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Mode damping of layered 3He-4He films over a solid substrate
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The dispersion relation for coupled oscillations of liquid interfaces in the layered3He-4He films on solid
substrate is calculated by taking into account viscous dissipation and effects of the van der Waals interaction
between the liquid phases and the solid substrate and among themselves. We provide a detailed analysis of the
layer thickness dependence of the mode spectrum within the hydrodynamical approach by solving the linear-
ized Navier-Stokes equation. For actual helium viscosities, we find that a mode with weak dissipation, corre-
sponding to flexural displacements of the upper phase, does exist at large wave numbers. In the approximation
of ideal fluids, we reproduce previous results obtained from different methods. We find a wide interval of wave
numbers for weakly damped modes when the layer thickness of a given phase is significantly smaller than the
other one. We interpret our results for weak and strong dissipation by comparing the viscous penetration depth
of the modes with characteristic lengths of the system. We discuss the implications of our results for experi-
ments to measure mode frequency and transport properties of surface electrons over the layered film.
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I. INTRODUCTION

The properties of a superfluid4He surface are strongly
influenced by 3He atoms that accumulate near the liqu
vapor interface.1 In particular, in past years there has bee
significant interest in studying the system of3He atoms ad-
sorbed on4He films.2 By adding 3He atoms into the liquid
solution, one can go from the regime of the two-dimensio
~2D! gas of 3He quasiparticles~in this case the3He surface
density is less than one monolayer! to the saturated regim
where either the growth of a thin thoughmacroscopicfilm of
nearly pure3He near the surface of the bulk3He-4He solu-
tion ~microstratification! or a layering process of the mixtur
film on the solid substrate can occur.3 Interesting phenomen
have been investigated4 especially for a mixture layered film
on solid substrates with large van der Waals constant as
example, graphite.5 In particular, the solidification of a few
layers of liquid helium near the surface of the substrate
found. On the other hand, for substrates with relatively l
van der Waals constants, such as solid neon, the formatio
solid layers is not expected and the strength of the van
Waals liquid-helium–substrate interaction is of the same
der of the interphase interaction. The study of layering p
nomena is, in particular, attractive in view of the possibil
of a phase transition of the3He thin film into a 2D superfluid
state.6 Propagation of unusual low-damped surface mo
was predicted for both the micro
stratified solution and the layered film when the liquids a
considered ideal.7,8 Furthermore, these modes influence s
nificantly the properties of surface electrons localized o
the helium surface. As is well known, the main scatter
PRB 620163-1829/2000/62~1!/584~8!/$15.00
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mechanism forT,1 K comes from the electron interactio
with surface oscillations~ripplons! with wave numberq
,2 k where k is the electron 2D wave number.9 For the
nondegenerate electron system, typical values ofk are of the
order ofkT5A2mT/\, with typical values&105 cm21. As
a consequence, there is a limited interval ofq, which con-
tributes to the electron-ripplon interaction, and surface mo
attenuation atq,2kT may influence strongly the effective
ness of the electron scattering by these modes.

The investigation of the interfacial mode spectrum of t
microstratified solution, taking into account viscosity effec
has shown that onlyoneweakly damped mode can exist o
the surface of the microstratified solution and that it is as
ciated with the flexural oscillations of the3He film.10,11This
mode has the same dispersion as ripplons in uniform liq
but with a modified surface tension coefficienta* 5a1
1a12, wherea1 anda12 are the surface tension coefficien
for the free surface of the upper fluid and the stratificat
interface, respectively. The second branch of the spect
that corresponds to the layer-thickness oscillations of
3He layer is overdamped for actual values of helium visco
ties.

