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We address the problem of determining the critical equation of state of three-dimensioisgstems. For
this purpose we first consider the small-field expansion of the effective poténgkhholtz free energyin the
high-temperature phase. We compute the first few nontrivial zero-momerfoint renormalized couplings,
which parametrize such expansion, by analyzing the high-temperature expansion of an improved lattice Hamil-
tonian with suppressed leading scaling corrections. These results are then used to construct parametric repre-
sentations of the critical equation of state which are valid in the whole critical regime, satisfy the correct
analytic propertiesGriffith’s analyticity), and take into account the Goldstone singularities at the coexistence
curve. A systematic approximation scheme is introduced, which is limited essentially by the number of known
terms in the small-field expansion of the effective potential. From our approximate representations of the
equation of state, we derive estimates of universal ratios of amplitudes. For the specific-heat amplitude ratio we
obtainA*/A~=1.0553), to be corpared with the best experimental estimate/A~ =1.0541).

I. INTRODUCTION a=—0.0128%38), A"/A"=1.0541). 2)

In the theory of critical phenomena, continuous phaselhese results represent a challenge for theorists because the
transitions can be classified into universality classes deteccuracy of the test of the renormalization-group predictions
mined only by few basic properties characterizing the sysis now limited by the precision of the theoretical calcula-
tem, such as space dimensionality, range of interaction, nuntions. We mention the best available theoretical estimates for
ber of components, and symmetry of the order parameter: @=—0.0150(17) obtained using high-temperature ex-
Renormalization-group theory predicts that all systems bepansion techniques,a=—0.0169(33) from Monte Carlo
longing to a given universality class have the same criticabimulations using finite-size scaling techniqdesy=
exponents and the same scaling functions. Here we consider0.011(4) from field theory.The close agreement with the
the XY universality class, which is characterized by a two-experimental data clearly supports the standard
component order parameter and effective short-range interenormalization-group description of thetransition?
actions. The lattice spin model described by the Hamiltonian In this paper we address the problem of determining the

critical equation of state for thXY universality class. The
critical equation of state relates the thermodynamical quan-
H =—3Y S5+ hi-s;, (1) tities in the neighborhood of the critical temperature, in both
(5 [ phases. It is usually written in the forfsee, e.g., Ref.)6

wheres; is a two-component unit vector, is a particular sys- H=MM? 1f(x), xoxtM Y8 3

tem belonging to th&Y universality class. It may be viewed

as a magnetic system with easy-plane anisotropy, in whicMhere f(x) is a universal scaling functiopnormalized in

the magnetization plays the role of order parameter and thguch a way that(—1)=0 andf(0)=1]. The universal ra-

spins are coupled to an external magnetic fteld tios of amplitudes involving quantities defined at zero mo-
The superfluid transition ofHe, occurring along thee ~ mentum(i.e., integrated in the volumesuch as specific heat,

line T,(P) (whereP is the pressupe belongs to the three- Magnetic susceptibility, etc., can be obtained from the scal-

dimensionalXY universality class. The order parameter ising functionf(x).

here the complex quantum amplitude of helium atoms. Such It should be noted that, for the transition in“He, Eq.(3)

a transition provides an exceptiona| Opportunity for an eij not direCtly related to the conventional equation of state

perimental test of the renormalization-group predictionsthat relatgs temperature and pressure. Moreover, in this case

thanks to the weakness of the singularity in the compressibilthe fieldH does not correspond to an experimentally acces-

ity of the fluid and to the purity of the samples. Moreover, sible external field, so that the function appearing in €).

experiments may be performed in a microgravity environ-cannot be determined directly in experiments. The physically

ment, leading to a reduction of the gravity-induced broadeninteresting quantities are universal amplitude ratios of quan-

ing of the transition. Recently, a Space Shuttle experifenttities formally defined at zero external field.

performed a very precise measurement of the heat capacity As our starting point for the determination of the critical

of liquid helium to within 2 nK from thex transition, obtain-  equation of state, we compute the first few nontrivial coeffi-

ing an extremely accurate estimate of the expormeand of  cients of the small-field expansion of the effective potential

the ratioA*/A~ of the specific-heat amplitudes (Helmholtz free energyin the high-temperature phase. For
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this purpose, we analyze the high-temperature expansion @ perfectly consistent with the experimental estimé2g
an improved lattice Hamiltonian with suppressed leadingalthough not equally precise.
scaling correctioné? If the leading nonanalytic scaling cor- The paper is organized as follows. In Sec. Il we study the
rections are no longer present, one expects a faster convesmall-field expansion of the effective potentigdelmholtz
gence, and therefore an improved high-temperafiiid)  free energy. We estimate the first few nontrivial coefficients
expansion whose analysis leads to more precise and reliabté such expansion by analyzing the corresponding IHT se-
estimates. We consider a simple cubic lattice and ¢ffe ries. The results are then compared with other theoretical
Hamiltonian estimates. In Sec. lll, using as input parameters the critical
exponents and the known coefficients of the small-field ex-
.. . . pansion of the effective potential, we construct approximate
H=—B ¢y b+ [H2+N(H2~1)%], (4 representations of the critical equation of state. We obtain
(y) X new estimates for many universal amplitude ratios. These

) ) - results are then compared with experimental and other theo-
where (x,y) labels a lattice link, andp, is a real two- |atical estimates.

component vector defined on lattice sites. The valug at
which the leading corrections vanish has been determined by
Monte Carlo simulations using finite-size techniqtiesh-
taining A\* =2.10(6). In Ref. 2 we already considered the
high-temperature expansidto 20th ordey of the improved A. Small-field expansion of the effective potential in the
¢* Hamiltonian (4) for the determination of the critical ex- high-temperature phase

pongnts, ach|eV|r)g a supstantlal |mprovemenF with respect to The effective potentialHelmholtz free energyis related
previous theoretical estimates. IHT expansions have also

been considered for Ising-like systefnsbtaining accurate © the (Gibbs free energy of the model. IM=() is the
determinations of the critical exponents, of the small-fieldmagnetization anéi the magnetic field, one defines
expansion of the effective potential, and of the small- 1
momentum behavior of the two-point function. YIS T

We use the small-field expansion of the effective potential FM)=M-H VIn Z(H), @)
in the high-temperature phase to determine approximate rep-
resentations of the equation of state that are valid in th
whole critical region. To reach the coexistence curve (
<0) from the high-temperature phase>0), an analytic
continuation in the complex plané*® is required. For this

Il. THE EFFECTIVE POTENTIAL IN THE
HIGH-TEMPERATURE PHASE

hereZ(H) is the partition function and the dependence on
he temperature is always understood in the notation.

