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Electron spectrum, thermodynamics, and transport in antiferromagnetic metals
at low temperatures
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Electron spectrum of two-dimensional~2D! and 3D antiferromagnetic metals is calculated with an account
of spin-fluctuation corrections within perturbation theory in thes-f exchange model. Effects of the interaction
of conduction electrons with spin waves in thermodynamic and transport properties are investigated. At lowest
temperaturesT,T* ;(D/EF)TN (D is the AFM splitting of the electron spectrum! a Fermi-liquid behavior
takes place, and nonanalyticT3ln T contributions to specific heat are present forD53. At the same time, for
T.T* , in 2D and ‘‘nested’’ 3D systems the picture corresponds to a marginal Fermi liquid (T ln T contribu-
tions to specific heat and nearlyT-linear dependence of resistivity!. Frustrations in the spin system in the 3D
case are demonstrated to lead to similar results. The Kondo contributions to electronic properties are analyzed
and demonstrated to be strongly suppressed. The incoherent contributions to transport properties in the pres-
ence of impurity scattering are considered. In particular, in the 2D caseT-linear terms in resistivity are present
up to T50, and thermoelectric power demonstrates the anomalousT ln T dependence.
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I. INTRODUCTION

The theory of electronic structure of highly correlated s
tems is up to now extensively developed. The interest in
problem has grown in connection with studying anomalo
rare-earth and actinide compounds~e.g., heavy-fermion sys
tems! and high-Tc superconductors~HTSC’s!. A possible
formation of states, which differ from the usual Fermi liqui
is widely discussed. The non-Fermi-liquid~NFL! behavior of
the excitation spectrum up to lowest energies is now relia
established in the one-dimensional case~the ‘‘Luttinger
liquid’’ 1!. However, Anderson2 assumed occurrence of
similar situation in some two-dimensional~2D! and even
three-dimensional~3D! systems with strong electron correl
tions, various mechanisms@resonating valence bond~RVB!
state, scattering anomalies, Hubbard’s splitting, etc.# being
proposed. Recently, an attempt has been made3 to revise the
general formulation of the Luttinger theorem~conservation
of the volume under the Fermi surface for arbitrary law
vanishing of electron damping atEF) which is a basis of the
Fermi-liquid description.

Another approach to the problem of the NFL behav
was proposed by Varmaet al.4 To describe unusual prope
ties of HTSC’s~e.g., theT-linear dependence of resistivity!,
these authors put forward a phenomenological ‘‘margi
Fermi liquid’’ ~MFL! theory where electron damping is lin
ear in energyE ~referred to the Fermi level!, and the effec-
tive mass is logarithmically divergent atE→0. Such a be-
havior was supposed to result from the interaction with lo
Bose excitations possessing a peculiar~linear in their energy
and weaklyq-dependent! spectral density. Further the MF
theory was developed in a number of papers~see, e.g., Refs
5–7!. In the simplest way, the MFL electron spectrum can
reproduced in some crossover energy region for interac
electron systems under the requirement of almost per
nesting in the 2D case,8–11 which seems to be too strict fo
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real systems. Similar results were obtained with accoun
antiferromagnetic~AFM! spin fluctuations in the vicinity of
the AFM instability.12 Almost T-linear behavior of the resis
tivity in paramagnetic 2D metals with strong AFM fluctua
tions was obtained by Moriyaet al.13 in a broad temperature
region.

Besides HTSC’s, a NFL behavior in some temperat
intervals was found experimentally in a number of uraniu
and cerium systems @UxY12xPd3,14 UPt32xPdx ,15

UCu52xPdx ,16 CeCu62xAux ,17 UxTh12xBe13,
Th12xUxRu2Si2 , CexLa12xCu2Si2 ~Refs. 18 and 19!#. In par-
ticular, T ln T-term in electronic specific heat,T-linear cor-
rections to resistivity~both positive and negative ones!, un-
usual power-law or logarithmicT dependences of magnet
susceptibility, etc. were observed.18 This behavior is, as a
rule, interpreted within the two-channel Kondo scatteri
mechanism,20 Griffith’s point mechanism,21 etc. At the same
time, in a number of systems (UCu52xPdx , CeCu62xAux ,
UxY12xPd3) the NFL behavior correlates apparently with th
onset of antiferromagnetic~AFM! ordering.17,22

An interesting behavior is demonstrated by the syst
Y12xScxMn2.23,24 YMn2 is an itinerant AFM with a frus-
trated magnetic structure, and forx50.03~or under pressure!
the long-range magnetic order is suppressed and the li
specific heat is giant (g5140 mJ/mol K2). This system
demonstrates strong anomalies of transport properties~in
particular, deviations from the quadraticT dependence of
resistivity!.25 A hypothesis about formation of a spin-liqui
state in this system was put forward in Ref. 26. A detai
analysis of the neutron scattering in this compound seem
confirm this hypothesis.27

Most of the systems under consideration have peculi
ties of band and spin-fluctuation spectra. The Fermi surfa
of the anomalousf systems have complicated forms wi
several pieces;28 we have to bear in mind that for some o
these pieces the ‘‘nesting’’ condition can hold. It will b
5647 ©2000 The American Physical Society
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shown below that such cases need separate consider
~roughly speaking, in the nesting situation the effective
mensionality of the system diminishes by unity!. Despite the
3D picture of electron spectrum, spin fluctuations in su
systems as CeCu62xAux CeRu2Si2 demonstrate 2D-like
behavior.29,30

