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We discuss the configurations in which singly and doubly quantized vortex lines coexist in a rotating
superfluid. General principles of energy minimization lead to the conclusion that in equilibrium the two vortex
species segregate within a cylindrical vortex cluster in two coaxial domains where the singly quantized lines
are in the outer annular region. This is confirmed with simulation calculations on discrete vortex lines. Ex-
perimentally the coexistence can be studied in rotating superfldA. With cw NMR techniques we find
the radial distribution of the two vortex species to depend on how the cluster is prefiarBg: cooling
through T, in rotation, coexistence in the minimum energy configuration is confirniedA disordered
agglomerate is formed if one starts with an equilibrium cluster of single quantum vortex lines and adds to it
sequentially double quantum lines, by increasing the rotation velocity in the superfluid state. This proves that
the energy barriers, which separate different cluster configurations, are too high for metastabilities to anneal.

I. INTRODUCTION domain of DQV lines.(2) The second technique is to add
DQV lines to an existing equilibrium state of SQV lines, by

Superfluid *He-A is the only known quantum system slowly increasing the rotation velocity in the superfluid state.
where topologically stable vortex lines with different quan-Also in this case segregated configurations are obtained, but
tization appear simultaneously. The doubly quantized vortedoW they do not have full axial rotation symmetry.

(DQV) is formed at low critical velocity and is usually ob-

tained when_ superflui(fHe—A is accelerated to rotational Il. ROTATING 3He-A

flow.> The singly quantized vortexSQV) may have lower

energy, depending on the magnitude of the magnetic field Rotating vortex states are driven and stabilized by super-
and rotation velocity, but because of its large critical veloc-fluid counterflow(CF), the difference in the velocities of the
ity, it is in practice only formed on cooling through the su- normal and superfluid fractiong=v,—vy. The equilibrium
perfluid transition in rotatiof. states are found by minimizing the free energy functidnal,

Normally one finds either double or single quantum vor-which controls the spatial distribution of the order parameter.
tex lines in a rotating container, depending on how the stat©n the macroscopic scale, vortex textures’ie-A are rec-
has been prepared. In the homogeneous rotating superfluitilinear structures, oriented parallel to the rotation axis,
transitions between different vortex textures are of first ordewhich extend from the top to the bottom of the rotating con-
and in principle sharp. However, topological stability forbids tainer. These vortex cells are confined by the Magnus force
a transition from one type of existing vortex lines to anotherto a regular array, a cluster of vortex lines. The cluster is
Thus SQV and DQV lines, once they have been formed, willcoaxial with the cylinder and isolated from the cylindrical
persist in the rotating container, as long as they are not rewall by an annular layer of vortex-free CF. Within the cluster
moved by deceleration and annihilation on the container walthe areal density of linear vortex cells has the solid-body-
or by warming up to the normal phase. By exploiting thisrotation valuen=20/«x. Herex= vk is the circulation of a
metastability, for instance, one can prepare rotating stategortex line with the quantum number and the circulation
where both types of vortex lines are simultaneously presentjuantumk,=h/(2mg)=0.0662 mmi/s.

A priori it is not clear what configuration a rotating state  In a vortex cluster of infinite diameter a transverse cross
with two different vortex species would take: Do the arrayssection would display a two-dimension&D) lattice with
always have the same configuration or does this depend dniangular nearest-neighbor coordination, which arises from
the process by which the state has been created? Simil#lte intervortex repulsion. In a finite cluster the central region
guestions have been studied in the case of pointlike objectss also expected to be a triangular lattice, but towards the
namely, trapped ions in a two- or three-dimensional pointouter boundary it is deformed by the surrounding annular CF
charge systemHere we investigate the coexistence of SQV more and more to a configuration of concentric rings of vor-
and DQV lines both theoretically and experimentally. tex lines® Due to the competition between volume and sur-

Two methods have been found to prepare states with thiace interactions, long-range order is thus relatively poor in
coexisting two vortex speciesl) By cooling slowly in ro-  finite-size arrays at the usual experimentally accessible rota-
tation from the normal phase ttHe-A in the parameter re- tion velocities. Here the total number of lines is typically a
gime of the transition between the two vortex species. Axifew hundred, the radiuR of the container a few mm, the
ally symmetric configurations are then observed where theadius of the Wigner-SeitZWS) cell of the vortex lattice
SQV lines are in an outer annulus which surrounds a central,~100 xm, and the vortex core radiug~10 um.’
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The order-parameter texture within a unit cell of the pe- , Ki , K2
riodic vortex lattice has been derived from numerical mini- mi=5q ™2T5qg¢ (4)
mization of the free energy as a function of the rotation ve-
locity © and the applied fieldH.>®° These calculations The average velocity field ig= vy, where
reveal a complex phase diagramwith quantized vorticity
organized in sg%veral topologically and structurally different Viots if r<Rr,,
vortex textures. SQV vortex textures, which include a sin- — - .
gular vortex core, have only been described approximately, o= Q[zxr] Ri/rz, ifr>R,. ©
by solving for the order parameter distribution with analyti-
cal trial functions'! Of these different vortex textures we The free energy in Eq2) is now given by
shall here only be concerned with two, the continuous DQV
and the singular SQV. E [R,\¥3 R, R\2

In an array consisting of DQV lines the intervortex dis- E—O:(ﬁ) [Z_m(E) _<R_>
tance is larger by/2 than in one formed from SQV lines.
With coexisting SQV and DQV lines this large difference whereEy= mpQ°R*, S=xR? andS,=«,N,/(2Q) is the
opens the question whether a “chemical” structure mightarea occupied by SQV or DQV lines, such tha¢+S,
result where both species occupy fixed positions within each= 7R?. The normalized vortex-line energy densities in the
unit cell of a periodic vortex lattice. Or could it perhaps lead|ogarithmic approximation are
to a disordered state? A third possibility is an array consist-
ing of segregated domains of one species only. These are the r2
guestions which we shall discuss next.
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lll. ENERGY MINIMIZATION These are proportional to the first power of as distinct
from the single-vortex energy which is proportional ;té

) ) (wherea=1 or 2.
On the macroscopic level the energy difference between Tpage expressions are valid when>¢,.” The energy

SQV and DQV arrays depends on the difference in the quangensities of SQV and DQV arrays become equal when
tization numbers and intervortex distances, if the latter are

6]_:_
RZ

A. Continuum approximation

much larger that the core sizes. Here we neglect the smaller K1 Ky
Lo . . K1 K2

energy contributions associated with the structure of the vor- =

tex core. Consider the free energy of the rotating superfluid, ZWQegi 2wQe§§

p The corresponding rotation velocity is given by
= S
E{vs}=Eyin—LQ= > (V2= 2vgV,e0d?r, (1)

r<r 2
% _ZKO fl

. - ®
wherev,=Q [zXr], Q is the rotation velocity, and the e &
angular momentum of the fluid. We express the superflow

velocity vy in the continuum approximation and assume the roz?mz)t(iglr?ﬁrttr?:r Cvsgsrﬁ?nlf;?;:?hgoerne:he ir?oEr(]g)n\L/iji{[w ap-
logarithmic approximation for the vortex line energy. In the P ' gy

laboratory frame we then hakfe respect to variations of bot; andN,. This gives the equi-
y librium configuration, which one would expect to find after

1 ; an adiabatic transition at constant rotation from the normal to
E_Ps p — [curlvs]zln<—0) the superfluid state. Several conclusions follow.
2 2 § (1) If e;>¢€,, only SQV lines remain sinc8, shrinks to

p zero[Eq. (6)]. In the opposite cas&; shrinks to zero, and
—2Qvd — _Ql d2r. 2) only DQV lines remain. The DQV becomes more favorable,
™ when Q>Q0*. According to our measurements this occurs

. . above 0.6 rad/$Sec. VA J.

