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Critical equation of state of three-dimensionalXY systems
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We address the problem of determining the critical equation of state of three-dimensionalXY systems. For
this purpose we first consider the small-field expansion of the effective potential~Helmholtz free energy! in the
high-temperature phase. We compute the first few nontrivial zero-momentumn-point renormalized couplings,
which parametrize such expansion, by analyzing the high-temperature expansion of an improved lattice Hamil-
tonian with suppressed leading scaling corrections. These results are then used to construct parametric repre-
sentations of the critical equation of state which are valid in the whole critical regime, satisfy the correct
analytic properties~Griffith’s analyticity!, and take into account the Goldstone singularities at the coexistence
curve. A systematic approximation scheme is introduced, which is limited essentially by the number of known
terms in the small-field expansion of the effective potential. From our approximate representations of the
equation of state, we derive estimates of universal ratios of amplitudes. For the specific-heat amplitude ratio we
obtainA1/A251.055(3), to be compared with the best experimental estimateA1/A251.054(1).
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I. INTRODUCTION

In the theory of critical phenomena, continuous pha
transitions can be classified into universality classes de
mined only by few basic properties characterizing the s
tem, such as space dimensionality, range of interaction, n
ber of components, and symmetry of the order parame
Renormalization-group theory predicts that all systems
longing to a given universality class have the same crit
exponents and the same scaling functions. Here we cons
the XY universality class, which is characterized by a tw
component order parameter and effective short-range in
actions. The lattice spin model described by the Hamilton

HL52J(̂
i j &

sW i•sW j1(
i

hW i•sW i , ~1!

wheresW i is a two-component unit vector, is a particular sy
tem belonging to theXY universality class. It may be viewe
as a magnetic system with easy-plane anisotropy, in wh
the magnetization plays the role of order parameter and
spins are coupled to an external magnetic fieldh.

The superfluid transition of4He, occurring along thel
line Tl(P) ~whereP is the pressure!, belongs to the three
dimensionalXY universality class. The order parameter
here the complex quantum amplitude of helium atoms. S
a transition provides an exceptional opportunity for an
perimental test of the renormalization-group predictio
thanks to the weakness of the singularity in the compress
ity of the fluid and to the purity of the samples. Moreove
experiments may be performed in a microgravity enviro
ment, leading to a reduction of the gravity-induced broad
ing of the transition. Recently, a Space Shuttle experime1

performed a very precise measurement of the heat cap
of liquid helium to within 2 nK from thel transition, obtain-
ing an extremely accurate estimate of the exponenta and of
the ratioA1/A2 of the specific-heat amplitudes
PRB 620163-1829/2000/62~9!/5843~12!/$15.00
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a520.01285~38!, A1/A251.054~1!. ~2!

These results represent a challenge for theorists becaus
accuracy of the test of the renormalization-group predictio
is now limited by the precision of the theoretical calcul
tions. We mention the best available theoretical estimates
a: a520.0150(17) obtained using high-temperature e
pansion techniques,2 a520.0169(33) from Monte Carlo
simulations using finite-size scaling techniques,3 a5
20.011(4) from field theory.4 The close agreement with th
experimental data clearly supports the stand
renormalization-group description of thel transition.5

In this paper we address the problem of determining
critical equation of state for theXY universality class. The
critical equation of state relates the thermodynamical qu
tities in the neighborhood of the critical temperature, in bo
phases. It is usually written in the form~see, e.g., Ref. 6!

HW 5MW M d21f ~x!, x}tM 21/b, ~3!

where f (x) is a universal scaling function@normalized in
such a way thatf (21)50 and f (0)51]. The universal ra-
tios of amplitudes involving quantities defined at zero m
mentum~i.e., integrated in the volume!, such as specific hea
magnetic susceptibility, etc., can be obtained from the s
ing function f (x).

It should be noted that, for thel transition in4He, Eq.~3!
is not directly related to the conventional equation of st
that relates temperature and pressure. Moreover, in this
the fieldHW does not correspond to an experimentally acc
sible external field, so that the function appearing in Eq.~3!
cannot be determined directly in experiments. The physic
interesting quantities are universal amplitude ratios of qu
tities formally defined at zero external field.

As our starting point for the determination of the critic
equation of state, we compute the first few nontrivial coe
cients of the small-field expansion of the effective poten
~Helmholtz free energy! in the high-temperature phase. F
5843 ©2000 The American Physical Society
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5844 PRB 62CAMPOSTRINI, PELISSETTO, ROSSI, AND VICARI
this purpose, we analyze the high-temperature expansio
an improved lattice Hamiltonian with suppressed lead
scaling corrections.7,8 If the leading nonanalytic scaling cor
rections are no longer present, one expects a faster con
gence, and therefore an improved high-temperature~IHT!
expansion whose analysis leads to more precise and rel
estimates. We consider a simple cubic lattice and thef4

Hamiltonian

H52b (
^x,y&

fW x•fW y1(
x

@fW x
21l~fW x

221!2#, ~4!

where ^x,y& labels a lattice link, andfW x is a real two-
component vector defined on lattice sites. The value ofl at
which the leading corrections vanish has been determine
Monte Carlo simulations using finite-size techniques,3 ob-
taining l* 52.10(6). In Ref. 2 we already considered th
high-temperature expansion~to 20th order! of the improved
f4 Hamiltonian~4! for the determination of the critical ex
ponents, achieving a substantial improvement with respec
previous theoretical estimates. IHT expansions have
been considered for Ising-like systems,8 obtaining accurate
determinations of the critical exponents, of the small-fie
expansion of the effective potential, and of the sma
momentum behavior of the two-point function.

