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Real-space renormalization group study of the anisotropic antiferromagnetic Heisenberg model
on a square lattice
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In this work we apply two different real-space renormalization-grdR8RG approaches to the anisotropic
antiferromagnetic spin-1/2 Heisenberg model on the square lattice. Our calculations allow for an approximate
evaluation of thel vs A phase diagram: the results suggest the existence of a critical vallie 0f at which
the critical temperature goes to zero, and the presence of reentrant behavior on the critical line between the
ordered and disordered phases. This whole critical line is found to belong to the same universality class as the
Ising model. Our results are in accordance with previous RSRG approaches but not with numerical simulations
and spin-wave calculations.

[. INTRODUCTION terpart by flipping all spins in a given sublattice. In fact, the
ground state forJ<O is not even exactly known and has

Two-dimensional antiferromagnetism plays an importantbeen a matter of debate for a long time. However, long-range
role in the description of LaCuQ,-based high-temperature order was proven to be present®t0 for A>A =0.40;
superconductorsin these, the spin fluctuations in the CuO whereas the same authors, using extra assumptions, calcu-
planes are well described by the spin-1/2 antiferromagnetitated a lower value o\, namely,A,=0.09?

Heisenberg model on a square lattice. This, together with the Previous real-space renormalization grdRSRQG proce-
theoretical discussion made by Ander€dmgs raised interest dures have been able to calculate the approximate phase dia-
on this model, which has been a challenge for decades. gram for the AAH on the square latticé. The former refer-

The Hamiltonian of the anisotropic Heisenberg modelence uses a hierarchical lattice to approximate the square
reads one, and performs a partial trace over internal degrees of
freedom, in a manner introduced in Ref. 7. This approach
was the extension of the Niemeijer—van Leeuwen method to
quantum spin systems. On the other hand, Ref. 6 applies the
so-called mean-field renormalization group ideas. Although
where K=J/KT is the dimensionless exchange parameterthe approximate scaling transformations calculated in Refs. 5

with K<0(>0) for the antiferromagneti¢ferromagnetit  and 6 are different, the results obtained are qualitatively the
model,k is the Boltzmann constant, is the temperature, the

sum is over pairs of nearest-neighbor spiasdj, S? is the

Ath component of the spin-1/2 Pauli operator on kit& is

the anisotropy parameter, ap=1/kT. Note thatA=0 de-

scribes the isotropic Heisenberg model andAct 1 we re-

gain the Ising model. R:
For J>0 (ferromagnetic interactionsthe ground state is

well known and the Mermin-Wagner theorem excludes long-

range order at finite temperatures in two dimensionsAfor

=02 On the other hand, for@A<1 there is an easy axis o

and the symmetry is the same as for the Ising model; there-

fore long-range order is possible. Indeed, the universality

class for all models with values df #0 is the same as for

the Ising model. A schematic temperature vs anisotropy 0

phase diagram for the ferromagnetic model is presented in £ 1 schematic plot of the temperature vs anisotropy phase

Fig. 1, where all the features discussed above are e?(h'b'teQiagram for the two-dimensional ferromagnetic anisotropic Heisen-
For many classicaland some quantunsystems on bipar-  perg model, wher® stands for the ferromagnetiordered phase

tite lattices, there is a mapping of the ferromagnetic modehnd b stands for the paramagnetidisordered phase. The arrow

onto the antiferromagnetic one. Nevertheless, there is N@dicates that the transitions fdr#0 belong to the same univer-

such mapping for the Heisenberg model; therefore, theality class as for the Ising modeA&1). Note that the critical

ground state of the anisotropic antiferromagnetic Heisenbergemperature line goes to zero in the limit of the isotropic Heisen-

(AAH) model is not obtained from its ferromagnetic coun- berg model A=0).

— BH= K<Z> [(1-A)SS+F+5s], (D)
1]
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same, and we will comment on them when our results are S, S, S,
discussed. Nevertheless, one should bear in mind that RSRG
procedures on quantum systems do not have the same firm
basis as on classical models. The reason is the honcommu- RGT
KA
s,

tivity aspects of the Hamiltonian and, in as concerns Ref. 6, K,A
the necessity of introducing symmetry-breaking fields which
are chosen according to the ground state of d¢lessical
Ising model. S S,

Results from spin-wave thedtpn the isotropic Heisen- ) o
berg model give the same value for the critical temperature F'G- 2. Cells used to implement the renormalization group
of the ferromagneti@and antiferromagnetic systen‘cfsNhich trar_lsformatlon for the anisotropic Heisenberg model on the square
is in direct contradiction to rigorous resuftsand to some lattice.
approximate calculatiorrs®

Therefore the form of the phase-diagram of the AA
model on the square lattice is far from a settled question an
more work is desirable to study its critical properties. We
thus apply two different RSRG procedures to evaluate the r:<sgr(2 S()sgr( 2 Sb)> (4)
approximate phase diagram of this system. The ferromag- top bottom

netic Heisenberg case was also studied, in order to compare .