Since practically all the above-discussed highly-correla
systems are characterized by pronounced local moments
spin fluctuations, a detailed treatment of the electron-mag
mechanism seems to be important to describe their ano
lous properties. In the present work we use thes-d( f ) ex-
change model and consider effects of interaction of cond
tion electrons with usual spin-wave excitations in meta
antiferromagnets with localized magnetic moments. The
ter condition results in that spin waves are well defined i
large region of theq space. From the general point of view
presence of the localized-electron system is favorable for
violation of the Fermi-liquid picture. Indeed, we shall dem
onstrate that a number of physical properties of the AF
metals with 2D electron spectrum~e.g., HTSC’s! exhibit a
NFL behavior in some temperature interval, although
collective excitation spectrum is quite different from that
the theory.4 A similar situation takes place forD53 pro-
vided that nesting features of the Fermi surface are prese
spin-wave spectrum has reduced dimensionality~Ce- and
U-based systems!. We analyze also peculiar incohere
~‘‘nonquasiparticle’’! contributions to electronic density o
states and thermodynamic and transport properties, w
are not described by the standard Fermi-liquid theory.

In Sec. II we calculate the electron Green’s function fo
conducting antiferromagnet in the framework of thes-d( f )
exchange model. We investigate various contributions to
electron self-energy and density of states. In Sec. III we
culate the electronic specific heat and transport relaxa
rate owing to the electron-magnon interaction. We anal
also the incoherent contributions to transport propert
which are connected with impurity scattering. A consiste
quasiclassical perturbation theory is discussed in Appen
A. A simple scaling consideration is performed in Append
B. Some of preliminary results of the paper were brie
presented in Ref. 31.

II. PECULIARITIES OF ELECTRON SPECTRUM:
PERTURBATION THEORY

The peculiarities of spectrum and damping of quasipa
cles near the Fermi level are due to the interaction with lo
energy collective excitations, either well-defined or of dis
pative nature~phonons, zero sound, paramagnons, et!.
Migdal32 proved forD53 in a general form that the corre
sponding nonanalytic contributions to the self-energyS(E)
are of the order ofE3ln E, which results inT3ln T terms in
electronic specific heat.33 The Fermi-liquid behavior migh
seem to take place for AFM metals since in the lon
wavelength limit (q→0) the electron-magnon interaction
equivalent to the interaction with acoustical phonons~the
spectrum of the Bose excitations is linear and the scatte
amplitude is proportional toq1/2). However, in the case o
AFM spin waves there exists one more ‘‘dangerous’’ reg
q→Q (Q is the wave vector of the AFM structure!, where
the magnon frequencyvq tends to zero and the scatterin
ion
-
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amplitude diverges asvq
21/2. At very smallE such processes

are forbidden because of the presence of the AFM splitting
the electron spectrum. At the same time, at not too smaE
one may expect that these processes lead to stronger s
larities. Thus the Fermi-liquid picture may become violat
in this energy region.

To investigate effects of interaction of current carrie
with local moments we use the Hamiltonian of thes-d( f )
exchange model

H5(
ks

tkcks
† cks2I(

qk
(
ab

Sqcka
† sabck2qb1(

q
JqSqS2q ,

~1!

wherecks
† , cks , andSq are operators for conduction elec

trons and localized spins in the quasimomentum represe
tion, the electron spectrumtk is referred to the Fermi level,I
is thes-d( f ) exchange parameter,s are the Pauli matrices
We consider an antiferromagnet which has the spiral str
ture along thex axis with the wave vectorQ ,

^Si
z&5ScosQRi , ^ Si

y&5SsinQRi , ^Si
x&50.

It is convenient to introduce the local coordinate system

Si
z5Ŝi

zcosQRi2Ŝi
ysinQRi ,

Si
y5Ŝi

ycosQRi1Ŝi
zsinQRi , Si

x5Ŝi
x .

Further one can pass from spin operatorsŜi to the spin de-
viation operatorsbi

† ,bi and, by the canonical transformatio
bq

†5uqbq
†2vqb2q , to the magnon operators. Hereafter w

consider for simplicity a two-sublattice antiferromagnet~2Q
is equal to a reciprocal-lattice vector, and cos2QRi
51, sin2QRi50). Then the Bogoliubov transformation coe
ficients and the magnon frequency are given by

uq
2511vq

25
1

2
@11S̄~Jq1Q1Jq22JQ!/vq#,

vq52S̄~JQ2q2JQ!1/2~Jq2JQ!1/2 ~2!

so thatuq7vq>uq1Q6vq1Q}vq
61/2 at q→0.

