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Real-space renormalization group study of the anisotropic antiferromagnetic Heisenberg model
on a square lattice
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In this work we apply two different real-space renormalization-group~RSRG! approaches to the anisotropic
antiferromagnetic spin-1/2 Heisenberg model on the square lattice. Our calculations allow for an approximate
evaluation of theT vs D phase diagram: the results suggest the existence of a critical value ofD.0, at which
the critical temperature goes to zero, and the presence of reentrant behavior on the critical line between the
ordered and disordered phases. This whole critical line is found to belong to the same universality class as the
Ising model. Our results are in accordance with previous RSRG approaches but not with numerical simulations
and spin-wave calculations.
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I. INTRODUCTION

Two-dimensional antiferromagnetism plays an import
role in the description of La2CuO4-based high-temperatur
superconductors.1 In these, the spin fluctuations in the CuO2
planes are well described by the spin-1/2 antiferromagn
Heisenberg model on a square lattice. This, together with
theoretical discussion made by Anderson,2 has raised interes
on this model, which has been a challenge for decades.

The Hamiltonian of the anisotropic Heisenberg mod
reads

2bH5K(
^ i , j &

@~12D!~Si
xSj

x1Si
ySj

y!1Si
zSj

z#, ~1!

where K5J/kT is the dimensionless exchange parame
with K,0(.0) for the antiferromagnetic~ferromagnetic!
model,k is the Boltzmann constant,T is the temperature, the
sum is over pairs of nearest-neighbor spinsi and j, Sl

l is the
lth component of the spin-1/2 Pauli operator on sitel, D is
the anisotropy parameter, andb51/kT. Note thatD50 de-
scribes the isotropic Heisenberg model and forD51 we re-
gain the Ising model.

For J.0 ~ferromagnetic interactions!, the ground state is
well known and the Mermin-Wagner theorem excludes lo
range order at finite temperatures in two dimensions foD
50.3 On the other hand, for 0,D<1 there is an easy axi
and the symmetry is the same as for the Ising model; th
fore long-range order is possible. Indeed, the universa
class for all models with values ofDÞ0 is the same as fo
the Ising model. A schematic temperature vs anisotro
phase diagram for the ferromagnetic model is presente
Fig. 1, where all the features discussed above are exhib

For many classical~and some quantum! systems on bipar-
tite lattices, there is a mapping of the ferromagnetic mo
onto the antiferromagnetic one. Nevertheless, there is
such mapping for the Heisenberg model; therefore,
ground state of the anisotropic antiferromagnetic Heisenb
~AAH ! model is not obtained from its ferromagnetic cou
PRB 620163-1829/2000/62~9!/5742~4!/$15.00
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terpart by flipping all spins in a given sublattice. In fact, t
ground state forJ,0 is not even exactly known and ha
been a matter of debate for a long time. However, long-ra
order was proven to be present atT50 for D.Dc50.40,4

whereas the same authors, using extra assumptions, c
lated a lower value ofDc , namely,Dc50.09.4

Previous real-space renormalization group~RSRG! proce-
dures have been able to calculate the approximate phase
gram for the AAH on the square lattice.5,6 The former refer-
ence uses a hierarchical lattice to approximate the sq
one, and performs a partial trace over internal degrees
freedom, in a manner introduced in Ref. 7. This approa
was the extension of the Niemeijer–van Leeuwen method
quantum spin systems. On the other hand, Ref. 6 applies
so-called mean-field renormalization group ideas. Althou
the approximate scaling transformations calculated in Ref
and 6 are different, the results obtained are qualitatively

FIG. 1. Schematic plot of the temperature vs anisotropy ph
diagram for the two-dimensional ferromagnetic anisotropic Heis
berg model, whereO stands for the ferromagnetic~ordered! phase
and D stands for the paramagnetic~disordered! phase. The arrow
indicates that the transitions forDÞ0 belong to the same univer
sality class as for the Ising model (D51). Note that the critical
temperature line goes to zero in the limit of the isotropic Heis
berg model (D50).
5742 ©2000 The American Physical Society
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same, and we will comment on them when our results
discussed. Nevertheless, one should bear in mind that R
procedures on quantum systems do not have the same
basis as on classical models. The reason is the noncom
tivity aspects of the Hamiltonian and, in as concerns Ref
the necessity of introducing symmetry-breaking fields wh
are chosen according to the ground state of theclassical
Ising model.