Coupled oscillations of the liquid interfaces of a layer
helium film over a solid substrate have been also studied
different methods. Previous results8,12 are almost the same
when the van der Waals coupling between the substrate
liquid phases is strong. The influence of the interaction
tween the phases~essential for weak liquid-substrate co
pling! and also capillary effects on the dispersion law of t
coupled film oscillations have been studied in Ref. 8. In p
ticular, it was shown that the velocities of two soundlik
584 ©2000 The American Physical Society
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PRB 62 585MODE DAMPING OF LAYERED 3He-4He FILMS OVER . . .
modes are very close when the conditiond1;d2 is satisfied,
whered1 andd2 are the thicknesses of the upper and low
liquid phases, respectively. However, in Refs. 8 and 12
mode spectrum of the layered film was evaluated conside
the phases asideal fluids. The effect of mode damping wa
taken into account in Ref. 12 by setting one of the sou
velocities equal to zero in the case of normal3He. The
present authors showed that viscous damping effects on
spectrum of coupled surface modes depend not only on
viscosities of different phases but also on3He thickness,
liquid density, and capillary forces.10,11 One should also
point out that the hydrodynamic approach becomes inv
for submonolayer films. Quite recently, it was shown that
third-sound velocity of the3He-4He film is strongly depen-
dent on the3He coverage decreasing up to 0.6 ML when t
onset of the excited-state occupation occurs and the cove
dependence becomes weaker.13

The aim of the present work is to describe theoretica
the spectrum of the3He-4He layered film. Both real and
imaginary parts of the dispersion law for the oscillations
the layered macroscopic film of3He-4He mixture are calcu-
lated by taking into account the effects of viscous dampi
We consider temperatures above 0.1 K where the upper
uid phase is the almost pure normal~viscous! 3He, and
Fermi liquid effects are negligible. In particular, we disr
gard the possibility that pairs of3He atoms should dimerize
on the surface of4He.14 Under the above assumptions, th
lower phase~the 3He-4He mixture! can also be described, o
the contrary of pure superfluid4He, by classical hydrody-
namics atT&1 K.15 The solid substrate is located atz
,2(d11d2), as shown in Fig. 1. The blanket of norm
liquid over the superfluid film should strongly suppress
third-sound16 damping due to the liquid evaporation and co
densation caused by relative oscillations of normal and
perfluid densities of the film and thermal conductivity in t
gas phase of4He over the superfluid film.17 In this situation,
mode attenuation should be only due to viscosity. The
drodynamical approach for describing viscous phenomen
valid if the perturbation wavelengthl is significantly larger
than the mean free path of thermal excitations. One
guess this condition is satisfied in the3He-4He solution
where the mean free path of phonons is limited by quasip

FIG. 1. Schematic view of the system.
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ticles of 3He at T,1 K and the contribution of rotons is
negligible at these temperatures. Hence, the viscosity of
solution of helium isotopes does not alter the hydrodyna
cal regime even at low enoughT in contrast with pure super
fluid 4He, whose hydrodynamical description is not valid
T,1 K. The viscosity of the3He upper phase does not als
change the hydrodynamical regime atT down to 0.1 K and
Fermi-liquid effects become relevant only at lowerT.18

The organization of the paper is as follows. In Sec. II, w
point out the main relations and derive the dispersion law
Sec. III, we analyze the numerical solution of the dispers
equation in a wide range of wave numbers and layer thi
nesses of the liquid phases, and limiting cases are recove
In Sec. IV, we summarize our results.

II. DISPERSION EQUATION

To find out the dispersion law for the coupled oscillatio
of the free liquid surface atz50 and the stratification inter
face atz52d1, we solve the linearized Navier-Stokes equ
tions for each phase with appropriate boundary conditi
for the liquid interfaces and for the surface of the solid su
strate atz52(d11d2). We also have ignored in a straigh
forward way the superfluid velocityvW 2s5¹W F2 ~whereF2 is
the hydrodynamical potential! in the linearized Navier-
Stokes equation for the lower superfluid phase.19 The liquid
phases are described by the equations

r1

]v1

]t
1¹P12r1g5h1¹2v1 , ~1a!

r2n

]v2n

]t
1¹P2n2r2g5h2¹2v2n , ~1b!

where numeric labels correspond to the quantities in th
respective phases. Hereg is gravity acceleration,r i and
h i ( i 51,2) are the densities and viscosities of both liqui
andr2n is the density of the normal component in phase
r2s5r22r2n is the density of the superfluid component
the lower phase, andP2n5P21r2s]F2 /]t whereP1 andP2
are the pressures in the liquids.