Further we use at concrete calculations simple results
the usual perturbation theory inI. Defining the self-energies
by the perturbation expansion

Gks~E!5^^cksucks
† &&E5FE2tk2(

n
Sk

(n)~E!G21

~3!

we derive for the contributions which contain the Fermi d
tribution functionsnk5 f (tk),

Sk
(2)~E!5I 2S̄(

q
~uq2vq!2

3S 12nk1q1Nq

E2tk1q2vq
1

nk1q1Nq

E2tk1q1vq
D , ~4!
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Sk
(3)~E!5I 3S̄2(

q
S 12nk1q1Nq

E2tk1q2vq
2

nk1q1Nq

E2tk1q1vq
D

3S 1

E2tk2Q
2

1

tk1q2tk1q2Q
D , ~5!

Sk
(4)~E!5I 4S̄3(

q
~uq1vq!2S 1

E2tk2Q

2
1

E2tk1q2Q
D 2S 12nk1q1Nq

E2tk1q2vq
1

nk1q1Nq

E2tk1q1vq
D ,

~6!

whereNq5NB(vq) is the Bose function.
Nonanalytic contributions to the self-energies atE→0,

T50 originate from spin waves with smallq and uq2Qz.
Because ofq dependence of interaction matrix elemen
@(uq7vq)

2}q,(uq6vq)
2}q21 at q→0 and q→Q respec-

tively#, the intersubband contributions (q→Q) are, generally
speaking, more singular than intrasubband ones (q→0).
However, owing to quasimomentum and energy conse
tion laws, the intersubband transitions are possible
uq2Qu.q0;D/vF (D52IS̄ is the antiferromagnetic split
ting, S̄ is the sublattice magnetization,vF is the electron
velocity at the Fermi level!. Therefore, when using simpl
perturbation expressions, one has to bear in mind that
singular intersubband transition contributions should be
at uEu,T;T* where

T* 5cq0;TND/vF ~7!

with c being the magnon velocity. A more general perturb
tion theory is considered in Appendix A.

It should be noted that, despite absence of long-range
der at finite temperatures, the expressions~4!–~6! are valid
also in the 2D case up toT;J, S̄ being replaced by the
square root of the Ornstein-Cernike peak intensity in the p
correlation function.34 We also have to replaceTN→JS2 in
Eq. ~7!. A similar situation occurs for frustrated magnet
systems with suppressed long-range order. In particular,
can think that the consideration of electron-spin interactio
that is based on the spin-wave picture, is qualitatively ap
cable to Y12xScxMn2, despite this is not an antiferromagne
but a spin liquid with strong short-range AFM order.

The correction to the density of states owing tos-d( f )
interaction reads

dN~E!52(
kis

S 1

p
Im Sk

( i )~E!/~E2tk!2

1ReSk
( i )~E!d8~E2tk! D . ~8!

The first term in Eq.~8! corresponds to incoherent~nonqua-
siparticle! contribution, and the second one describes
renormalization of quasiparticle spectrum.

The third-order contribution~5! describes the Kondo ef
fect in the AFM state.34,35 It should be noted that an accou
of spin dynamics is important at treating this contributio
a-
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and its neglect leads to incorrect results: the transition to
usual Kondo behavior ImS(E)} lnuEu discussed in Ref. 36
takes place in fact only at

uEu@v̄5v~2kF!.2ckF .

Unlike Sk
(2)(E), Sk

(4)(E) does not contain ‘‘dangerous’
divergences since the factor (uq1vq)

2 is singular atq→0
~rather than atuq2Qu→0) and the next factor is propor
tional to q2. Thus this term results in unimportant renorma
izations of Sk

(2)(E). Summation of higher-order correctio
within a scaling approach is presented in Appendix B.

AveragingSk
(2)(E) over the Fermi surfacetk50, we ob-

tain for the intrasubband contribution atT!uEu in the 3D
case

H Re

ImJ S (2)~E!5
2I 2r

3v̄2~J02JQ!
E33H lnuE/v̄u

2~p/2!sgnE.
~9!

Thus, after analytical continuation, the contributions
Im S(E), proportional toE2uEu, result in corrections of the
form d ReS(E)}E3lnuEu, which is in agreement with the
microscopic Fermi-liquid theory.32 Then the second term in
Eq. ~8! yields the contributions of the formdN(E)}E2lnuEu.
For D52, ImS (2)(E) is proportional toE2 and does not
result in occurrence of nonanalytic terms in ReS(E) and
N(E). Note that in a 2D paramagnet electron-electron sc
tering results in the contributions ImS(E)}E2lnuEu, and in
T2ln T terms in resistivity.37

As for the ‘‘Kondo’’ ~third-order! term ~5!, picking out
the most singular contribution yields

dSk
(3)~E!

52
2I 3S2

E2tk2Q
K 1

tk82Q
L

tk850

(
k8

nk8~E2tk8!
2

~E2tk8!
22vk2k8

2 .

~10!

Thus the singularity in this term is by a factor ofuEu weaker
in comparison with the intrasubband contribution toS (2)(E)
~note that the corresponding results of Refs. 35 and 31
not correct since not allq-dependent factors were taken in
account!.

Now we investigate the intersubband contributions. Av
aging Eq.~4! in k over the Fermi surfacetk5EF50, we
obtain

Im S~E!522r21 (
q.Q,T* <vq,uEu

lq

vq
~11!

with r5(kd(tk) the bare density of states at the Fermi lev

lq52pI 2S̄2~J02JQ!(
k

d~ tk!d~ tk1q!. ~12!

