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Electron spectrum, thermodynamics, and transport in antiferromagnetic metals
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Electron spectrum of two-dimension@D) and 3D antiferromagnetic metals is calculated with an account
of spin-fluctuation corrections within perturbation theory in §ae exchange model. Effects of the interaction
of conduction electrons with spin waves in thermodynamic and transport properties are investigated. At lowest
temperature§ <T* ~(A/Eg) Ty (A is the AFM splitting of the electron spectrora Fermi-liquid behavior
takes place, and nonanalyfiéIn T contributions to specific heat are presentlib=3. At the same time, for
T>T*, in 2D and “nested” 3D systems the picture corresponds to a marginal Fermi liquidT contribu-
tions to specific heat and nearlylinear dependence of resistivityFrustrations in the spin system in the 3D
case are demonstrated to lead to similar results. The Kondo contributions to electronic properties are analyzed
and demonstrated to be strongly suppressed. The incoherent contributions to transport properties in the pres-
ence of impurity scattering are considered. In particular, in the 2D Tdisear terms in resistivity are present
up to T=0, and thermoelectric power demonstrates the anomdidnd dependence.

[. INTRODUCTION real systems. Similar results were obtained with account of
antiferromagnetidAFM) spin fluctuations in the vicinity of
The theory of electronic structure of highly correlated sys-the AFM instability*? Almost T-linear behavior of the resis-
tems is up to now extensively developed. The interest in thigivity in paramagnetic 2D metals with strong AFM fluctua-
problem has grown in connection with studying anomalougions was obtained by Moriyat al’?in a broad temperature
rare-earth and actinide compoun@sg., heavy-fermion sys- region.
tem9 and highT. superconductorgHTSC'’s). A possible Besides HTSC's, a NFL behavior in some temperature
formation of states, which differ from the usual Fermi liquid, intervals was found experimentally in a number of uranium
is widely discussed. The non-Fermi-liguiNFL) behavior of and cerium  systems [U,Y,_,Pd,* UPg_,Pd,,*°
the excitation spectrum up to lowest energies is now reliabyJCus_,Pd, ,*® CeCy_,Au,,*’ U,Th;_Beys,
established in the one-dimensional cagke “Luttinger  Th;_,URu,Si,, Cgla;_,Cu,Si, (Refs. 18 and 18. In par-
liquid” 1). However, Anderschassumed occurrence of a ticular, T InT-term in electronic specific heaf-linear cor-
similar situation in some two-dimension&D) and even rections to resistivityboth positive and negative onesin-
three-dimensional3D) systems with strong electron correla- usual power-law or logarithmi@ dependences of magnetic
tions, various mechanisnjsesonating valence bondRVB) susceptibility, etc. were observ&tThis behavior is, as a
state, scattering anomalies, Hubbard’s splitting, |dbeing  rule, interpreted within the two-channel Kondo scattering
proposed. Recently, an attempt has been rhameevise the  mechanisnt? Griffith’s point mechanisni! etc. At the same
general formulation of the Luttinger theorefoonservation time, in a number of systems (UguPd,, CeCy_,Au,,
of the volume under the Fermi surface for arbitrary law ofU,Y,_,Pd;) the NFL behavior correlates apparently with the
vanishing of electron damping &) which is a basis of the onset of antiferromagnetidFM) ordering’+?2
Fermi-liquid description. An interesting behavior is demonstrated by the system
Another approach to the problem of the NFL behaviorY;_,ScMn,.2>?* YMn, is an itinerant AFM with a frus-
was proposed by Varmet al* To describe unusual proper- trated magnetic structure, and o= 0.03(or under pressuje
ties of HTSC’s(e.g., theT-linear dependence of resistivity the long-range magnetic order is suppressed and the linear
these authors put forward a phenomenological “marginakpecific heat is giant =140 mJ/molK). This system
Fermi liquid” (MFL) theory where electron damping is lin- demonstrates strong anomalies of transport propefties
ear in energ)E (referred to the Fermi levgland the effec- particular, deviations from the quadrafic dependence of
tive mass is logarithmically divergent &—0. Such a be- resistivity).?> A hypothesis about formation of a spin-liquid
havior was supposed to result from the interaction with locaktate in this system was put forward in Ref. 26. A detailed
Bose excitations possessing a peculiarear in their energy  analysis of the neutron scattering in this compound seems to
and weaklyg-dependentspectral density. Further the MFL confirm this hypothesi§’
theory was developed in a number of pap@ee, e.g., Refs. Most of the systems under consideration have peculiari-
5-7). In the simplest way, the MFL electron spectrum can beties of band and spin-fluctuation spectra. The Fermi surfaces
reproduced in some crossover energy region for interactingf the anomaloud systems have complicated forms with
electron systems under the requirement of almost perfecteveral piece& we have to bear in mind that for some of
nesting in the 2D case*! which seems to be too strict for these pieces the “nesting” condition can hold. It will be
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shown below that such cases need separate consideratigmp"tude diverges as- 12 At very smallE such processes
(roughly speaking, in the nesting situation the effective di- 4