The solutions of Eqs.~1! can be obtained straightfor
wardly following the same steps of Ref. 11. The only diffe
ence is the new boundary condition for velocities:v2nx
5v2nz50 atz52(d11d2). The contribution of the van de
Waals interaction of the liquid phases with the solid substr
and among themselves has been also taken into accoun
modifying the equilibrium conditions atz52d1 and z
52(d11d2). As shown in Ref. 7, the van der Waals inte
action leads to extra coupling of the displacements of
liquid interfaces. This contribution comes from the add
tional potential energy due to the interaction between
stratified liquid phases that exists for finite layer thicknes
and gives no contribution to the surface-tension coefficie
of both liquid interfaces.

The dispersion relation~DR! v(q)5vq2 i tq
21 is given

by the roots of the dispersion equation, which is a con
quence of the compatibility condition of the equations
motion describing the displacements of the liquid interfac
from the equilibrium positions. The dispersion equation c
be written as
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586 PRB 62SOKOLOV, HAI, AND STUDART
F11~q!F22~q!2k2F12~q!F21~q!50, ~2!

wherek51/cosh(qd1) and

F115v01
2 2S h1

r1
D 2

k2
@q21l1

222V1
2#2

D~q!

1S h1

r1
D 2

@~q21l1
2!224q2L1

2#,

F125v12
2 1S h1

r1
D 2

@~q21l1
2!224q2V1

2#

2S h1

r1
D 2

~q21l1
222V1

2!D21~q!

3H q21l1
222L1

21F h2r1

h1r2n
b1b2~q2l2!2

1~b1b22b3!
l2

q
~q22l1

2!G tanh~qd1!J ,

F215v12
2 1S h1

r1
D 2

@~q21l1
2!224q2V1

2#

2S h1

r1
D 2

~q21l1
222V1

2!D21~q!Fq21l1
222L1

2

1
h2r1

h1r2n
b4~q2l2!2 tanh~qd1!G ,

F225v02
2 2

r2s

r1
v2

tanh~qd1!

tanh~qd2!
1S h1

r1
D 2

@~q21l1
2!224q2L1

2#

1S h2
2

r1r2n
D @b2b4~q21l2

2!~q2l2!22b5ql2~q1l2!#

3~q2l2!tanh~qd1!2S h1h2

r1r2n
D ~q2l2!2Fb1b21b4

1~b1b22b3!
l2

q S q1l2

q2l2
D G@q21l1

222L1
2#

tanh~qd1!

D~q!

2S h2

r2n
D 2

b4~q2l2!3@b1b2~q21l2
2!

2b3l2~q1l2!#
tanh2~qd1!

qD~q!

2S h1

r1
D 2

@q21l1
222L1

2#2
1

D~q!
,

with

D~q!512
L1

2

q2
1

r1

r2n
b1S 12

l2

q D tanh~qd1!.

In the above expressions,V1
25ql1sinh(qd1)/sinh(l1d1) and

L1
25ql1tanh(qd1)/tanh(l1d1) with l1

25q22 ivr1 /h1 and
l2

25q22 ivr2n /h2 and
v01
2 5S a1

r1
q31s1qD tanh~qd1!,

v02
2 5S a12

r1
q31s2qD tanh~qd1!,

v12
2 5

sq

2
~qd1!2K2~qd1!sinh~qd1!,

whereK2(x) is the modified Bessel function. The acceler
tions s1 ands2 are given by

s15sF12S d1

d11d2
D 4G1

3n1a1

r1~d11d2!4
1g,

s25sF12S d1

d2
D 4G1

3~n2a22n1a1!