our results with previous ones for a model for which theWhere(: - -) denotes a canonical averagettommeans all

critical behavior is well known. spins at the bottom plan@ne) of a three(two)-dimensional
The remainder of this paper is organized as follows. Inlattice, top stands for all spins at the top plaiiéne) of a

Sec. Il we outline the formalism we used, in Sec. Ill we three (two)-dimensional lattice, and sgxf=—1,0 or 1 if

present results, and in the last section we summarize ouf<0, Xx=0 or x>0, respectively. For an infinite system,

Eqg. (3), we obtain a RSRG equation which connects the
parameter« in the original lattice anK’ in the renormal-
ized (smalley lattice. For a more detailed discussion on the
In this section we outline the finite-size scaling RG application of the FSSRG to the Ising model, see Ref. 11.
(FSSRG procedure, This method was proposed some timéNote, however, that the only approximation comes from the
agd? and has been successfully applied to classical systenfifite size of the lattices; in fact, even when small lattices are
(both static and dynamic properties have been stidldé@  used, the quantitative results are precise, and this can be
Ising, Potts, or Blume-Capel modéfsThe second is just the understood if one realizes that the FSSRG is a generaliza-
generalization of the usual bond-moving Migdal-Kadatbff tion, for completely finite clusters, of the phenomenological
approximation to antiferromagnetic quantum systems. RG developed by Nightingafe.
The finite-size scaling assumption is that, near the critical In using the FSSRG approach in the study of quantum
region, thermodynamic quantities have the following fdfin: systems, we expect to take advantage of the fact that non-
commutative aspects of the Hamiltonian are not approxi-
Fle,L)=b?F(bYe,b~1L), (2 mated away by the method. Our approach here is to use
. ) ) ] ) _ small lattices, which, although not allowing for a precise
whereb is some arbitrary scaling factok, is the linear di-  eyajuation of the critical parametefige, for instance, those
mension of the lattice is a scaling functione=|T—T¢|  optained with numerical simulations on big lattizeallows
(T¢ is the critical temperatujeandy is the critical exponent  for a good qualitative description of the critical phenomena
of the correlation length, such that-e~" for T close toT;  jnvolved. The clusters we chose to represent the square lat-
and in the thermodynamic limit. The exponeiitis the tce are depicted in Fig. 2, where the right figure is the bigger
anomalous dimension of the thermodynamic quarsiitfor  cluster, with parameteri§=J/kT and A and the left figure
the magnetizatioM, = — B/v, while for the magnetic sus- depicts the smaller cluster, with parametrsandA’. The

Hetc). For example, for the Ising model in zero magnetic
Held, one appropriate function is

Il. FORMALISM

ceptibility x, ¢=y/v. Hamiltonians for the original and renormalized clusters are
The idea behind the FSSRG is to construct quantities
which have a zero anomalous dimensigns 0, such that — BH=K[(1—A)(S!Si+ S+ SiS+ S+ SiSi+ IS,
Qi (s")=0Qu(b"e)=Q\(e). €) +S,S+ S+ SIS+ S S+ §S+SS]],  (9)

As seen, these quantities will have the same valud at and

=T,., no matter what the lattice sizésor L' are(as far as

bot_h are> 1)_. Therefore the crossing c@ for two different —(BH)' =K'[(1-A")(S!Ss+ IS +SiS5],  (6)
lattice sizes is an evaluation of the critical temperature; fur-

thermore, the previous equation can be seen as an iteratiorespectively.

in the renormalization groufRG) sense. Thus information When applying the FSSRG method to the anisotropic
on the exponent can also be accessed, as well as otheHeisenberg model, one has to devise two functions with zero
information obtained from RG procedure@niversality anomalous dimension, since it is necessary to renormalize
classes, crossover phenomena, first-order phase transitiomao parameters, namely, andkT/J. Also, we have to dis-
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tinguish between the antiferromagnetic and ferromagnetic —
models, and two different sets of functions were used for
each of them.

For the ferromagnetic model, we chose the following
guantities:

kT
7' =(sgnS)sgns))), 7 I
7' =(sgr(S)sgnS))) 8
for the smaller cluster and
T=(sgr(Si+S;)sgn(S;+ S))), 9
n=(sgnS;+S;)sgnS;+Sy)) (10) 0 02 04 06 08 1
for the bigger cluster. The averages are to be taken with A

respect to the ensemble defined by E¢®. and (6) for

unprimed(primeo) quantitie;. ) ferromagnetic(curve B and antiferromagneti¢curve AP aniso-
For the antiferromagnetic model, Eq3) and(8) remain  gpic Heisenberg model. Both lines are atracted to the Ising fixed
the same, while Eqg¢9) and(10) are replaced by point, located akT/|J|=2.11A=1. O(D) stands for ordere(tis-

;e ;e ordered phase. The arrow indicates the exact critical temperature
T=(sgnS;—S5)sgn — S5+ S})) (1D for the Ising model.