We use the small-field expansion of the effective poten
in the high-temperature phase to determine approximate
resentations of the equation of state that are valid in
whole critical region. To reach the coexistence curvet
,0) from the high-temperature phase (t.0), an analytic
continuation in the complext plane6,9 is required. For this
purpose we use parametric representations,10–12 which
implement in a rather simple way the known analytic pro
erties of the equation of state~Griffith’s analyticity!. This
approach was successfully applied to the Ising model,
which one can construct a systematic approximation sch
based on polynomial parametric representations9 and on a
global stationarity condition.8 This leads to an accurate de
termination of the critical equation of state and of the u
versal ratios of amplitudes that can be derived from it.9,4,8

XY systems, in which the phase transition is related to
breaking of the continuous O~2! symmetry, present a new
important feature with respect to Ising-like systems:
Goldstone singularities at the coexistence curve. Genera
guments predict that at the coexistence curve (t,0 andH
→0) the transverse and longitudinal magnetic susceptib
ties behave, respectively, as

xT5
M

H
, xL5

]M

]H
;Hd/222. ~5!

In our analysis we will consider polynomial parametric re
resentations that have the correct singular behavior at
coexistence curve.

By using parametric representations we obtain estim
of several universal amplitude ratios; in particular, of t
experimentally important specific-heat amplitude ratio. O
final estimate

A1/A251.055~3! ~6!
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is perfectly consistent with the experimental estimate~2!,
although not equally precise.

The paper is organized as follows. In Sec. II we study
small-field expansion of the effective potential~Helmholtz
free energy!. We estimate the first few nontrivial coefficien
of such expansion by analyzing the corresponding IHT
ries. The results are then compared with other theoret
estimates. In Sec. III, using as input parameters the crit
exponents and the known coefficients of the small-field
pansion of the effective potential, we construct approxim
representations of the critical equation of state. We obt
new estimates for many universal amplitude ratios. Th
results are then compared with experimental and other th
retical estimates.

II. THE EFFECTIVE POTENTIAL IN THE
HIGH-TEMPERATURE PHASE

A. Small-field expansion of the effective potential in the
high-temperature phase

The effective potential~Helmholtz free energy! is related
to the ~Gibbs! free energy of the model. IfMW [^fW & is the
magnetization andHW the magnetic field, one defines

F~M !5MW •HW 2
1

V
ln Z~H !, ~7!

whereZ(H) is the partition function and the dependence
the temperature is always understood in the notation.

In the high-temperature phase the effective potential
mits an expansion aroundM50:

DF[F~M !2F~0!5(
j 51

`
1

~2 j !!
a2 jM

2 j . ~8!

This expansion can be rewritten in terms of a renormaliz
magnetizationw

DF5
1

2
m2w21(

j 52
m32 j

1

~2 j !!
g2 jw

2 j , ~9!

where

w25
j~ t,H50!2M ~ t,H !2

x~ t,H50!
, ~10!

t is the reduced temperature,x and j are, respectively, the
magnetic susceptibility and the second-moment correla
length

x5(
x

^fa~0!fa~x!&, ~11!

j5
1

6x (
x

x2^fa~0!fa~x!&,

andm[1/j. In field theoryw is the expectation value of th
zero-momentum renormalized field. The zero-moment
2 j -point renormalized constantsg2 j approach universal con
stants~which we indicate with the same symbol! for t→0.
By performing a further rescaling
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w5
m1/2

Ag4

z ~12!

in Eq. ~9!, the free energy can be written as

DF5
m3

g4
A~z!, ~13!

where

A~z!5
1

2
z21

1

4!
z41(

j 53

1

~2 j !!
r 2 j z

2 j ~14!

and

r 2 j5
g2 j

g4
j 21

, j >3. ~15!

One can show thatz}Mt2b and that the equation of stat
can be written in the form

H}tbdF~z!, ~16!

where

F~z!5
]A~z!

]z
5z1 1

6 z31 (
m53

F2m21z2m21 ~17!

with

F2m215
1

~2m21!!
r 2m . ~18!

B. Zero-momentum renormalized couplings by IHT expansion

To compute the high-temperature series of the four-po
couplingg4 and of the effective-potential parametersr 2 j , we
rewrite them in terms of the zero-momentum connec
2 j -point Green’s functionsx2 j

x2 j5 (
x2 , . . . ,x2 j

^fa1
~0!fa1

~x2! . . . fa j
~x2 j 21!fa j

~x2 j !&c

~19!

(x5x2). For generic values ofN, the number of component
of the spin vector, we have

g452
3N

N12

x4

x2
2j3 ~20!

and

r 65102
5~N12!

3~N14!

x6x2

x4
2 , ~21!

r 852802
280~N12!

3~N14!

x6x2

x4
2 1

35~N12!2

9~N14!~N16!

x8x2
2

x4
3 ,
t

d

r 10515 4002
7700~N12!

~N14!

x6x2

x4
2 1

350~N12!2

~N14!2

x6
2x2

2

x4
4

1
1400~N12!2

3~N14!~N16!

x8x2
2

x4
3

2
35~N12!3

3~N14!~N16!~N18!

x10x2
3

x4
4

.

The formulas relevant for theXY universality class are ob
tained settingN52.

Using thef4 lattice Hamiltonian~4!, we have calculated
x andm2[(xx

2^f(0)f(x)& to 20th order,x4 to 18th order,
x6 to 17th order,x8 to 16th order, andx10 to 15th order, for
generic values ofl. The IHT expansion, i.e., with sup
pressed leading scaling corrections, is achieved forl
52.10(6).3 In Table I we report the series ofm2 , x, x4 , x6 ,
x8, andx10 for l52.10. Using Eqs.~20! and ~21! one can
obtain the high-temperature~HT! series necessary for th
determination ofg4 and r 2 j . We analyzed them using th
same procedure applied to the IHT expansions of Ising-
systems in Ref. 8. In order to estimate the fixed-point va
of g4 and of the coefficientsr 2 j , we considered Pade´, Dlog-
Padéand first-order integral approximants of the series inb
for l52.10, and evaluated them atbc . We refer to Ref. 8
for the details of the analysis. Our estimates are

g4521.05~313!, ~22!

ḡ[
5

24p
g451.396~212!, ~23!

r 651.951~1113!, ~24!

r 851.36~613!. ~25!