Results from spin-wave theory8 on the isotropic Heisen
berg model give the same value for the critical temperat
of the ferromagneticand antiferromagnetic systems,9 which
is in direct contradiction to rigorous results10 and to some
approximate calculations.5,6

Therefore the form of the phase-diagram of the AA
model on the square lattice is far from a settled question
more work is desirable to study its critical properties. W
thus apply two different RSRG procedures to evaluate
approximate phase diagram of this system. The ferrom
netic Heisenberg case was also studied, in order to com
our results with previous ones for a model for which t
critical behavior is well known.

The remainder of this paper is organized as follows.
Sec. II we outline the formalism we used, in Sec. III w
present results, and in the last section we summarize
main conclusions.

II. FORMALISM

In this section we outline the finite-size scaling R
~FSSRG! procedure, This method was proposed some t
ago11 and has been successfully applied to classical syst
~both static and dynamic properties have been studied!, like
Ising, Potts, or Blume-Capel models.12 The second is just the
generalization of the usual bond-moving Migdal-Kadanof13

approximation to antiferromagnetic quantum systems.
The finite-size scaling assumption is that, near the crit

region, thermodynamic quantities have the following form14

F~«,L !5bcF~b1/n«,b21L !, ~2!

whereb is some arbitrary scaling factor,L is the linear di-
mension of the lattice,F is a scaling function,«[uT2Tcu
(Tc is the critical temperature!, andn is the critical exponent
of the correlation length, such thatj;«2n for T close toTc
and in the thermodynamic limit. The exponentc is the
anomalous dimension of the thermodynamic quantityF; for
the magnetizationM, c52b/n, while for the magnetic sus
ceptibility x, c5g/n.

The idea behind the FSSRG is to construct quanti
which have a zero anomalous dimension,c50, such that

QL8~«8![QL8~b1/n«!5QL~«!. ~3!

As seen, these quantities will have the same value aT
5Tc , no matter what the lattice sizesL or L8 are ~as far as
both are@1). Therefore the crossing ofQ for two different
lattice sizes is an evaluation of the critical temperature; f
thermore, the previous equation can be seen as an itera
in the renormalization group~RG! sense. Thus information
on the exponentn can also be accessed, as well as ot
information obtained from RG procedures~universality
classes, crossover phenomena, first-order phase transi
re
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etc.!. For example, for the Ising model in zero magne
field, one appropriate function is

t5K sgnS (
top

StD sgnS (
bottom

SbD L , ~4!

where^•••& denotes a canonical average,bottommeans all
spins at the bottom plane~line! of a three~two!-dimensional
lattice, top stands for all spins at the top plane~line! of a
three ~two!-dimensional lattice, and sgn(x)521,0 or 1 if
x,0, x50 or x.0, respectively. For an infinite system,t
51 for T,Tc andt50 for T.Tc . Substitutingt for Q in
Eq. ~3!, we obtain a RSRG equation which connects t
parametersK in the original lattice andK8 in the renormal-
ized ~smaller! lattice. For a more detailed discussion on t
application of the FSSRG to the Ising model, see Ref.
Note, however, that the only approximation comes from
finite size of the lattices; in fact, even when small lattices
used, the quantitative results are precise, and this can
understood if one realizes that the FSSRG is a genera
tion, for completely finite clusters, of the phenomenologic
RG developed by Nightingale.15

In using the FSSRG approach in the study of quant
systems, we expect to take advantage of the fact that n
commutative aspects of the Hamiltonian are not appro
mated away by the method. Our approach here is to
small lattices, which, although not allowing for a preci
evaluation of the critical parameters~like, for instance, those
obtained with numerical simulations on big lattices!, allows
for a good qualitative description of the critical phenome
involved. The clusters we chose to represent the square
tice are depicted in Fig. 2, where the right figure is the big
cluster, with parametersK[J/kT and D and the left figure
depicts the smaller cluster, with parametersK8 andD8. The
Hamiltonians for the original and renormalized clusters a