In the high-temperature phase the effective potential ad-
mits an expansion around =0:

purpose we use parametric representati8n, which =g
implement in a rather simple way the known analytic prop- AF=FM)—F(0)= D, ———a,M2. (8)
erties of the equation of stairiffith’s analyticity). This =

approach was successfully applied to the Ising model, fO[Eh' . b itten in t f lized
which one can construct a systematic approximation schem IS €xpansion can be rewritten in terms of a renormalize

based on polynomial parametric representaficarsd on a magnetizationy

global stationarity conditioi.This leads to an accurate de- 1 1
termination of the critical equation of state and of the uni- AF=-m?e2+ >, m¥ i ——g, ¢34, (9)
versal ratios of amplitudes that can be derived from*. 2 =2 (2))r=7

XY systems, in which the phase transition is related to th?/vhere

breaking of the continuous (@ symmetry, present a new

important feature with respect to Ising-like systems: the £(t,H=0)2M(t,H)?
Goldstone singularities at the coexistence curve. General ar- pP="— —,
guments predict that at the coexistence curixe andH x(t,H=0)

ties behave, respectively, as magnetic susceptibility and the second-moment correlation
length

(10

M oM
Xr=tr Xu= g —HIE2 5)

H x=2 ($a(0),(0)), (11)

In our analysis we will consider polynomial parametric rep-
resentations that have the correct singular behavior at the 1
coexistence curve. =57 > X2(,(0) (X)),
By using parametric representations we obtain estimates X
of several universal amplitude ratios; in particular, of theandm=1/¢. In field theorye is the expectation value of the
experimentally important specific-heat amplitude ratio. Ourzero-momentum renormalized field. The zero-momentum
final estimate 2j-point renormalized constangs; approach universal con-
stants(which we indicate with the same sympdbr t—0.
A"/A”=1.0553) (6) By performing a further rescaling
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12

o 12
o=z
VOa
in Eqg. (9), the free energy can be written as
m3
AF=—A(2), (13
Ja
where
A(z)=122+ iz4+2 ——— ;2% (14
27 a1t T &2
and
J2j .
rzj:j—jl, j=3. (15)
04

One can show that=Mt~# and that the equation of state
can be written in the form

HothoF(z), (16)

where

0A(z
Fo=2 2424 S Fop2™t @7
0z m=3
with
1

(18

F2m—1:(2m—_1)!r2m.

B. Zero-momentum renormalized couplings by IHT expansion

To compute the high-temperature series of the four-point

couplingg, and of the effective-potential parametegs, we

rewrite them in terms of the zero-momentum connecte

2j-point Green’s functiong,;

X2j=
(19

(x= x>). For generic values dfl, the number of components
of the spin vector, we have

3N X4
9r‘m@ (20
and
5(N+2) xsx2
r6_10_mx_§,’ (21)
280N+ 2 35(N+2)2 2
4= 280 Qa ) XeX2 X )¢ XsX2

3(N+4) x5  O9(N+4)(N+6) x3 '
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7700N+2) xex> 350 N+2)2 xgx5

0= 15 400~

(N+4) x5 (N+4)? x4
. 140QN+2)2  xgx3
3(N+4)(N+6) x3

35(N+2)3 X103

C3(N+4)(N+6)(N+8) 4

The formulas relevant for thXY universality class are ob-
tained settingN=2.

Using the¢* lattice Hamiltonian(4), we have calculated
x andm,=3,x*($(0)#(x)) to 20th ordery, to 18th order,
X6 t0 17th orderyg to 16th order, ancy,o to 15th order, for
generic values ofA. The IHT expansion, i.e., with sup-
pressed leading scaling corrections, is achieved Xor
=2.106).2 In Table | we report the series of,, x, X4, X6
Xs, and y1o for A=2.10. Using Eqs(20) and (21) one can
obtain the high-temperatur@HT) series necessary for the
determination ofg, andr,;. We analyzed them using the
same procedure applied to the IHT expansions of Ising-like
systems in Ref. 8. In order to estimate the fixed-point value
of g4 and of the coefficients,; , we considered Pad®log-
Padeand first-order integral approximants of the serieg@in
for A=2.10, and evaluated them Bt. We refer to Ref. 8
for the details of the analysis. Our estimates are

9,=21.083+3), (22)
_ 5
= 57 94=1.3962+2), (23
re=1.95111+3), (24)
re=1.366+3). (25

We quote two errors: the first one is related to the spread of
he approximants, while the second one gives the variation of
he estimate when varies between 2.04 and 2.16. In addi-

(}ion, we obtained a rough estimate ofg, i.e., rip=

—13(7). Forcomparison, we anticipate that the analysis of
the critical equation of state using approximate parametric
representations leads to the estimafg= —10(3).From the
estimates ofg; andr,; one can obtain corresponding esti-
mates for the zero-momentum renormalized coupliggs
=rygy t with j>2.

Table Il compares our resultslenoted by IHT with the
estimates obtained using other approaches, such as the HT
expansion of the standard lattice spin mo@B|*3~1° field-
theoretic methods based on the fixed-dimensibn3 g
expansioft'®” and on thee-expansiot*81° The fixed-
dimension field-theoretic estimates@f have been obtained
from the zero of the Callan-Symanzikfunction, whose ex-
pansion is known to six loop¥.In the same frameworfgg
andgg have been estimated from the analysis of the corre-
sponding four- and three-loop series, respectivejhe au-
thors of Ref. 16 argue that the uncertainty on their estimate
of gg is approximately 0.3%, while they consider their value
for gg much less accurate. Theexpansion estimates have
been obtained from constrained analyses of the four-loop se-
ries ofg, and of the three-loop series of; .
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TABLE I. Coefficients of the high-temperature expansiom®f, x, x4, Xs, X8, X10- 1hey have been

obtained using the Hamiltoniai) with A=2.10.