We quote two errors: the first one is related to the spread
the approximants, while the second one gives the variatio
the estimate whenl varies between 2.04 and 2.16. In add
tion, we obtained a rough estimate ofr 10, i.e., r 105
213(7). Forcomparison, we anticipate that the analysis
the critical equation of state using approximate parame
representations leads to the estimater 105210(3).From the
estimates ofg4* and r 2 j one can obtain corresponding es
mates for the zero-momentum renormalized couplingsg2 j

5r 2 jg4
j 21 with j .2.

Table II compares our results~denoted by IHT! with the
estimates obtained using other approaches, such as the
expansion of the standard lattice spin model~1!,13–15 field-
theoretic methods based on the fixed-dimensiond53 g
expansion4,16,17 and on thee-expansion.14,18,19 The fixed-
dimension field-theoretic estimates ofg4 have been obtained
from the zero of the Callan-Symanzikb-function, whose ex-
pansion is known to six loops.20 In the same frameworkg6
and g8 have been estimated from the analysis of the co
sponding four- and three-loop series, respectively.16 The au-
thors of Ref. 16 argue that the uncertainty on their estim
of g6 is approximately 0.3%, while they consider their val
for g8 much less accurate. Thee-expansion estimates hav
been obtained from constrained analyses of the four-loop
ries of g4 and of the three-loop series ofr 2 j .
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TABLE I. Coefficients of the high-temperature expansion ofm2 , x, x4 , x6 , x8 , x10. They have been
obtained using the Hamiltonian~4! with l52.10.

i m2 x x4

0 0 0.82305062235187783163838 20.18361621025768068492172
1 1.01611849043072013077966 2.0322369808614402615593221.81350523351772810305606
2 5.01790173559352893587925 4.41339999108761956819390210.2403328491873632045378
3 17.1372887645210686867092 9.49465465075720590174531244.8928073800743626690682
4 50.5729609164717064337798 19.84320847578507950738802168.753294310535712758532
5 136.975729153185634797939 41.31053160771692696750242572.899325351072412028155
6 351.547955204015543873533 84.865766534658754351794021806.05498365521624417337
7 867.882609960590948513531 173.91987708058393266803425384.52486767607368575700
8 2082.72988964511892008013 353.805866554914925628451215362.4317708302607812112
9 4887.89348922134368695104 718.544573182206654200415242306.4841196583464482445
10 11271.6038365544561486584 1452.556965881715003060952113150.461045583807761395
11 25618.1126339930289598217 2932.782432996923121586592295305.926162214852952064
12 57532.0447298988841107389 5902.702444651993878754282754781.109517718395587745
13 127889.749773305781861722 11869.008078156850105605621894806.32404641680977111
14 281828.971329949201651321 23811.062216001206823022724682769.64431772632678941
15 616366.979493029224503143 47733.2907485305100325248211414677.5171522019349233
16 1339133.76964227829126980 95522.7109197203117005540227486804.4332023911210055
17 2892420.77412897864771425 191043.098791148001757550265472437.4333935066305991
18 6215040.60947250914305650 381560.2040192496417989442154435238.761288809747194
19 13292241.3642748890173429 761691.955581673385411208
20 28309542.5693146536002667 1518865.25572011244933658

i x6 x8 x10

0 0.4165179249674842327738322.07276872395008612032057 17.82247792822970388848
1 8.19357083273717982769144266.6409389277329689706620 845.2479912150930779050
2 81.695444131419045282007021011.50102952099242860043 17983.46516309347457668
3 577.734561420010600288632210327.4974814820902607880 248053.1711257990250299
4 3288.50395189429008814810281557.4477403308614541401 2572480.035640616692031
5 16096.60211096968571455642536525.345841149579660234 21718902.53659373433511
6 70442.209266444562574771523075097.70592321924332973 156737903.6314323085320
7 282678.282078376456985396215817337.6236306593687791 998806344.5938517375492
8 1058442.95252211500336034274543191.4965166803297285 5750852421.819748699971
9 3744677.846659246944469192326778866.937610399640322 30428100948.89923623532
10 12635750.870758294237501321347823157.99877343602884 149865516252.1404415044
11 40959287.076511883427990125277067971.27466652475816 694034037396.3246183450
12 128268696.512235415964465219750695382.3283907899788 3046464352917.443056029
13 389824946.322878356697650271066114622.3163753581174 12757807364908.64071945
14 1153973293.834992236496542246972985495.952557381976 51244942192011.66958014
15 3337461787.556652791899482832179913942.254869433972 198319718730601.6292724
16 9454326701.5870537322381422727546459564.59095483523
17 26288539415.6469228911099

TABLE II. Estimates ofḡ[5g4 /(24p), r 6, andr 8.

IHT HT d53 g exp. e exp.

ḡ 1.396~4! 1.411~8!, 1.406~8! ~Ref. 13! 1.403~3! ~Ref. 4! 1.425~24! ~Refs. 19,14!

1.415~11! ~Ref. 14! 1.40 ~Ref. 17!

r 6 1.951~14! 2.2~6! ~Ref. 15! 1.967~Ref. 16! 1.969~12! ~Refs. 19,18!
r 8 1.36~9! 1.641~Refs. 16! 2.1~9! ~Refs. 19,18!
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III. THE CRITICAL EQUATION OF STATE

A. Analytic properties of the scaling equation of state

From the analysis of the IHT series we have obtained
first few nontrivial terms of the small-field expansion of th
effective potential in the high-temperature phase. This p
vides the first few terms in the small-z expansion of the
equation of state~16!. The functionH(M ,t), the external
field in Eq. ~16!, satisfies Griffith’s analyticity: it is analytic
in M aroundM50 for t.0 fixed and int aroundt50 for
M.0 fixed. The first condition implies thatF(z) has an
expansion in powers ofz, see Eq.~17!. The second condition
implies that forz→`, F(z) has an expansion of the form

F~z!5zd (
n50

Fn
`z2n/b. ~26!

To reach the coexistence curve, i.e.,t,0 and H50, one
should perform an analytic continuation in the complext
plane.6,9 The spontaneous magnetization is related to
complex zeroz0 of F(z). Therefore, the description of th
coexistence curve is related to the behavior ofF(z) in the
neighborhood ofz0.