. ' A : . are forbidden because of the presence of the AFM splitting in
mensionality of the system diminishes by unitipespite the 5 glectron spectrum. At the same time, at not too siall

3D picture of electron spectrum,_ spin fluctuations 'n_S“Chone may expect that these processes lead to stronger singu-
systems as CeGu,Au, CeRySi, demonstrate 2D-like

. larities. Thus the Fermi-liquid picture may become violated
behavior?®2° quidp y

i . . . in this energy region.
Since practically all the above-discussed highly-correlated 1o iy estigate effects of interaction of current carriers

systems are characterized by pronounced local moments av\ﬁth local moments we use the Hamiltonian of the(f)
spin fluctuations, a detailed treatment of the electron-magnogxchange model

mechanism seems to be important to describe their anoma-

lous properties. In the present work we use $he(f) ex-

change model and consider effects of interaction of conduc = tCh Co— 1> > sqclagaﬁcqufr > J4S¢S-q
tion electrons with usual spin-wave excitations in metallic ko ak ap q
antiferromagnets with localized magnetic moments. The lat- 1)
ter condition results in that spin waves are well defined in a 1 .
large region of they space. From the general point of view, wherec,,, Cx,, andS, are operators for conduction elec-

presence of the localized-electron system is favorable for thions and localized spins in the quasimomentum representa-
violation of the Fermi-liquid picture. Indeed, we shall dem- 10N the electron spectrum is referred to the Fermi level,

onstrate that a number of physical properties of the AFMS thes-d(f) exchange parametes, are the Pauli matrices.
metals with 2D electron spectrue.g., HTSC'$ exhibit a

We consider an antiferromagnet which has the spiral struc-
NFL behavior in some temperature interval, although theUré along thex axis with the wave vectoR ,

collective excitation spectrum is quite different from that in .
the theory® A similar situation takes place fob=3 pro- (S)=ScosQR;, ()=SsinQR;, (S)=0.
vided that nesting features of the Fermi surface are present or . . )

spin-wave spectrum has reduced dimensional@g- and It is convenient to introduce the local coordinate system
U-based systemis We analyze also peculiar incoherent R )

(“nonquasiparticle’ contributions to electronic density of S'=ScosQR;— S'sinQR;,

states and thermodynamic and transport properties, which
are not described by the standard Fermi-liquid theory.

In Sec. Il we calculate the electron Green'’s function for a
conducting antiferromagnet in the framework of thel(f) . P .
exchange model. We investigate various contributions to thg-urt-her one can Eass from spin operatﬁrso the spin dg—
electron self-energy and density of states. In Sec. Ill we caly'f‘t'On oTperatorsbi ,bi and, by the canonical transformation
culate the electronic specific heat and transport relaxatioRa=YqBq—VaB-q, t0 the magnon operators. Hereafter we
rate owing to the electron-magnon interaction. We analyzé&onsider for simplicity a two-sublattice antiferromagf2®
also the incoherent contributions to transport properties’S €dual to a reciprocal-lattice vector, and QR
which are connected with impurity scattering. A consistent= 1, SifQR;=0). Then the Bogoliubov transformation coef-
quasiclassical perturbation theory is discussed in Appendificients and the magnon frequency are given by
A. A simple scaling consideration is performed in Appendix
B. Some of preliminary results of the paper were briefly
presented in Ref. 31.

§'=%cosQR; + &sinQR;, =5

1
Ug=1+0g=5[1+SJq: o+ Jg— 230/ wg,

IIl. PECULIARITIES OF ELECTRON SPECTRUM: 0q=25Jg_q—Jo) YA Ig— o) V2 %)
PERTURBATION THEORY
o _ ~sothatug T v=Ug ot vgr o Y2 atq—0.
The peculiarities of spectrum and damping of quasiparti- Further we use at concrete calculations simple results of

cles near the Fermi level are due to the interaction with lowthe usual perturbation theory In Defining the self-energies
energy collective excitations, either well-defined or of dissi-py the perturbation expansion

pative nature(phonons, zero sound, paramagnons,)etc.

Migdal®? proved forD=3 in a general form that the corre- -1
sponding nonanalytic contributions to the self-eneBy{E) G (E)={(Crolct ) e=| E-t,— >, SM(E) 3
are of the order oE°In E, which results inT3In T terms in n

electronic specific hedf. The Fermi-liquid behavior might
seem to take place for AFM metals since in the long-
wavelength limit §—0) the electron-magnon interaction is
equivalent to the interaction with acoustical phondtise
spectrum of the Bose ex0|ta§|/ons is linear and the scattering S 3(E)=12SY, (Ug—vg)?
amplitude is proportional t@*?). However, in the case of q

AFM spin waves there exists one more “dangerous” region
g—Q (Q is the wave vector of the AFM structyrewhere
the magnon frequency, tends to zero and the scattering E-tiiqg—wq E-tyiqtog)

we derive for the contributions which contain the Fermi dis-
tribution functionsn,=f(t,),