r1d2
4

1S r2

r1
21Dg,

where s5pn1(n2b122n1b11)/2r1d1
4. In the above equa-

tions, a1 and a2 are the van der Waals coupling constan
describing the interaction of helium atoms with the so
substrate;n1 and n2 are volume concentrations of atoms
liquid phases. The coefficientsbi j are related to the strengt
of interatomic interaction, ui j .2bi j /@ urW i2rW j u21(zi
2zj )

2#3.20 Note that the van der Waals constants for t
solid substrate of inert elements21 are approximately de-
scribed byai5(p/6)(nsbis2nibii ), wherens andbis are the
atomic concentration of the substrate andbis gives the inter-
action between the atom of substrate and helium atom
phases 1 and 2. The cumbersome functionsb i(q), i
51, . . . ,5 aredepicted in the Appendix for the sake of com
pleteness. Equation~2! contains all information about both
real and imaginary parts of the dispersion law for surfa
oscillations of the layered film of3He-4He liquid solution.

III. RESULTS AND DISCUSSION

In the limit of largeqd1 andqd2 ~small wavelengths!, Eq.
~2! splits into two independent equations,F11(q)50 and
F22(q)50, corresponding to the dispersion laws for the o
cillations of the free surface of3He and the stratified inter
face of two infinite liquids, respectively. The function
F12(q) andF21(q), which describe the coupling between th
oscillations of two liquid interfaces, can be discarded in t
limit but are essential in the opposite caseqd1 ,qd2!1. For
d2→`, we reproduce the results of Refs. 10 and 11 w
F125F21.

Analytical expressions for the spectrum of surface os
lations of uniform liquid with densityr and viscosityh can
be obtained either in the limit of weak dissipationq2

!vr/h or in the opposite limit when nonoscillatory damp
ing takes place.19 In the two-phase system discussed he
there are two parametersq2h1 /r1v andq2h2 /r2nv that can
be of the order of one at large enoughq. Furthermore, two
small parametersqd1 and qd2!1 can appear in Eq.~2! in
the long-wavelength limit. Hence, to find out the mode sp
trum for a wide range ofq, we must solve Eq.~2! numeri-
cally.

For ideal fluids (h150 andh250), one hastq
2150. In

this situation, the DR of the coupled surface oscillations c
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sists of two branches, which were obtained previously.8 We
considerd1 ,d2&1025 cm, where the gravity effect on th
mode spectrum is negligible even though it was taken i
account in the numerical calculations. As it was shown
Ref. 8, the dispersion laws depend strongly on the rela
betweend1 andd2. In the limit d25`, the results of numeri-
cal calculations coincide with the mode spectrum of the
crostratified 3He-4He solution~see Fig. 2 of Ref. 10!. By
decreasingd2, but keepingd1 /d2!1, the anticrossing poin
qc of the modes, which appears in the long wavelength li
q!d1

21 ,d2
21, becomes larger than for the spectrum of t

microstratified mixture and one obtains forq!qc

v1q
2 .sd1q2, ~3a!

v2q
2 .Fa*

r2
q21

3n2a2

r2d2
4 Gd2q2, ~3b!

and forq@qc

v1q
2 .Fa*

r2
q21

3n2a2

r2d2
4

1
r2

r1
S d1

d2
D 2

sGd2q2, ~4a!

v2q
2 .F a1a12

r1~a11a12!
q21sGd1q3. ~4b!

Far away from the anticrossing point, the spectrum beha
is quite different. The mode described byv1q is soundlike
and corresponds to layer-thickness oscillations of the up
phase atq!qc and to flexural oscillations of upper phase
the opposite limit. On the contrary, the mode withv2q ,
which is a flexural mode at smallq, transforms into the mode
of layer-thickness oscillations atq@qc , as one can see in
Fig. 2~a!. Note that the sound velocitys5(3n2a2 /r2d2