The seg:ond term in the integral rgpresents the energy of a (2) The radiusR, of the cluster has its equilibrium value
vo_rtex line. If d'ffefer?t vortex SPEcIes are present, the CI"CU%hen the width of the surrounding vortex-free CF annulus
lation x,= v,kq, the intervortex distance,,, and the core becomes

radius &, become functions of the spatial coordinatesre

a=1 or 2.
. . . . . d =RV€,/2, 9
Let us consider a configuration with, SQV lines ancN,, a(eq €a ©

DQV lines. The overall radiu®k, of the vortex cluster is where the outer boundary of the cluster consists of tgpe

determined by the total circulation: vortices.
(3) The energy in Eq(6) does not depend on the configu-
Nyikq+Nok,=27QR2. (3)  ration of the vortex cluster with giveN,; andN,. Conse-

quently, the continuum approximation in the logarithmic
In the stationary state the area of the unit cell is proportionalimit does not discriminate between different vortex cluster
to its circulation, configurations.
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B. Discrete vortex lines o8 e e T
/’ [ L] ~
1. Sequentially formed arrays JA : * L' \.\\
* L
The continuum approximation in E¢6) does not include ,’/° .« o . ® .. o * . *
the surface energies at the interfaces between the vortex clus- A e ‘\\
ter and the vortex-free region or between segregated domains A N
occupied by different vortex species. Nor does it account for A
interactions between individual vortex lines and the con- L .,'I
tainer wall. To identify configuration-dependent contribu- e L0, .° <. ..,
tions to the free energy, we need to look at vortex clusters \:. ¢ .' « t e, °. e )
composed of discrete vortex lines. We perform numerical Ne o e L% e
calculations on vortex arrays which consist Mf discrete R Te e . o
rectilinear vortex lines with coordinates, circulationsk; NI B

=vjkg, Wherev;=1,2, and core radié(j). The superfluid

velocity produced by the lines is FIG. 1. Computer simulation of vortex array formation. Here

N, =127 rectilinear SQV lines have been accumulated one by one
1 to form a cluster, by increasing slowly in the superfluid state.

(r—rj)_(r—rj’)

(10) The equation of motiof11) with b’=0 has been used. The nucle-
Ir=ry|> [r—r/[?

ation center, from where the lines are injected, is located at the
) . . _cylinder wall atx=R (not shown andy=0. The final configura-
The last term accounts for the image vortices with coordi+ion of the array in the cylindrical container is shown. The dashed

natesrj’=rjR2/r1~2, of which each one corresponds to one circle marks the edge of the clusterrat R, . In the center the lines

true vortex located at; . form a 2D hexagonal crystal with a large number of dislocations,
The interaction potential for vortex lines in the rotating whereas towards the perimeter the configuration deforms to circular

superfluid is equivalent to the Coulomb potential betweerfoncentric rings.

charggd Imes immersed Into a uniform background cha}rge 9 the periphery form circular rings which are separated by a

opposite sign. The density of the background charge is progjige transition region from the central crystal.

portional to{). The potential acting on each line is the sum A second variation of the same calculation, but now for a

of the potentials of the background charge, of the direct logagyo-component vortex array, is shown in Fig. 2. Again the

rithmic Coulomb interline interaction, and the interactionsfinal state is shown, after DQV lines have been accumulated

- K;

J

Ve=2X E —
s T 2w

with the wall reflections. one by one into an existing cluster of SQV lines. Despite
The equation describing the dynamics of vortex lines hasarge plastic deformations in the cluster, the injected DQV
the form vortex lines form a compact drop. We observe neither a pe-
_ riodic (chemical or irregular structure of single DQV lines
rj=(1-b")v,—b[zxV]], (11)  inside the SQV array. Instead this simulation procedure gives

. a disordered vortex agglomerate with hexagonal coordina-
wherer; is the velocity of thejth vortex line andvg the  tion, which is consistent with the experimental situation in
superfluid velocity produced by all other vortices at the po-*He-A (compare, e.g., with Fig. 14
sition of thejth reference line, whild and b’ are the re- To explain these results let us first consider the energy of
duced Hall-Vinen mutual friction parameters. mixing in different periodic vortex structures, with two types

To illustrate the dynamic simulation in vortex array for- of vortices in the unit cell. Figure 3 shows the difference
mation, we consider a standard experiment when a vorteRetween the free energiéser vortex ling of some periodic
array is formed in the superfluid state by increasing slowlystructuregwith up to nine vortices per unit cg¢land the sum
the rotation velocity linearly from zerbln this process one of the energies of two separate perfect hexagonal crystals
vortex line is formed after another periodically, every timeformed from SQV and DQV lines. The values in Fig. 3 have
when the CF velocity at the cylindrical wall exceeds a con-been obtained using the planar summation method from Ref.
stant critical value. Figure 1 illustrates a typical final con-14. We see that for all these structures the energy of mixing
figuration for such a cluster which includes only one speciess positive—the lowest energy corresponds to two segregated
of vortex lines. They are introduced at a fixed nucleationhexagonal lattices. This fact explains the tendency to form a
center, once the CF velocity reaches the critical value. compact pocket of DQV lines inserted into the SQV array.

To simplify matters we may here think of the nucleation = The second feature of the simulation is that the equation
center in the form of a line source parallel to the rotationof motion [Eq. (11)] does not include a thermal annealing
axis, located close to the cylindrical wall of the contaiher. process. This, in fact, seems to correspond to the situation in
From the nucleation center the newly created rectilinear vorsuperfluid *He: Thermal fluctuations are weak, because of
tex line moves to the edge of the vortex cluster under thehe very low temperatures compared to the high-energy bar-
action of the background potential of uniform rotation alongriers, associated with variations in the superfluid velocity
a spiral trajectory, which depends on the values of the mutudield, and thus the optimal structure of the global free energy
friction parameter$ andb’. The line is incorporated into minimum might not be achieved.
the cluster by pushing via the repulsive interactions, which
leads to plastic deformations in the existing array. The final
structure of the array resembles in the central region a hex- The above simulations correspond to experiments in
agonal lattice with a large number of dislocations. The linesyhich the container with superfluidHe-A is slowly accel