1_nk+q+ Nq nk+q+ Nq

4
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and its neglect leads to incorrect results: the transition to the
usual Kondo behavior 1B (E)=In|E| discussed in Ref. 36
takes place in fact only at

1_nk+q+Nq_ nk+q+Nq
E-tyiqg—0qg E—tiqtoqg

3E(E)=13822, (
q

X

1 1 —
E_tk_Q—th_th_Q), (5) |E|> 0= w(2kg)=2Cke .
) Unlike 32)(E), 3(Y(E) does not contain “dangerous”
. ; ; 2 i ai
(4)(E)=1453 Ut 2( divergences since the factouf+uv)“ is singular atq—0

() Eq: (Ugtvg) E—ty—q (rather than ajg—Q|—0) and the next factor is propor-
tional to g. Thus this term results in unimportant renormal-
izations of %(?(E). Summation of higher-order correction

1 )2( 1-NeiqtNg  Neegt Ny

E-tiiq-o/ \E-tiqg—oqg E—-tqtog/’  within a scaling approach is presented in Appendix B.
©) Averagings (?)(E) over the Fermi surfacg=0, we ob-
tain for the intrasubband contribution @t<|E| in the 3D
whereN,=Ng(wg) is the Bose function. case
Nonanalytic contributions to the self-energiesEat-0, _
T=0 originate from spin waves with smadf and |q—Q)|. Re @) 212p 3 In|E/ o
Because ofq dependence of interaction matrix elements Im 2OE)= =B ©)

[(ugFvg)®q,(Ug=vg)?<q * at g—0 andg—Q respec-
tively], the intersubband contributiong- Q) are, generally Thus, after analytical continuation, the contributions to
speaking, more singular than intrasubband ongs-0Q). Im 3, (E), proportional toE2|E|, result in corrections of the
However, owing to quasimomentum and energy conservaform 8 ReX (E)«E3In|E|, which is in agreement with the
tion laws, the intersubband transitions are possible amicroscopic Fermi-liquid theor§? Then the second term in
|a—Q|>ao~Alve (A=2IS is the antiferromagnetic split- EQ. (8) yields the contributions of the forrﬁzl\l(E)“EzlnlEl-
ting, S is the sublattice magnetization;: is the electron For D_=2’ Im32)(E) is proport|or_1al toE "?‘”d does not
velocity at the Fermi leval Therefore, when using simple €Sult in occurrence of nonanalytic terms in R) and
perturbation expressions, one has to bear in mind that thi(E). Note thatin a 2D paramagnet electron-electron scat-

. - . . 2 .
singular intersubband transition contributions should be cut€'"9 results in the contributions IBYE) < E“In[E|, and in
at|E|, T~T* where T2In T terms in resistivity®

As for the “Kondo” (third-ordep term (5), picking out

T* =cqo~TyAvp 7) the most singular contribution yields

. : : 53 3(E)
with ¢ being the magnon velocity. A more general perturba- K
tion theory is considered in Appendix A. 2132 < 1 > N (E—ty)2

It should be noted that, despite absence of long-range or- =—
der at finite temperatures, the expressi¢fis-(6) are valid

also in the 2D case up td~J, S being replaced by the (10)
square root of the Ornstein-Cernike peak intensity in the pair
correlation functior’* We also have to replacéy—JS* in  Thus the singularity in this term is by a factor |&| weaker
Eq. (7). A similar situation occurs for frustrated magnetic in comparison with the intrasubband contributiorSt&)(E)
systems with suppressed long-range order. In particular, on@ote that the corresponding results of Refs. 35 and 31 are
can think that the consideration of electron-spin interactionspot correct since not ati-dependent factors were taken into
that is based on the spin-wave picture, is qualitatively appliaccount.
cable to Y;_,ScMn,, despite this is not an antiferromagnet,  Now we investigate the intersubband contributions. Aver-
but a spin liquid with strong short-range AFM order. aging Eq.(4) in k over the Fermi surfacg,=Er=0, we

The correction to the density of states owingsa(f) obtain
interaction reads

E—t o

2 2 ’
tk’—Q tkr:0k, (E—tkr) —(J)k_k,

A
. Im3(E)=—2p"+ >, w—q (11)
SN(E)=~2> (E'mES)(EV(E—tk)Z A=Q T <wq=|El T
X with p=3, 5(t,) the bare density of states at the Fermi level,

lo

(1) "E— _
+Re2k (E)(S (E tk)) . (8) )\qZZWIZSZ(JO_JQ); 5(tk)5(tk+q) (12)

The first term in Eq(8) corresponds to incohereftionqua- 2 _
siparticle contribution, and the second one describes theIn the general 3D case we have J(E)«E". ForD=2 we

L o derive
renormalization of quasiparticle spectrum.

