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Schwinger boson theory of anisotropic ferromagnetic ultrathin films
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Ferromagnetic thin films with magnetic single-ion anisotropies are studied within the framework of
Schwinger bosonization of a quantum Heisenberg model. Two alternative bosonizations are discussed. We
show that qualitatively correct results are obtained even at the mean-field level of the theory, similar to
Schwinger boson results for other magnetic systems. In particular, the Mermin-Wagner theorem is satisfied: a
spontaneous magnetization at finite temperatures is not found if the ground state of the anisotropic system
exhibits a continuous degeneracy. We calculate the magnetization and effective anisotropies as functions of
exchange interaction, magnetic anisotropies, external magnetic field, and temperature for arbitrary values of the
spin quantum number. Magnetic reorientation transitions and effective anisotropies are discussed. The results
obtained by Schwinger boson mean-field theory are compared with the many-body Green’s-function technique.

[. INTRODUCTION performed at finite temperaturg<o ab initio calculations of
anisotropies aT =0. The effective anisotropies describe the
Schwinger boson theories are very successful in descritdependence of the free energy on the polar angles)( of
ing magnetism in various quantum systefmSQualitatively  the magnetization.
correct results are mostly obtained even in the mean-field From the theoretical point of view, two-dimensional an-
approximation, e.g., quantum Heisenberg ferromagnets andotropic ferromagnets are of particular interest, since the
antiferromagnets are well described for arbitrary spin quananisotropies reduce the symmetry of the system. For ex-
tum number for two and more spatial dimensions. In particuample, an easy axis leads to a discrete, Ising-type symmetry,
lar in two-dimensiona(2D) isotropic Heisenberg magnets no while a easy plane leads to XrY-type symmetry. According
spontaneous magnetization is found for nonzerao the Mermin-Wagner theorefna spontaneous magnetiza-
temperatured*® in accordance with the Mermin-Wagner tion at finite temperatures is possible in the first case but not
theorenf There are basically two reasons why Schwingerin the second® We will show that SBMF theory yields
boson mean-fieldSBMF) theory works well even in low qualitatively correct results for both of these cases.
dimensions{i) Since the bosonized spin degrees of freedom We now summarize previous work on thin magnetic
are integrated over in the functional integral, spin fluctua-fiims. So far, most approaches rely on simple mean-field
tions are taken into account aril) the approach does not approximations, which are of limited validity for low-
constitute an expansion around an ordered state, unlikdimensional systems. In particular, they do not satisfy the
Holstein-Primakov bosonizatichand thus works for both Mermin-Wagner theorem. A finite magnetization can be in-
ordered and disordered ground states. duced by magnetic anisotropi&syhich, however, cannot be
Thefirst aim of the present paper is to test the applicabil-described by a perturbative expansion around the symmetric
ity of SBMF theory to another class of quantum-magneticstate. Thus improved approaches are needed, which should
models, namely the Heisenberg ferromagnet with single-ioralso allow us to determine the magnetic properties in the
(on-site anisotropies. We will restrict ourselves to the two- whole range of temperatures and for systems with non-
dimensional case, which is the most interesting one, but thequivalent lattice sites. For example, magnetic reorientation
same methods can be used in any number of dimensions. Th&nsitions have been studied within spin-wave theories. In
anisotropic Heisenberg model in two dimensions is of parparticular, Holstein-Primakov bosonizatfonhas been
ticular interest, since it describes ultrathin ferromagneticapplied? which is, however, limited to low temperatures.
films, including the important cases of thd &ansition met- The magnetic properties of 2D anisotropic ferromagnets
als iron, cobalt, and nickel. Thin ferromagnetic films are ofhave also been studied using many-body Green’s functions,
great technological relevance, e.g., for magnetic disk driveswhich allow calculations in the whole temperature range of
They also show many interesting physical effects, of whichinterest23~?’ This method has also been applied to thin films
we only mention the observed reorientation transitions as af several layerd®=33 within this theory the higher-order
function of both film thickness and temperatd?e®® Much ~ Green’s functions are approximated by the so-called Tyabli-
theoretical work has already been done on anisotropic films;ov (or random-phase aproximatipdecoupling® i.e., one
which we briefly review below. However, it would be desir- of the spin operator components is replaced by its expecta-
able to have an alternative approach for comparison. Th&on value, whereas the expectation values of the other two
second aimof this paper is to provide such an approachcomponents vanishes. Note that within this approach the spin
using Schwinger bosonization. We apply this method to the&eommutation relations are preserved. By comparison with a
calculation of the magnetization with and without an externalrecent quantum Monte Carlo calculation for iantropic 2D
magnetic field. In addition we determine effective anisotro-magnet withS=1/2 on a square lattice in an external mag-
pies, which are crucial for comparisons of measurementsetic field>*’ it has been shown that this approach yields a
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reasonable description for the magnetizatioin addition,  layers or including the dipole interaction have not been stud-
the long-range magnetic dipole interaction can be treated ded yet.