2. Equilibrium arrays
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to produce a different situation, the global free-energy mini-
100f mum. To find this state, we now compare the free energies of
| different vortex array configurations. First we note that for
sot N, ] evaluating integrals such as those in E) it is useful to
8 introduce a vortex-core cutoff at short distances such that
£ _CF ] close to the core of thgth vortex we replace
§ 60- P »
g r— rj r — rj (12)
— 2 y
5 a0} . Ir—r|? &
o N, . . .
g where|r—r;|<¢;. Using Eq.(10) and performing an inte-
Z 20t ] gration by parts, while neglecting all terms of order
(£41700)?, SINCEE,<T(, IS assumed, we can rewrite Ed)
in the form
0 : ; i : ; ; i
0 0.2 0.4 0.6 0.8 1
2og? _ por? [ 2R 1
E(vy=20 | 7| In Rz |13
FIG. 2. Simulation calculation of an array with 100 SQV and 50 . !
DQV !infes. The.I.Z)QV lines have been .accumlulz.ated one by one to PsK; K| |r|—r]-’|rj PsQKj 5 5
an existing equilibrium array of SQV lines, similar to the experi- +2 2 In |r —r-|R +E > (rj —R%).
ment in Fig. 14. The nucleation center, from where the DQV lines i#1 m 0 ]
are injected, is located on the cylindrical wal=€ R,y=0) and is (13

marked with a cross in the inset where the final configuration of the

array at 0.49 rad/s is shown. With this number of vortices the array Next it becomes useful to introduce a vortex lattice en-
would correspond to equilibrium circulation at 0.34 rad/s. The thinergy which provides a more sensitive measure of the con-
curves in the main panel represent the radial locations of the SQ¥iguration dependent energy differences. Let us construct the
and DQV lines in the arrayN,(r)=3;(x3;+v2,;). They illustrate  same free energy as in E@) but with the superfluid veloc-
how the locations of the vortex lines concentrate with increasingty written in the continuum approximation withi= vy,
radius more and more on concentric rings, although the nearesjyherevy, is defined in Eq(5). The free energy in the con-
neighbor coordination is still triangular, as seen in the inset. Thgjnyum approximation is thefcf. Eq. (6)]

thick curves correspond to deceleration recor@s (0.49 rad/s

—0), similar to those measured in the experiméfiyg. 14, and - ps(R 5 )

give the average radial distributiond (r2) andN,(r?). E{Vso}= Efo (Vg0 2VsoVroy) dr

Al

The difference of the two energies is the Madelung energy

erated to rotation at constant temperature belgwCooling —E & ¢
the container througi; in rotation at constarf is expected %R

(14)

SF

. Em=E{ve} ~E{Vso}. (15)

o.1r i The Madelung energy represents the vortex lattice contribu-

tion and includes the interactions with the image vortices. If

0.08} - . i .
one neglects the differensg— vy in the vortex-free region,

i Ps Rv 242
EM:_ (VS_VSO) d r. (16)
0.04- 2Jo
Within the logarithmic approximation it reduces to the last
i term in Eq.(6).
. . . . An important feature is the interaction with walls. By
1 1 3 1 moving the wall further from the vortex cluster its influence
4 2 4 is reduced and the vortex cluster starts to approach “ideal
p matter” with more universal properties, similar to point
FIG. 3. Energy of mixingdéE of different periodic 2D vortex qharg_es n gn lon trap: Consider the OUt.ermO.SF rln.g of vortex
line lattices, formed from SQV and DQV lines. The zero level lines in an ideal coaxial cluster. Nonuniformities in the ve-

corresponds to the energy of two separated hexagonal SQV ad@City field around the cluster, which arise from the discrete
DQV lattices. The unit cell includedl; SQV andN, DQV lines. ~ nature of the vortex lines in the outer ring, decay as
The horizontal axis gives the fractign=N,/N,, whereN,=N,;  ~€Xp(=2mdr/roy) with distance or from the outer
+N,. The energy of mixing SE is expressed in units of boundaryl.5 Conversely, the interaction of the outermost vor-
psral (27Ng). The lattices withN.=2 andN.=4 have a square tex ring with its reflection is of order exp(@md/ry,), where

unit cell, while all other lattices are obtained by inserting the addi-d is the distance between the ring and the container wall. To
tional vortex lines into a hexagonal cell. reduce this effect, we take the container radRigo be

(o]
O |=f———®e
Wwl=f—e
O
1 1

w o
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clearly larger thair, in our simulation calculations. We then 0518 T | T T
obtain an estimate for the Madelung energy which does not
depend on the interaction of the particular vortex array with = B Pt
the container wall. e I %

Let us consider an array consisting of only one type of K - A 1
vortex lines(e.g.,a). We expect that ideally the minimum o7
energy at largdN, is reached with a configuration with hex- 0515 1 & )

a ) . O
agonal structure in the center of the cluster, circular rings at B N
the outer boundary, and an intermediate irregular region be- el
tween these two regimes. In E{L6), vy, is the average L L i
superfluid velocity within the cluster, equal to the velocity of 05122 | .-~
rotation[Eqg. (5)], and thusvs— vy, represents the deviation 0512 | ' . L . L
from the average in the rotating coordinate system. In an 0 0.04 0.08 0.12
- o - o0 gt ry /R,
ideal periodic structure this velocity is also a periodic func-
tion of the coordinates and the integration in E#6) is FIG. 4. Madelung energ,, for an equilibrium cluster of SQV
reduced to one over a single unit cell: lines, plotted as a function af, /R,=1/\/N; (whereN,= 55, 85,
151, 199, and 253 The calculations represent the minimum value
Ey /Na:&f (Ve—Veg)?d?r. (17 Of Ew/Ny (in units ofpsk(z)/Zw_) after a large number of simulated
2 Jce annealing cycles. The container radius is seRa&t40r,; while the

. . . core radius is fixed tg, /r;=0.218. The latter corresponds to SQV
As a first approximation we may replace the hexagonal latfines with ¢, =32 wm atQ=0.5 rad/s. The dashed line represents
tice cell with a cylindrical Wigner-Seitz cell of the same ihe linear dependence of E(R0) and the fitted slope gives fo8
area. The area per vortextg\/3/2=mr2,, which givesb,  the value:3=0.010. The extrapolatiofy, /N;=0.512 to an infi-
=1.9046 ,, as the relation between the lattice constdn{s nite vortex array equals that which one obtains from @§) for an
of a 2D hexagonal lattice ang, of a cylindrical WS lattice. ideal hexagonal lattice.
We refer to this approximation as the WS cylinder. The pe-