2bH5K@~12D!~S1
xS2

x1S1
yS2

y1S2
xS3

x1S2
yS3

y1S3
xS4

x1S3
yS4

y

1S4
xS1

x1S4
yS1

y!1S1
zS2

z1S2
zS3

z1S3
zS4

z1S4
zS1

z#, ~5!

and

2~bH!85K8@~12D8!~S1
xS2

x1S1
yS2

y!1S1
zS2

z#, ~6!

respectively.
When applying the FSSRG method to the anisotro

Heisenberg model, one has to devise two functions with z
anomalous dimension, since it is necessary to renorma
two parameters, namely,D andkT/J. Also, we have to dis-

FIG. 2. Cells used to implement the renormalization gro
transformation for the anisotropic Heisenberg model on the squ
lattice.
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tinguish between the antiferromagnetic and ferromagn
models, and two different sets of functions were used
each of them.

For the ferromagnetic model, we chose the followi
quantities:

t85^sgn~S1
z!sgn~S2

z!&, ~7!

h85^sgn~S1
x!sgn~S2

x!& ~8!

for the smaller cluster and

t5^sgn~S1
z1S2

z!sgn~S3
z1S4

z!&, ~9!

h5^sgn~S1
x1S2

x!sgn~S3
x1S4

x!& ~10!

for the bigger cluster. The averages are to be taken w
respect to the ensemble defined by Eqs.~5! and ~6! for
unprimed~primed! quantities.

For the antiferromagnetic model, Eqs.~7! and ~8! remain
the same, while Eqs.~9! and ~10! are replaced by

t5^sgn~S1
z2S2

z!sgn~2S3
z1S4

z!& ~11!

and

h5^sgn~S1
x2S2

x!sgn~2S3
x1S4

x!&, ~12!

respectively.
The procedure to calculate these functions is fa

straightforward; the final expressions, however, are
lengthy and will be omitted. To obtain the required RG equ
tions, we imposet85t and h85h, according to Eq.~3!.
Approximate values for the critical points are obtained fro
the fixed points of these equations and critical exponents
linked to the behavior of the iterations near the fixed poin

III. RESULTS

A. Finite-size scaling renormalization group„FSSRG…

Our results for the ferromagnetic~F! and antiferromag-
netic ~AF! models are shown in Fig. 3. The critical curve f
the F curve is depicted for comparison: the accordance w
previous results, either approximate or exact, is very go
The Ising critical point is located atkTc /uJu52.11,D51 ~ex-
act values:kTc /uJu52.269,D51); our estimate for the criti-
cal exponentn for the Ising model is 0.91, while the exa
value is 1. The universality class forDÞ0 is the same as fo
the Ising model, which is also consistent with previous
sults. Note that the F and AF Ising models are expecte
have the same critical exponents and the same modulu
the critical temperature, and our evaluation agrees with th
results.

For the AF model, the phase diagram is qualitatively d
ferent from its F counterpart: the critical temperature reac
zero at a critical value ofD, Dc , which is greater than zero
We find Dc50.29, which compares withDc50.40 in Ref. 5
andDc50.18 in Ref. 6. We also find a reentrant behavior
the critical line, which is also present in Refs. 5 and 6. Ne
ertheless, in Ref. 6 a second reentrance is observed; the lo
est temperature we could work with waskT/uJu50.1 and we
have observed no sign of this second reentrance, neither
the FSSRG nor with the bond-moving scheme~to be pre-
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sented in what follows!. In Ref. 6, the Ne´el temperature be-
haves asTN;1/ln(D2Dc) nearD5Dc , while, for the aniso-
tropic ferromagnetic Heisenberg model,Tc;1/ln(D).6 The
supression of long-range order at finite temperatures
small values ofD can be regarded as due to quantum flu
tuations. While these are not relevant in critical phenome
which take place at ‘‘high’’ temperatures, they might be im
portant when the critical temperature is low. We expect t
to be the case for small values ofD, and then quantum fluc
tuations gain in importance, supressing long-range or
Note that we cannot present results atT50, since parts of
our calculation were done numerically and therefore we
not able to go to very low temperatures.