3)1/2

for layer-thickness oscillations coincides with third-sou
velocity in uniform film of superfluid4He over a solid sub-
strate atT,1 K, where the entropic contribution in soun
velocity is negligible and the superfluid density practica
coincides with the total liquid density.16 By further decreas-
ing d2, one observes in Fig. 2~b! that qc moves to higherq,
the soundlike branch extends over a larger interval ofq, and
uv1q2v2qu decreases at largeq. The minimumuv1q2v2qu
is observed ford1'd2, as shown in Fig. 2~d!. The displace-
ments of the liquid interfaces in these modes are of the s
order and can be treated as layer-thickness oscillations,
though the velocities of the interface motion have the sa
direction in the modev1q and opposite direction in the mod
v2q . The DR’s for these modes can be written asv1(2)q
.c1(2)q with sound velocities given by8

c1,2
2 5

d1

2D
„s1~11D !1s222s6$@s1~11D !2s2#2

14~s12s!@s22s~11D !#%1/2
…, ~5!

where D5r2d1 /r1d2. For a substrate with large van de
Waals constanta2 ~for example, graphite!, one can disregard
the contributions of the interaction between helium phas
in accelerationss1 ands2. In this approximation, the soun
velocities, given by Eq.~5!, are the same as those obtained
o
n
n

i-

it

or

er

e
en
e

Ref. 12. However, for solid neon, used in the present wo
the contribution froms must be taken into account.

The spectrum of collective modes becomes rather in
esting for d1@d2 as shown in Figs. 2~e! and 2~f!. In this
limit, the dispersion curves become similar to those obtain
in the opposite limitd1!d2 @Figs. 2~a! and 2~b!#. However,
the physical description of the spectrum changes drastica
For q!qc , the DR’s are

v1q
2 .F3~n2a22n1a1!

r2d2
4

1
r1

r2
S d1

d2
D 4

sGd2q2, ~6a!

FIG. 2. Mode spectrum of the coupled oscillations of the laye
3He-4He film in the ideal case for different values of layer thick
nesses. The substrate is solid neon. The displacements of the l
interfaces atz50 andz52d1 are sketched.
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v2q
2 .S a1

r1
q21s1Dd1q2, ~6b!

and forq@qc

v1q
2 .F S a1

r1
1

sd1
2

2D Dq21s11
s2

D2Gd1q2, ~7a!

v2q
2 .

r1

r2
F S a12

r1
1sd1

2Dq21
a12

a1
s11s2Gd2q2. ~7b!

Now the modev1q has a flexural character forq!qc , and
the modev2q corresponds to the layer-thickness oscillati
in this limit. At q@qc , both modes are related to laye
thickness oscillations of the upper phase.

The unusual DR’s of collective modes of the layered film
in the ideal case make especially interesting the study
mode dissipation at real helium viscosities. To obtain the
v(q)5vq2 i tq

21 containing both real and imaginary part
one has to consider the numerical solutions of Eq.~2! for a
given temperature. Hereafter, we restrict our analysis foT
50.4 K andh15531025 Ps andh25331025 Ps, with
densities and surface tensions taken from Ref. 15. We h
also evaluated the DR’s forT50.1 K, and the results ar
qualitatively the same.

We start the discussion with the cased1 /d2!1. Numeri-
cal results give strong evidence that only one of the fi
modes is weakly damped. The spectrum of this mode is
sented in Fig. 3 for two values ofd1 and different values of
d2. As it is clearly seen, the mode has weak dissipation
large enoughq and is overdamped (vq is of the same orde
or can be neglected in comparison withtq

21) at q smaller
than a threshold valueq0*qc . Let us defineDq as the
wave-number interval in which the mode is weakly damp
With decreasingd2 for a givend1 ,Dq is displaced to larger
q and vq starts very abruptly from zero atq5q0, andtq

21

becomes larger thanvq for q,q0 showing a kink nearq0.
The dispersion law of this mode coincides with that of t
flexural mode of the microstratified solution (d25`) for q
@q0. Hence, we conclude that the upper phaseflexuralmode
exhibits small dissipation. Note, however, that we cannot
the asymptotic expression given by Eq.~4a! for the fre-
quencyvq for q@q0*qc . Indeed, Eq.~4a! is valid for q
!d1

21 ,d2
21. Meantime,vq for this mode starts to approac

its asymptotic limit ford2→` at q@q0 whereq.d2
21. In

order to obtain an analytical estimate for the DR of t
weakly damped flexural mode, we have to analyze Eq.~2! in
the limit of weak dissipation (h1 ,h2→0) whend1!d2 and
d2

21!q!d1
21. As a result, the following asymptotic of DR

of the flexural mode can be written as

vq
2.~a* /r2!q3tanh~qd2!. ~8!