riodicity of the lattice requires that the component\af  The number of vortex lines in the outermost ring is
— Vg, Which is normal to the border_of the unit cell, Va”iSheSZWRU/ba, where the intervortex distanck, is roughly
at the border. In the rotating coordinate frame the superfluiyqal to the lattice constant of the ideal hexagonal structure:
velocity has only an azimuthal component and we may wnteOam 1.90r,,. One can check that the factgris independent
2 : of the type of vortex as long as the interaction of the vortex
Kall[(2mE3), ifr<éa, lines with the cylinder wall can be neglected.
|Vs—Veol = Kk [(27r)—Qr, if £,<r<rg,. (18) To determine the surface energy facg®r we calculate
Ey numerically for different values oN,. This requires
The Madelung energy can then be written as the energy of Blinimization of the free energy in E¢L3) for different val-
single vortex, ues of N,. Here we use the simulated annealing method
from Ref. 15 where it was applied to calculate the energy of
a large 3D ion cluster in an ion trap. First the vortex lines
'“g__“lvl ' (19 with a fictitious mass are heated to some “temperature”
2 which is modeled by a random force. The cooling is modeled
whereay will be referred to as the Madelung constant. Forpy inserting a small viscous term in a “Newtonian equation
the WS-cylinder approximation in E418), ayy=1/2. Com-  of motion.” The heating-cooling cycles are repeated, to al-
paring Egs.(6) and (19) we obtain the expression for the |ow the array to converge, as a function of time, towards
energy density, through the Madelung energy as in E@). ~ some minimum-energy configuration with a fixed number of
The Madelung constaniy and the Madelung energy can be vortex lines. Equatiori13) is then used to calculate the free
calculated exactly using the method of planar summation asnergy of the final converged optimum configuration. Its
in Ref. 14. For an ideal hexagonal structure it yieldg Madelung energy is obtained from Ed5). Note that plastic
=0.49877. This value is very close to that of the WS-deformations play an important role in making relaxation

2
PsKa
EM /Na:H

loa

cylinder approximationay, = 1/2. possible towards the energy minimum. Tt@garithmig 2D
The Madelung energy in Eq15) for large, but finiteN,  Coulomb interaction can be regarded as a soft-core potential,
can be expanded in powers of the small variahjéRr, : in contrast to a hard-sphere interaction of, e.g., the Lennard-
5 Jones type. This simplifies the relaxation of the vortex array
_Pska| 1 Toa towards an optimal structure. Moreover, in contrast to 3D
MTom §<In§_a_a’\" Na+27BR, /bal. (200 ouiomb systems, where many crystal structuies, fec,

hcp have nearly the same energy, the energy of a 2D hex-

Here the first term within the square brackets is the V°|Um%1gonal crystal is lower than the energy of most other struc-
contribution, and the term proportional 18 is the surface ¢ es.

energy per unit vortex length: Figure 4 shows the Madelung enerBy, /N, per vortex
2 as a function of ; /R, = 1/\/N;, for arrays consisting of SQV
_Pska (21)  lines. We start the simulation from an ideal hexagonal lattice

5= .
* 2w, within a circle r<R, and after many {10%) heating-
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FIG. 5. Calculated minimum-energy structure of a SQV cluster rI/Rv
with N;=253 lines. This is one of the examples in Fig. 4. The
dashed circle marks the edge of the clustar-aR, . The container FIG. 6. Calculated Madelung energy per circulation quantum,

wall is further out aR=2.5R, . This is thus a metastable state with Ey /N, for segregated coaxial minimum-energy clusters, composed
less than the equilibrium number of vortex lines, but with the clus-of SQV and DQYV lines, plotted as a function of the inverse of the
ter itself at equilibrium density. All calculated clusters in Fig. 4 are normalized cluster radius; /R,=1/J/N. In the minimum energy
of this type, to reduce the influence of the cylinder wall on the configuration the DQV lines are in the center. Here the total circu-
simulation calculations. Compared to Fig. 1, this cluster displaydation of the DQV lines has been taken to be equal to that of the
improved long-range order. SQV lines (i.e., N;=2N,=N/2). E,, is expressed in units of
psk5/2m and is calculated for five cluster radi,=55, 85, 121,
cooling cycles we arrive at the structure which correspondgsi, and 199. The parameters afg/r;=0.218, &,/r;=0.236,
to a stable minimum of Eq13). By repeating this procedure which correspond t¢; =32 um and&,=49 um atQ=0.5 rad/s.
for different values ofR, (or N;), we obtaing in Eq. (200  The container radius is set =40 r,=5.8 mm. The arrow indi-
from the fitted slope in Fig. 48=0.010. The calculated cates the sum of the Madelung energies in @) for infinite SQV
optimal structure of these vortex clustéFsg. 5 approaches and DQV lattices, Eyi1+Ey)/N in the limit N—c, when the
that of an ideal hexagonal lattice in the center, but then dissurface energy can be neglected. The solid line has the same slope
torts to a quasicircular structure towards the outer boundany@s the line in Fig. 4 and represents the surface energy of the outer
with a transition region between these two extremes. bOUndary of a cluster with SQV lines. The dashed line is a linear fit
Similar simulations for the equilibrium state of a cluster through the data points.
with two coexisting vortex species are more delicate. First,
we have already noted that the energy of a mixture of SQWuUre where the SQV lines are in the outer periphery. The
and DQV lines is higher than that of two segregated doSame applies to asymmetric starting configurations, such as
mains. Second, it follows from Eq21) that the surface en- the one where the cluster is divided along its diameter into
ergy of a DQV cluster is 22 times larger than that of a €qual halves with only SQV and DQV lines in each. This
SQV cluster with the same value &, , i.e., o,/0,=2y2  arangement does not minimize the outer surface energy or
becausec,= 2k, andr,=+2r,. Hence, the only configura- allow for the presence of a symmetric hexagonal crystal in
tions which were found to converge towards a stabldN€ center of the array. ,
minimum-energy state are coaxial clusters with the DQy W€ can use the results in Fig. 6 to estimate the surface
lines in the center, surrounded by an outer annulus of SQ\PNergy of the inner interface,,. The dashed line shows a
lines. In Fig. 6 the Madelung enerdsy, /N per circulation it to  the calculations: Ey(DQV+SQV)/N=0.7294
guantum of such clusters has been plotted IR,

. - BTG
=1/yN, whereN=N;+2N, is the total number of circula- ,6628’(?(2%)‘5%‘?}00&2%%66\
. . “ O ~50A0%
tion quanta. We take hed;=2N, and thus the interface 66%%%%%%C%’o%og%%%%%%gggggb
. . . Le] o [ L X ) (o] O 5
separating the two types of vortex lines liesratR, /2. 450533500 00 006 eB05EICh,
. . . o] [ X J 00
The optimal structuréFig. 7) turns out to consist of a nearly ,6boooo§o§o°. sece .....'........ooooocéggi\?j
. . . . P [ X N J
ideal hexagonal lattice of DQV lines, which extends all the B e s s e 000008850000
; i ; ; PScCeeeeeeseeeeessee ol
way from the center to the inner interface. At the inner in- 250500 eee e 0000 eee e o]
. . s e oo e 00253
terface the mismatch in periodicity between the two vortex D00 e e e e 0 e 00 esessssoso
i P XXX of
speciesp,=/2b;, creates an abrupt break, but the smaller 00S e e a0 a0 seesesscssssy
- - X eeesssessee e oo
SQV lines very effectively compensate for the faults on the occoeeseeeeseeseicooy
A [e] [ ] [ ]
boundary of the central hexagonal DQV crystal. Also the 000 e e e e w0 8 8 000SSCL
. . .. . Q 0029
SQV lines fulfill the boundary condition and on approaching Q\QSgggg§§O‘Oo;oogoo:oé‘>g§ggg%%%9
. . [¢] ”
the outer boundary of the cluster a perfect circular ring struc- 0 Qgé%zozozo‘;é’é’ggoﬁ

ture is established.