B. Migdal-Kadanoff approximation

We have also performed a bond-moving RSRG proced
to study the AAH model on the square lattice. This proc
dure is equivalent to the one in Ref. 5 applied to a differe
hierarchical lattice; a careful exposition of the method
made in Ref. 7 and the bond-moving approximation is p
sented in Ref. 16.

The phase diagram for the antiferromagnetic model is p
sented in Fig. 4; note that the qualitative features agree w
those obtained from other RSRG approaches. However,
have not found the second reentrance in the critical cu
The Néel temperatureTN varies as~see insert in Fig. 4!

TN;
1

ln~Dc2D!
, ~13!

where Dc50.199 for the Migdal-Kadanoff approximation
Again the universality class for the whole critical curve is t
same as for the Ising model.

We would like to mention that the results from bo
RSRG employed here are in disagreement with spin-w
calculations8,9 and numerical simulation.17,18The former pre-
sentsTc5TN for any value ofD and for two and three di-
mensions, while the latter predictsDc50 for the AAH

FIG. 3. Critical temperature vs anisotropy phase diagram for
ferromagnetic~curve F! and antiferromagnetic~curve AF! aniso-
tropic Heisenberg model. Both lines are atracted to the Ising fi
point, located atkT/uJu52.11,D51. O(D) stands for ordered~dis-
ordered! phase. The arrow indicates the exact critical temperat
for the Ising model.
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model. In Ref. 18, the logarithmic dependence ofTN andTc
with respect toD2Dc is established using scaling arg
ments, butDc50 in that paper. Note that our calculation
cannot be carried out down toT50; therefore we canno
study the character of the ground state of the AAH model.4,19

FIG. 4. Néel temperatureTN vs D phase diagram for the anti
ferromagnetic anisotropic Heisenberg model on the square lat
The region above~below! the critical line represents disordere
~ordered! phase and the insert shows the data for smallTN , near
Dc50.199.
IV. SUMMARY

In summary, we calculate thekT/uJu vs D phase diagram
for the anisotropic antiferromagnetic Heisenberg model
the square lattice. Our results show the presence of reen
behavior on the critical line which separates the disorde
and ordered phases and a value ofD.0 such that the Ne´el
temperature is zero. The entire critical line is found to belo
to the universality class of the Ising model. These findin
are in agrrement with previous RSRG procedures~with the
exception of the second reentrance found in Ref. 6! but not
with spin-wave calculations and numerical simulation.

It is clear that the reentrant behavior and a value ofDc
greater than zero are strongly supported by RSRG
proaches, but the question is not yet settled and more wo
needed to put these points on firmer grounds. Coher
anomaly methods20 and numerical simulations with cluste
algorithms21 are possible ways to provide a more defin
answer to this problem. Work is now proceeding along th
lines.

ACKNOWLEDGMENTS

We would like to thank Dr. J. A. Plascak and Professor
P. Landau for discussions and for a critical reading of
manuscript. N.S.B. acknowledges partial financial supp
from the Brazilian Agency CAPES.

e.
s.
*Permanent address: Departamento de Fı´sica, Universidade Fed-
eral de Santa Catarina, 88040-900, Floriano´polis, Santa Catarina,
Brazil. Email address: nsbranco@hal.physast.uga.edu

†Email address: jsousa@fua.br
1G. Shiraneet al., Phys. Rev. Lett.59, 1613 ~1987!; Y. Endoh

et al., Phys. Rev. B37, 7443~1988!.
2P.W. Anderson, Science235, 196 ~1987!.
3N.D. Mermin and H. Wagner, Phys. Rev. Lett.17, 1133~1966!.
4N. Nishimori and Y. Ozeki, J. Phys. Soc. Jpn.58, 1027~1989!.
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