B. Goldstone singularities at the coexistence curve

The physics of the low-temperature phase of models w
an N-vector order parameter—they includeXY systems that
correspond toN52—is very different from that of the Ising
model, because of the presence of Goldstone modes a
coexistence curve. The singular behavior of the longitudi
susceptibilityxL for t,0 andH→0 is governed by the zero
temperature infrared-stable fixed point.21–23In d dimensions,
this leads to the prediction

f ~x!'cf ~11x!2/(d22) for x→21, ~27!

wherex}tM 21/b and f (x) is the scaling function introduce
in Eq. ~3! ~as usual,x521 corresponds to the coexisten
curve!. This behavior at the coexistence curve has been v
fied in the framework of the large-N expansion toO(1/N)
~i.e., next-to-leading order!.21,24

The nature of the corrections to the behavior~27! is less
clear. Settingv511x and y5HM 2d, it has been conjec
tured thatv has the form of a double expansion in powers
y and y(d22)/2 near the coexistence curve,25,26,23 i.e., for y
→0

v[11x5c1y1c2y12e/21d1y21d2y22e/21d3y22e1•••,
~28!

wheree542d. This expansion has been derived essentia
from an e-expansion analysis.27 Note that in three dimen
sions this conjecture predicts an expansion in powers ofy1/2,
or equivalently an expansion off (x) in powers ofv for v
→0.

The asymptotic expansion of thed-dimensional equation
of state at the coexistence curve has been computed an
cally in the framework of the large-N expansion,28 using the
O(1/N) formulas reported in Ref. 21. It turns out that th
expansion~28! does not strictly hold for values of the dimen
sion d such that
e

-

e

h

the
l

ri-

f

y

yti-

2,d521
2m

n
,4 for 0,m,n, m,nPN. ~29!

In particular, in three dimensions one finds28

f ~x!5v2F11
1

N
@ f 1~v!1 ln v f 2~v!#1O~N22!G , ~30!

where the functionsf 1(v) and f 2(v) have a regular expan
sion in powers ofv. Moreover,

f 2~v!5O~v2!, ~31!

so that logarithms appear in the expansion only at next-n
to-leading order.

This analysis indicates that Eq.~28! is not correct in three
dimensions since it is not compatible with the exact largeN
result. However, it is not clear how to modify it. A possibi
ity is that Eq.~30! holds for all values ofN. Note that the
presence of logarithms in the expansion does not contra
the conjecture that the behavior near the coexistence cur
controlled by the zero-temperature infrared-stable Gaus
fixed point. In this case, logarithms are not indeed un
pected: for instance, they usually appear in reduc
temperature asymptotic expansions around Gaussian fi
points ~see, e.g., Ref. 29!.

C. Parametric representations

In order to obtain a representation of the critical equat
of state that is valid in the whole critical region, one may u
parametric representations, which implement in a sim
way all scaling and analytic properties.10–12One may param-
etrizeM and t in terms ofR andu according to

M5m0Rbm~u!, ~32!

t5R~12u2!,

H5h0Rbdh~u!,

whereh0 andm0 are normalization constants. The variableR
is nonnegative and measures the distance from the cri
point in the (t,H) plane; it carries the power-law critica
singularities. The variableu parametrizes the displacemen
along the line of constantR. The functionsm(u) and h(u)
are odd and regular atu50 and atu51. The constantsm0
and h0 can be chosen so thatm(u)5u1O(u3) and h(u)
5u1O(u3). The smallest positive zero ofh(u), which
should satisfyu0.1, represents the coexistence curve, i.
T,Tc andH→0.

The parametric representation satisfies the requirem
of regularity of the equation of state. Singularities can app
only at the coexistence curve~due for example to the loga
rithms discussed in Sec. III B!, i.e., for u5u0. Notice that
the mapping~32! is not invertible when its Jacobian van
ishes, which occurs when

Y~u![~12u2!m8~u!12bum~u!50. ~33!

Thus, parametric representations based on the mapping~32!
are acceptable only ifu0,u l whereu l is the smallest posi-
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tive zero of the functionY(u). One may easily verify that the
asymptotic behavior~27! is reproduced simply by requiring
that

h~u!'~u02u!2 for u→u0 . ~34!

The relation among the functionsm(u), h(u), andF(z) is
given by

z5rm~u!~12u2!2b, ~35!

F@z~u!#5r~12u2!2bdh~u!, ~36!

wherer is a free parameter.9,8 In the exact parametric equa
tion the value ofr may be chosen arbitrarily but, as we sh
see, when adopting an approximation procedure the de
dence onr is not eliminated. In our approximation schem
we will fix r to ensure the presence of the Goldstone sin
larities at the coexistence curve, i.e., the asymptotic beha
~34!. Since z5r u1O(u3), expandingm(u) and h(u) in
~odd! powers ofu,

m~u!5u1 (
n51

m2n11u2n11, ~37!

h~u!5u1 (
n51

h2n11u2n11,

and using Eqs.~35! and ~36!, one can find the relation
amongr, m2n11 , h2n11, and the coefficientsF2n11 of the
expansion ofF(z).

One may also write the scaling functionf (x) in terms of
the parametric functionsm(u) andh(u):

x5
12u2

u0
221Fm~u0!

m~u! G1/b

, ~38!

f ~x!5Fm~u!

m~1!G
2d h~u!

h~1!
.

In Appendix A we report the definitions of some univers
ratios of amplitudes that have been introduced in the lite
ture and the corresponding expressions in terms of the fu
tions m(u) andh(u).

D. Approximate polynomial representations

In order to construct approximate parametric represe
tions we consider polynomial approximations ofm(u) and
h(u). This kind of approximation turned out to be effectiv
in the case of Ising-like sistems.9,8 The major difference with
respect to the Ising case is the presence of the Golds
singularities at the coexistence curve. In order to take th
into account, at least in a simplified form which neglects
logarithms found in Eq.~30!, we require the functionh(u) to
have a double zero atu0 as in Eq.~34!. Polynomial schemes
may in principle reconstruct also the logarithms, but
course only in the limit of an infinite number of terms.