Simulation attempts on the inverse initial state, namely, FIG. 7. Calculated minimum-energy structure of a cluster with
on segregated coaxial domains but with the SQV lines in they,=199 andN;= 2N, lines. This is one of the examples from Fig.
center, were not successful. Such calculations are slow ia. The dashed circle denotes the edge of the cluster&, while
convergence since they start to drift towards the ideal structhe container wall is aR=1.4R, .
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FIG. 8. Free-energy differencgE between a DQV cluster with

radiusR, and one which has an outer surface layer of SQV lines in

the regionR,<r<R,, whenQ>Q*. Within the idealized model
of Eqg. (20), there exists a steplike energy reduction byR (o>
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R,/R,. The two local minima aR,=0 andR,~R, have
the same energy when

8mpri oy,
R,b1 oy

. (22

QT=Q*[1+

Here(Q)* is determined by Eq8) where, howevere should
be replaced with the more accurate expressitfv of an
ideal vortex lattice Q" is only slightly higher thar)* be-
cause of the large value &, /r;.

Equation(22) states the condition for the global equilib-
rium between SQV and DQV lines. However, because of the

—o,— 0, (dotted ling, when a thin layer of SQV lines is placed Minimum atR~R,, the model allows for the coexistence of

on the outer surface of a DQV cluster. Decreasing the ragjusf

the two vortex species: A “monolayer” in the form of an

the DQV domain further results in an increase in the free energyputer circle of SQV lines could surround a DQV cluster,
(dashed curveuntil it reaches a maximum followed by another whenQ>Q*. Evidently, our idealized model only applies if
minimum atR,=0. The solid curve indicates schematically the the vortex layer is at least a few intervortex distances wide.

dependence with a SQV surface layer of finite width.

+0.0462r, /R, (in units of pgx?/21r). The same fit to the
SQV clusters in Fig. 4 givesEy(SQV/N=0.5122

With this warning we note that the qualitative behavior of
SE is shown in Fig. 8 by the solid line, when an outer bound-
ary layer of SQV lines is present.

Summarizing our analysis we conclude

that the

+0.0348r, /R, . Since the outer shell in both cases consistaminimum-energy configuration for coexisting SQV and
of SQV lines only, we can associate the difference in slope®QV lines in a rotating cylinder can only be established by
with the surface energy of the inner interface between theonsidering discrete vortex arrays. The optimal configuration

SQV and DQV domains. This gives 6E;,/N
=0.012r,/R,. Taking into account the length %R,
~2mR, /2 of the interface, we obtain;,/o;~0.48. Re-
membering thatr,/0,=2.83, we find thatr,>o;1+ 0.

Thus the contact angle between the SQV domain and the

(1) consists of segregated domai®) has cylindrical sym-
metry, (3) and the SQV lines form the outer boundary of the
cluster.

IV. EXPERIMENTAL METHOD

vortex-free CF annulus has to be zero: the SQV domain

“wets” completely the vortex-free region. The most prefer-

The structure of the vortex cluster in the rotating con-

able configuration is therefore one where the DQV domain igainer is probed with cw NMR. It allows one to determine

completely surrounded by SQV lines.

the average radial composition, i.Bl;(r?) andN,(r?). The

Interestingly the reduced surface energy with SQV linedNMR method is based on a measurement of the absorption
makes the coexistence of DQV and SQV lines possible eveapectrum to which SQV and DQV lines each contribute a
in a region of the SQV-DQV phase diagram where the globatharacteristic satellite peak. These satellites have frequency
energy minimum corresponds to that of DQV lines only. Theshifts which are different from each other and from the bulk
energy of a cluster consisting of DQV lines only is given by liquid NMR line.!® Both the peak height and the integrated

Eq. (20, i.e.,
2p2
psksR r
E(N2|)=ﬁ( n—z—aM +27TRUU'2,
o

&

intensity of the satellites are proportional to the total number
N, of vortex lines of the specigg) and can be calibrated to
give the absolute value df, .

To measure the composition of a vortex cluster we moni-
tor the peak height of a satellite as a function of the rotation

while the energy of a cluster with a central DQV domainvelocity ) during slow deceleration, when the cluster ex-

surrounded by SQV lines is

)
In——

&

+2’7TRU0'1+ 27TR20'12.

2p2
E(Zl)_pSK2R2 (
M=

peri(RI—R5) ( r )
477!’%

n——aM
47-rrf 1

am

Eflel) as a function ofR, has a minimum aR,=0 for Q

pands and the outermost vortex lines annihilate one by one at
the cylinder wallt’ The change in peak height as a function
of Q) gives the number of the annihilating vortex lines as a
function ofr2. We can thus reconstruct the cumulative num-
ber of both types of vortice ,(r2), which gives the number

of vortex lines of type(a) inside a radiug. Indeed, for re-
constructing the radial distributions only one of the peak
height dependenced,(r?) needs to be measured. The re-

<Q*, when a SQV cluster is more favorable. However, duequirement of solid-body rotation of the superfluid component

to a finiteo 1, there is still a minimum aR,=0 even when

within the vortex cluster gives the relatioN;(r)+2N,(r)

Q>0*, i.e., when a DQV cluster is more favorable. In this =2 712}/ .

second case another minimum appeam®at R, which cor-

The measurements have been performed with two cylin-

responds to a DQV cluster surrougggd by a thin surface layedrical containers, one fabricated from epoxy and the other
of SQV lines. Indeed, the enerds{y” is a decreasing func- from fused quart2® Both are right circular cylinders 7 mm

tion of R, in the regionR,~R,. For R,=R, it is smaller
than E(?) becauser,> o+ oy,. The differencesE=E{2?

long andR=2.5 mm in radius. They are closed off, except
for an orifice of 0.5 mm in diameter, located in the center of

—E@® for O>Q* is shown in Fig. 8 as a function of the flat bottom plate. The orifice connects to a long tubular



5872 U. PARTSet al. PRB 62

channel which provides via its liquidHe column the ther- o2f T T T T T T Ny
mal contact to the refrigerator. Thdle-A temperature in the o s

container is determined from the calibrated temperature- [ < & o 600
dependent frequency shift of the bulk liquid NMR absorption 0.15f R 109

peak.