i m; X Xa
0 0 0.82305062235187783163838 —0.18361621025768068492172
1 1.01611849043072013077966 2.032236980861440261559321.81350523351772810305606
2 5.01790173559352893587925  4.4133999910876195681939010.2403328491873632045378
3 17.1372887645210686867092  9.4946546507572059017453144.8928073800743626690682
4 50.5729609164717064337798 19.8432084757850795073880L68.753294310535712758532
5 136.975729153185634797939  41.3105316077169269675024672.899325351072412028155
6 351.547955204015543873533  84.86576653465875435179401806.05498365521624417337
7 867.882609960590948513531 173.9198770805839326680346384.52486767607368575700
8 2082.72988964511892008013 353.80586655491492562845115362.4317708302607812112
9 4887.89348922134368695104 718.54457318220665420041512306.4841196583464482445
10 11271.6038365544561486584 1452.55696588171500306095.13150.461045583807761395
11 25618.1126339930289598217  2932.7824329969231215865295305.926162214852952064
12 57532.0447298988841107389 5902.7024446519938787542854781.109517718395587745
13 127889.749773305781861722 11869.0080781568501056056.894806.32404641680977111
14 281828.971329949201651321 23811.0622160012068230224682769.64431772632678941
15 616366.979493029224503143  47733.2907485305100325248.1414677.5171522019349233
16 1339133.76964227829126980 95522.710919720311700554(27486804.4332023911210055
17 2892420.77412897864771425 191043.09879114800175755®5472437.4333935066305991
18 6215040.60947250914305650 381560.204019249641798944154435238.761288809747194
19 13292241.3642748890173429 761691.955581673385411208
20 28309542.5693146536002667 1518865.25572011244933658
i X6 X8 X10
0 0.41651792496748423277383-2.07276872395008612032057 17.8224779282297038884825
1 8.19357083273717982769144-66.6409389277329689706620  845.247991215093077905035
2 81.6954441314190452820070-1011.50102952099242860043 17983.4651630934745766842
3 577.734561420010600288632—10327.4974814820902607880 248053.171125799025029980
4 3288.50395189429008814810-81557.4477403308614541401 2572480.03564061669203194
5 16096.6021109696857145564—536525.345841149579660234 21718902.5365937343351130
6 70442.2092664445625747715-3075097.70592321924332973 156737903.631432308532083
7 282678.282078376456985396- 15817337.6236306593687791  998806344.593851737549288
8 1058442.95252211500336034— 74543191.4965166803297285 5750852421.81974869997198
9 3744677.84665924694446919-326778866.937610399640322  30428100948.8992362353297
10 12635750.8707582942375013-1347823157.99877343602884  149865516252.140441504474
11 40959287.0765118834279901-5277067971.27466652475816 694034037396.324618345020
12 128268696.512235415964465-19750695382.3283907899788 3046464352917.44305602911
13 389824946.322878356697650- 71066114622.3163753581174 12757807364908.6407194560
14 1153973293.83499223649654- 246972985495.952557381976 51244942192011.6695801488
15 3337461787.55665279189948-832179913942.254869433972 198319718730601.629272462
16 9454326701.58705373223814-2727546459564.59095483523
17 26288539415.6469228911099
TABLE II. Estimates ofg=5g,/(24m), re, andrg.
IHT HT d=3 g exp. € exp.
5 1.39G64) 1.4118), 1.4068) (Ref. 13 1.4033) (Ref. 9 1.42524) (Refs. 19,14
1.41511) (Ref. 14 1.40 (Ref. 17
e 1.951(14) 2.2(6) (Ref. 15 1.967(Ref. 16 1.96912) (Refs. 19,18

re 1.369)

1.641(Refs. 16

2.1(9) (Refs. 19,18
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IIl. THE CRITICAL EQUATION OF STATE 2m
, , , , 2<d=2+—<4 for 0<m<n, m,neN. (29
A. Analytic properties of the scaling equation of state n
~ From the analysis of the IHT series we have obtained thg, particular, in three dimensions one fiR8ls
first few nontrivial terms of the small-field expansion of the
effective potential in the high-temperature phase. This pro- 1
vides the first few terms in the small-expansion of the f(X)=w? 1+ N[fl(w)Jrln ofy(w)]+O(N"?)|, (30)
equation of stat€16). The functionH(M,t), the external
f|e|d in Eq (16), satisfies Gr|ff|th's analytICIty it is analytiC where the functionil(w) andfz(w) have a regu'ar expan-
in M aroundM =0 for t>0 fixed and int aroundt=0 for  gjon in powers ofw. Moreover,
M>0 fixed. The first condition implies tha(z) has an
_expa_msion in powers o see Eq(17). The sgcond condition fo(w)=0(w?), (3D
implies that forz—o, F(z) has an expansion of the form
so that logarithms appear in the expansion only at next-next-
s g to-leading order.
F(2)=z nE—:O Faz M7 (26) This analysis indicates that E8) is not correct in three
- dimensions since it is not compatible with the exact lakpe-
To reach the coexistence curve, i.es0 and H=0, one result. However, it is not clear how to modify it. A possibil-
should perform an analytic continuation in the comptex ity is that Eq.(30) holds for all values oiN. Note that the
plane.6'9 The spontaneous magnetization is related to théresence of logarithms in the expansion does not contradict
complex zeroz, of F(z). Therefore, the description of the the conjecture that the behavior near the coexistence curve is
coexistence curve is related to the behavioF¢f) in the  controlled by the zero-temperature infrared-stable Gaussian
neighborhood of,. fixed point. In this case, logarithms are not indeed unex-
pected: for instance, they usually appear in reduced-
temperature asymptotic expansions around Gaussian fixed
points(see, e.g., Ref. 29
The physics of the low-temperature phase of models with
an N-vector order parameter—they includer systems that
correspond toN=2—is very different from that of the Ising
model, because of the presence of Goldstone modes at the In order to obtain a representation of the critical equation
coexistence curve. The singular behavior of the longitudinaPf state that is valid in the whole critical region, one may use
susceptibilityy, for t<0 andH— 0 is governed by the zero- Parametric representations, WhICh' implement in a simple
temperature infrared-stable fixed poft23In d dimensions, Way all scaling and analytic properti€:*?One may param-

B. Goldstone singularities at the coexistence curve

C. Parametric representations

this leads to the prediction etrizeM andt in terms ofR and # according to
f(x)=~c; (1+x)2@"2) for x——1, (27) M =mgR’m(6), (32)
wherex=tM ~Y8 andf(x) is the scaling function introduced t=R(1-6?),
in Eq. (3) (as usualx=—1 corresponds to the coexistence
curve. This behavior at the coexistence curve has been veri- H=hoR?%h(#6),
fied in the framework of the largh- expansion toO(1/N)
(i.e., next-to-leading ordgf?* wherehy andmg are normalization constants. The variaBle

The nature of the corrections to the behavi@y) is less is nonnegative and measures the distance from the critical
clear. Settingw=1+x andy=HM ~°, it has been conjec- point in the ¢,H) plane; it carries the power-law critical
tured thatw has the form of a double expansion in powers ofsingularities. The variabl@ parametrizes the displacements
y and y(9=2/2 near the coexistence curf@?®?j.e., fory  along the line of constarR. The functionsm(6) andh(#6)