The third-order contributior{5) describes the Kondo ef- Re 2 | |E/_|
fect in the AFM stat€** It should be noted that an account { ]2(2)(5): NQEX NiElw (13)
of spin dynamics is important at treating this contribution, Im m?pc? — (m/2)sgnE
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so that Ini(E) is linear in|E|. The residue of the electron tures with competing exchange interactions are often accom-
Green'’s function panied by softening of magnon spectrum. Usually this takes
. place in one direction, i.e¢,<c,,c, near the instability
point. In some peculiar models, the softening can occur in
(149 NS
EE two or even three directions. In all the cases, the energy
F dependences & are changed. We have

1_<9Re2(E)

Z= JE

yields the renormalization of the effective mass

[Eldw
_ — -1 a
m*/m=1/Z~In(/T*). (15) Im(E)=—2p )‘QL* P g(w)[E[%, (20)
The second term of Eq8) yields at|E|>T* where
= W)= Sw—wy)*xw®, o—0. (21
ON(E)= = — 5 \olnlE] (16) g(w) qZQ (0—wq)

Provided that,<c,,c,, one has to take into account quartic

Consider the peculiar 3D case Yyhere_ th”e electron speGa s and we obtain after passing to cylindrical coordinates
trum satisfies approximately the ‘“nesting” conditioty a=3/2. In the opposite casg>c,,c, we get in a similar

= —ty+ o in a significant part of the Brillouin zongowever, way a=1. Forc,,c,,c,—~0 we derivea=1/2. In the 2D
the system is still metallic since the gap does not cover the <. e havew=1/2 at c.<c. and a—0 [Im (E)

: 9% . . x<Cy
yt\{hole tFeIrmlt sur;\?:cl)a Su;:h a situation 'f ]nyl'zcﬁl f(()jr «In|E/T*|] at c,,cy—0. Thus we can explain violations of
luinérant-eiectron A Systems, Since onset o orderine Fermi-liquid picture by peculiarities of not only electron,
ing is connected with the nesting. Besides that, for Iocallzedbut also magnon spectrum. The frustration problem for an
moment metallic magnets, that are described by skie itinerant antiferromagnet was considered in Ref. 40.

mOde.l.’ th%valug R is aIsp often determ'ined by the ”.eS“F‘Q Now we treat the incoherent contribution M(E) [first
condition:™ As discussed in the Introduction, such a situation,, .. Eq.(8)]. We have aff=0

can be also assumed for some anomalosistems.

In the case under consideration the electron spectrum near P
the Fermi surface is strongly influenced by the AFM gap, S0 6N, ,.o(E)=12S>, (uq—vq)zz ———[(1 =Ny )
that we have to use the “exact” spectrupAl) and replace qo kK (E—ty)
n Eq. (12 X S(E~tirq— 0g) + s g8 E—ti g+ 0],
O(ty) 8(tk+q)— O(Ex1) 6(Egq2)- (22

Then we have in somg region (which is determined not whereP stands for the principal value of the integral. After a
only by I, but also by characteristics of the Fermi surface little manipulation we obtain
Nq>=1/g—Q|. Thus the effective dimensionality in the inte-

grals is reduced by unity, and the energy and temperature

5(|E|_tk+ —g)
dependences become similar to those in the 2D case. MNincol(E)=12S X, (ug—vg)?PX, i

_ 2
For the 2D nested antiferromagnet, the perturbation Geq=IF] ko (E—t) 23)
theory damping is very large,
In the sum ovek we can neglectE| andw, in comparison
Im 2 (E)=In[E[. (17 with veq. Main contribution comes from the intersubband
Replacing the denominator in E¢4) by the exact electron transitions,
Green’s function and making the ansatzIfE)«|E|? we
can estimate the damping in the second-order self-consistengy. (E)=12S 2 ZS(JO_JQ)PE S(ty)
approximation as nee a-Qag<lg]  ©q ko (teso—ti)?
Im3(E)o|E[Y2 (18 Eldw
“fo —9(w)=[E|". (24)

Thus one has to expect in this case a strongly non-Fermi-

liquid behavior at not too smalE|. Note that the situation is  This contribution can have any sign depending on the disper-
different from the power-law nonanalycity in the Anderson gjqn |awt, . For the general electron and magnon spectra we
model at very smallE|, which is an artifact of the NCA . o sN. (E)<E? (D=3) and &Nieon(E)*|E| (D
approximatiort® neon meon

The damping(11) becomes stronger also in the case of
frustrations in the localized spin subsystems wheregtie-
pendence of magnon frequency