FIG. 3. Critical temperature vs anisotropy phase diagram for the

and : -
sented in what follows In Ref. 6, the Nel temperature be-

— X _ X _gXygx haves ad \~1/In(A—A,) nearA=A_, while, for the aniso-
7=(SQSi—S;)Sr =S5+ Sa), 12 tropic ferromagnetic Heisenberg moddl,~ 1/In(A).% The
respectively. supression of long-range order at finite temperatures for
The procedure to calculate these functions is fairlysmall values ofA can be regarded as due to quantum fluc-
straightforward; the final expressions, however, are toquations. While these are not relevant in critical phenomena
lengthy and will be omitted. To obtain the required RG equa-which take place at “high” temperatures, they might be im-

tions, we imposer' =7 and 5’ =%, according to Eq(3).  portant when the critical temperature is low. We expect this

Approximate values for the critical points are obtained fromto be the case for small values &f and then quantum fluc-
the fixed points of these equations and critical exponents amgiations gain in importance, supressing long-range order.

linked to the behavior of the iterations near the fixed pointsNote that we cannot present resultsTat 0, since parts of
our calculation were done numerically and therefore we are

. RESULTS not able to go to very low temperatures.

A. Finite-size scaling renormalization group(FSSRG B. Migdal-Kadanoff approximation
Our results for the ferromagneti&) and antiferromag- We have also performed a bond-moving RSRG procedure

netic (AF) m(_)dels are shown in F'g'. 3. The critical curve for to study the AAH model on the square lattice. This proce-
the F curve is depicted for comparison: the accordance with

previous results, either approximate or exact, is very goodﬂure is equivalent to the one in Ref. 5 applied to a different
The Ising criticallpoint is located &T_/|J|=2 11,A—1 (ex nierarchical lattice; a careful exposition of the method is
c & - :

act valueskT./|J|=2.269A=1); our estimate for the criti- made in Ref. 7 and the bond-moving approximation is pre-

cal exponentv for the Ising model is 0.91, while the exact sented in Ref. 16.
value is 1. The universality class far# 0 is the same as for The phase diagram for the antiferromagnetic model is pre-

the Ising model, which is also consistent with previous re_sented in Fig. 4; note that the qualitative features agree with

. those obtained from other RSRG approaches. However, we
E:l\i‘ mgtzgga; g:i?icFaIaenSpﬁ:eﬁ?%r?&ogwﬂssgﬁee)r?:;ﬁfst?' ve not found the second_ reentrance in tr_le c_ritical curve.
- . . e Neel temperaturd varies agsee insert in Fig. ¥

the critical temperature, and our evaluation agrees with these
results. 1

For the AF model, the phase diagram is qualitatively dif- Tn~ N(A.—A)’
ferent from its F counterpart: the critical temperature reaches €
zero at a critical value oA, A., which is greater than zero. where A.;=0.199 for the Migdal-Kadanoff approximation.
We find A,=0.29, which compares with.=0.40 in Ref. 5  Again the universality class for the whole critical curve is the
andA.=0.18 in Ref. 6. We also find a reentrant behavior insame as for the Ising model.
the critical line, which is also present in Refs. 5 and 6. Nev- We would like to mention that the results from both
ertheless, in Ref6 a second reentrance is observed; the lowRSRG employed here are in disagreement with spin-wave
est temperature we could work with w$/|J|=0.1 and we  calculation§® and numerical simulatiol.*8The former pre-
have observed no sign of this second reentrance, neither witentsT.= Ty for any value ofA and for two and three di-
the FSSRG nor with the bond-moving schefte be pre- mensions, while the latter predicts,=0 for the AAH

(13
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1.5 — : , IV. SUMMARY

In summary, we calculate tHeT/|J| vs A phase diagram
for the anisotropic antiferromagnetic Heisenberg model on
the square lattice. Our results show the presence of reentrant
behavior on the critical line which separates the disordered
and ordered phases and a valueAof 0 such that the Na
temperature is zero. The entire critical line is found to belong
to the universality class of the Ising model. These findings
are in agrrement with previous RSRG proceduwgh the
exception of the second reentrance found in Refui not
with spin-wave calculations and numerical simulation.

KT /I

05 -

1/log(A-4) It is clear that the reentrant behavior and a value\gf
greater than zero are strongly supported by RSRG ap-
0 ! ‘ . proaches, but the question is not yet settled and more work is
0 0.2 0.4 0.6 0.8 1

needed to put these points on firmer grounds. Coherent-

anomaly method§ and numerical simulations with cluster
FIG. 4. Neel temperaturély vs A phase diagram for the anti- algorithm$* are possible ways to provide a more definite

ferromagnetic anisotropic Heisenberg model on the square latticanswer to this problem. Work is now proceeding along these

The region abovebelow) the critical line represents disordered lines.

(ordered phase and the insert shows the data for smgl] near

A,=0.199.
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