—0 are odd and regular &=0 and atd=1. The constants,
and hy can be chosen so that(#)=#+0O(6%) and h(6)

w=1+x=Cy+Coyt 2+dy?+doy? P+day? c+ -, =0+0(6°. The smallest positive zero df(6), which
(29 should satisfyf,>1, represents the coexistence curve, i.e.,

) ) ) . T<T;,andH—O0.
wheree=4—d. This expansion has been derived essentially Thg parametric representation satisfies the requirements
from an e-expansion analys&. Note that in three d'm/e”' of regularity of the equation of state. Singularities can appear
sions this conjecture predicts an expansion in powess &f only at the coexistence curvdue for example to the loga-
or equivalently an expansion 6{x) in powers ofw for ®  jthms discussed in Sec. ll)Bi.e., for §= 6,. Notice that

—0. . ) . i ) the mapping(32) is not invertible when its Jacobian van-
The asymptotic expansion of tltedimensional equation ishes. which occurs when

of state at the coexistence curve has been computed analyti-

cally in the framework of the largh+ expansiorf® using the Y(9)=(1-6)m’(6)+286m(6)=0. (33
O(1/N) formulas reported in Ref. 21. It turns out that the

expansion(28) does not strictly hold for values of the dimen- Thus, parametric representations based on the magpig
siond such that are acceptable only ify< 6, where 6, is the smallest posi-
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tive zero of the functiory (8). One may easily verify that the n _
asymptotic behavio(27) is reproduced simply by requiring scheme(A): m(6)=46 1+E Ci 62'), (39
that i=1

h(0)~(8,— 6) for 0— 6. (34) h(6)= 6(1— 6% 65)°.

The relation among the functioma(6), h(#6), andF(z) is  In the second scheme, denoted (By, we set

i b
given by scheme (B): m(#)=4, (40)

z=pm(60)(1— 6~ (39

n

F[2(6)]=p(1- 62)%h( ), (36 h(6)=0(1-6%65) 1+ 2, ¢ 92')-
wherep is a free parameté?® In the exact parametric equa- Here h(6) is a polynomial of order & 2n with a double
tion the value ofp may be chosen arbitrarily but, as we shall .4, até,. In both schemes the paramefeis fixed by the
see, when adopting an approximation procedure the depefsqirement34), while 6, and then coefficientsc; are de-
dence orp is not eliminated. In our approximation scheme (armined by matching the small-field expansion ffz).
we will fix p to ensure the presence of the Goldstone singuTpis means that, for both schemes, in order to fix heo-
larities at the coexistence curve, i.e., the asymptotic behaviQlsicients ¢. we need to known+1 values ofry,, ie.
(34). Sincez=p 0+0(6%), expandingm(6) andh(9) in """ " “Note that for the schemi®) ‘
(odod) powers of6,

Y(0)=1—6*+2B6?, (41)

m(f)=0+ 21 Man+16°"* Y, (37 independently of, so thatg,=(1—28) 1. Concerning the
" scheme(A), we note that the analyticity of the thermody-
namic quantities fot 6| < 6, requires the polynomial func-
h(6)= 6+ 21 hopy 1602711 tion Y(6) not to have complex zeroes closer to origin than
n= 00.
and using Eqs(35) and (36), one can find the relations  In Appendix B we present a more general discussion on
amongp, Myns 1, hony 1, and the coefficients ,,, , of the ~ the parametric representations.
expansion of(z).

One may also write the scaling functidix) in terms of E. Results
the parametric functionsi(6) andh(#): As input parameters for the determination of the paramet-
1— 02 m(6,)| Y8 ric representations, we use the best available estimates of the

X= 2_{_0} , (39 critical exponents, which are=—0.01285(38)(from the

05—1L m(0) experiment of Ref. I =0.0381(3) (from the high-
s temperature analysis of Ref). Moreover we use the follow-
f(x)= M M ing estimates of »; : 1=1.96(2) which is compatible with

m(1l)| h(1)’ all the estimates ofrg reported in Table Il, andrg

In Appendix A we report the definitions of some universal =1.40(15) which takes somehow into account the differ-
PP P ences among the various estimates.

ratios of amplitudes that have been introduced in the litera- The casen=0 of the two scheme$A) and (B) is the

ture and the corresponding expressions in terms of the func- . i
tions m(6) andh(#). Same, and requires the knowledgeagf», andrg. Unfortu

nately this parametrization does not satisfy the consistency
condition 65< #?=(1—2B) *. Both schemes give accept-
able approximations fan=1, usingrg as an additional input

In order to construct approximate parametric representggarameter. The numerical values of the relevant parameters
tions we consider polynomial approximationsmf#) and and the resulting estimates of universal amplitude rgtee
h(6). This kind of approximation turned out to be effective the appendix for their definitiorare shown in Table Ill. The
in the case of Ising-like sisteni$. The major difference with  errors reported are related to the errors of the input param-
respect to the Ising case is the presence of the Goldstoragers only. They do not take into account possible systematic
singularities at the coexistence curve. In order to take thenerrors due to the approximate procedure we are employing.
into account, at least in a simplified form which neglects theWe will return on this point later.
logarithms found in Eq(30), we require the functioh(6) to In Figs. 1 and 2 we show respectively the scaling func-
have a double zero &, as in Eq.(34). Polynomial schemes tions F(z) andf(x), as obtained from the approximate rep-
may in principle reconstruct also the logarithms, but ofresentations given by the schem@s) and (B) for n=1,
course only in the limit of an infinite number of terms. using the input valueg= —0.01285,7=0.0381,r=1.96,

In order to check the accuracy of the results, it is useful teandrg=1.4. The two approximations &f(z) are practically
introduce two distinct schemes of approximation. In the firstindinstinguishable in Fig. 1. This is also numerically con-
one, which we denote g#\), h(#6) is a polynomial of fifth  firmed by the estimates of the universal costaft(reported
order with a double zero &y, andm(#) a polynomial of in Table Ill), which is related to the largebehavior ofF (z),
order (1+2n): see Eq.(26):

D. Approximate polynomial representations
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TABLE lIl. Results for the parameters and the universal amplitude ratios using the s¢A¢nsee Eq.
(39), and the scheméB), see Eq.(40). The label above each column indicates the scheme, the number of
terms in the corresponding polynomial, and the input parameters employed, in addition to the critical expo-
nentsa and 7. Note that the quantities reported in the first four lines do not have a physical meaning, but are
related to the particular parametric representation employed. Numbers marked with an asterisk are inputs, not

predictions.

