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The dispersion relation for coupled oscillations of liquid interfaces in the laydred*He films on solid
substrate is calculated by taking into account viscous dissipation and effects of the van der Waals interaction
between the liquid phases and the solid substrate and among themselves. We provide a detailed analysis of the
layer thickness dependence of the mode spectrum within the hydrodynamical approach by solving the linear-
ized Navier-Stokes equation. For actual helium viscosities, we find that a mode with weak dissipation, corre-
sponding to flexural displacements of the upper phase, does exist at large wave numbers. In the approximation
of ideal fluids, we reproduce previous results obtained from different methods. We find a wide interval of wave
numbers for weakly damped modes when the layer thickness of a given phase is significantly smaller than the
other one. We interpret our results for weak and strong dissipation by comparing the viscous penetration depth
of the modes with characteristic lengths of the system. We discuss the implications of our results for experi-
ments to measure mode frequency and transport properties of surface electrons over the layered film.

. INTRODUCTION mechanism foT<1 K comes from the electron interaction
with surface oscillationgripplons with wave numberq

The properties of a superfluiHe surface are strongly <2 k wherek is the electron 2D wave numbgiEor the
influenced by3He atoms that accumulate near the liquid- nondegenerate electron system, typical valudsare of the
vapor interfacé. In particular, in past years there has been aorder ofkr=2mT/7%, with typical valuess10® cm L. As
significant interest in studying the system e atoms ad- a consequence, there is a limited intervalgpfwhich con-
sorbed on*He films? By adding He atoms into the liquid tributes to the electron-ripplon interaction, and surface mode
solution, one can go from the regime of the two-dimensionahttenuation atj<2k; may influence strongly the effective-
(2D) gas of *He quasiparticlesin this case the’He surface ness of the electron scattering by these modes.
density is less than one monolay¢o the saturated regime The investigation of the interfacial mode spectrum of the
where either the growth of a thin thoughacroscopidilm of microstratified solution, taking into account viscosity effects,
nearly pure*He near the surface of the bufiHe-*He solu-  has shown that onlgpneweakly damped mode can exist on
tion (microstratification or a layering process of the mixture the surface of the microstratified solution and that it is asso-
film on the solid substrate can occlinteresting phenomena ciated with the flexural oscillations of th#He film.1> This
have been investigatéespecially for a mixture layered film mode has the same dispersion as ripplons in uniform liquid
on solid substrates with large van der Waals constant as, fdyut with a modified surface tension coefficient = a4
example, graphité.In particular, the solidification of a few + a;,, wherea; anda, are the surface tension coefficients
layers of liquid helium near the surface of the substrate igor the free surface of the upper fluid and the stratification
found. On the other hand, for substrates with relatively lowinterface, respectively. The second branch of the spectrum
van der Waals constants, such as solid neon, the formation ¢at corresponds to the layer-thickness oscillations of the
solid layers is not expected and the strength of the van defHe layer is overdamped for actual values of helium viscosi-
Waals liquid-helium—substrate interaction is of the same orties.
der of the interphase interaction. The study of layering phe- Coupled oscillations of the liquid interfaces of a layered
nomena is, in particular, attractive in view of the possibility helium film over a solid substrate have been also studied by
of a phase transition of théHe thin film into a 2D superfluid different methods. Previous res@Ité are almost the same
state® Propagation of unusual low-damped surface modesvhen the van der Waals coupling between the substrate and
was predicted for both the micro- liquid phases is strong. The influence of the interaction be-
stratified solution and the layered film when the liquids aretween the phasegessential for weak liquid-substrate cou-
considered idedl® Furthermore, these modes influence sig-pling) and also capillary effects on the dispersion law of the
nificantly the properties of surface electrons localized overcoupled film oscillations have been studied in Ref. 8. In par-
the helium surface. As is well known, the main scatteringticular, it was shown that the velocities of two soundlike
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ticles of *He at T<1 K and the contribution of rotons is

negligible at these temperatures. Hence, the viscosity of the

solution of helium isotopes does not alter the hydrodynami-
& (r) cal regime even at low enoughin contrast with pure super-

- —==2 0 fluid “He, whose hydrodynamical description is not valid at
T<1 K. The viscosity of the’He upper phase does not also
change the hydrodynamical regimeTatdown to 0.1 K and

d o d, Fermi-liquid effects become relevant only at loviiet®

The organization of the paper is as follows. In Sec. II, we
point out the main relations and derive the dispersion law. In

Sec. lll, we analyze the numerical solution of the dispersion

equation in a wide range of wave numbers and layer thick-

nesses of the liquid phases, and limiting cases are recovered.