=2). Unlike the quasiparticle contributiqti6), the incoher-
ent one is not cut dE|=T* since the conservation laws do
not work for virtual magnons. In the case of “frustrated”
magnon spectrum the values af are given above. In the
nesting situation the additional divergent factdgt Q| oc-
curs which is, however, cut at=q,. This leads to that, at
[®“)(q) is a quartic form of, g ,d,] becomes anomalous. |E|[>T*, &Nincon(E)*|E| for D=3 and &Niycon(E)
As discussed above, such a situation is typical for systems —In|E| for D=2. Due to the factorL(q—vq)z, the contri-
demonstrating NFL behavior. Instabilities of magnetic struc-bution from the region of smadj in Eq. (23) contains higher

wi=Cha5+Cyde+cigs+ dM(g)+- - (19
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powers ofE, despite the singularity in the denominator. The[the last equality in Eq(30) is obtained from the spectral
third-order “Kondo” contribution to SN;,.on(E) is small  representation for the corresponding Green’s function, cf.
owing to cancellation of intra- and intersubband transitionsRef. 44] and using the Hellman-Feynman theorem for the
in Eq. (5). The “incoherent” contributions may be in prin- free energygF/dl ={dH/al).
ciple observed in tunneling experiments. Using the identity

Now we treat for comparison the case of a metallic ferro-

magnets with the parabolic dispersion law of magno@s ( d , , ,

=0). We have for a given spin projection aT dEdE'T(E)[1-f(E")JF(E-E)
f(£tiqtIS)+N 1 of(E) 9f(E') (E'+E

S®(E)=212S a g, 25 :_ff e ME)
CAE) Eq E (5 15% w, (25) 7] | dEdEE = — =] dxF(x)
This yields forD =3 the one-sided singular contributions (31)
Im3 (E)x6(cE)|E|®?, |E|>T*~(Alvg)?Te, we obtain for the intrasubband){-0) contribution to Eq.
(26) (29 atD=3

the crossover energy scale being considerably smaller than in 74 42,2 —

the AFM case(see Refs. 42 and 41; these papers treat also SCiua(T) = e P 7302 32)

the quasiparticle damping at smdlE| due to electron- 135(35-Jg)w® T

magnon scattering, which occurs in the second order i 1/2
and turns out to be small Then we obtain 6N, (E)
o —In|E| for |E|>T*. At the same time, the incoherent con-
tribution, which survives up t&€=0, has the formsN,(E)

The term, that is, proportional t6In(T/Tgy) (T is a char-
acteristic spin-fluctuation energy, in our cagg~|J|), was
derived earlier within the Fermi-liquid theof§ Note that the

3 . . . . .
oc0(aE)|E|3’2 and can be picked up in the half-metallic T°’InT correcﬂpns werg n_ot obtained in th_e spln—_fluctuatlon
case’342 theory by Moriyaet al.™ since only fluctuations witly=Q

The situation in a 2D ferromagnet is similar to that in the Were taken into account. . ,
above-discussed nested 2D antiferromagnet: the damping jn ' "€ intersubband contribution to specific heat is trans-
the perturbation theory is large, B(E)|E|Y2 this result ormed as
being valid in the self-consistent approximation too. 8
SCinterdM=37T X Nglwj. (33
I1l. THERMODYNAMIC AND TRANSPORT PROPERTIES q=Q.T<wq

) . In the 2D or nesting 3D situation the integral is logarithmi-
To calculate the electronic specific h&a{T) we use the cally divergent atqg—Q and the divergence is cut ai,

thermodynamic identity =max(T,T*), so that we obtain th€ In T dependence of spe-
an S cific heat. ForD=2 we have
—| == 27 _
51 (5, o
. . . OCinter(T)= _)\QTln—- (34
with n the number of particlesy the entropyu the chemical 3c? max T, T*)

potential. Taking into account the expression ) _ ) _ )
Since the integral in Eq33) is determined by the magnon

o spectrum only, the resu(84) holds also in the case the frus-
n= J dEf(E)N(E) (28)  trated(2D-like) magnon spectrum. This contribution may ex-
o plain the anomalous dependen€&dr) in a number of rare-
and integrating by part, we obtain from the second term ofarth and actinide systengsee the Introduction which are
Eq. (8) observed in some restricted temperature intervals. TAt
<T* we have an appreciable logarithmic enhancement of
d the electronic specific heat.
on= @q)' oC(T)=68(T)= ﬁq)’ For T>T* theTInT term is present also in specific heat
of a ferromagnet, both for the case of weak itinerant-electron
where, to lowest order ih, ferromagnetisff and in the regime of local moments®*
However, we shall see below that the ferromagnets do not
» @gNK(1—Niiq) 29 exhibit an important property of the MFL state—tihdinear
(tk_th)z_ w2 resistivity. ' o
4 In the model accepted, the nonanalytic contributions to
It should be noted that the same result ©(T) can be magnetic susceptibility should be mutually canceled, as well
derived by calculating the transverse-fluctuation contributiorgs for the electron-phonon interactinHowever, such con-

d=-212SY, (ug—vy)
k.q

to the interaction Hamiltonian tributions may occur in the presence of relativistic interac-
tions (e.g., for heavy actinide atomsThis effects may be
S(Hgg)=—1 (28)1’2<b:§(chck+m+cchk+ql)>= -20 responsible for anomalousdependences ¢f in the 4f and

(300  5f systems?®
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The first term in Eq(8) (i.e., the branch cut of the self- linear law is hardly important from the experimental point of
energy yields the incoherentnonquasiparticle T-linear  view. As for concrete experimental data, the systems
contribution to specific hedtf. the consideration for a fer- CePdSi, and CeNjGe, (Ref. 51 demonstrate under pres-
romagnet in Ref. 41 which is owing to the temperature sure anomalous temperature dependens€l)~T*, u
dependence dfi(E) and is not described by the Fermi-liquid =1.2-1.5. The data of Ref. 52 on CeSk, yield for the
theory. After substituting this term into E(R8) we obtain resistivity exponenj = 3/2.