1 . 2
Two controlled ways exist for preparing a vortex cluster: &ty

(1) The sequential addition of vortex lines one by one to the
cluster by acceleratin slowly (in the presence of a con-
stant critical velocity and(2) by cooling in rotation through
T.. One might expect in the latter case that a sufficiently
slow cool down througf ., one which approaches the adia-
batic limit, will lead to an equilibrium state, where the num- 0
ber and type of vortex lines as well as the configuration of 0 1 O (radfs) 2 3
the cluster adjust such that the total energy becomes mini-
mized. This has been experimentally checked with respect to FIG. 9. Coexistence of SQV and DQV lines in the high-field
the type of line% and the number of line¥. [dipole-unlockedRef. 7] regime as a function of rotation velocity
In *He-A the transition between the SQV and DQV lines ©. (O) Normalized DQV satellite intensity, /1o, plotted as a
occurs in the presence of an applied magnetic %elg a  function of the rotation velocity at which the sample was cooled
function of Q2 Experimentally we find that there exists a throughT.. On the right vertical axis the intensity has been ex-
region of coexistence around this transition; i.e., the transiPressed in terms of line numbefs,((2), by means of the calibra-
tion has a width as a function 6f within which both species 10N Naeq - At low € only SQV lines are formed andli({)
of vortex lines are present simultaneously, but where theii~0-6 rad/$ = 0. Above 0.6 rad/s the coexistence regime starts,
relative amounts depend d. Ideally the transition should w_here the fractlon of the total circulation in D_QV lines increases
be sharp and therefore our experimental situation cannot re&'th Q until well above 3 rad_/s no more SQV lines aie formed. As
resent the homogeneous adiabatic limit. Nevertheless, in th% guide for the eye, the solid curve represelyifi o=0.033(2

ist . th diff bet the t 0.6)+0.0084() —0.6)°. The cooldown rate &f; has been kept
COEXIS ence_ reglme € energy " erlence. etween the W3t|dT/dt|T =5 wK/min, except for the data point marked with an
vortex species is small, and, in principle, it can be smaller ¢

than the energies associated with the vortex cluster configuo-pen square [{)), for which the cooling rate wasd(l/dt)r,

ration. Therefore, in addition to trying to identify what type :q;iﬁSriﬁ rﬁlmﬂ?ﬁbgLfcgg)\;aﬁlﬁgsmeasur?ﬁgr}hgél}‘sturth;icis
of inhomogeneity controls the width of the transition, we ~ 20 -

. . . c e L 1)/ 1= 2.74 10 Ny(eq(02)~0.0806 Q (1-0.14Q) (Q
may |nvest|_gate thg Votex}]arrsy C?}nflguratlons n the.bcoexfn rad/9. The inset shows the radius of the central DQV cluster in
IStenC? .re.glme. and as W .et er these energy contri Utlor}l'i,lative units in the coexistence regime, together with a guide for
are minimized in the transition.

: . the eye:R,/(R—djq)=0.618 (2 —0.6)>*. Other conditions:
_ The sequentially formed coexistence clusters are more ol _ 59 3 parH=9.91 mT, the satellite intensities have been mea-
vious. Only one type of cluster is possible: Due to their muchgreq ar=0.817, .

higher critical velocity, SQV lines can only be formed by

cooling throughT, in rotation. Thus by cooling slowly sentg /1,,,, the integrated NMR absorptidy of the DQV

throughT at low () an equilibrium cluster of SQV lines is  gatellite normalized to the total absorptibg, in the NMR

formed, to which DQV lines can be added sequentially byspectrum.

increasing() slowly at constant temperature belG . The normalized absorption(Q)/1,,; can be translated to
The first observation from our measurements was that thgqiex Jine numberd\,(Q) by comparing to an equilibrium

radial distributions turned out to be different in the equilib- giate with only DQV lines. The equilibrium number of vor-
rium and sequentially constructed clusters. This means thagy lines(of type a only) is given by

in superfluid *He a common cluster configuration is not re-

<400
0.1

v / ][Ot

0.05 1200

alized, but metastable states are long lived and the structure 20 1,(Q)
of a vortex cluster depends on how it has been prepared. Naeq(Q)= 7T(R—da(eq))2 = UI , (23
a tot
where the widthd, g of the equilibrium CF annulus is de-
V. MEASUREMENTS fined in Eq.(9). The calibration measuremeip ey (L)), is
plotted (@) in Fig. 9. In practice, the equilibrium number of
A. Coexistence regimes of SQV and DQV vortex lines is equal to that at the annihilation thresHdlth

Fig. 9 the data folN, ) ({2) were measured by first slowly

increasing() from zero to some high velocit®2 >3.5 rad/s
When the rotating sample is cooled in the NMR field at T=0.81T. and by then decelerating sequentially to lower

throughT,, an equilibrium vortex state with only SQV lines  values and recording there at const&htthe respective

is formed at low rotation)<0.6%. Above this velocity also value ofl,(Q)/1,,. The difference between the two curves

DQV lines are created. Their relative number increases witlin Fig. 9 gives the number of SQV lines in the metastable

Q) until above 3 rad/s no more SQV lines are observed. Theoexistence regimel; () =2[ Ny () —N2(Q)].

number of DQV lines is shown in the coexistence regime as The critical rotation velocity)* for the transition from

a function of() in Fig. 9, where each data poin®( repre- SQV to DQV lines lies thus according to Fig. 9 within the

1. Dependence on rotation while cooling through.T
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FIG. 10. Coexistence of SQV and DQV lines as a function of |G, 11. Coexistence of SQV and DQV lines as a function of
magnetic fieldH below 0.6 rad/s: Normalized DQV satellite inten- magnetic field above 0.6 rad/s: The normalized intensitjék,, of
sity I,, /1o plotted vs the fieldH, which was applied during cooling {4 DQV satellite O, left vertical axig and I/l of the SQV
throughT, at 0.5 rad/s. On the right vertical axis the NMR absorp- gatellite @, right vertical axis have been plotted as a function of
tion intensity has been converted to DQV vortex numbBiegH),  the magnetic fieldd, which was applied during cooling through
using the calibration in Fig. 9. The horizontal dashed line represents; 1 yad/s. The horizontal dashed line on the left represents the
the equilibrium numbeiNq of DQV lines. The shaded region eqyilibrium value expected for DQV lines, after a superfluid tran-
marks the width of the coexistence regime around the critical fieldgjtion at low fields H<H,) and a subsequent increase of the field
Hc~0.6 mT. In this measurement the field was increased to thg; 9 91 mT. On the rightdi>H.), the dashed lines give the mean
NMR value 9.91 mT in the superfluid state beldw, while the  ,5ues for the SQV and DQV lines;~440 andN,~48. The
sample was cooling to 0.81, where the intensity, /1o was mea-  shaded region marks the width of the transition regime around the
sured. Other conditions were the same as in Fig. 9. In the transitiogyitical field, H,~1.2 mT. The coexistence regime includes both
throughT, the equilibrium value of total circulation is created and he shaded and the high field regioks> H. . The same conditions
thus at high fieldH>H., whereN,—0 in accordance with the a5y as in Fig. 9, including the calibration for the DQV satellite
results in Fig. 9, the deficit from,q represents the SQV lines.  jniensity. The calibration for the SQV satellite intensity is

N O)xl(Q)/15~0.43 Q (1—0.0894/Q) (Q in rad/s.
interval 0.6—3 rad/s. An estimate f6¥* can be worked out e ( D)D) or ( W) (

from Eq. (8) using the normalized satellite intensity/| ;. roa~ &a- The dominant low-field vortex texture has a square
It measures the effective vortex-core area compared to théattice and a unit cell with four quanta of circulatiéf These
of the WS celf or vortex textures are separated from the high-field structures
by a transition of first order.
l, [ é&a 2_27755 Q o4 The transition between the low- and high-field regimes as
liot \foa)  Ka ' (29 a function ofH is illustrated by the measurements in Fig. 10.