Note that forq@d2
21, the above DR is the same as that f

the flexural mode of the microstratified3He-4He solution,
i.e., vq

2.(a* /r2)q3.10,11 For q,d2
21 , Eq. ~8! reproduces

Eq. ~4a! for q@qc , where the contribution from the van de
Waals force is small compared with the capillary one, wh
is proportional toa* /r2. For this reason, Eq.~8! is the DR of
the flexural mode in the case of ideal fluids in a wideDq and
of
R

ve

e-

t

.

e

h

for arbitrary d2. The attenuation frequencytq
21

.2(h2 /r2)q2, indicated by the dashed curve in Fig. 3,
typical of weak dissipation19 and coincides with that of the
microstratified solution.11

As it is well known,19 strong mode dissipation should b
found when the viscous penetration depthd is larger than
any characteristic length of the system. The dissipation of
flexural mode forq!q0, where we haveqd2,1, can be
explained by comparingd for this mode withd2 taken as the
characteristic length. Extrapolating the DRvq

2

.(a* /r2)q3tanh(qd2) for q&q0, where the dissipation is
strong, one can writed5(h2 /r2nvq)1/2 for this mode. We
obtain that strong dissipation of the flexural mode take
place forq!q0

(1) whereq0
(1)5(h2 /r2n)1/2(r2 /a* )1/4d2

25/4.
Weak dissipation should appear in the opposite limit. N
merical values of q0

(1) vary from 6.43103 to 8.5
3105 cm21 as d2 changes from 531025 to 1026 cm,
whereasq0 varies from 43103 to 1.23105 cm for the same
d2 andd15531027 cm @see Fig. 3~b!#. On the other hand
one can compared, for same values ofd2, calculated for the
frequencyvq

2.(a* /r2)q3 of the weakly damped flexura
mode forq@q0. Weakdissipation can be expected whend
!d2, which gives q@q0

(2) , where q0
(2)

5(h2 /r2n)2/3(r2 /a* )1/3d2
24/3. This is a quite different re-

sult from the other case. Obviously, one can expect str

FIG. 3. Real~solid line! and imaginary~dashed line! parts of the
dispersion relation corresponding to the flexural mode of the fi
for some lower-phase thicknessesd2 and two values of the upper
phase thickness~a! d1510 Å and~b! d1550 Å.
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dissipation forq!q0
(2) . Whend2 decreases from 531025 to

1026 cm, q0
(2) changes from 4.43103 to 8.03105 cm21,

which is closer toq0 than q0
(1) . These estimates agree re

sonably well with our numerical results and explain the e
istence of weak dissipation of the modes at largeq and the
dependence ofq0 on d2 shown in Fig. 3. We observe also i
Fig. 3 the weak dependence ofq0 on d1. For a givend2 ,q0
moves to smallerq as d1 decreases. Forq@vqr2n /h2, the
DR is independent ofd2 and exhibits a maximum and
strong decrease ofvq in comparison withtq

21 , indicating
that the mode withvq

2.(a* /r2)q3 is overdamped.
For ideal fluids, the spectrum of collective oscillations

the layered film contains also the soundlike mode of lay
thickness oscillations of the upper phase ford1!d2 as given
by Eqs.~3a! and ~4b!.8 This is not the case for real fluids
since we did not obtain roots of Eq.~2! with vq@tq