In order to check the accuracy of the results, it is usefu
introduce two distinct schemes of approximation. In the fi
one, which we denote as~A!, h(u) is a polynomial of fifth
order with a double zero atu0, and m(u) a polynomial of
order (112n):
l
n-

-
or

l
-
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scheme~A!: m~u!5uS 11(
i 51

n

ciu
2i D , ~39!

h~u!5u~12u2/u0
2!2.

In the second scheme, denoted by~B!, we set

scheme ~B!: m~u!5u, ~40!

h~u!5u~12u2/u0
2!2S 11(

i 51

n

ciu
2i D .

Here h(u) is a polynomial of order 512n with a double
zero atu0. In both schemes the parameterr is fixed by the
requirement~34!, while u0 and then coefficientsci are de-
termined by matching the small-field expansion ofF(z).
This means that, for both schemes, in order to fix then co-
efficients ci we need to known11 values of r 2 j , i.e.,
r 6 , . . . r 612n . Note that for the scheme~B!

Y~u!512u212bu2, ~41!

independently ofn, so thatu l5(122b)21. Concerning the
scheme~A!, we note that the analyticity of the thermody
namic quantities foruuu,u0 requires the polynomial func
tion Y(u) not to have complex zeroes closer to origin th
u0.

In Appendix B we present a more general discussion
the parametric representations.

E. Results

As input parameters for the determination of the param
ric representations, we use the best available estimates o
critical exponents, which area520.01285(38)~from the
experiment of Ref. 1!, h50.0381(3) ~from the high-
temperature analysis of Ref. 2!. Moreover we use the follow-
ing estimates ofr 2 j : r 651.96(2) which is compatible with
all the estimates ofr 6 reported in Table II, andr 8
51.40(15) which takes somehow into account the diff
ences among the various estimates.

The casen50 of the two schemes~A! and ~B! is the
same, and requires the knowledge ofa, h, andr 6. Unfortu-
nately this parametrization does not satisfy the consiste
condition u0

2,u l
25(122b)21. Both schemes give accep

able approximations forn51, usingr 8 as an additional input
parameter. The numerical values of the relevant parame
and the resulting estimates of universal amplitude ratios~see
the appendix for their definition! are shown in Table III. The
errors reported are related to the errors of the input par
eters only. They do not take into account possible system
errors due to the approximate procedure we are employ
We will return on this point later.

In Figs. 1 and 2 we show respectively the scaling fun
tions F(z) and f (x), as obtained from the approximate re
resentations given by the schemes~A! and ~B! for n51,
using the input valuesa520.01285,h50.0381,r 651.96,
andr 851.4. The two approximations ofF(z) are practically
indinstinguishable in Fig. 1. This is also numerically co
firmed by the estimates of the universal costantF0

` ~reported
in Table III!, which is related to the large-z behavior ofF(z),
see Eq.~26!:
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TABLE III. Results for the parameters and the universal amplitude ratios using the scheme~A!, see Eq.
~39!, and the scheme~B!, see Eq.~40!. The label above each column indicates the scheme, the numb
terms in the corresponding polynomial, and the input parameters employed, in addition to the critical
nentsa andh. Note that the quantities reported in the first four lines do not have a physical meaning, b
related to the particular parametric representation employed. Numbers marked with an asterisk are inp
predictions.

@~A! n51; r 6 ,r 8] @~B! n51; r 6 ,r 8] @~B! n52; r 6 ,r 8 ,r 10] @~B! n52; r 6 ,r 8 ,A1/A2]

r 2.22~3! 2.07~2! 2.04~5! 2.01~4!

u0
2 3.84~10! 2.97~10! 2.8~4! 2.5~2!

c1 20.024~7! 0.72~12! 0.10~6! 0.15~5!

c2 0 0 0.01~2! 0.02~1!

r 10 29.6~1.1! 211~2! * 213~7! 27~5!

A1/A2 1.055~3! 1.057~2! 1.055~3! * 1.054~1!

Rc 0.123~8! 0.113~3! 0.118~7! 0.123~6!

R4 7.5~3! 7.9~2! 7.8~3! 7.6~2!

Rj
1 0.353~3! 0.350~2! 0.352~3! 0.354~3!

Rx 1.38~9! 1.51~3! 1.47~8! 1.41~6!

F0
` 0.0303~3! 0.0301~3! 0.0302~3! 0.0304~3!

cf 5~4! 62~41! 15~10!
l
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F~z!'F0
`zd for z→`. ~42!

This agreement is not trivial since the small-z expansion has
a finite convergence radius given byuz0u5R4

1/2.2.8. There-
fore, the determination ofF(z) on the whole positive rea
axis from its small-z expansion requires an analytic contin
ation, which turns out to be effectively performed by t
approximate parametric representations we have conside
We recall that the large-z limit corresponds to the critica
theory t50, so that positive real values ofz describe the
high-temperature phase up tot50. Instead, larger differ-
ences between the approximations given by the schemes~A!
and ~B! for n51 appear in the scaling functionf (x), espe-
cially in the regionx,0 corresponding tot,0 ~i.e., the
region which is not described by real values ofz). Note that
the apparent differences forx.0 are essentially caused b
the normalization off (x), which is performed at the coexis
ence curvex521 and at the critical pointx50 requiring

FIG. 1. The scaling functionF(z) vs z. The convergence radiu
of the small-z expansion is expected to beuz0u5R4

1/2.2.8.
ed.

f (21)50 and f (0)51. Although the large-x region corre-
sponds to smallz, the difference between the two approx
mate schemes does not decrease in the large-x limit due to
their slightly different estimates ofRx ~see Table III!. In-
deed, for large values ofx, f (x) has an expansion of the form

f ~x!5xg (
n50

f n
`x22nb ~43!

with f 0
`5Rx

21 .
We also considered the casen52, using the estimate

r 105213(7). In this case the scheme~A! was not particu-
larly useful because it turned out to be very sensitive tor 10,
whose estimate has a relatively large error. Combining
consistency conditionu0,u l ~which excludes values ofr 10
&210 when using the central values ofa, h, r 6, and r 8)
with the IHT estimate ofr 10, we found a rather good resu
for A1/A2, i.e., A1/A251.053(4). On theother hand, the

FIG. 2. The scaling functionf (x) vs x.
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TABLE IV. Estimates of universal ampitude ratios obtained in different approaches. Thee-expansion estimates ofRc andRx have been
obtained by settinge51 in theO(e2) series calculated in Refs. 30.