For a ferromagnet, the spin-wave resistivityTat T* is

i(&n)» =215 S (Ug—vy)? proportional toT? for D=3 (and T%? for D=2) because of

aT ncon KGacs o4 the factor (,—Vi4)? in Eq. (38). (However, extra powers
of g are absent for the scattering between spin subbands,
which yields theT InT term in resistivity of ferromagnetic
alloys>% A similar situation takes place in the case of “flat”
regions of the Fermi surface in AFM. This may explain ab-
At low temperatures we have sence ofT-linear resistivity in some above-discussed rare-
earth and actinide systems which demonstiiateT correc-

f(tkrqt @g) =0, f(tiyq—wg)—1 tions to specific heat.
and we derive Now we treat the impurity contributions to transport prop-
) erties in the presence of potential scatteriimgthe case of a
2 << Uq—vq> > (36 ferromagnet they were considered in Ref,).5%0 second
t,=0

f(tyrq— aog) 9
—awg? T

(39
(terq— 1t

2 _
_c 212
OCincon(T)= 37 1“SpT order in impurity potentiaV we derive

q terq—

I . . T
Note that the contributiofB6) can be also obtained by direct ({CkolCr o)) E= Sk’ Gk (E) + V Gy o (E) Gyr (E)
differentiating in temperature the total electronic energy

X } (42)

. 14V, Gp,(E)
5:f dEEf(E)N(E). (37) P
- Neglecting vertex corrections and averaging over impurities

Now we discuss transport properties. To second order if'® obtain for the transport relaxation time
I, using the Kubo formuf® we obtain for the inverse trans-

port relaxation time STim(E)=—2V2ImY, Gp,(E). (43)
p
1)r= leﬁ (Ug— 0 )2 (Vs g— Vi) Thus the contributions under consideration are determined
ka0 a by the energy dependence{E) near the Fermi level. The

correction to resistivity reads
—t — 2
><é‘(tk+q tk 0‘)q)g(tk)/ ; Vké\(tk) (38) 5Rimp(T)/R2:_6Uimp(T)

with v, = dt, /ok the electron velocity. Picking out the inter-
subband contributiong=Q) we obtain after standard trans-
formations

oc—sz dE[— df (E)/GE]SN(E). (44)

Note that the quasiparticle renormalization effects owing to

1 <(Vk+Q_Vk)2>tk:O N, 1_— d ReX(E)/JE=1/Z do not contribute impurity scattering
—= 5 Z )\q( - —) (39 since 7— 1/Z andvg—uvgZ, so that the mean free path is
T UVEp 9=Q dwq unrenormalized. At the same time, incoherent terms in
N(E) yield SRimp(T)=T? in the 3D case andRiy,(T)=T

in the 2D case up to lowest temperatufegsthe nested 3D
case, thel-linear term has lower cutoff, as well as the “co-
R(T)=(T/Ty)?. (40) herent” contribution(41)]. In the “frustrated” 3D case with

i : . - . a=1/2 we havesR;q,(T) = T2
This dependence was obtained earlier within an itinerant Tpe impurity contributions are important in “dirty”

model Note that this contribution dominates at not too Iow nearly AFM metals where anomalous contributions to the
temperatures over the intrasubband contrl'buitbe latter IS temperature dependence of resistivity can be both positive
analogous to the electron-phonon scattering one and is prag negative. In particular, for the systemYy_,Pd; the

For D=3 we have the quadratic temperature dependence
the spin-wave resistivity,

H 5
portional toT> (Ref. 50]. L experimental dat& demonstrate the negative contribution to
Fgr the 2D magnon spectrufar nested 3D situation one resistivity, sp(T)~—T#,u=1.1-1.4. In such cases the ex-
obtains planation of these terms by the spin-wave renormalization of

_ o _ % impurity scattering seems to be reasonable.
R(T)=TIn[1=exp(=T*/T)]=TIn(T/T*).  (41) The correction to thermoelectric power, which is similar

Thus in our model, unlike Ref. 4, the linear dependence ofo Eq.(44), reads(cf. Ref. 54:

Im 3 (E) results inT In T rather tharil-linear behavior of the

resistivity because of the lower-limit divergence of the inte- EJ _
gral with the Bose function. However, the deviation from the 0Q(T)= T dE[—f(E)/IR]ESN(E). (45)
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Besides that, an account of higher orders in impurity scatterin our work) is in some respects similar to such a description;
ing leads to the replacement of the impurity potentiaby  in particular, ¢ is also large, cf. Refs. 57 and 58. However,
the T matrix. For the pointlike scattering the latter quantity is unlike our case, in copper-oxide systems the parameter of
given by exchangégspin-electrohinteraction is not smallof order of
electron energigsso that the scal&* ~|l|pEr<Eg cannot

-~ \ _ be introduced. At large, characteristic crossover energy in
T(B)= 1-VR(E)’ R(E)_P; Gks(E)- (48 ¢ ch a situation can be due to spin dynamics of localized
i haDb
_ _ spins:
Expanding Eq(46) yields also the term In contrast to the theories described, a simple and consis-

tent perturbation approach can be developed in our case. We
5Q(T)°<lf dE[ — 9f (E)/9E]ESR(E) (47) have demonstrated_ that, ovx_/ing to intersubband scatterin_g
T processes, electronic properties of 2D and nested 3D metallic
antiferromagnets are close to those in the MFL pictimea
rather wide intervalT* <T<J, the value of the crossover
temperature being determined by #é€ exchange parameter
| and characteristics of electron spectrum. In contrast to Ref.
4, no special assumptions about the spectrum of the Bose
excitations are used: in our model they are just spin waves
with the linear dispersion law. Unlike Refs. 12 and 13, we
— need not to consider the special case of the vicinity to AFM
SQM=TIn(T/w). (48) instability. Thus AFM ordering itself, together with rather

For the nested 3D case such contributions are preseht at natural assumptions about a peculiar form of the electron or
>T* only. In this connection, experimental data on the sys‘magnon spectrum, can explain violations of the Fermi-liquid
tems Y(Mn_,Al),, Y;_,ScMn,,2® which demonstrate picture which are observed in some rare-earth and actinide
anomalous behavior a®(T), are of interest. systems.

At T<T* the MFL behavior is changed by the usual
Fermi-liquid one, although some nonquasiparticle contribu-
tions are present, which are connected with the presence of

In the present paper we have investigated peculiarities dbcal magnetic moments. These incoherent contributions,
electron spectrum and corresponding anomalies of thermavhich are beyond the Fermi-liquid theory, play the crucial
dynamic and transport properties in localized-moment metalrole for half-metallic ferromagnefS. In AFM metals they
lic antiferromagnets. The use of perturbation theory in theare not so important and are hardly observable for perfect
electron-magnon interaction seems to be a reasonable phewystals. Nevertheless, such contributions may be important
nomenological approach for many highly correlated electrorfor the temperature dependences of transport properties in
systems, which takes into account the (3Usymmetry of the “dirty” case (metals with impurities
exchange interactions. A similar approach is often used in We have also analyzed the Kondo contributions to elec-
the theoretical description of highs copper-oxide supercon- tronic properties in the AFM state. In the case under consid-
ductors(see, e.g., Refs. 55 and )56 eration, they turn out to be strongly suppressed by spin dy-

We have treated systems with well-defined local momentsamics. Thus main role belongs to the second-order
and spin-wave character of excitation spectrum within thecorrections, and higher orders Inare not important. For-
s-d(f) exchange model. Note that similar results for themally, this is a consequence of the divergence of the factors
electron-magnon interaction effects may be obtained in thn(:uq—uq)2 at g—Q; the Kondo terms do not contain such a
Hubbard model (—U, cf. Refs. 41 and 44 The electron divergence™® The situation should change with increasing
spectrumt, and parametet can be considered as effective ||| when renormalization of the magnon frequencies be-
ones(including many-electron renormalizations comes important and summation of the higher orders is

For comparison, we discuss the approach of theneeded. Within a simple scaling approach, such a problem
papers®®® where the phenomenological model of spin-was considered in Ref. 60. Thus the transition from “usual”
electron interaction is applied to describe the influence ofmagnets with well-defined local moments, which are weakly
spin fluctuation on the properties of copper oxides. In theseoupled to conduction electrons, to the anomalous Kondo
works, as well as in our consideration, the Fermi-liquid pic-magnets is accompanied by a reconstruction of the structure
ture is supposed to hold at loW;, and deviations from this of perturbation theorydifferent diagram sequences domi-
are connected with 2D spin fluctuations or nesting peculiarinate in these two regimgsTherefore the problem of the
ties of bare electron spectrum. However, spin dynamics i§ormulation of an unified picture of metallic magnetism ap-
supposed to be of a paramagnon type and described by tipears to be very complicated not only for itinerarglectron
dynamical magnetic susceptibility magnet$>°° but also forf-electron ones.

with SR(E) being obtained by analytical continuation from
S6N(E). Unlike the case of a ferromagnet whed&®(T)
*«T32 for D=3, the I? contribution to 6N;,.on(E) in the
AFM case is even it and does not contribute E¢5). At
the same time, in the 2D case, whet®(E)=E In|E|, Eq.
(47) yields