In Sec. IV, we summarize our results.

NI

., a0 - (d1+d2)
= substrate Il. DISPERSION EQUATION

To find out the dispersion law for the coupled oscillations
of the free liquid surface a=0 and the stratification inter-

modes are very close when the conditibn-d, is satisfied, ~face az=—d,, we solve the linearized Navier-Stokes equa-
whered, andd, are the thicknesses of the upper and lowertions for each phase with appropriate boundary conditions
liquid phases, respectively. However, in Refs. 8 and 12 thdor the liquid interfaces and for the surface of the solid sub-
mode spectrum of the layered film was evaluated consideringtrate az=—(d; +d,). We also have ignored in a straight-
the phases aisleal fluids. The effect of mode damping was forward way the superfluid velocity,s=V®, (where®d, is
taken into account in Ref. 12 by setting one of the soundhe hydrodynamical potentjalin the linearized Navier-
velocities equal to zero in the case of normiie. The  Stokes equation for the lower superfluid ph&s€he liquid
present authors showed that viscous damping effects on thghases are described by the equations

spectrum of coupled surface modes depend not only on the

FIG. 1. Schematic view of the system.

viscosities of different phases but also dhle thickness, Vg vp V2

liquid density, and capillary forcé$:** One should also P1gp F VP17 PI0= mViVL, (13
point out that the hydrodynamic approach becomes invalid

for submonolayer films. Quite recently, it was shown that the Nan )

third-sound velocity of the’He-*He film is strongly depen- Pon T VPan=pa0= 172V Van, (1b)

dent on the*He coverage decreasing up to 0.6 ML when the
onset of the excited-state occupation occurs and the coveragéere numeric labels correspond to the quantities in their
dependence becomes weaker. respective phases. Heig is gravity accelerationp; and
The aim of the present work is to describe theoretically?; (i=1,2) are the densities and viscosities of both liquids,
the spectrum of the’He-*He layered film. Both real and andp,, is the density of the normal component in phase 2,
imaginary parts of the dispersion law for the oscillations ofpos=p2— p2n is the density of the superfluid component in
the layered macroscopic film dHe-*He mixture are calcu- the lower phase, anll,, = P,+ p,sd®,/dt whereP; andP,
lated by taking into account the effects of viscous dampingare the pressures in the liquids.
We consider temperatures above 0.1 K where the upper lig- The solutions of Eqgs(1) can be obtained straightfor-
uid phase is the almost pure norm@aliscous 3He, and wardly following the same steps of Ref. 11. The only differ-
Fermi liquid effects are negligible. In particular, we disre- ence is the new boundary condition for velocitiass,y
gard the possibility that pairs ofHe atoms should dimerize =uv,,,=0 atz=—(d;+d,). The contribution of the van der
on the surface ofHe* Under the above assumptions, the Waals interaction of the liquid phases with the solid substrate
lower phasédthe *He-*He mixture can also be described, on and among themselves has been also taken into account by
the contrary of pure superfluiHe, by classical hydrody- modifying the equilibrium conditions az=—d; and z
namics atT<1 K.!° The solid substrate is located at =—(d;+d;). As shown in Ref. 7, the van der Waals inter-
<—(d;+d,), as shown in Fig. 1. The blanket of normal action leads to extra coupling of the displacements of the
liquid over the superfluid film should strongly suppress theliquid interfaces. This contribution comes from the addi-
third-sound® damping due to the liquid evaporation and con-tional potential energy due to the interaction between the
densation caused by relative oscillations of normal and sustratified liquid phases that exists for finite layer thicknesses
perfluid densities of the film and thermal conductivity in the and gives no contribution to the surface-tension coefficients
gas phase ofHe over the superfluid filmy’ In this situation, ~ of both liquid interfaces.
mode attenuation should be only due to viscosity. The hy- The dispersion relatiofiDR) (q)=wq—i7, " is given
drodynamical approach for describing viscous phenomena igy the roots of the dispersion equation, which is a conse-
valid if the perturbation wavelength is significantly larger quence of the compatibility condition of the equations of
than the mean free path of thermal excitations. One camotion describing the displacements of the liquid interfaces
guess this condition is satisfied in thtHe-*He solution  from the equilibrium positions. The dispersion equation can
where the mean free path of phonons is limited by quasiparbe written as
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whereK,(x) is the modified Bessel function. The accelera-
tions oy ando, are given by