IHT-PR HT d53 exp. e exp. experiments

A1/A2 1.055~3! 1.056~4! ~Ref. 31! 1.029~13! ~Ref. 32! 1.054~1! ~Ref. 1!
1.058~4! ~Ref. 33!
1.067~3! ~Ref. 34!
1.088~7! ~Ref. 35!

Rj
1 0.353~3! 0.361~4!, 0.362~4! ~Ref. 36! 0.3606~20! ~Ref. 29,37! 0.36 ~Ref. 38!

Rc 0.12~1! 0.123~3! ~Ref. 39! 0.106
Rx 1.4~1! 1.407
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results for the other universal amplitude ratios consider
such asRx , Rc , R4, etc., although consistent, turned out
be much more imprecise than those obtained forn51, for
example,Rx51.2(3). This fact may be explained notin
that, except for the small interval210&r 10&29 ~this inter-
val corresponds to the central values of the other input
rameters!, the functionY(u), see Eq.~33!, has zeroes in the
the complex plane which are closer to the origin thanu0.
Therefore, the parametric functiong2(u) related to the mag-
netic susceptibility~see Appendix A2!, and higher-order de
rivatives of the free-energy, have poles within the diskuuu
,u0. On the other hand, in the casen51, u0

2 was closer to
the origin than the zeroes ofY(u) for the whole range of
values of the input parameters.

For these reasons, forn52, we present results only fo
the scheme~B!. Combining the consistency conditionu0
,u l , which restricts the acceptable values ofr 10 ~for ex-
ample using the central estimates of the other input par
eters it excludes valuesur 10u*12), with the IHT estimate
r 105213(7), wearrive at the results reported in Table I
~third column of data!. The reported value has been obtain
using r 10'29.

The coefficientsci , reported in Table III, turn out to be
relatively small in both schemes, and decrease rapidly, s
porting our choice of the approximation schemes. The res
of the various approximate parametric representations ar
reasonable agreement. Their comparison is useful to ge
idea of the systematic error due to the approximat
schemes. There is a very good agreement forA1/A2, which
is the experimentally most important quantity. Our final e
timate is

A1/A251.055~3!, ~44!

obtained by considering our best approximations: sche
~A! with n51 and scheme~B! with n52. The tricky point is
setting the error. Indeed, there are two sources of error.
has to consider the error due to the uncertainty of the in
parameters—this is the one reported in Table III for ea
estimate—and the systematic error due to the polynom
truncation. The latter type of uncertainty is very difficult
estimate since we do not have results for many values on.
Comparing the results obtained with the two differe
schemes, no systematic discrepancy is observed. This s
to indicate that the error due to the polynomial truncation
somewhat smaller than the error due to the input parame
Therefore, the error we quote is simply the latter. This is
a conservative error estimate. However, we believe it has
d,

a-
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p-
lts
in
an
n

-

e

ne
ut
h
al

t
ms

s
rs.
t
e

same reliability of the uncertainties quoted in Monte Ca
and experimental works, which claim that the correct e
mate lies withintwo error bars—the so-called 95% confi
dence interval.

We mention that approximately one half of the error
A1/A2 is due to the uncertainty on the critical exponenta,
which unfortunately can be hardly improved by present t
oretical means. Finally, to further check our results, we
plied again the scheme~B! for n52, using, instead ofr 10,
the precise experimental estimateA1/A251.054(1) as input
parameter. In practice we fix the coefficientc2 in such a way
to obtain the experimental estimate ofA1/A2. The idea is to
use the quantities known with the highest precision to de
mine, within our scheme of approximation, the equation
state and the corresponding universal amplitude ratios.
results are reported in the last column of Table III. They a
in good agreement with those obtained before.

Averaging our best estimates, scheme~A! with n51 and
scheme~B! with n52, we obtain the final estimates

Rj
1[~A1!1/3f 150.353~3!, ~45!

Rc[
aA1C1

B2 50.12~1!, ~46!

Rx[
C1Bd21

~dCc!d
51.4~1!, ~47!

R4[2
C4

1B2

~C1!3 5uz0u257.6~4!, ~48!

F0
`[ lim

z→`

z2dF~z!50.0303~3!, ~49!

0,cf&20. ~50!

The determination ofcf , see Eq.~27!, turns out to be rather
unstable, indicating that the approximate parametric rep
sentation we have constructed are still relatively inaccur
in the region very close to the coexistence curve. The c
stantcf is very sensitive to the values of the coefficientsr 2 j .
Improved estimates ofr 2 j would be important especially fo
cf . The approximation schemes~A! and ~B! with n51 pro-
vide also estimates ofr 10. We obtainr 105210(3),which is
agreement with the IHT resultr 105213(7).

In Table IV we compare our results~denoted by IHT-PR!
with the available estimates obtained from other theoret
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approaches and from experiments~for a review see, e.g., Ref
40!. Here we report results obtained from the analysis
high-temperature series~HT!, of fixed-dimension perturba
tive expansions (d53 exp.! and of expansions ine54
2d (e exp.!. We also mention the estimate of Ref. 4
A1/A251.08, obtained from the phenomenological relati
A1/A2'124a and the HT estimate ofa available at the
time ~using our estimate ofa we would obtainA1/A2

51.06, while using the experimental value we would g
A1/A251.05). Our estimate ofA1/A2 is as precise as th
estimate reported in Ref. 31, obtained in the field-theor
framework of minimal renormalization withoute expansion,
which is a perturbative expansion at fixed dimensiond53.
The agreement with the experimental result of Ref. 1 is v
good.

