~10% of the radius of the array, or additionally rough
40 DQV and 50 SQV lines!.

The segregation into two coaxial domains, with the SQ
lines in the outer annulus, is observed whenever both vo
species are found to coexist after cooling throughTc . By
measuring the width of the CF annulus,17 we find that
the total number of lines adjusts itself so that the energy
Eq. ~6! is minimized. This is expected, since the total circ
lation corresponds to a dominant energy term. In compari
the structure of an individual vortex line or the spatial dist
bution of the two vortex species within the array, repres
much smaller energy contributions.

The coaxial configuration is stable against externally
plied perturbations since even sinusoidal modulation ofV
with an amplitudeDV;0.1 rad/s does not cause measura
changes. In fact, no means were found to change the
figuration, without removing vortex lines by deceleration
by adding new ones during acceleration.

C. Sequentially formed vortex cluster

The stability of vortex arrays in superfluid3He can also
be approached from the other extreme, by studying the
order in artificially constructed arrays of coexisting SQV a
DQV lines. These are prepared by making use of the m
stability of existing vorticity.

We use the following procedure: The sample is fi
cooled throughTc at V<0.6 rad/s andH.Hc , so that an
equilibrium vortex state with only SQV lines is formed. Th
desired number of DQV lines is added at constant temp
ture belowTc , by increasingV slowly while the critical
counterflow velocityvc5VcR is constant.1 The DQV lines
are then injected one at a time into the existing cluster, p
sumably from the same spot close to the cylindrical w
where the superflow instability takes place. For simplici
they can be imagined to emanate from a rectilinear sou
which is at the cylindrical wall and parallel to the rotatio
axis1!.

In Fig. 14 the radial decomposition of an array is sho
where 150 DQV lines were added to an existing equilibriu
cluster of 310 SQV lines. During deceleration, initially bo
types of vortices are seen to annihilate, but on moving clo
to the center the proportion of DQV lines is reduced and
SQV lines start to dominate. Such an annihilation rec
could correspond to the cluster configuration in the inse
Fig. 14, which in turn could result from the sequential pr
cess of adding DQV lines one by one. In such a perio
process each new DQV line arrives roughly to the sa
place at the edge of the cluster. It makes space for itsel
pushing the existing lines aside. In this way the DQV lin
end up residing in a segregated pocket at the edge of
cluster, if no mixing of lines occurs later.

D. Homogeneity of superfluid transition

In any real experiment the superfluid transition acqui
some degree of inhomogeneity. The main source for irrev
ibility at Tc is the nonlinear thermal resistance at the orifi
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of the container. During cooling the heat flow through t
orifice is composed of the cooling rate of the liquid and t
residual heat leak. The latter consists of the NMR absorp
and of thermal relaxation losses seeping out of the walls
the sample container. A thermal gradient is thus maintain
with the top end of the container being the warmest poin
the 3He column.

At a cooling rate of 1mK/min the heat flow from the
container is of order 0.5 nW and the thermal gradient ins
the container;0.5 mK/mm ~at Tc;2.4 mK!. The super-
fluid transition emerges as a transition front through the o
fice on the bottom of the cylinder. Initially it adopts hem
spherical shape.5 The width of the phase front is determine
by the local thermal gradient and thermal fluctuations.
velocity can be controlled externally by adjusting the cooli
rate. The heat flow is mainly carried by a therma
superfluid–normal-fluid countercurrent, which appears
low Tc , converges towards the orifice, and is oriented p
dominantly in the axial direction, transverse to the rotatio
flow.

This picture of the transition suggests a second reason
the segregated coaxial domain structure with SQV and D
lines. In equilibrium conditions at lowV the SQV is the
minimum-energy structure, but inhomogeneities in the tr
sition provide a bias for DQV lines, as seen in Fig. 12 a
function of heat flow. The perturbation by the thermal cou
terflow is concentrated around the orifice, from where vor
formation starts during the superfluid transition. Here DQ
lines are created first and SQV lines appear only later w
the transition front expands into the more homogeneous
ripheral region of the cylinder.

FIG. 14. Radial distributionsN1(r 2) and N2(r 2) in a sequen-
tially formed vortex cluster. The original array was an equilibriu
state of SQV lines, to which DQV lines were added later by
creasing rotation in the superfluid state. The SQV array was
pared at 29.3 bars pressure and 9.91 mT field, by cooling thro
Tc at 7mK/min and 0.6 rad/s. Cooling was continued until 0.81Tc ,
whereV was slowly increased to 1.4 rad/s, to create the DQV lin
The final step was a slow deceleration to zero, during which
radial distributionsN1(r 2) and N2(r 2) were recorded. BothV
sweeps were performed atudV/dtu5231023 rad/s2. The critical
CF velocity of vortex formation at 1.4 rad/s wasVc50.24 rad/s,
which corresponds to a linear velocity ofvc50.60 mm/s. The inset
illustrates schematically the array configuration, a plastically
formed agglomerate of vortex lines.
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This explanation assumes that the interface between
two coaxial domains becomes a similar phase boundar
that in Fig. 12, but now as a function of the radial coordin
r of the container, along which the cooling rate varies as
normal-to-superfluid phase front moves through the cylind
SQV lines are formed closer to equilibrium while perturb
conditions favor the formation of DQV lines.

VI. CONCLUSION

By comparing experiment to numerical simulation, w
conclude that belowTc in superfluid 3He vortex arrays are
formed by plastic deformation: vortex lines are frozen in t
array to the configuration in which the array was forme
High-energy barriers separate different array configurati
and thermally activated processes~or any other mechanisms!
are not able to anneal faults, to create a new structure
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lower energy and improved long-range order.
In arrays formed by cooling throughTc in rotation, a seg-

regated coaxial configuration is observed, with the SQV lin
located in the outer annulus. Our numerical analysis of
arrays with discrete rectilinear vortex lines confirms that t
is the equilibrium configuration. It is distinguished from a
other segregated domain structures by a gain in the o
surface energy which arises on the scale of the intervo
distance rather than the container dimensions.
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8H.K. Seppa¨lä, P.J. Hakonen, M. Krusius, T. Ohmi, M.M. Salo

maa, J.T. Simola, and G.E. Volovik, Phys. Rev. Lett.52, 1802
~1984!.
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