_J1 d, 4} 3n,a;
e d;+d, pi(di+dy)*
d;\*] 3(n,a,—n;a
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where o= mn(nyb;,—nyby1)/2p,d]. In the above equa-
tions, a; anda, are the van der Waals coupling constants
describing the interaction of helium atoms with the solid
substraten; andn, are volume concentrations of atoms in
liquid phases. The coefficients; are related to the strength
of interatomic interaction, u;=—by/[|r;—r;|?+(z
—2;)?]3%° Note that the van der Waals constants for the
solid substrate of inert elemeftsare approximately de-
scribed bya; = (7/6) (nsb;s—n;b;;), whereng andb;g are the
atomic concentration of the substrate dngdgives the inter-
action between the atom of substrate and helium atoms in
phases 1 and 2. The cumbersome functigg¢q), i
=1,...,5 araepicted in the Appendix for the sake of com-
pleteness. Equatiof2) contains all information about both
real and imaginary parts of the dispersion law for surface
oscillations of the layered film ofHe-*He liquid solution.

IIl. RESULTS AND DISCUSSION

In the limit of largeqd; andqgd, (small wavelengths Eq.
(2) splits into two independent equationB,4(q)=0 and
F,.(q)=0, corresponding to the dispersion laws for the os-
cillations of the free surface ofHe and the stratified inter-
face of two infinite liquids, respectively. The functions
F12(q) andF44(q), which describe the coupling between the
oscillations of two liquid interfaces, can be discarded in this
limit but are essential in the opposite cap#; ,qd,<1. For
d,—, we reproduce the results of Refs. 10 and 11 with
F1o=F>.

Analytical expressions for the spectrum of surface oscil-
lations of uniform liquid with density and viscosityn can
be obtained either in the limit of weak dissipatiay?
<wpln or in the opposite limit when nonoscillatory damp-
ing takes placé?® In the two-phase system discussed here,
there are two parameteqg 7, /p;0 andq?7,/p,nw that can
be of the order of one at large enoughFurthermore, two
small parametergd; and qd,<1 can appear in Eq2) in
the long-wavelength limit. Hence, to find out the mode spec-
trum for a wide range of, we must solve Eq(2) numeri-
cally.

For ideal fluids ¢7;=0 and »,=0), one has:-;lzo. In
this situation, the DR of the coupled surface oscillations con-
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sists of two branches, which were obtained previofidlye 25
considerd, ,d,=<10"° cm, where the gravity effect on the 4,250 & 4250 A
. L ) . = =
mode spectrum is negligible even though it was taken into 50 | d=1000A | d,=200 A
account in the numerical calculations. As it was shown in
Ref. 8, the dispersion laws depend strongly on the relation = P
betweend; andd,. In the limitd,= =, the results of numeri- ~ L5y i i
cal calculations coincide with the mode spectrum of the mi- =5
crostratified *He-*He solution(see Fig. 2 of Ref. 10 By g 1ol
decreasingl,, but keepingd, /d,<1, the anticrossing point
g. of the modes, which appears in the long wavelength limit
q<d1_1,d2_1, becomes larger than for the spectrum of the 0.5 = o
microstratified mixture and one obtains g q, ®)
0.0 —_ —
2 2 0.0 20 40 60 80 00 20 40 60 80 100
“1q Udlq ' (33 q (IOACm_l) q (104cm4)
* 2.5
w0l ~| g2+ 3nze:2 4,92, (3b)
P2 pods d,=50 A d,=50 A
20 | d=100A [ d,=50A
and forg>q,
o |, 3na, p2<d1)2 2 A b
“1g P2 o pzd‘z1 " p1\d; 7 |d2a 49 %
s L0 . =
2 @1%12 2 3 =
qu_ pl(al+a12) q to dlq . (4b) 05| = r
Far away from the anticrossing point, the spectrum behavior A .
is quite different. The mode described by is soundlike 00 20 40 60 80 00 20 40 60 80 100
and corresponds to layer-thickness oscillations of the upper q (10°em™) q (10°cm™)
phase ayj<<q. and to flexural oscillations of upper phase in
the opposite limit. On the contrary, the mode with,, 0.04 — 25
which is a flexural mode at smail| transforms into the mode g‘fgggck,& ?j'iL%ORA
of layer-thickness oscillations &f>q., as one can see in 003 | a 20 7
Fig. 2a). Note that the sound velocity=(3n,a,/p,d3)*? ' =
for layer-thickness oscillations coincides with third-sound -~
velocity in uniform film of superfluid*He over a solid sub- S 002 f
strate atT<1 K, where the entropic contribution in sound 3 =
velocity is negligible and the superfluid density practically
coincides with the total liquid density.By further decreas- 001 ¢
ing d,, one observes in Fig.(B) thatg, moves to highen, = /
the soundlike branch extends over a larger interval,&nd 0.00 - @ 00
|w1q— wyq| decreases at largg The minimum|w;q— wpq| 00 02 04 06 08 10 00 20 40 60 80 100
is observed fod;~d,, as shown in Fig. @). The displace- q (10°em ) q (10em )