Our NMR is performed at a fixed frequency in the high-field

For the sake of compari%q_n we neglect the temperature dgrit Therefore the measurements in Fig. 10 have to follow
pendence of the core radiand use the best values for the 5 o ricyiar routine. First, the container is cooled throdigh

satellite intensities, which come from _measurements ak; g 5 rad/s, with the fieltH adjusted to the value given on
0.50T. (11.7 mT, and 33.9 barsin the equilibrium state the the horizontal axis. Next, at a temperature aro(®8—0.9
coefficient in front of(} in Eq. (24) was found to be 0.094 1 "he field is increased to the NMR value of 9.91 mT.
for SQV and 0.114 for DQV lines. These values give for thep,,ing the field sweep the low-field vortex texture under-
soft-core radiig;~32 um and£;~49 um. From Eq.(8)  yqeq 5 topological transition to the high-field DQV structure,
we now get()* ~2.8 rad/s, in qualitative agreement with the it well-separated vortex cores. The SQV has different
experiment. The estimate fé2* in Eq. (8) is based on the  (5,510gy and any vortices of this kind will remain singly
d|ﬁerences_|n quantization numbgr, core size, and the. CrUdﬁuantized during the field sweep. After the field sweep, the
approximation for vortex energy in E(7). A more sophis-  ontainer is cooled to lower temperatures, to improve the
ticated numerical calculation in Ref. 9 plac@$ in the in-  agqjytion in the NMR measurement, and the DQV satellite
terval 0.54-1.4 rad/s. intensity is measured.

As shown in Fig. 10, we find a critical field .~0.6 mT.
Above H. the SQV lines dominate, as required whén

In addition to (2, the second important variable of the <0.6 rad/s. BelowH. only DQV lines are found, which
vortex phase diagram is the applied magnetic figldRef.  represent the transformed low-field vortex textures after the
19): When it exceeds the equivalent of the spin-orbit cou-field sweep. Centered arourtdl, there is a coexistence re-
pling, as is the case in our NMR measurements, the SQV angime with a width of 0.5 mT, where both types of vortex
DQV structures display well-separated vortex cores, withlines are present. Within the coexistence regime, the relative
roa>é&,." At lower fields the spin-orbit interaction domi- abundance of SQV lines increases continuously with increas-
nates and these vortex structures are not stable. Instead hémg H, similar to the situation in Fig. 9 as a function 9f.
vorticity appears in the form of extended periodic vortex The same behavior is verified in Fig. 11 at a higher rota-
textures with no core or a much expanded core, such thaion velocity of 1 rad/s. On comparing Figs. 10 and 11 it is

2. Dependence on magnetic field while cooling through T
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FIG. 12. Influen_ce of cooling rate_ at, on th(_e relative numbt_er FIG. 13. Radial distributions\(r2) and N,(r?) after cooling
of SQV anc_j D_QV Iln_es. The left vertlca_l axis gives the norma!lzed throughT, at 1 rad/s and 1.1 mT. The deceleration from 1 rad/s to
DQV satellite intensityl, /1,,; @s a function of cooling rate during zero is performed at 0.8L, and 9.91 mT. Other conditions are the

the transition througiT; at 1.4 rad/s. Th.e sqtellite intensitie; are ¢y e asin Fig. 14\, shows for comparison the deceleration for
measured a0.49-0.51 T, where the calibration for the DQV line an array consisting of only DQV lines. It is prepared by cooling

satellite iSN3 (g (2) 1, (2)/110r~0.078 € (1_.0'11/‘/6) (Qin hroughT, at Q>1.5 radfs in zero field and by then sweeping the
rad/9. In this expressiom, includes only the primary satellite peak field up to 9.91 mT at 0.81,. The final part of the deceleration
(the secondary peak, which is also visible at these low temperatureggow 0.7 rad/s is shown here. As demonstrated in Ref. 17, during
is not included in the absorptianOn the right vertical axis the a slow decelerationdQ/dt= —1.5x 102 rad/€) the total circu-
calibratiqn has been used tq list the fraction of the toFaI cirgulatioqation at any value of) corresponds roughly to that in the equilib-
in DQV lines,N2/N;eq , While the rest, N3 /Na(eq , is carried 1y state. The inset illustrates schematically a transverse cross
by SQV lines. section through the rotating container with the coaxial array con-
figuration: the SQV linegsmall dot$ are in the outer annulus and

noted that botlH. and the width of the coexistence regime the DQV lines(large dot$ in the center.
increase with().? In the measurements of Fig. 11 both the
DQV and SQV satellite intensities were determined sepaguency shifts grow large When the cooling rate in Fig. 12
rately. On the low-field side only DQV lines are found. On at 1.4 rad/s reaches pK/min a change over takes place
the high-field side both types of lines are formed, with a 4from SQV to DQV lines: at lower rates only one fourth of
times larger share of the circulation carried by the SQV linesthe total circulation is in DQV line$which is the same frac-
This is the same ratio as was already seen in Fig. 9 at 1 rad/Son as in Fig. 9, while above 6uK/min, only few SQV

In a magnetic field the superfluid transition splits it~ lines are formed. Similar measurements at 0.6 rad/s with
andT.,. The former is the transition from the normal to the cooling rates up to 16:K/min did not yet produce a DQV
A; phase and the latter frosy, to theA, phasewhich is the  satellite of measurable height.
regular 3He-A). The thermal width of thé\; region is nar- In the measurements of Fig. 12 the quartz container was
row, approximately 0.6uK at 10 mT. We might wonder thermally connected to the refrigerator via an orifice of 0.5
what effect the intermediaté, phase has on the DQV to mm in diameter. Later measurements with another quartz
SQV ratio aboveH. in Figs. 9—11: Are more changes to be cylinder with a small and long channel of 0.4 mm diameter
expected at fields much larger than those shown in Figs. 18isplayed appreciably smaller fractions of SQV lines, even in
and 11? We find that at least a cool down in 60 mT field athe regimeQ)<0.6 rad/s whereN,=0 in Fig. 9. With an

1.4 rad/s gives the same result as at 10 mT. increased thermal resistance at the entrance to the sample
container, the normal-to-superfluid transition becomes more
3. Dependence on cooling rate at.T irreversible and the transition velocity cannot be controlled

externally. This suggests that a larger cooling rate and non-

In Fig. 9 one data point deviates from the typical behaviorgqjiliprium conditions enhance the formation of DQV lines
(denoted with [J) at 1.6 rad/s The only distinction that can 4t e expense of SQV lines.