F. Conclusions

Starting from the small-field expansion of the effecti
potential in the high-temperature phase, we have constru
approximate representations of the critical equation of s
valid in the whole critical region. We have considered tw
approximation schemes based on polynomial representa
that satisfy the general analytic properties of the equation
state~Griffith’s analyticity! and take into account the Gold
stone singularities at the coexistence curve. The coeffici
of the truncated polynomials are determined by matching
small-field expansion in the high-temperature phase, wh
has been studied by lattice high-temperature techniques.
schemes considered can be systematically improved by
creasing the order of the polynomials. However, such po
bility is limited by the number of known coefficientsr 2 j of
the small-field expansion of the effective potential. We ha
shown that the knowledge of the first fewr 2 j already leads to
satisfactory results, for instance for the specific-heat am
tude ratio. Through the approximation schemes we have
sented in this paper, the determination of the equation
state may be improved by a better determination of the
efficientsr 2 j , which may be achieved by extending the hig
temperature expansion. We hope to return to this issue in
future.

Finally, we mention that the approximation schem
which we have proposed can be applied to otherN-vector
models. Physically relevant values areN53 andN54. The
case N53 describes the critical phenomena in isotrop
ferromagnets.42 The caseN54 is interesting for high-energy
physics: it should describe the critical behavior of finit
temperature QCD with two flavors of quarks at the chir
symmetry restoring phase transition.43

APPENDIX A: UNIVERSAL RATIOS OF AMPLITUDES

1. Notations

Universal ratios of amplitudes characterize the critical
havior of thermodynamic quantities that do not depend
the normalizations of the external~e.g., magnetic! field, or-
der parameter~e.g., magnetization!, and temperature. Ampli
tude ratios of zero-momentum quantities can be derived f
the critical equation of state. We consider several amplitu
derived from the singular behavior of the specific heat
f
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CH5A6utu2a, ~A1!

of the magnetic susceptibility in the high-temperature ph

x5
1

2
C1t2g, ~A2!

of the zero-momentum four-point connected correlat
function in the high-temperature phase

x45
8

3
C4

1t2g22bd, ~A3!

of the second-moment correlation length in the hig
temperature phase

j5 f 1t2n, ~A4!

and of the spontaneous magnetization on the coexiste
curve

M5Butub. ~A5!

Using the above-reported normalizations for the amplitud
the zero-momentum four-point couplingg4, see Eq.~20!, can
be written as

g452
C4

1

~C1!2~ f 1!3 . ~A6!

In addition, we consider the amplitude derived from the cr
cal behavior of the longitudinal susceptibility

xL5CcuHu2g/bd, ~A7!

along the critical isotherm.

2. Universal ratios of amplitudes from the parametric
representation

In the following we report the expressions of the univer
ratios of amplitudes in terms of the parametric representa
~32! of the critical equation of state. The singular part of t
free energy per unit volume can be written as

F5h0m0R22ag~u!, ~A8!

whereg(u) is the solution of the first-order differential equa
tion

~12u2!g8~u!12~22a!ug~u!5Y~u!h~u! ~A9!

that is regular atu51. The functionY(u) has been defined
in Eq. ~33!. The longitudinal magnetic susceptibility can b
written as

xL
215

h0

m0
Rgg2~u!, g2~u!5

2bduh~u!1~12u2!h8~u!

Y~u!
.

~A10!

In order to reproduce the predicted Goldstone singularit
the functiong2(u) must vanish atu0 according to

g2~u!;u02u for u→u0 . ~A11!

From Eq.~A10! we see thatg2(u) satisfies this condition if
h(u);(u02u)2 for u→u0.
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From the equation of state one can derive universal
plitude ratios of quantities defined at zero momentum, i
integrated in the volume. We consider

A1/A25~u0
221!22a

g~0!

g~u0!
, ~A12!

Rc[
aA1C1

B2 52a~12a!~22a!~u0
221!2b

3@m~u0!#22g~0!, ~A13!

R4[2
C4

1B2

~C1!3 5uz0u25r2@m~u0!#2~u0
221!22b,

~A14!

Rx[
C1Bd21

~dCc!d
5~u0

221!2g@m~u0!#d21@m~1!#2dh~1!.

~A15!

Using Eqs.~35! and ~36! one can computeF(z) and obtain
the small-z expansion coefficientsr 2 j of the effective poten-
tial. The constantF0

` , which is related to the behavior o
F(z) for z→`, see Eq.~26!, is given by

F0
`[ lim

z→`

z2dF~z!5r12d@m~1!#2dh~1!. ~A16!

Using relations~38!, one can easily obtain the constantcf ,
which is related to the behavior off (x) for x→21, see Eq.
~27!,

cf[ lim
x→21

~11x!22f ~x!. ~A17!

We consider also the universal amplitude ratioRj
1

[(A1)1/3f 1 which can be obtained from the estimates
R4 , Rc , andg4:

Rj
1[~A1!1/3f 15S R4Rc

g4
D 1/3

. ~A18!

We mention that in the case of superfluid helium it is cu
tomary to define a different hyperuniversal combination

Rj
T[~A2!1/3f T

2 , ~A19!

where f T
2 is the amplitude of a transverse correlation leng

jT defined from the stiffness constantrs , i.e., jT5rs
21 . Rj

T

can be determined directly from experiments belowTc ~see,
e.g. Ref. 40!.

APPENDIX B: GENERAL DISCUSSION ON THE
PARAMETRIC REPRESENTATIONS

A wide family of parametric representations was intr
duced a long time ago,10–12 in forms that can be related t
our Eqs.~32!. Since the application of parametric represe
tations in practice requires some approximation scheme,
may explore the freedom left in these representations
understand how this freedom may be exploited in orde
optimize the approximation. The parametric form of t
equation of state forces relations between the two functi
-
.,

f

-

-
ne
d

o

s

m̄[rm(u) andh(u), but it is easy to get convinced that on
of the two functions can be chosen arbitrarily. For defini
ness, let us takem̄ to be arbitrary and find the constraints th
must be satisfied byh(u) as a consequence of the equati
of state.