ments of the liquid interfaces in thes_e modes are of_the SaME 615, 2. Mode spectrum of the coupled oscillations of the layered
order and can be. 'Freated as .Iayer-thlckne_ss oscillations, erIr1|e-“He film in theideal case for different values of layer thick-
”?0“9,“ th,e velocities of the 'nterfa,ce mOt'o_n hfave the SaMBesses. The substrate is solid neon. The displacements of the liquid
direction in the modev,, and opposite direction in the mode jerfaces az=0 andz= —d, are sketched.

wyq. The DR'’s for these modes can be written @g ),

=Cy(2)q with sound velocities given By Ref. 12. However, for solid neon, used in the present work,
the contribution froms- must be taken into account.

The spectrum of collective modes becomes rather inter-
esting ford;>d, as shown in Figs. @) and Zf). In this
limit, the dispersion curves become similar to those obtained
+4(ay— o)~ a(1+ D)1}, () in the opposite limitd,<d, [Figs. 2a) and Zb)]. However,
the physical description of the spectrum changes drastically.
Forg<q., the DR’s are

dy

D (01(14D)+0,—20*{[01(1+D)—0,]?

2 _
Cio™

where D=p,d;/p,;d,. For a substrate with large van der
Waals constara, (for example, graphite one can disregard
the contributiono of the interaction between helium phases
in accelerationgr, ando,. In this approximation, the sound wfq:
velocities, given by Eq(5), are the same as those obtained in

3(nya,—n,a d,\*
(nya, 11)+&( 1)ad2q2, 63)

pzdg P2

dz




588 SOKOLQV, HAI, AND STUDART PRB 62

ay
w%f(zqzm d?, (6b) w0 | @
and forg>
a>qc 10
2 ay Ud% 2 02 d 2 7 T
=|—4+ =g+ 0+ — 2
wlq p1 2D q 01 D2 lq ’ ( a) s 10
2 P1j| @12 2| o, @12 2 10*
=—||—+ad +—o01t0;,|dq°.  (7b)
20~ 51 s 19 a, J1T 02 20
Now the modew,, has a flexural character far<q., and 10