be appended to its measurement is a larger cooling rate dur-
ing the superfluid transition: The five data points measured at _ _ _
cooling rates|dT/dt[y_=1-5 xK/min give for the relative B. Vortex cluster in coexistence regime

amount of DQV linesN,/Ny e ~0.38 while the anomalous The radial composition of a cluster with both SQV and
point at a cooling rate of 18.aK/min falls on the equilib- DQV lines can be determined by recording the amplitudes of
rium curveN,eq , With no SQV lines detected at all. the satellites as a function 61 while the rotation is slowly
Additional evidence is shown in Fig. 12 on how a fasterdecelerated. In Fig. 13 the result is shown for an array which
cooling rate afT. shifts vorticity from SQV to DQV lines. has been created by cooling throughat 1 rad/s. Here the
Here a fused quartz container was used in whitke-A  distributions of the two vortex species are segregated: The
could be supercooled to below OBQ At lower tempera- SQV lines annihilate first and the DQV lines follow later.
tures the measuring resolution improves as the NMR freThis behavior corresponds to the coaxial array structure in
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the inset of Fig. 13. It consists of a central region with 130
DQV lines, a peripheral annulus with 140 SQV lines, and the
exterior vortex-free CF region of equilibrium width. The
boundary between the DQV and SQV regions is relatively
sharp(10% of the radius of the array, or additionally roughly
40 DQV and 50 SQV lines

The segregation into two coaxial domains, with the SQV
lines in the outer annulus, is observed whenever both vortex
species are found to coexist after cooling through By
measuring the width of the CF annultlswe find that
the total number of lines adjusts itself so that the energy in
Eq. (6) is minimized. This is expected, since the total circu- I
lation corresponds to a dominant energy term. In comparison 0
the structure of an individual vortex line or the spatial distri-
bution of the two vortex species within the array, represent
much smaller energy contributions. FIG. 14. Radial distribution®N;(r?) and N,(r?) in a sequen-

The coaxial configuration is stable against externally apiially formed vortex cluster. The original array was an equilibrium
plied perturbations since even sinusoidal modulatiorof —state of SQV lines, to which DQV lines were added later by in-
with an amplitudeA 2~ 0.1 rad/s does not cause measurablecreasing rotation in the superfluid state. The SQV array was pre-
changes. In fact, no means were found to change the comared at 29.3 bars pressure and 9.91 mT field, by cooling through

figuration, without removing vortex lines by deceleration or Tc & 7 #K/min and 0.6 rad/s. Cooling was continued until 0rg1
by adding new ones during acceleration. where() was slowly increased to 1.4 rad/s, to create the DQV lines.

The final step was a slow deceleration to zero, during which the
radial distributionsN,(r?) and N,(r?) were recorded. Bott)
sweeps were performed ptQ/dt|=2x10"2 rad/€. The critical

The stability of vortex arrays in superfluitHe can also CF velocity of vortex formation at 1.4 rad/s wék,=0.24 rad/s,
be approached from the other extreme, by studying the digwhich corresponds to a linear velocity @f=0.60 mm/s. The inset
order in artificially constructed arrays of coexisting SQV andillustrates schematically the array configuration, a plastically de-
DQV lines. These are prepared by making use of the metdormed agglomerate of vortex lines.
stability of existing vorticity.

We use the following procedure: The sample is firstof the container. During cooling the heat flow through the
cooled throughT, at 2<0.6 rad/s andH>H,, so that an  grifice is composed of the cooling rate of the liquid and the
equilibrium vortex state with only SQV lines is formed. The resjdual heat leak. The latter consists of the NMR absorption
desired number of DQV lines is added at constant temperasng of thermal relaxation losses seeping out of the walls of
ture belowT,, by increasingQ) slowly while the critical  the sample container. A thermal gradient is thus maintained,
counterflow velocityv = ()R is c;onstanf. The DQV lines it the top end of the container being the warmest point in
are then injected one at a time into the existing cIu_ster, Prée 3He column.
sumably from the same spot close to the cyllndr_lcaI_V\_/aII At a cooling rate of 1uK/min the heat flow from the
where the superflow instability takes place. For simplicity, iner is of order 0.5 NW and the thermal aradient inside
they can be imagined to emanate from a rectilinear sourC{%nOntalner Is otor ' 9

e container~0.5 uK/mm (at T.~2.4 mK). The super-

which is at the cylindrical wall and parallel to the rotation _ . . .
axish). fluid transition emerges as a transition front through the ori-
fice on the bottom of the cylinder. Initially it adopts hemi-

In Fig. 14 the radial decomposition of an array is shown X ; . ;
where 150 DQV lines were added to an existing equilibriumSphe”Cal shape The width of the phase front is determined
by the local thermal gradient and thermal fluctuations. Its

cluster of 310 SQV lines. During deceleration, initially both ) o .
types of vortices are seen to annihilate, but on moving closef€!ocity can be controlied externally by adjusting the cooling
to the center the proportion of DQV lines is reduced and thdate- The heat ﬂOV‘.’ s mainly carried .by a thermal-

SQV lines start to dominate. Such an annihilation recorcfUPerfluid—normal-fluid countercurrent, which appears be-
could correspond to the cluster configuration in the inset of®W Tc. converges towards the orifice, and is oriented pre-
Fig. 14, which in turn could result from the sequential pro_domlnantly in the axial direction, transverse to the rotational

cess of adding DQV lines one by one. In such a periodic' ©W: .
process each new DQV line arrives roughly to the same This picture of the transition suggests a second reason for

place at the edge of the cluster. It makes space for itself b§1€ Ségregated coaxial domain structure with SQV and DQV

pushing the existing lines aside. In this way the DQV lines/N€S- In equilibrium conditions at lov) the SQV is the

end up residing in a segregated pocket at the edge of tH@i.nimum—energy structure, but_ inhomogeneit?es i'n the tran-
cluster, if no mixing of lines occurs later. sition provide a bias for DQV lines, as seen in Fig. 12 as a

function of heat flow. The perturbation by the thermal coun-
terflow is concentrated around the orifice, from where vortex
formation starts during the superfluid transition. Here DQV

In any real experiment the superfluid transition acquiredines are created first and SQV lines appear only later when
some degree of inhomogeneity. The main source for irreverghe transition front expands into the more homogeneous pe-
ibility at T, is the nonlinear thermal resistance at the orificeripheral region of the cylinder.

300

Number of vortex lines

C. Sequentially formed vortex cluster

D. Homogeneity of superfluid transition
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This explanation assumes that the interface between tHewer energy and improved long-range order.
two coaxial domains becomes a similar phase boundary as In arrays formed by cooling througF in rotation, a seg-
that in Fig. 12, but now as a function of the radial coordinateregated coaxial configuration is observed, with the SQV lines
r of the container, along which the cooling rate varies as thdocated in the outer annulus. Our numerical analysis of 2D
normal-to-superfluid phase front moves through the cylinderarrays with discrete rectilinear vortex lines confirms that this
SQV lines are formed closer to equilibrium while perturbedis the equilibrium configuration. It is distinguished from all

conditions favor the formation of DQV lines. other segregated domain structures by a gain in the outer
surface energy which arises on the scale of the intervortex
VI. CONCLUSION distance rather than the container dimensions.
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