It is convenient for our purposes to establish these c
straints by imposing the formal independence of the funct
F(z) from the parametrization adopted form̄[rm(u),
which we may symbolically write in the form of a functiona
equation

d

dm̄
F rh~u!

~12u2!bdG50, ~B1!

keepingz fixed. By expandingm(u) according to Eq.~37!
and treating the coefficientsr andcn[m2n11 as variational
parameters, we may turn the above equation into a se
partial differential equations~keepingz fixed!

d

drF rh~u!

~12u2!bdG50, ~B2!

d

dci
F rh~u!

~12u2!bdG50, ~B3!

which must be satisfied exactly for alli by the functionh(u).
Simple manipulations lead to the following explicit form:

Y~u!S h1r
]h

]r D5m~u!F ~12u2!
]h

]u
12bduhG , ~B4!

Y~u!
]h

]ci
5u2i 11F ~12u2!

]h

]u
12bduhG , ~B5!

whereY(u) is defined in Eq.~41!. In turn, by expanding

h~u,r,ci !5u1 (
n51

`

h2n11~r,ci !u
2n11, ~B6!

and substituting into the above equations one obtains an
finite set of linear differential recursive equations for the c
efficientsh2n11, which generalize the relations found in Re
8, where the casem(u)5u was analyzed. A typical approxi
mation to the exact parametric equation of state amounts
truncation ofh to a polynomial form. We may in this cas
refine the approximation by reinterpreting the first recurs
equations involving a coefficienth2t11 which is forcefully
set equal to zero as stationarity conditions, which force
parametersr andci into the values minimizing the unwante
dependence of the truncatedF(z) on the parameters them
selves, i.e., on the choice of the functionm̄[rm(u). The
above procedure implies global~i.e., u independent! station-
arity, and as a consequence all physical amplitudes turn
to be stationary with respect to variations ofr andci .

These statements are fairly general, but it is certainly
teresting to consider the first few nontrivial examples. F
the lowest order truncation ofh we may adopt the parametr
zation
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h~u!5uS 12
u2

u0
2D p

, ~B7!

which includes both the Ising model in three dimensio
(p51) and generalO(N) symmetric models with Goldston
bosons ind dimensions@p52/(d22)#. It is easy to recog-
nize that the following relationship must then hold:

1

6
r21c15g2

p

u0
2 . ~B8!

Global stationarity implies that the stability conditions m
be extracted from the variation of any physical quantity.
particular we may concentrate on the universal zero ofF(z),
z0, noting thatz05z(u0), see Eq.~35!. As a consequence o
the above results, the simplest models can all be describe
the parametrization

z0

A6
5

A~g2c1!u0
22p

~12u0
2!b

~11c1u0
2!. ~B9!

Let us first consider the casec150. The minimization pro-
cedure leads to

r25
6g~g2p!

g22pb
,

u0
25

g22pb

~122b!g
. ~B10!

Settingp51 one immediately recognizes the linear param
ric model representation for the Ising model.10–12 Unfortu-
nately whenp52 the solution is not physically satisfactor
because it givesu0

2,0 for all N>2, and therefore the
scheme is useless for models with Goldstone singularitie

Let us now includec1. Requiringz0 to be stationary with
respect to variations of both parameters, we obtain

r25
6g~g2p11!

3g22~p21!b
,

u0
25

3g22~p21!b

~322b!g
,

c15g
2~g2p!1~2b21!

3g22~p21!b
, ~B11!

implying also

uz0u

A6
52S g2p11

322b D 3/22bS g

2b D b

. ~B12!

In the Ising model the above solution reduces to

r252g, ~B13!

u0
25

3

322b
,

s

by

t-

.

c15
2

3
~b1g!21.

Note that, substituting the physical values of the critical e
ponentsb and g for the N51 model,c1 turns out to be a
very small number (c150.04256) and the predicted numer
cal value of z0 is 2.8475, consistent within 1% with th
linear parametric model prediction.8 It is fair to say that in
the Ising case the above solution has a status which is c
parable to the linear parametric model, both conceptually
in terms of predicting power. It is therefore possible to take
as the starting point of an alternative approximation sche
whose higher-order truncations might prove quite effectiv

Unfortunately when we consider theXY system, setting
p52 and choosing the values of the exponents pertainin
N52, the value ofc1 becomes too large for the approxim
tion to be sensible. Indeed we getc1520.6762 and all test-
able predictions turn out to be far away from the correspo
ing physical values. It is, however, worth exploring th
features of this approach because, as we shall show, it
formal properties which might prove useful when consid
ing parametric representations of the equation of state
higher values ofN. Let us indeed consider the functiong2(u)
entering the parametric representation of the magnetic
ceptibility. We know that this function will in general show
singularities in the complexu plane corresponding to th
zeroes of the functionY(u). However, when substituting th
expressions ofh(u) and m(u) obtained from the saddle
point evaluation of the parametersr, u0, andc1, after some
simple manipulations, we find out that all singularities can
and

g2~u!5S 12
u2

u0
2D p21

. ~B14!

This fact was already observed in the casec150 for all
values of the truncation ordert. Therefore, the stationarity
prescription is a way to ensure a higher degree of regula
in the parametric representation of thermodynamic functio

Finally, let us observe that the stationary solution can
applied to the large-N limit of O(N) models in any dimen-
sion 2,d,4. In this limit b5 1

2 , g5p52/(d22). As a
consequence we obtain from our previous resultsr2

512/(d12), u0
25(d12)/4, c150, implying also

h~u!5uS 12
4

d12
u2D 2/(d22)

,

g2~u!5S 12
4

d12
u2D (42d)/(d22)

. ~B15!

We therefore obtained an exact parametrization of the eq
tion of state in the large-N limit for all d. Thus, for suffi-
ciently large values ofN, the scheme we have defined ma
be a sensible starting point for the parametric representa
of the thermodynamical functions in the critical domai
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