well within the same decoupling scheme. On the other hand, Following the goals set above, we derive in Sec. || SBMF
single-ion anisotropies have to be treated differently, sincetheories for films with second- and fourth-order single-ion
the inclusion of such terms leads to an ambigousanisotropy. We employ two different bosonization schemes,
descriptior® Anderson and Callet, as well as Line¥ have ~ known as SUR) and O{N) bosonization. In Sec. Il we
proposed interpolation schemes, which are valid only foishow representative results and compare them with results

small single-ion interactions as compared to the exchango™M simple mean-field theories and from many-body
coupling. For most cases of interest this condition is fulfilled. Gré€n’s-function methods. We focus on two areas of current

interest: In Sec. Il A we discuss the change of magnetization

In order to calculate the effective anisotropiégT) and the X : ) X
E a function of external field and of temperature, in particu-

temperature-dependent magnetic reorientation, nonvanishi

expectation values of at least two spin operator componen

: . . ~ phase diagrams. In Sec. IlIB we calculate temperature-
hf';\ve to be determ|.ned. smultanequ@}Nhergas the inclu dependent effective anisotropies. A summary and conclu-
sion of the magnetic dipole coupling is straightforward, the

) . : . ) : X _sions are given in Sec. IV.
inclusion of single-ion anisotropies turns out to be tedious, in

particular for spin quantum numbeg>1, and for higher-
order anisotropies. We emphasize that within these Green’s-
function approaches the magnetic anisotropies cannot be In this section we summarize the SBMF theory for an
handled as small perturbations. Also, this approach sufferanisotropic 2D ferromagnet, using two different, but related,
from the ambigous decoupling schemes for these single-iohosonizations. The first one employs the SU(2) symmetry of
terms. Thus a theory not suffering from these problemghe spind in the absence of anisotropies and leads to an
would be desirable. SU(N)-symmetric mean-field theory, whelkk— . The sec-
Finally, we summarize other approaches. First, mean-fiel®nd makes use of the mapping between the Lie groups
theories have been us&t**which are particularly simple to  SU(2) and O(3) and results in an K mean-field theory.
apply for complicated systems, e.g., with nonequivalentVe first sketch the SW{) theory, which is described in
atomic layers in a thin film or several nonequivalent latticegreater detail in the Appendix. The derivation for theNJ(
sites. Classical as well as quantum-mechanical Heisenbetfeory is similar and we only present the resulits. _
spins have been studied allowing for an arbitrary direction of 1he main idea of SU(2) Schwinger boson theory is to

the magnetization. The inclusion of single-ion anisotropies ignap the ggi” operators onto boson operamrandb, ac-
quite simple. A perturbative treatment of the anisotropie<cOrding t

r the reorientation transitions, and present a number of

Il. SCHWINGER BOSON THEORY

yields analytical expressions for the effective St—p'h B
anisotropie$>4249 However, these approaches completely (e

neglect both thermal and quantum fluctuations, which are s =p'b @
crucial for low-dimensional systems. Kawazeeal*® have LT