In the general 3D case we have ImS(E)}E2. For D52 we
derive

H Re

ImJ S (2)~E!5
2

p2rc2
lQE3H lnuE/v̄u

2~p/2!sgnE
~13!
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so that ImS(E) is linear in uEu. The residue of the electro
Green’s function

Z5S 12
] ReS~E!

]E U
E5EF

D 21

~14!

yields the renormalization of the effective mass

m* /m51/Z; ln~v̄/T* !. ~15!

The second term of Eq.~8! yields atuEu.T*

dN~E!52
4

p2c2
lQlnuEu. ~16!

Consider the peculiar 3D case where the electron sp
trum satisfies approximately the ‘‘nesting’’ conditiontk
52tk1Q in a significant part of the Brillouin zone~however,
the system is still metallic since the gap does not cover
whole Fermi surface!. Such a situation is typical fo
itinerant-electron AFM systems, since onset of AFM ord
ing is connected with the nesting. Besides that, for localiz
moment metallic magnets, that are described by thes-f
model, the value ofQ is also often determined by the nestin
condition.38 As discussed in the Introduction, such a situati
can be also assumed for some anomalousf systems.

In the case under consideration the electron spectrum
the Fermi surface is strongly influenced by the AFM gap,
that we have to use the ‘‘exact’’ spectrum~A1! and replace
in Eq. ~12!

d~ tk!d~ tk1q!→d~Ek1!d~Ek1q2!.

Then we have in someq region ~which is determined no
only by I, but also by characteristics of the Fermi surfac!
lq}1/uq2Qu. Thus the effective dimensionality in the inte
grals is reduced by unity, and the energy and tempera
dependences become similar to those in the 2D case.

For the 2D nested antiferromagnet, the perturbat
theory damping is very large,

Im S~E!} lnuEu. ~17!

Replacing the denominator in Eq.~4! by the exact electron
Green’s function and making the ansatz ImS(E)}uEua we
can estimate the damping in the second-order self-consis
approximation as

Im S~E!}uEu1/2. ~18!

Thus one has to expect in this case a strongly non-Fe
liquid behavior at not too smalluEu. Note that the situation is
different from the power-law nonanalycity in the Anders
model at very smalluEu, which is an artifact of the NCA
approximation.39

The damping~11! becomes stronger also in the case
frustrations in the localized spin subsystems where theq de-
pendence of magnon frequency

vq
25cx

2qx
21cy

2qy
21cz

2qz
21F (4)~q!1••• ~19!

@F (4)(q) is a quartic form ofqx ,qy ,qz# becomes anomalous
As discussed above, such a situation is typical for syste
demonstrating NFL behavior. Instabilities of magnetic stru
c-
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tures with competing exchange interactions are often acc
panied by softening of magnon spectrum. Usually this ta
place in one direction, i.e.,cz!cx ,cy near the instability
point. In some peculiar models, the softening can occur
two or even three directions. In all the cases, the ene
dependences ofS are changed. We have

Im S~E!.22r21lQE
T*

uEudv

v
g~v!}uEua, ~20!

where

g~v!5 (
q.Q

d~v2vq!}va, v→0. ~21!

Provided thatcz!cx ,cy , one has to take into account quart
terms, and we obtain after passing to cylindrical coordina
a53/2. In the opposite casecz@cx ,cy we get in a similar
way a51. For cx ,cy ,cz→0 we derivea51/2. In the 2D
case we havea51/2 at cx!cy and a50 @ Im S(E)
} lnuE/T* u# at cx ,cy→0. Thus we can explain violations o
the Fermi-liquid picture by peculiarities of not only electro
but also magnon spectrum. The frustration problem for
itinerant antiferromagnet was considered in Ref. 40.

Now we treat the incoherent contribution toN(E) @first
term in Eq.~8!#. We have atT50

dNincoh~E!.I 2S(
qs

~uq2vq!2(
k

P
~E2tk!2

@~12nk1q!

3d~E2tk1q2vq!1nk1qd~E2tk1q1vq!#,

~22!

whereP stands for the principal value of the integral. After
little manipulation we obtain

dNincoh~E!.I 2S (
q,vq,uEu

~uq2vq!2P(
ks

d~ uEu2tk1q2vq!

~E2tk!2
.

~23!

In the sum overk we can neglectuEu andvq in comparison
with vFq. Main contribution comes from the intersubban
transitions,

dNincoh~E!.I 2S (
q→Q,vq,uEu

2S~J02JQ!

vq
P(

ks

d~ tk!

~ tk1Q2tk!2

}E
0

uEudv

v
g~v!}uEua. ~24!

This contribution can have any sign depending on the disp
sion lawtk . For the general electron and magnon spectra
have dNincoh(E)}E2 (D53) and dNincoh(E)}uEu (D
52). Unlike the quasiparticle contribution~16!, the incoher-
ent one is not cut atuEu.T* since the conservation laws d
not work for virtual magnons. In the case of ‘‘frustrated
magnon spectrum the values ofa are given above. In the
nesting situation the additional divergent factor 1/uq2Qu oc-
curs which is, however, cut atq5q0. This leads to that, a
uEu.T* , dNincoh(E)}uEu for D53 and dNincoh(E)
}2 lnuEu for D52. Due to the factor (uq2vq)

2, the contri-
bution from the region of smallq in Eq. ~23! contains higher
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powers ofE, despite the singularity in the denominator. T
third-order ‘‘Kondo’’ contribution to dNincoh(E) is small
owing to cancellation of intra- and intersubband transitio
in Eq. ~5!. The ‘‘incoherent’’ contributions may be in prin
ciple observed in tunneling experiments.