[(A) n=1; rg,rg]

[(B) n=1; rg,rg]

[(B) n=2;rg,rg,r1q

[(B) n=2;rg,rg,A"/A7]

p 2.223) 2.072) 2.045) 2.01(4)
03 3.8410) 2.97110) 2.84) 2.52)
Cy —0.0247) 0.7212) 0.106) 0.155)
Cy 0 0 0.012) 0.021)
Io -9.6(1.0) -11(2) *—13(7) —7(5)
ATIAT 1.0553) 1.0572) 1.0553) *1.0541)
R. 0.1238) 0.1133) 0.1187) 0.1236)
R4 7.53) 7.92) 7.83) 7.6(2)
R/ 0.3533) 0.3502) 0.3523) 0.3543)
R, 1.389) 1.51(3) 1.478) 1.41(6)
Fo 0.03033) 0.03013) 0.03023) 0.03043)
Ct 5(4) 62(41) 15(10)
F(z)~F32z° for z—. (42) f(—1)=0 andf(0)=1. Although the larges region corre-

) . o . sponds to smalk, the difference between the two approxi-
This agreement is not trivial since the smalkexpansion has  mgate schemes does not decrease in the larty@it due to

a finite convergence radius given (g|=R;?~2.8. There-  thejr slightly different estimates dR, (see Table II). In-

fore, the determination of (z) on the whole positive real deed, for large values of f(x) has an expansion of the form
axis from its smallz expansion requires an analytic continu-

ation, which turns out to be effectively performed by the

approximate parametric representations we have considered.

We recall that the large-limit corresponds to the critical

theoryt=0, so that positive real values afdescribe the i f§=R_1.
high-temperature phase up te=0. Instead, larger differ-
ences between the approximations given by the schéfjes
and (B) for n=1 appear in the scaling functidi(x), espe-
cially in the regionx<0 corresponding td<0 (i.e., the g0 estimate has a relatively large error. Combining the
region which is not described by real valueszpf Note that consistency conditio,< 6, (which excludes values afq

the apparent differences for>0 are essentially caused by _ _ 145 when using the central values af 7, re, andrg)

the normalization of (x), which is performed at the coexist- with the IHT estimate of 15, we found a rather good result
ence curvex=—1 and at the critical poink=0 requiring ¢, A*/IA~, i.e., A*/A-=1.0534). On theother hand, the

f(x)=x7>, fox 28 (43
n=0

We also considered the case=2, using the estimate
rio=—13(7). Inthis case the schem@) was not particu-
larly useful because it turned out to be very sensitive o

2000
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i
— Ayn=1
1500 20 B) n=1 f/""
,,/ 4
15+ Z
F@@) 1000 |
fx)
10
500 -
05 I e
0
0 00 = . . ‘
"-1.0 0.5 00 0.5 10

FIG. 1. The scaling functiofr(z) vs z. The convergence radius

of the smallz expansion is expected to be,|=R}?~=2.8. FIG. 2. The scaling functiof(x) vs x.
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TABLE IV. Estimates of universal ampitude ratios obtained in different approachess-€kpansion estimates &; andR, have been
obtained by setting=1 in the O(€?) series calculated in Refs. 30.

IHT-PR HT d=3 exp. € exp. experiments

AYIAT 1.0553) 1.0564) (Ref. 30 1.02913) (Ref. 32 1.0541) (Ref. D
1.0584) (Ref. 33
1.06713) (Ref. 39
1.0887) (Ref. 35

R;’ 0.3533) 0.3614), 0.3624) (Ref. 36 0.360620) (Ref. 29,37 0.36 (Ref. 38
R¢ 0.121) 0.1233) (Ref. 39 0.106
R, 1.41) 1.407

results for the other universal amplitude ratios consideredsame reliability of the uncertainties quoted in Monte Carlo
such asR, R¢, Ry, etc., although consistent, turned out to and experimental works, which claim that the correct esti-
be much more imprecise than those obtainedrferl, for  mate lies withintwo error bars—the so-called 95% confi-
example,R,=1.2(3). This fact may be explained noting dence interval.
that, except for the small interval 10<r4< — 9 (this inter- We mention that approximately one half of the error on
val corresponds to the central values of the other input paA™/A™ is due to the uncertainty on the critical exponent
rametery the functionY (), see Eq(33), has zeroes in the which unfortunately can be hardly improved by present the-
the complex plane which are closer to the origin thegya  oretical means. Finally, to further check our results, we ap-
Therefore, the parametric functiap(6) related to the mag- plied again the schem@) for n=2, using, instead of 1,
netic susceptibilitysee Appendix AR and higher-order de- the precise experimental estim#é/A~=1.054(1) as input
rivatives of the free-energy, have poles within the digk  parameter. In practice we fix the coefficientin such a way
< 6y. On the other hand, in the case=1, 0(2, was closer to  to obtain the experimental estimateAf/A~. The idea is to
the origin than the zeroes o&f(¢) for the whole range of use the quantities known with the highest precision to deter-
values of the input parameters. mine, within our scheme of approximation, the equation of
For these reasons, far=2, we present results only for state and the corresponding universal amplitude ratios. The
the scheme(B). Combining the consistency conditiofy results are reported in the last column of Table lll. They are
<6,, which restricts the acceptable valuesrgf (for ex-  in good agreement with those obtained before.
ample using the central estimates of the other input param- Averaging our best estimates, schet¢ with n=1 and
eters it excludes valugls ;o =12), with the IHT estimate Scheme(B) with n=2, we obtain the final estimates
r.o=—13(7), wearrive at the results reported in Table IlI

_ B¢+ _
(third column of data The reported value has been obtained R;Z(A+)1 f*=0.3533), (45)
usingrqo~—29. s

The coefficients;, reported in Table Ill, turn out to be R.— ah ~0.121) (46)
relatively small in both schemes, and decrease rapidly, sup- ¢ B2 ' '
porting our choice of the approximation schemes. The results
of the various approximate parametric representations are in ctBé!
reasonable agreement. Their comparison is useful to get an Ry=——"7=141), (47)
idea of the systematic error due to the approximation (6C%)
schemes. There is a very good agreementforA~, which cB2
is the experimentally most important quantity. Our final es- 4
mate o Y portant quantity Ri=— (g =12l =7.64), (48)

AT/AT=1.0583), (44) Fo=limz °F(z)=0.03033), (49)

obtained by considering our best approximations: scheme o
(A) with n=1 and scheméB) with n=2. The tricky point is 0<c;=20. (50)

setting the error. Indeed, there are two sources of error. One

has to consider the error due to the uncertainty of the inpufhe determination o, see Eq(27), turns out to be rather
parameters—this is the one reported in Table Il for eachunstable, indicating that the approximate parametric repre-
estimate—and the systematic error due to the polynomiagentation we have constructed are still relatively inaccurate
truncation. The latter type of uncertainty is very difficult to in the region very close to the coexistence curve. The con-
estimate since we do not have results for many values of stantc; is very sensitive to the values of the coefficienys.
Comparing the results obtained with the two differentimproved estimates af,; would be important especially for
schemes, no systematic discrepancy is observed. This seems The approximation scheméa) and (B) with n=1 pro-

to indicate that the error due to the polynomial truncation isvide also estimates afo. We obtainr ;q= —10(3),which is
somewhat smaller than the error due to the input parameteragreement with the IHT result = —13(7).