treated the magnetic reorientation of thin ferromagnetic films S=(b'b,—b'b )/2 3
within a continuum approach for the system and mean-field- A e B VAR

like expressions for the magnetization density. A continuumrhis mapping isexact in particular the spin commutation
approach to the magnetic reorientation has also been usegiations are correctly reproduced. However, the bosoniza-

within a renormalization-group_treatme‘ﬂt. . tion introduces unphysical degrees of freedom, which have
On the other hand, following earlier wdfk® Millev to be removed by the constraint

et al*® treat the magnetization of a thin film as a macro-
scopic, classical magnetic moment and discuss its ground b%rbTwLbIbl:ZS, (4)
state as a function of anisotropy and external magnetic field.
The anisotropy constants appearing in their work are to bavhere S is the spin quantum number. Whereas the above
understood as effective anisotropies obtained from experischeme employs the SU(2) spin symmetry group, one can
ment or from some more advanced calculation. This apalso take advantage of the mapping between SU(2) and the
proach has to assume that the effects of thermal and quantugiioup Q3)—both have the same algebra up to the choice of
fluctuations, the lattice structure, and the spin quantum nunrepresentation—to formulate an alternative O(3) Schwinger
ber S can be described by a suitable renormalization of thdoson theory. For both groups well-defined expansions
anisotropy constants. From a theoretical point of view, thearound a mean-field theory are obtained by generalization to
problem has just been transferred to the calculation of thesd boson fields and expanding in smalNi? In particular, in
effective anisotropies. This has to be done using more adhe limit N—c mean-field theory becomes exact.
vanced methods such as Schwinger bosonizdtistussed Read and Sachd&have derived SUY) and ON) SBMF
below) or many-body Green’s functions. expressions for the magnetization of isotropic 2D ferromag-
Finally, Monte Carlo simulations have been performed fornets, where their main interest was in the quantum Hall fer-
the effective anisotropies and magnetic reorientation of ferromagnet at filling factorv=1.51°? Recently, the leading-
romagnetic monolayers. So far, only classical spins haverder fluctuation corrections, i.e., the first order of thil 1/
been studied for the anisotropic caSewhile quantum expansion, have been calculateahd compared to quantum
Monte Carlo results exist for the isotropic case offly. Monte Carlo simulation'’ and experimental results.The
More complicated systems such as thin films with severaBU(N) and O{N) theories are found to be qualitatively cor-
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rect. In the quantum Hall system the magnetic degrees dbince we are mainly interested in the effects of the single-ion
freedom are carried by conduction electrons w&k 1/2.  anisotropy terms in the Hamiltonian and in spontaneous
Thus single-ion anisotropies do not play any rifle. symmetry breaking, we neglekty;, for most of this paper.

We describe the anisotropic 2D ferromagnet by a Heisen- We now give an overview over the derivation: After re-
berg model on a 2D square lattice, augmented by seconghlacing the spin operators in the Hamiltoniés) by bosons,
and fourth-order single-ion anisotropies, the bosonic system is generalized from twd\tdboson spe-

cies. We mention that we take care to preserve the quantum
_ . n. _ 232 el 2\4 properties of the spin operators in the anisotropy terms as we
H= J<izj> S-5-B E. S Kzzi () K“Z () perform the limitN—oo. Then the partition functiorz is
written as a functional integral over complex auxilliary
el X\ 4 v 4 fields. The constraint on boson number is incorporated using
K42i [(SH™+ (S, ® a Lagrange-multiplier field and the exchange interaction as
o well as the anisotropy terms are decoupled by means of a
whereS- S=S(S+1) and the sum ovefij) is over nearest yphard-Stratonovich transformation. Within the mean-field
neighbors, counting each bond ondes the exchange con-  gnnroximation the auxilliary fields are then replaced by con-
stant and is the external magnetic field. Positive anisotropy stants, which have to be obtained from saddle-point equa-
parametersK,,K; >0 favor a perpendicular magnetization tjons.
(easy-axis magngtwhile the opposite sign favors an in-  The resulting mean-field free ener@y, depends on the
plane magnetizatiorieasy-plane magretTwo important ¢\ auxilliary parameter® and A. One has to find the

special cases ar¢,;=0, corresponding to uniaxial symme- gaqdie points ofF, with respect to these parameters and