Now we treat for comparison the case of a metallic fer
magnets with the parabolic dispersion law of magnonsQ
50). We have for a given spin projection

Sk6
(2)~E!52I 2S̄(

q

f ~6tk1q1IS!1Nq

E2tk1q7IS6vq
. ~25!

This yields forD53 the one-sided singular contributions

Im Ss~E!}u~sE!uEu3/2, uEu.T* ;~D/vF!2TC ,
~26!

the crossover energy scale being considerably smaller tha
the AFM case~see Refs. 42 and 41; these papers treat a
the quasiparticle damping at smalluEu due to electron-
magnon scattering, which occurs in the second order in 1S
and turns out to be small!. Then we obtaindNs(E)
}2 lnuEu for uEu.T* . At the same time, the incoherent co
tribution, which survives up toE50, has the formdNs(E)
}u(sE)uEu3/2 and can be picked up in the half-metall
case.43,42

The situation in a 2D ferromagnet is similar to that in t
above-discussed nested 2D antiferromagnet: the dampin
the perturbation theory is large, ImS(E)}uEu1/2, this result
being valid in the self-consistent approximation too.

III. THERMODYNAMIC AND TRANSPORT PROPERTIES

To calculate the electronic specific heatC(T) we use the
thermodynamic identity

S ]n

]TD
m

5S ]S
]m D

T

~27!

with n the number of particles,S the entropy,m the chemical
potential. Taking into account the expression

n5E
2`

`

dE f~E!N~E! ~28!

and integrating by part, we obtain from the second term
Eq. ~8!

dn5
]

]m
F, dC~T!5dS~T!5

]

]T
F,

where, to lowest order inI,

F522I 2S̄(
k,q

~uq2vq!2
vqnk~12nk1q!

~ tk2tk1q!22vq
2

. ~29!

It should be noted that the same result forC(T) can be
derived by calculating the transverse-fluctuation contribut
to the interaction Hamiltonian

d^Hsd&52I ~2S!1/2^bq
†~ck↓

† ck1q↑1ck↑
† ck1q↓!&522F

~30!
s

-

in
o

in

f

n

@the last equality in Eq.~30! is obtained from the spectra
representation for the corresponding Green’s function,
Ref. 44# and using the Hellman-Feynman theorem for t
free energy,]F/]I 5^]H/]I &.

Using the identity

]

]TE E dEdE8 f ~E!@12 f ~E8!#F~E2E8!

5
1

TE E dEdE8E
] f ~E!

]E

] f ~E8!

]E8
E

E82E

E81E
dxF~x!

~31!

we obtain for the intrasubband (q→0) contribution to Eq.
~29! at D53

dCintra~T!5
74

135

p4I 2r2

~J02JQ!v̄2
T3ln

v̄

T
. ~32!

The term, that is, proportional toT3ln(T/Tsf) (Ts f is a char-
acteristic spin-fluctuation energy, in our caseTs f;uJu), was
derived earlier within the Fermi-liquid theory.33 Note that the
T3ln T corrections were not obtained in the spin-fluctuati
theory by Moriyaet al.45 since only fluctuations withq.Q
were taken into account.

The intersubband contribution to specific heat is tra
formed as

dCinter~T!5
8

3
pT (

q.Q,T<vq

lq /vq
2 . ~33!

In the 2D or nesting 3D situation the integral is logarithm
cally divergent atq→Q and the divergence is cut atvq
.max(T,T* ), so that we obtain theT ln T dependence of spe
cific heat. ForD52 we have

dCinter~T!5
4V0

3c2
lQT ln

v̄

max~T,T* !
. ~34!

Since the integral in Eq.~33! is determined by the magno
spectrum only, the result~34! holds also in the case the frus
trated~2D-like! magnon spectrum. This contribution may e
plain the anomalous dependencesC(T) in a number of rare-
earth and actinide systems~see the Introduction!, which are
observed in some restricted temperature intervals. AT
,T* we have an appreciable logarithmic enhancemen
the electronic specific heat.

For T.T* the T ln T term is present also in specific he
of a ferromagnet, both for the case of weak itinerant-elect
ferromagnetism46 and in the regime of local moments.35,41

However, we shall see below that the ferromagnets do
exhibit an important property of the MFL state—theT-linear
resistivity.

In the model accepted, the nonanalytic contributions
magnetic susceptibility should be mutually canceled, as w
as for the electron-phonon interaction.47 However, such con-
tributions may occur in the presence of relativistic intera
tions ~e.g., for heavy actinide atoms!. This effects may be
responsible for anomalousT dependences ofx in the 4f and
5 f systems.18
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The first term in Eq.~8! ~i.e., the branch cut of the self
energy! yields the incoherent~nonquasiparticle! T-linear
contribution to specific heat~cf. the consideration for a fer
romagnet in Ref. 41!, which is owing to the temperatur
dependence ofN(E) and is not described by the Fermi-liqu
theory. After substituting this term into Eq.~28! we obtain

]

]T
~dn! incoh52I 2S̄ (

k,q,a56
~uq2vq!2

3
f ~ tk1q2avq!