Therefore, the error we quote is simply the latter. This is not In Table IV we compare our resultdenoted by IHT-PR

a conservative error estimate. However, we believe it has theith the available estimates obtained from other theoretical
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approaches and from experimeffta a review see, e.g., Ref. Cu=A~|t| ¢, (A1)
40). Here we report results obtained from the analysis of ) o ]
high-temperature serie®T), of fixed-dimension perturba- of the magnetic susceptibility in the high-temperature phase
tive expansions d=3 exp) and of expansions ire=4 1
—d (e exp). We also mention the estimate of Ref. 41, x==C*t77, (A2)
A*/A~=1.08, obtained from the phenomenological relation 2
A"/A"~1-4a and the HT estimate ok available at the of the zero-momentum four-point connected correlation
time (using our estimate ofx we would obtainA*/A™  function in the high-temperature phase
=1.06, while using the experimental value we would get
A"/A~=1.05). Our estimate ofA*/A~ is as precise as the 8 ., 285
estimate reported in Ref. 31, obtained in the field-theoretic Xa=7zCat 775 (A3)
framework of minimal renormalization withoutexpansion,
which is a perturbative expansion at fixed dimensibn3.  of the second-moment correlation length in the high-
The agreement with the experimental result of Ref. 1 is verjemperature phase
good. E=ft, (A4)

, and of the spontaneous magnetization on the coexistence
F. Conclusions curve

Starting from the small-field expansion of the effective

potential in the high-temperature phase, we have constructed M=BIt|~. (A5)

approximate representations of the critical equation of statgjsing the above-reported normalizations for the amplitudes,
valid in the whole critical region. We have considered tWona zero-momentum four-point coupling, see Eq(20), can
approximation schemes based on polynomial representations, \vritten as

that satisfy the general analytic properties of the equation of

state(Griffith’s analyticity) and take into account the Gold- Cs

stone singularities at the coexistence curve. The coefficients 0a=— W (AB)

of the truncated polynomials are determined by matching the

small-field expansion in the high-temperature phase, whicln addition, we consider the amplitude derived from the criti-
has been studied by lattice high-temperature techniques. Ttoal behavior of the longitudinal susceptibility

schemes considered can be systematically improved by in-

creasing the order of the polynomials. However, such possi- xL=CE[H| A, (A7)
bility is limited by the number of known coefficients; of
the small-field expansion of the effective potential. We hav
shown that the knowledge of the first fay already leads to
satisfactory results, for instance for the specific-heat ampli-
tude ratio. Through the approximation schemes we have pre-
sented in this paper, the determination of the equation of In the following we report the expressions of the universal
state may be improved by a better determination of the coratios of amplitudes in terms of the parametric representation
efficientsr ,; , which may be achieved by extending the high-(32) of the critical equation of state. The singular part of the
temperature expansion. We hope to return to this issue in thieee energy per unit volume can be written as

future.

Finally, we mention that the approximation schemes F=homoR?~*g( ), (A8)
which we have proposed can be applied to otNerector
models. Physically relevant values ale=3 andN=4. The
case N=3 describes the critical phenomena in isotropic
ferromagneté? The caseN=4 is interesting for high-energy (1— 6% g’ (0)+2(2—a)6g(0)=Y(O)h(8)  (A9)
physics: it should describe the critical behavior of finite-
temperature QCD with two flavors of quarks at the chiral-that is regular a¥=1. The functionY(#) has been defined

eanng the critical isotherm.

2. Universal ratios of amplitudes from the parametric
representation

whereg(6) is the solution of the first-order differential equa-

symmetry restoring phase transitith. in Eqg. (33). The longitudinal magnetic susceptibility can be
written as
. . hg 2B686h(6)+(1—6*)h’(0)
APPENDIX A: UNIVERSAL RATIOS OF AMPLITUDES X0 l:m_Rygz( 0), g.(6)= Y o)
1. Notations 0 (A10)

ha\%givgﬁﬁgrﬁ'ggy%faﬂfIgﬂgﬁf}tf:saﬁgtegzeggte gg';'g%bgrin order 'to reproduce the predicted Goldstone singularities,
the normalizations of the externéd.g., magneticfield, or- he functiong(0) must vanish abl according to

der parametefe.g., magnetizationand temperature. Ampli- 9o(0)~ 6y— 6 for 6— 6. (A11)
tude ratios of zero-momentum quantities can be derived from

the critical equation of state. We consider several amplitudebrom Eq.(A10) we see that,(6) satisfies this condition if
derived from the singular behavior of the specific heat h(8)~ (8,— 6)? for 6— 6,.
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_From the equation pf state one can derive universal amﬁzpm(g) andh(6), but it is easy to get convinced that one
plitude ratios of quantities defined at zero momentum, i.e.of the two functions can be chosen arbitrarily. For definite-

integrated in the volume. We consider ness, let us take to be arbitrary and find the constraints that

9(0 must be satisfied bi(6) as a consequence of the equation
ATIAT=(03—1)2" ¢ —=, (A12)  of state.
9(6o) It is convenient for our purposes to establish these con-
straints by imposing the formal independence of the function
aATC”t —
Re=——-7—=—a(l—a)(2—a)( 9(2)_ 1)28 F(z) from the parametrization adopted fan=pm(¥6),
B which we may symbolically write in the form of a functional
X[m(6o)]29(0), (A13) ~ equation
C;B? . 5| ehie) |
Ry=— arya = |2l = plm(00) TP( 6~ 1) 727, ol 1|~ (BY)
(A14) ) i . .
keepingz fixed. By expandingn(#) according to Eq(37)
ctBl and treating the coefficienys andc,=m,, 1 as variational
= :(9(2)_1)—v[m( 05)1° 1 m(1)] °h(1). parameters, we may turn the above equation into a set of
(8C°° partial differential equationékeepingz fixed)
(A15)
Using Egs.(35) and (36) one can comput&(z) and obtain d| ph(o) | B2
the smallz expansion coefficients,; of the effective poten- dp| (1— ?)B? o
tial. The constanf(, which is related to the behavior of
F(z) for z—, see Eq(26), is given by d[ ph(o) L o)
Fo=limz °F(z)=p* Im(1)]"°h(1). (A16) do| (1—¢?)0|

Z— >
which must be satisfied exactly for alby the functionh(#6).