21 for
anyq except those given by Eq.~8!. In Fig. 4, the dispersion
law of the soundlike mode is presented ford151027 cm
and d25531027 cm. For comparison, we plotted also th
soundlike mode spectrum in the limit d25`
~microstratification!.11 As it is seen in Fig. 4, the dissipatio
of this mode in the layered film is stronger than in the m
crostratificated situation. One can conclude that the m
corresponding to layer-thickness oscillations of upper ph
with the thicknessd1 is overdamped for allq investigated
both in the case of3He-4He solution with microstratification
(d2→`) and for layered film with finite values ofd2. The
strong dissipation of the soundlike mode means that visc
forces acting upon the particles moving with different velo
ties in this mode are so essential at real helium viscos
that the oscillatory motion of the phase thickness cannot
ist. On the other hand, as the velocities of two liquid int
faces are equal atz50 andz52d1, a flexural mode with
weak dissipation survives in the presence of liquid viscos

As is clearly seen in Fig. 3,Dq becomes narrower asd2
decreases. This behavior is clearly evidenced in Fig. 5, wh
the mode spectrum is depicted ford2 close tod1. One can
see thatDq becomes shorter whend2 changes from 2
31026 to 531027 cm but alsotq

21 approachesvq . For
d25d15531027 cm,vq and tq

21 are of the same order
which means that this mode is overdamped and canno
observed.

FIG. 4. The same as Fig. 3 but for the overdamped sound
mode ford1!d2. The spectrum in the case of microstratificatio
(d25`) is also presented ford1510 Å.
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The situation is rather interesting ford1 /d2@1 as pre-
sented in Fig. 6. HereDq is larger than that in Fig. 5,uvq

2tq
21u also increases, and the mode spectrum becomes

mally similar to the DR in the opposite limitd1 /d2!1. One
of the branches starts abruptly fromq0 and is weakly
damped forq@q0*qc and d1

21!q!d2
21. The asymptotic

solution of Eq.~2! for this branch can be written for wea
dissipation as

vq
2.~a1 /r1!q3tanh~qd1!, ~9!

which is the well-known DR for capillary waves propagatin
on the surface of a3He film with thicknessd1. For q@q0,
one hasvq

2.(a1 /r1)q3, which corresponds to the DR of
capillary wave on the free surface of bulk3He. Our numeri-
cal values ofvq for this branch agree rather well with Eq
~9!. Note that forqd1,1, Eq.~9! is formally identical to Eq.
~7a! for the modev1q . For this reason, we added the ter
tanh(qd1) in Eq. ~9!, which tends to unity forq.q0. The
asymptotic expressiontq

21.2(h1 /r1)q2 corresponding to
weak dissipation of capillary waves on the free surface
bulk 3He well describes our results in Fig. 6 forq.q0. The
dependence ofq0 on d1 can be explained along the sam
lines as the dependence ofq0 on d2 for d1 /d2!1. Now we
have to compared relative to the wave propagation along th

e FIG. 5. The same as in the previous figures but now for
flexural mode ford1>d2.

FIG. 6. The same as Fig. 5 but now for the capillarylike mode
upper-thickness oscillations ford2550 Å and differentd1.
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3He free surface with thicknessd1. In this case, we found
q0

(1)5(h1 /r1)1/2(r1 /a1)1/4d1
25/4 and q0

(2)

5(h1 /r1)2/3(r1 /a1)1/3d1
24/3 for d1 /d2@1, which agree

quantitatively with our numerical results. Indeed, as it is se
from Fig. 6, q0 varies from 2.63103 cm21 to 6.5
3105 cm21 as d1 changes from 1024 cm to 1026 cm.
Correspondingly, for the samed1, one obtains 2.13103

,q0
(1),6.63105 cm21 and 1.23103,q0

(2),5.7
3105 cm21.

One can conclude that the capillary mode with the sa
DR as in the free surface of bulk3He has weak dissipation a
q.q0 for d1@d2. However, as it is seen in Fig. 6, stron
dissipation takes place atq@q0 when l!d. According to
Eqs.~6a!–~7b!, the second branch of the DR corresponds
flexural displacements of the upper phase atq,qc and cap-
illary waves on the interface between a thick upper and a
lower phase (d2!d1) for q.qc . We did not find weakly
damped solutions of Eq.~2! in this case, and hence we co
clude that the second branch of the spectrum is overdam
for all q investigated.