~ tk1q2tk2avq!2

]

]T
nk1q . ~35!

At low temperatures we have

f ~ tk1q1vq!→0, f ~ tk1q2vq!→1

and we derive

dCincoh~T!5
2

3
p2I 2S̄rT(

q
K S uq2vq

tk1q2tk
D 2L

tk50

. ~36!

Note that the contribution~36! can be also obtained by direc
differentiating in temperature the total electronic energy

E5E
2`

`

dEE f~E!N~E!. ~37!

Now we discuss transport properties. To second orde
I, using the Kubo formula48 we obtain for the inverse trans
port relaxation time

1/t5pI 2S̄(
kq

~uq2vq!2~vk1q2vk!2

3d~ tk1q2tk2vq!d~ tk!Y (
k

vk
2d~ tk! ~38!

with vk5]tk /]k the electron velocity. Picking out the inte
subband contribution (q.Q) we obtain after standard trans
formations

1

t
5

^~vk1Q2vk!2& tk50

vF
2r

(
q.Q

lqS 2
]Nq

]vq
D . ~39!

For D53 we have the quadratic temperature dependenc
the spin-wave resistivity,

R~T!}~T/TN!2. ~40!

This dependence was obtained earlier within an itiner
model.49 Note that this contribution dominates at not too lo
temperatures over the intrasubband contribution@the latter is
analogous to the electron-phonon scattering one and is
portional toT5 ~Ref. 50!#.

For the 2D magnon spectrum~or nested 3D! situation one
obtains

R~T!}T ln@12exp~2T* /T!#.T ln~T/T* !. ~41!

Thus in our model, unlike Ref. 4, the linear dependence
Im S(E) results inT ln T rather thanT-linear behavior of the
resistivity because of the lower-limit divergence of the in
gral with the Bose function. However, the deviation from t
in

of

t

ro-

f

-

linear law is hardly important from the experimental point
view. As for concrete experimental data, the syste
CePd2Si2 and CeNi2Ge2 ~Ref. 51! demonstrate under pres
sure anomalous temperature dependencer(T);Tm,m
51.2–1.5. The data of Ref. 52 on CeNi2Ge2 yield for the
resistivity exponentm53/2.

For a ferromagnet, the spin-wave resistivity atT.T* is
proportional toT2 for D53 ~andT3/2 for D52) because of
the factor (vk2vk1q)

2 in Eq. ~38!. ~However, extra powers
of q are absent for the scattering between spin subba
which yields theT ln T term in resistivity of ferromagnetic
alloys.53! A similar situation takes place in the case of ‘‘flat
regions of the Fermi surface in AFM. This may explain a
sence ofT-linear resistivity in some above-discussed ra
earth and actinide systems which demonstrateT ln T correc-
tions to specific heat.

Now we treat the impurity contributions to transport pro
erties in the presence of potential scattering~in the case of a
ferromagnet they were considered in Ref. 54!. To second
order in impurity potentialV we derive

^^cksuck8s
† &&E5dkk8Gks~E!1VGks~E!Gk8s~E!

3S 11V(
p

Gps~E! D . ~42!

Neglecting vertex corrections and averaging over impurit
we obtain for the transport relaxation time

dt imp
21 ~E!522V2 Im(

p
Gps~E!. ~43!

Thus the contributions under consideration are determi
by the energy dependence ofN(E) near the Fermi level. The
correction to resistivity reads

dRimp~T!/R252ds imp~T!

}2V2E dE@2] f ~E!/]E#dN~E!. ~44!

Note that the quasiparticle renormalization effects owing
12] ReS(E)/]E51/Z do not contribute impurity scattering
since t→t/Z and vF→vFZ, so that the mean free path
unrenormalized.1 At the same time, incoherent terms
N(E) yield dRimp(T)}T2 in the 3D case anddRimp(T)}T
in the 2D case up to lowest temperatures@in the nested 3D
case, theT-linear term has lower cutoff, as well as the ‘‘co
herent’’ contribution~41!#. In the ‘‘frustrated’’ 3D case with
a51/2 we havedRimp(T)}T3/2.

The impurity contributions are important in ‘‘dirty’’
nearly AFM metals where anomalous contributions to
temperature dependence of resistivity can be both pos
and negative. In particular, for the system UxY12xPd3 the
experimental data18 demonstrate the negative contribution
resistivity, dr(T);2Tm,m51.1–1.4. In such cases the e
planation of these terms by the spin-wave renormalization
impurity scattering seems to be reasonable.

The correction to thermoelectric power, which is simil
to Eq. ~44!, reads~cf. Ref. 54!:

dQ~T!}
1

TE dE@2] f ~E!/]E#EdN~E!. ~45!
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Besides that, an account of higher orders in impurity scat
ing leads to the replacement of the impurity potentialV by
theT matrix. For the pointlike scattering the latter quantity
given by

T~E!5
V

12VR~E!
, R~E!5P(

k
Gks~E!. ~46!