Using relations(38), one can easily obtain the constant Simple manipulations lead to the following explicit form:

which is related to the behavior éfx) for x——1, see Eq.

(27),
Y(0)| h+ ah) ()| (1 02)(9h+2 56h|, (B4)
—|=m — - ,
C= lim (14%)~2(x). (A17) Pap 6 %P
x——1
We consider also the universal amplitude ratlb; Y(e)ﬁzaziﬂ (1—02)@+2,850h (B5)
=(AT)Y3f* which can be obtained from the estimates of JC; d0
Ra: Re, andgs: whereY(6) is defined in Eq(41). In turn, by expanding
R4R 1/3
R{=(A")¥f* = —C) . (A18) -
h(6,p,c)=0+ 2, hanealpc) 6", (B)

We mention that in the case of superfluid helium it is cus-

tomary to define a different hyperuniversal combination  and substituting into the above equations one obtains an in-
T~ 13— finite set of linear differential recursive equations for the co-
Re=(A")"r, (A19) efficientsh,,,, 1, which generalize the relations found in Ref.
h8, where the case(6) = § was analyzed. A typical approxi-
mation to the exact parametric equation of state amounts to a
truncation ofh to a polynomial form. We may in this case
refine the approximation by reinterpreting the first recursion
equations involving a coefficieri, ., which is forcefully
set equal to zero as stationarity conditions, which force the
parameterg andc; into the values minimizing the unwanted
dependence of the truncatédz) on the parameters them-

A wide family of parametric representations was intro- selves, i.e., on the choice of the functiom=pm(6). The
duced a long time agt?'2in forms that can be related to above procedure implies globéle., § independentstation-
our Egs.(32). Since the application of parametric represen-arity, and as a consequence all physical amplitudes turn out
tations in practice requires some approximation scheme, orte be stationary with respect to variations@wandc; .
may explore the freedom left in these representations and These statements are fairly general, but it is certainly in-
understand how this freedom may be exploited in order tderesting to consider the first few nontrivial examples. For
optimize the approximation. The parametric form of thethe lowest order truncation ¢fwe may adopt the parametri-
equation of state forces relations between the two functiongation

wheref; is the amplitude of a transverse correlation lengt
&r defined from the stiffness constapy, i.e., é&r=ps ' R}
can be determined directly from experiments belbw(see,
e.g. Ref. 40.

APPENDIX B: GENERAL DISCUSSION ON THE
PARAMETRIC REPRESENTATIONS
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6%\ P 2

h(6)=0<1—§2) , (B7) c1=§(,8+7)—1.
0

which includes both the Ising model in three dimensions o ] i

(p=1) and generaD(N) symmetric models with Goldstone Note that, substituting the physical values of the critical ex-

bosons ind dimensiong p=2/(d—2)]. It is easy to recog- Ponentsg andy for the N=1 model,c, turns out to be a

nize that the following relationship must then hold: very small number¢; =0.04256) and the predicted numeri-
cal value ofzy is 2.8475, consistent within 1% with the

1 linear parametric model predictiéhit is fair to say that in

2 p . : oo

6" +tCi=y— ra (B8)  the Ising case the above solution has a status which is com-
0 parable to the linear parametric model, both conceptually and

Global stationarity implies that the stability conditions may in terms of predicting power. Itis therefore possible to take it
be extracted from the variation of any physical quantity. In@S the starting point of an alternative approximation scheme
z,, noting thatzo=2z(6;), see Eq(35). As a consequence of ~ Unfortunately when we consider theY system, setting

the above results, the simplest models can all be described =2 and choosing the values of the exponents pertaining to
the parametrization N=2, the value oft; becomes too large for the approxima-

tion to be sensible. Indeed we ggt=—0.6762 and all test-
able predictions turn out to be far away from the correspond-

7 /(7_C1)92_p ing physical values. It is, however, worth exploring the
2= —20(1+c16§). (B9)  features of this approach because, as we shall show, it has
V6 (1-6p)° formal properties which might prove useful when consider-

ing parametric representations of the equation of state for
higher values oN. Let us indeed consider the functigga( 6)
entering the parametric representation of the magnetic sus-
ceptibility. We know that this function will in general show

Let us first consider the cagsg=0. The minimization pro-
cedure leads to

pzzm' singularities in the compleX plane corresponding to the
Y~ 2pB zeroes of the functiolY (). However, when substituting the
expressions oh(#) and m(6) obtained from the saddle-
92— Y—2pB (B10) point evaluation of the parametess 6y, andc,, after some
O (1-28)y" simple manipulations, we find out that all singularities cancel
and

Settingp=1 one immediately recognizes the linear paramet-

ric model representation for the Ising mod&t!? Unfortu-

nately whenp=2 the solution is not physically satisfactory, 62\ Pt

because it gives§3<0 for all N>2, and therefore the 92(0)=| 1- 7

scheme is useless for models with Goldstone singularities.
Let us now includes;. Requiringz, to be stationary with

respect to variations of both parameters, we obtain

(B14)

This fact was already observed in the cage=0 for all
values of the truncation order Therefore, the stationarity

6 —p+1 prescription is a way to ensure a higher degree of regularity
, 6y(y—p+1) . ; : . :
=30 2(0-115" in the parametric representation of thermodynamic functions.
y=2(p—1)B Finally, let us observe that the stationary solution can be
applied to the larg@¥ limit of O(N) models in any dimen-
,_3y—2(p—1)B sion 2<d<4. In this limit B=3%, y=p=2/(d—2). As a
0 (3-28)y consequence we obtain from our previous resyis

=12/(d+2), 65=(d+2)/4, c,=0, implying also
2(y=p)+(28-1)

= B11
=y 3y=2(p—1)B '’ (B11) 2/(d—2)
_ _ 2
implying also h(6)= 6( =2t ) ’
_ 32— B
@:2<&+1) (l) . (B12) (4—d)/(d-2)
J6 3-2p8 2B 92(0)=(1— d+—202) (B15)

In the Ising model the above solution reduces to

We therefore obtained an exact parametrization of the equa-
tion of state in the larg®& limit for all d. Thus, for suffi-
ciently large values oN, the scheme we have defined may
P 3 be a sensible starting point for the parametric representation
0 3-28" of the thermodynamical functions in the critical domain.

p?=27y, (B13)



5854

*Email address: campo@mailbox.difi.unipi.it
TEmail address: Andrea.Pelissetto@romadl.infn.it
*Email address: rossi@mailbox.difi.unipi.it
SEmail address: vicari@mailbox.difi.unipi.it

CAMPOSTRINI, PELISSETTO, ROSSI, AND VICARI

PRB 62

2TFor N-vector models withN>1, the e-expansion of the whole

equation of state is known ©(€?) (Ref. 46; instead, its small-
field expansion in the symmetric phase has been calculated to
O(€% (Ref. 19.