the modew,, corresponds to the layer-thickness oscillation
in this limit. At g>q., both modes are related to layer-
thickness oscillations of the upper phase.
The unusual DR’s of collective modes of the layered films
in the ideal case make especially interesting the study of 10
mode dissipation at real helium viscosities. To obtain the DR
w(q)zwq—irq’1 containing both real and imaginary parts, s |
one has to consider the numerical solutions of &j.for a
given temperature. Hereafter, we restrict our analysisTfor T
=0.4 K and7;=5x10"° Ps andz,=3X10 ° Ps, with 5 10° |
densities and surface tensions taken from Ref. 15. We have
also evaluated the DR’s foFr=0.1 K, and the results are
qualitatively the same. 10
We start the discussion with the cadg/d,<1. Numeri-
cal results give strong evidence that only one of the film ‘ . ‘ )
modes is weakly damped. The spectrum of this mode is pre- 10 10 10 10° 10° 10’
sented in Fig. 3 for two values af; and different values of q (em™)
d,. As it is clearly seen, the mode has weak dissipation at
large enougly and is overdamped, is of the same order FIG. 3. Realsolid line) and imaginarydashed lingparts of the
or can be neglected in comparison Wh‘.gl) at q smaller  dispersion relation corresponding to the flexural mode of the film
than a threshold valuegy=q.. Let us defineAq as the for some lower-phase thicknessgsand two values of the upper-
wave-number interval in which the mode is weakly dampedPhase thicknes&) d,=10 A and(b) d,=50 A.
With decreasingl, for a givend,,Aq is displaced to larger
q and w, starts very abruptly from zero @&=q,, and 7, !
becomes larger tham, for <, showing a kink neaq;.
The dispersion law of this mode coincides with that of the
flexural mode of the microstratified solutiod =) for q
>(,. Hence, we conclude that the upper phiaeuralmode
exhibits small dissipation. Note, however, that we cannot us
the asymptotic expression given by E@a) for the fre-
quencywci for g>qp=q.. Indeed, Eq.4a is valid for q
<d;tdyt Meantime,w for this mode starts to approach
its asymptotic limit ford,—o at q>qq Whereq>d2_1. In
order to obtain an analytical estimate for the DR of the
weakly damped flexural mode, we have to analyze(Bgin
the limit of weak dissipation %, , 7,—0) whend;<d, and
d,'<qg<d; . As a result, the following asymptotic of DR
of the flexural mode can be written as

for arbitrary d,. The attenuation frequencyrg1
=2(7,/p,)q?, indicated by the dashed curve in Fig. 3, is
typical of weak dissipatiolf and coincides with that of the
microstratified solutiort!

As it is well known?® strong mode dissipation should be
éound when the viscous penetration degdths larger than
any characteristic length of the system. The dissipation of the
flexural mode forg<qgy, where we havegd,<1, can be
explained by comparing for this mode withd, taken as the
characteristic  length.  Extrapolating the Dng
=(a*/p,)q’tanh@d,) for q=qo, where the dissipation is
strong, one can Writé= (77, /paawq)*? for this mode. We
obtain thatstrong dissipation of the flexural mode takes
place forq<q(” whereq§"=(7,/pzn)"A(p2/a*)d; .
Weak dissipation should appear in the opposite limit. Nu-
merical values of q§") vary from 6.4<10° to 8.5

2 % 3 x10° cm ! as d, changes from %10 ° to 10 ® cm,
wg=(apz)qtanttqdy). ® whereagy, varies from 4x 10° to 1.2<10° cm for the same
Note that forq>d, %, the above DR is the same as that for d, andd;=5x 10"’ cm([see Fig. 8)]. On the other hand,
the flexural mode of the microstratifietHe-*He solution, —one can comparé, for same values all,, calculated for the
ie., wi=(a*1p;)q> ™" For g<d;', Eq. (8) reproduces frequency wi=(a*/p,)q° of the weakly damped flexural
Eq. (4a for q>q., where the contribution from the van der mode forq>gq,. Weakdissipation can be expected whén
Waals force is small compared with the capillary one, which<d,, ~ which  gives q>q{®,  where q¥
is proportional tax*/p,. For this reason, Eq8) is the DR of = (7,/p,n)?(po/a*)¥3d, *3. This is a quite different re-
the flexural mode in the case of ideal fluids in a witig and  sult from the other case. Obviously, one can expect strong
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10
d=104

oy o 1 10° | d,=50& ///
L”, 6
3 10

dy=inf. d,=50004
10°
10’ 10* 10°
g (em™)

FIG. 4. The same as Fig. 3 but for the overdamped soundlike FIG. 5. The same as in the previous figures but now for the

mode ford;<d,. The spectrum in the case of microstratification flexural mode ford;=d,.
(d,=) is also presented fat;=10 A.