IV. CONCLUSIONS

In the present work, we have studied the mode damp
in the layered3He-4He film over a solid substrate. We hav
calculated the dispersion law of the coupled oscillations
two liquid interfaces taking into account viscous dissipatio
The calculations are carried out for layer thicknes
&1025 cm where the van der Waals interaction between
helium phases and with solid substrate plays a crucial rol
the mode spectrum. We have shown that flexural oscillati
of the upper phase ford1!d2 and the capillarylike oscilla-
tions of thick film of upper liquid phase in the opposite lim
(d1@d2) do exist in the mode spectrum at largeq.q0. The
critical q0 depends strongly on the layer thicknesses of
phases. No weakly damped modes were found when
layer thicknesses are approximately equal. There are
‘‘bottlenecks’’ of layer thicknesses for weak dissipatio
where the layer thickness of one of the phases is significa
n

e
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ed

g

f
.
s
e
in
s

e
he
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ly

larger than the thickness of the other phase. By fixing
layer thickness of one phase and changing continuously
other, one should reach experimentally the situationd1.d2,
where the modes are overdamped and cannot propagat
all q. The strong attenuation of the modes at smallq can be
explained by assuming that the penetration depth relate
the modes exceeds the thickness of broader phase. The
sibility of strong dissipation for smallq may be a serious
obstacle for experimental observation of the mode when
upper phase is normal3He. This makes preferable the ex
perimental study of these modes at very lowT where transi-
tion to the superfluid state of3He can happen. In such
condition, one can expect weakly damped oscillations of
stratified film propagating through superfluid compone
with DR given in Refs. 12 and 8 and shown in Fig. 2.

Note also that mode damping may affect strongly t
properties of surface electrons over the layered film. Foq
,2kT;105 cm21, the electron-ripplon interaction shoul
be weakened, especially atd1!d2 when the weakly damped
mode can be observed only atq*2kT . In this case, the main
electron-scattering mechanism should be residual helium
oms, which is negligible forT,1 K in the case of bulk
4He. For d1@d2, where the DR is given by Eq.~9!, the
electron-ripplon scattering is the same as that over bulk3He.
On the other hand, mobility measurements over bulk3He
have evidenced that ripplons on the free3He surface can
unexpectedly contribute to the electron scattering atT around
0.1 K despite the strong dissipation of capillary waves
3He for values ofq, which contributes to the electron-ripplo
interaction.22 We hope this paper will shed some light on th
study of transport phenomena of surface electrons over
stratified film of helium isotopes at low temperatures.
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s:
APPENDIX

For the sake of completeness, we list here the functionsb i presented in the expressions forFi j of Eq. ~2!, which defines the
dispersion equation of the coupled oscillations of the layered film over a solid substrate. The functions are as follow

b15
~11l2

2/q2!sinh~l2d2!sinh~qd2!22~l2 /q!@cosh~l2d2!cosh~qd2!21#

~12l2 /q!@sinh~l2d2!cosh~qd2!2~l2 /q!cosh~l2d2!sinh~qd2!#
,

b25
~11l2

2/q2!@sinh~l2d2!2~l2 /q!cosh~l2d2!#12~l2 /q!exp~2qd2!

~11l2
2/q2!@sinh~l2d2!2~l2 /q!cosh~l2d2!1~l2 /q!exp~2qd2!#

,

b35
cosh~l2d2!2~l2 /q!sinh~l2d2!2exp~2qd2!

sinh~l2d2!2~l2 /q!@cosh~l2d2!2exp~2qd2!#
,

b45
~113l2

2/q2!sinh~l2d2!sinh~qd2!2~l2 /q!~31l2
2/q2!@cosh~l2d2!cosh~qd2!21#

~12l2 /q!2@sinh~l2d2!cosh~qd2!2~l2 /q!cosh~l2d2!sinh~qd2!#
,
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