Expanding Eq.~46! yields also the term

dQ~T!}
1

TE dE@2] f ~E!/]E#EdR~E! ~47!

with dR(E) being obtained by analytical continuation fro
dN(E). Unlike the case of a ferromagnet wheredQ(T)
}T3/2 for D53, the I 2 contribution todNincoh(E) in the
AFM case is even inE and does not contribute Eq.~45!. At
the same time, in the 2D case, wheredR(E)}E lnuEu, Eq.
~47! yields

dQ~T!}T ln ~T/v̄ !. ~48!

For the nested 3D case such contributions are presentT
.T* only. In this connection, experimental data on the s
tems Y(Mn12xAl x)2 , Y12xScxMn2,25 which demonstrate
anomalous behavior ofQ(T), are of interest.

IV. DISCUSSION AND CONCLUSIONS

In the present paper we have investigated peculiaritie
electron spectrum and corresponding anomalies of ther
dynamic and transport properties in localized-moment me
lic antiferromagnets. The use of perturbation theory in
electron-magnon interaction seems to be a reasonable
nomenological approach for many highly correlated elect
systems, which takes into account the SU~2! symmetry of
exchange interactions. A similar approach is often used
the theoretical description of high-Tc copper-oxide supercon
ductors~see, e.g., Refs. 55 and 56!.

We have treated systems with well-defined local mome
and spin-wave character of excitation spectrum within
s-d( f ) exchange model. Note that similar results for t
electron-magnon interaction effects may be obtained in
Hubbard model (I→U, cf. Refs. 41 and 44!. The electron
spectrumtk and parameterI can be considered as effectiv
ones~including many-electron renormalizations!.

For comparison, we discuss the approach of
papers55,56 where the phenomenological model of spi
electron interaction is applied to describe the influence
spin fluctuation on the properties of copper oxides. In th
works, as well as in our consideration, the Fermi-liquid p
ture is supposed to hold at lowT, and deviations from this
are connected with 2D spin fluctuations or nesting peculi
ties of bare electron spectrum. However, spin dynamic
supposed to be of a paramagnon type and described by
dynamical magnetic susceptibility

x~q,v!5
xQ

11j2~q2Q!22 iv/v*
~49!

with j being the correlation length which is assumed to
large, andxQ}j2. In the 2D case the spin-wave picture~used
r-

t
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o-
l-
e
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e

e
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e
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e

in our work! is in some respects similar to such a descriptio
in particular,j is also large, cf. Refs. 57 and 58. Howeve
unlike our case, in copper-oxide systems the paramete
exchange~spin-electron! interaction is not small~of order of
electron energies!, so that the scaleT* ;uI urEF!EF cannot
be introduced. At largej, characteristic crossover energy
such a situation can be due to spin dynamics of locali
spins.56

In contrast to the theories described, a simple and con
tent perturbation approach can be developed in our case
have demonstrated that, owing to intersubband scatte
processes, electronic properties of 2D and nested 3D met
antiferromagnets are close to those in the MFL picture4 in a
rather wide intervalT* ,T,J, the value of the crossove
temperature being determined by thes-f exchange paramete
I and characteristics of electron spectrum. In contrast to R
4, no special assumptions about the spectrum of the B
excitations are used: in our model they are just spin wa
with the linear dispersion law. Unlike Refs. 12 and 13, w
need not to consider the special case of the vicinity to AF
instability. Thus AFM ordering itself, together with rathe
natural assumptions about a peculiar form of the electron
magnon spectrum, can explain violations of the Fermi-liqu
picture which are observed in some rare-earth and actin
systems.

At T,T* the MFL behavior is changed by the usu
Fermi-liquid one, although some nonquasiparticle contrib
tions are present, which are connected with the presenc
local magnetic moments. These incoherent contributio
which are beyond the Fermi-liquid theory, play the cruc
role for half-metallic ferromagnets.59 In AFM metals they
are not so important and are hardly observable for per
crystals. Nevertheless, such contributions may be impor
for the temperature dependences of transport propertie
the ‘‘dirty’’ case ~metals with impurities!.

We have also analyzed the Kondo contributions to el
tronic properties in the AFM state. In the case under cons
eration, they turn out to be strongly suppressed by spin
namics. Thus main role belongs to the second-or
corrections, and higher orders inI are not important. For-
mally, this is a consequence of the divergence of the fac
(uq2vq)

2 at q→Q; the Kondo terms do not contain such
divergence.35,60 The situation should change with increasin
uI u when renormalization of the magnon frequencies
comes important and summation of the higher orders
needed. Within a simple scaling approach, such a prob
was considered in Ref. 60. Thus the transition from ‘‘usua
magnets with well-defined local moments, which are wea
coupled to conduction electrons, to the anomalous Kon
magnets is accompanied by a reconstruction of the struc
of perturbation theory~different diagram sequences dom
nate in these two regimes!. Therefore the problem of the
formulation of an unified picture of metallic magnetism a
pears to be very complicated not only for itinerantd-electron
magnets,45,59 but also forf-electron ones.
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APPENDIX A: SELF-ENERGIES IN THE 1 ÕS EXPANSION

The electron spectrum in the AFM phase contains t
split subbands. In the mean-field approximation we have

Ek1,25uk6Ek , Ek5~tk
21I 2S̄2!1/2, ~A1!

uk5
1

2
~ tk1tk1Q!, tk5

1

2
~ tk2tk1Q!. ~A2!