L @) . The situation is rather interesting fal; /d,>1 as pre-
dls_'sépat|on f(()zr)q<qo - Whend, decreases from$10 _tlo sented in Fig. 6. Herdq is larger than that in Fig. S,
10" cm, gy changes fr(??; 4410° to 8.0x10° cm™*, —7, | also increases, and the mode spectrum becomes for-
which is closer toqo thanqg . These estimates agree rea- gy similar to the DR in the opposite limit, /d,<1. One
sonably well with our numerical results and explain the ex-o¢ the branches starts abruptly fromy, and is weakly
istence of weak dissipation of the modes at laggend the damped forg>qo=q. and dj l<q<d, . The asymptotic

g?pe;?ﬁgise:{f g: %nzzzvgg& Elngd& F\:Acl)? gbsi\%\:fj alsoin solution of Eq.(2) for this branch can be written for weak
9. b L 9 2:do dissipation as

moves to smaller asd; decreases. Fay> wypon/ 7, the
DR is independent ofl, and exhibits a maximum and a 2 3
strong decrease aby in comparison withr, *, indicating ©g=(a1/py) g tanfqdy), ©
that the mode Withqu(a*/pz)qs is overdamped. which is the well-known DR for capillary waves propagating
For ideal fluids, the spectrum of collective oscillations of on the surface of &He film with thicknessd,. For q>qp,
the layered film contains also the soundlike mode of layerone haSwéz(al/Pl)qa, which corresponds to the DR of a
thickness oscillations of the upper phasedgr<d, as given  capillary wave on the free surface of buikle. Our numeri-
by Egs.(3a) and (4b).° This is not the case for real fluids, cal values ofw, for this branch agree rather well with Eq.
since we did not obtain roots of E@R) with w>r7,* for  (9). Note that forqd; <1, Eq.(9) is formally identical to Eg.
any q except those given by E¢8). In Fig. 4, the dispersion (7a) for the modew,. For this reason, we added the term
law of the soundlike mode is presented fiy=10"" cm tanh@d,) in Eq. (9), which tends to unity forgq>q,. The
andd,=5X 107 cm. For comparison, we plotted also the asymptotic expressior*r;lzZ(m/pl)qz corresponding to
soundlike mode spectrum in the limitd,=>  \weak dissipation of capillary waves on the free surface of
(microstratification.!* As it is seen in Fig. 4, the dissipation pulk 3He well describes our results in Fig. 6 fqr-q. The
of this mode in the Iayered film is stronger than in the mi-dependence oqo on dl can be exp|ained a|0ng the same
crostratificated situation. One can conclude that the modgnes as the dependence qf on d, for d;/d,<1. Now we
corresponding to layer-thickness oscillations of upper phasgayve to comparé relative to the wave propagation along the
with the thicknessd; is overdamped for alfj investigated
both in the case ofHe-*He solution with microstratification
(d,—») and for layered film with finite values af,. The
strong dissipation of the soundlike mode means that viscous
forces acting upon the particles moving with different veloci-
ties in this mode are so essential at real helium viscosities
that the oscillatory motion of the phase thickness cannot ex-
ist. On the other hand, as the velocities of two liquid inter-
faces are equal &=0 andz=—d,, a flexural mode with
weak dissipation survives in the presence of liquid viscosity.
As is clearly seen in Fig. 3\q becomes narrower ak
decreases. This behavior is clearly evidenced in Fig. 5, where
the mode spectrum is depicted fdy close tod;. One can
see thatAq becomes shorter whed, changes from 2
X107 to 5x10°7 cm but alsm-q’1 approachesy,. For
d,=d;=5x10"" cm,wq and rq’l are of the same order,
which means that this mode is overdamped and cannot be FIG. 6. The same as Fig. 5 but now for the capillarylike mode of
observed. upper-thickness oscillations fa,=50 A and differentd,.

o
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3He free surface with thickness;. In this case, we found larger than the thickness of the other phase. By fixing the
a$V=(n1/p) YA p1 ! ar) ¥ 4d; ¥ and qi®  layer thickness of one phase and changing continuously the

=(m1lp)?(p1/ar)Pd;*® for dy/d,>1, which agree Other, one should reach experimentally the situates do,

quantitatively with our numerical results. Indeed, as it is seefvhere the modes are overdamped and cannot propagate for
from Fig. 6, g, varies from 2.&10° cm ! to 6.5 all g. The strong attenuation of the modes at srgatian be

X10° cm! as d; changes from 10* cm to 10°° cm. explained by assuming that the penetration depth related to
Correspondingly, for the samd,, one obtains 2% 10° the modes exceeds the thickness of broader phase. The pos-

<qP<6.6x10° cm and 1.X10°<q®<5.7 sibility of strong dissipation for smalll may be a serious
% 1& lel ' 0 ' obstacle for experimental observation of the mode when the

One can conclude that the capillary mode with the samé/PPer phase is normalHe. This makes preferable the ex-

DR as in the free surface of bufitHe has weak dissipation at perimental study of _these modes at very [fwhere trans-
4> for d;>d,. However, as it is seen in Fig. 6, strong tion to the superfluid state ofHe can happen. In such a

dissipation takes place a-q, when A< 4. According to condition, one can expect weakly damped oscillations of the
0 .