13, A Lipa, D. R. Swanson, J. Nissen, T. C. P. Chui, and U. E.28A. Pelissetto and E. Vicari, Nucl. Phys. B0, 639(1999.

Israelson, Phys. Rev. Leff6, 944 (1996.

29C. Bagnuls and C. Bervillier, Phys. Rev.®, 7209(1985.

2M. Campostrini, A. Pelissetto, P. Rossi, and E. Vicari, Phys. Rev3°A. Aharony and P. C. Hohenberg, Phys. Revi® 3081(1976);

B 61, 5905(2000.
3M. Hasenbusch and T."Ffak, J. Phys. A32, 6361(1999.
4R. Guida and J. Zinn-Justin, J. Phys.24, 8103(1998.

R. Abe and S. Hikami, Prog. Theor. Phygl, 1693(1977); R.
Abe and M. Masutaniibid. 59, 672(1978.

815, A. Larin, M. Mannigman, M. Streser, and V. Dohm, Phys.

5The observed agreement is also a good indication of the correct- Rev. B58, 3394(1998.
ness of the analysis of the experimental data, questioned in Ref82C. Bervillier, Phys. Rev. B34, 8141(1986.

44,45, and excludes different approaches that predict a logariti®*J. A. Lipa and T. C. P. Chui, Phys. Rev. Leftl, 2291(1983.
mic singularity(Ref. 45. 34A. Singsaas and G. Ahlers, Phys. Rev38 5103(1984).

63. Zinn-Justin,Quantum Field Theory and Critical Phenomena 35T, Takada and T. Watanabe, J. Low Temp. Plgs.435(1982.
3rd ed.(Clarendon Press, Oxford, 1996 36p . Butera and M. Comi, Phys. Rev.@®, 6749(1999.

7J.-H. Chen, M. E. Fisher, and B. G. Nickel, Phys. Rev. L48&.  °’C. Bervillier and C. Godrehe, Phys. Rev. B1, 5427 (1980.
630 (1982. 38C. Bervillier, Phys. Rev. Bl4, 4964(1976.

8M. Campostrini, A. Pelissetto, P. Rossi, and E. Vicari, Phys. Rev3°M. Stroesser, S. A. Larin, and V. Dohm, Nucl. Phys5&0, 654

E 60, 3526(1999.

9R. Guida and J. Zinn-Justin, Nucl. Phys.4B9, 626 (1997.

10p schofield, Phys. Rev. Le22, 606 (1969.

11p. schofield, J. D. Lister, and J. T. Ho, Phys. Rev. L28.1098
(1969.

12, D. Josephson, J. Phys.Z;1113(1969.

13p, Butera and M. Comi, Phys. Rev.38, 11 552(1998.

1A, Pelissetto and E. Vicari, Nucl. Phys. 59, 626(1998; Nucl.
Phys. B(Proc. Supp). 73, 775(1999; M. Campostrini, A. Pe-
lissetto, P. Rossi, and E. Vicari, Nucl. Phys4B9 207 (1996.

157, Reisz, Phys. Lett. B60, 77 (1995.

16A. 1. Sokolov, E. V. Orlov, V. A. Ul'kov, and S. S. Kashtanov,
Phys. Rev. B60, 1344(1999.

YD, B. Murray and B. G. Nicke(unpublishedl

8A. Pelissetto and E. Vicari, Nucl. Phys. 82, 605 (1998.

19A. Pelissetto and E. Vicari, Nucl. Phys. 55, 579 (2000).

20G. A. Baker, Jr., B. G. Nickel, M. S. Green, and D. I. Meiron,
Phys. Rev. Lett36, 1351(1977); G. A. Baker, Jr., B. G. Nickel,
and D. I. Meiron, Phys. Rev. B7, 1365(1978.

21E. Brezin and D. J. Wallace, Phys. Rev.B 1967(1973.

22E. Brezin and J. Zinn-Justin, Phys. Rev.18, 3110(1976.

2|, D. Lawrie, J. Phys. Al4, 2489(1981).

24Using the formulas of Ref. 21, one can evaluate the constant
the largeN limit finding cf=1+ 1.64657N+ O(1/N?).

25D, J. Wallace and R. P. K. Zia, Phys. Rev.1B, 5340(1975.

26|, schder and H. Horner, Z. Phys. B9, 251 (1978.

(1999.

40y, Privman, P. C. Hohenberg, and A. Aharony,Rhase Transi-

tions and Critical Phenomend/ol. 14, edited by C. Domb and
J. L. Lebowitz(Academic, New York, 1991

41C. Hohenberg, A. Aharony, B. |. Halperin, and E. D. Siggia,

Phys. Rev. B13, 2986(1976.

“2Note that the isotropic Heisenberg fixed point turns out to be

unstable in the presence of cubic anisotrdpge Ref. 47, and
references thereinwhich is a general feature of real ferromag-
nets due to the lattice structure. Indeed, cubic anitropy drives the
renormalization-flow towards a stable fixed-point characterized
by the discrete cubic symmetry. However, if the cubic interac-
tions are weak, the isotropic Heisenberg model may still de-
scribe the critical behavior of the system in a relatively wide
region near the critical point. Of course, whatever is the strength
of the cubic interaction, there is always a crossover to the cubic
fixed point forT—T.. But, if the interaction is weak, this oc-
curs only very close t@.. .

“3R. Pisarski and F. Wilczek, Phys. Rev.9, 338(1984.
44y, D. Arp, J. Low Temp. Phys79, 93 (1990.
45T, Fliessbach, Phys. Rev. B9, 4334(1999; cond-mat/0001048

(unpublisheg

46E. Brezin, D. J. Wallace, and K. G. Wilson, Phys. Rev. L&,

591 (1972; Phys. Rev. B7, 232(1973.

473. M. Carmona, A. Pelissetto, and E. Vicari, Phys. Rev6 B

15 136(2000.