To calculate the fluctuation corrections in a consistent w
we have to separate effects of transition within and betw
the AFM subbands by including the AFM splitting in th
zero-order approximation. Introducing spinor operatorsCk

†

5(ck↑
† ,ck1Q↓

† ) and passing to the magnon representation
spin operators, we calculate the matrix electron Gree
function Ĝ(k,E) to second order in the electron-magnon
teraction~this approximation corresponds to first order in t
quasiclassical small parameter 1/2S, see Ref. 44!.

We do not write down the whole cumbersome express
for the matrixĜ(k,E), but present the correction to the de
sity of states

dN~E!52(
j k

S 1

p
Im S j~k,E!/~E2Ek j !

2

1ReS j~k,E!d8~E2Ek j ! D . ~A3!

The self-energies are given by

S i~k,E!5
1

2
I 2S̄(

q
(

j ,l 51,2
$Lkq@~21! i 1 j 11#

1~21! i 1 lM kq@~21! i 1 j 11#%

3
f „~21! lEk1qj…1Nq

E2Ek1qj1~21! lvq

, ~A4!
ld
y
d

ec
ar
s

o
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r
’s

n

where

Lkq~6 !5~uq
21vq

2!~16I 2S̄2/EkEk1q!

62uqvqtktk1q /EkEk1q , ~A5!

M kq~6 !5IS̄~1/Ek61/Ek1q!. ~A6!

The intra- and intersubband contributions correspond ti
5 j and iÞ j .

The calculations in the narrow-band limit can be pe
formed by using the many-electron Hubbard operator61,34 or
slave boson representations.62 The contribution of intersub-
band processes turns out to have a different structure
does not lead to occurrence of the singular factorsuq
2vq)

2. In particular, the factors of (uqtk2q2vqtk)
2 occur

which tend to zero both atq→0 andq→Q ~cf. Refs. 34 and
62!. The problem of interpolation between perturbation
gime and narrow-band case, which is important for high-Tc
superconductors, needs further investigations.

For example, averagingS i(k,E) over the Fermi surface
Eki50, we obtain instead of Eq.~9! for the intrasubband
contribution atT!uEu:

Im S i
(a)~E!52

I 2S̄

6pc3
Fi

(a)~E!3H uEu~E21p2T2! D53

E2c D52
~A7!

with
Fi
(a)~E!5^@Lkq~2 !2~21! isgnE Mkq~2 !#/vq&Eki5Ek1qi50@vq^d~Ek1qi !&Eki50#q50 . ~A8!
unc-

tor
on

se
APPENDIX B: A SIMPLE SCALING CONSIDERATION

The singularities of the matrix elements atq.Q could
lead to the formation of marginal Fermi liquid if they wou
not cut atE.T* ; when taking into account the cutoff the
are formally safe. Let us consider the summation of the
vergences from the dangerous regionq.Q using the ‘‘poor-
man scaling’’ approach.63

We neglect here the Kondo renormalizations of the eff
tive coupling constant and magnon frequency, which
considered in Ref. 60, since they do not contain the factor
the type (uq2vq)

2 and can be treated separately.
During the scaling process, the cutoff frequency is ren

malized itself owing to the renormalization of the electr
spectrum,tk→Ztk , so thatq0→q0 /Z,T* →T* /Z.

In the simplest scaling theory we have to pass toE50
~effective mass exactly at the Fermi surface!. Supposing that
there is no cutoff of the dangerous electron-magnon sca
i-

-
e
of

r-

r-

ing processes, we can consider the effective mass as a f
tion of C which is the flow cutoff parameter~see, e.g., Ref.
60!. Usually one has to treat the limitC→0. Here we have to
remember thatvmax@C@T* and to stop scaling at the
boundary of this regionT* .

The electron damping owing tos-d( f ) interaction is de-
termined by the imaginary part of the polarization opera
which is obtained as the convolution of the one-electr
Green’s functions,

Pq~v!5Z2(
k

f ~Ztk!2 f ~Ztk1q!

Ztk1q2Ztk2v
. ~B1!

Thus the quantitylQ in Eq. ~11!, which is proportional to the
spin-wave damping, turns out to be unrenormalized.

The correction to effective electron mass in the 2D ca
according to Eq.~14! reads
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dZ21~C!5
2

p2rc2
lQln~v̄/C!. ~B2!

The equation for the renormalization factorZ5Z(C→0) has
the form

1/Z511
2

p2rc2
lQln~Zv̄/T* !. ~B3!
,

i

.

t

This possesses the only solution with 0,Z,1 which
can be estimated asZ; ln21(v̄/T* ). Thus, despite an
appreciable renormalization of the effective mass, format
of the true MFL state does not take place because of
presence of the cutoff. Note that the effective mass enha
ment for 3D ferromagnets35,41 can be treated in a simila
way.
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