IV. DISCUSSION AND CONCLUSIONS

1+&%(q— Q) °—iw/ w*
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APPENDIX A: SELF-ENERGIES IN THE 1 /S EXPANSION where

The electron spectrum in the AFM phase contains two

split subbands. In the mean-field approximation we have y -
qu(i ) = (Uq+Uq)(1i | S /EkEk+q)

Exio= O+ Er, E=(72+17S%)12 (A1)
iZUquTka+q/EkEk+q, (AS)
1 1
0k:§(tk+tk+Q)a Tkzz(tk_tk+Q)- (A2)
To calculate the fluctuation corrections in a consistent way, Miq( %) =1S(LE+ 1E, ;). (A6)

we have to separate effects of transition within and between

the AFM subbands by including the AFM splitting in the _ . o

zero-order approximation_ |ntroducing spinor operam% The intra- and intersubband contributions Correspond to

=(cf; .Cl, o) and passing to the magnon representation for=j andi=j. .

spin operators, we calculate the matrix electron Green's The calculations in the narrow-band limit can be per-

function G(k,E) to second order in the electron-magnon in-formed by using the many-electron Hubbard ongéfiﬁ‘ror

teraction(this approximation corresponds to first order in theslave boson representatidifsThe contribution of intersub-

quasiclassical small parameter $/Zee Ref. 4% band processes turns out to have a different structure and
We do not write down the whole cumbersome expressiortloes not lead to occurrence of the singular factang (

for the matrixG(k,E), but present the correction to the den- —vg)°. In particular, the factors ofugt, q—vqti)? occur

sity of states which tend to zero both af—0 andq— Q (cf. Refs. 34 and
62). The problem of interpolation between perturbation re-
SN(E) = _z Elmz(k E)/(E—E,;)? gime and narrow-band case, which is important for high-
R\ T TN ki superconductors, needs further investigations.

For example, averaging;(k,E) over the Fermi surface
/ Exi=0, we obtain instead of Eq9) for the intrasubband
+ReX;(k,E)§'(E—Ey;) |. A3 kio >
(kB&( ) (A3 contribution atT<|E|:

The self-energies are given by

1 .
Si(k,E)=51%S Ligl(—1)+i+t —
|( ) 2 Eq j,lzl,Z{ kq[( ) ] @ |28 @ |E|(E2+T[’2T2) D=3
i+ i+j+1 Im = (E):_ﬁFi (E)x E%c D=2
(=DM [(—1 T -
(=D Myg[ (=D} (A7)
f((—1)'Exyq)+N
% (( ) k+qj) I q , (A4)
E_Ek+qj+(_1) (OF with
|
FI(E)=([Lig(—)—(—1)'sgnE Mig(—)) wg)e, =€, , =0l @4( O(Eisqi) g, =0la=0- (A8)
|
APPENDIX B: A SIMPLE SCALING CONSIDERATION ing processes, we can consider the effective mass as a func-

tion of C which is the flow cutoff parametdsee, e.g., Ref.
60). Usually one has to treat the linft— 0. Here we have to
remember thatw,,>C>T* and to stop scaling at the
boundary of this regio*.

The electron damping owing te-d(f) interaction is de-

The singularities of the matrix elements @t=Q could
lead to the formation of marginal Fermi liquid if they would
not cut atE=T*; when taking into account the cutoff they
are formally safe. Let us consider the summation of the di

vergences from the dangerous regi using the “poor-
g g 9epRQ g P termined by the imaginary part of the polarization operator

man scaling” approach’ e ) .
We neglect here the Kondo renormalizations of the effecVNich is obtained as the convolution of the one-electron

tive coupling constant and magnon frequency, which aré>'€en’s functions,
considered in Ref. 60, since they do not contain the factors of

the type Ug—vg)? and can be treated separately. Hq(w)=222 f(Ztk)—f(Zth). B1)
During the scaling process, the cutoff frequency is renor- kK ZLtyqZt—o
malized itself owing to the renormalization of the electron
spectrumt,—Zt,, so thatqy—qo/Z, T* —=T*/Z. Thus the quantity in Eq. (11), which is proportional to the
In the simplest scaling theory we have to pas€£te0  spin-wave damping, turns out to be unrenormalized.
(effective mass exactly at the Fermi surfacgupposing that The correction to effective electron mass in the 2D case

there is no cutoff of the dangerous electron-magnon scattegccording to Eq(14) reads
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2 _
5271((:): m)\QM(w/C) (BZ)
The equation for the renormalization facioe Z(C—0) has
the form

1/z=1+

AoIn(Zw/T*). (B3)
72pc?
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This possesses the only solution with<@<1 which

can be estimated ag~In"Y(w/T*). Thus, despite an
appreciable renormalization of the effective mass, formation
of the true MFL state does not take place because of the
presence of the cutoff. Note that the effective mass enhance-
ment for 3D ferromagnet$*! can be treated in a similar
way.
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