Egs. (6a—(7h), the second branch of the DR corresponds tostratified film propagating through superfluid components

: with DR given in Refs. 12 and 8 and shown in Fig. 2.
flexural displacements of the upper phase&tq. and cap- )
illary waves on the interface between a thick upper and a thin Note_ also that mode damping may affect strpngly the
lower phase d,<d,) for q>q,. We did not find weakly properties of SL_Jrlface electrons over the' Iayereq film. dror
damped solutions of Eq2) in this case, and hence we con- <2kp~10° cm , the electron-ripplon interaction should

clude that the second branch of the spectrum is overdampéffa weakened, especially @f<d, when th? weakly dampgd
for all g investigated. mode can be observed onlyagt 2k . In this case, the main

electron-scattering mechanism should be residual helium at-
oms, which is negligible folT<1 K in the case of bulk
“He. Ford,>d,, where the DR is given by Eq9), the

In the present work, we have studied the mode dampinglectron-ripplon scattering is the same as that over Blilée.
in the layered®He-*He film over a solid substrate. We have On the other hand, mobility measurements over bie
calculated the dispersion law of the coupled oscillations ohave evidenced that ripplons on the fréele surface can
two liquid interfaces taking into account viscous dissipation.unexpectedly contribute to the electron scattering atound
The calculations are carried out for layer thicknesse®.1 K despite the strong dissipation of capillary waves in
<105 cm where the van der Waals interaction between the’He for values ofy, which contributes to the electron-ripplon
helium phases and with solid substrate plays a crucial role iinteraction’ We hope this paper will shed some light on the
the mode spectrum. We have shown that flexural oscillationstudy of transport phenomena of surface electrons over the
of the upper phase fail;<d, and the capillarylike oscilla- stratified film of helium isotopes at low temperatures.
tions of thick film of upper liquid phase in the opposite limit
(d;>d,) do exist in the mode spectrum at large-q,. The
critical qo depends strongly on the layer thicknesses of the
phases. No weakly damped modes were found when the The work was partially supported by Fundacde Am-
layer thicknesses are approximately equal. There are twparo aPesquisa do Estado déBRaulo(FAPESR and by
“bottlenecks” of layer thicknesses for weak dissipation the Conselho Nacional de Desenvolvimento Cientifico e Tec-
where the layer thickness of one of the phases is significantipologico (CNPQ.

IV. CONCLUSIONS
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APPENDIX

For the sake of completeness, we list here the funcignmesented in the expressions fy of Eq. (2), which defines the
dispersion equation of the coupled oscillations of the layered film over a solid substrate. The functions are as follows:

~ (1+2\3/g?)sinh(\ ,d)sinh(qdy) — 2(X,/q)[coshi\ ,d,) coshigd,) — 1]
P TN, ) [sinh(h,d5) cosiqdy) — (h,/q)costix,dz)sinh(qdy) ]

:(1+>\§/q2)[sinm2dz)—(?leq)cosmzdzmZ(Azlq)exp(—qdz)
(1+\2/g?)[sini(\,d5) — (A, /g)coshin,da) + (N, /q)exp(—qd,)]

2

_ coshiA2dz) —(N2/q)sinh(\dz) —exp(—qd,)
¥ sinh(\,d,) — (N2 /) [coshi\ ,d,) —exp( —qdy) ]’

_ (1+303/g?)sinh(\ odp)sinh(qdp) — (A2 /q)(3+\5/g?)[ costih ,d,) coshqdy) — 1]
(1=, /q)?[sinh(\,d)costiqdy,) — (A, /q)coshin ,d,)sinh(qd,)]

4
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_ coshihdy) — (Ao /q)sinh(Nodp) — (1/2)(1+ \5/g2)exp( —qds,)

Bs

Sinh(Ad;) — (N2 /q)[coshin,d;) —exp(—qd,) |

As d,—00, all B; approach 1. In the limit of),— 0, B8,=1/tanhid,), and B;=1 fori+#4.
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