- I — Kkt : i —
try, andK,=0, K4=Kg , corresponding to cubic symmetry. check their stability, as discussed in the Appendixcan be

Equation() s viewed as anlcroscopchamlltonlan for a interpreted as a chemical potential that globally enforces the
ferromagnetic monolayer, where the anisotropy parameters —

are obtained, for example, from first-principles calculations constraint on boson number, whereas the veeta related

The same Hamiltonian can also be used approximately as 4R the magnetization, see below. Introducing rescaled anisot-
effectivemodel for films with several layers, in which case "OPY parameterS

the anisotropy constants are to be understood as averaged

parameters containing both bulk and surface contributions. ~ S-1/2

Since anisotropy energi¢and also the exchange couplidy K=Kz S ®

can be quite different for the surface layers and for the bulk,
the effective parameters can be tuned by changing the film

thickness. Kil= Kﬁ,\l(s_ 112)(S—1)(S—3/2) ’ 9)
Equation(5) does not include the magnetic dipolar inter- S
action
and the inverse temperatuge=1/kgT, the free energy reads
® S-S 3(S-ry)(Sry)
Hap=> | j(%j) S (. I:,S fi) | (6) K 3k 3gk1
’ i L BFo=—SA+ =" P24 5 P4 5 *(Pi+PY)
wherer;;=r;—r; is the separation vector of sitegndj, o
=,u,0g2,u,§/477, Mo is the permeability of free spacg,is the 1 _ s
Lande factor, andug is the Bohr magneton. The dipolar + BWIBJS[dlln(l—e‘MﬁB %)

interaction is difficult to treat in the present framework,
mainly because of its long-range nature. One may incorpo- +di|n(1—e‘X‘BB"2)] (10)
rate it in a simple mean-field way by replacing one of the

two spin operators in Eq6) by its thermal average, which it the dilogarithm function diln and the effective magnetic
is, in our notation, the magnetizatiov. In a continuum fjg|d

approximation this leads to

127w Bx= BX+4REB>3<’ (1)
HdipE—Eg(l\/lx,l\ﬂy,_2|\/|Z)'2i Sy (7)
B,=B,+4K}P}, (12)

where a is the lattice constant. Equatiai) describes the
interaction with an effectivelemagnetizindield. This term -
explicitly breaks spin symmetry in that it prefers the magne- B,=B,+2K,P,+4K;P?. (13
tization to lie in thexy plane, as is well known. In this

approximation, the rotational symmetwithin the plane is We emphasize that the whole mathematical apparatus of
retained. A better description would also break this residuaBU(N) SBMF theory is contained in Eq$10)—(14). Note
symmetry. This is the reason why a magnetic monolayer hathat these expressions reduce to the isotropic®ceiee K,

a finite in-plane magnetization even if only the exchange= szKﬂlzo and that the second-ordeffourth-ordey
coupling and the magnetic dipole interaction are consideredanisotropies only enter the resultsS&1 (S=2).

as has been shown using a Green’s-function apprifach. The mean-field magnetization is given by
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dFo 1 B 1 N '
Moy=—2—5=—5—<—
dB 8mBIS B’
— — 08 .. mean field
X[In(1—e ATAB'2)  In(1—e~A-FB'2)] (14 s — SU(N) SBMF
_ po —— O(N) SBMF
whereB’ =|B’|. As shown in the AppendixP; as obtained S 06 — RPA
from the saddle-point equations equals the magnetization _g ! N
componentMy; , if the free energy, d_epends orP;. On § 04 | \
the other hand, iF; does not depend oR;, the latter quan- & 05\
tity can assume any value, while the magnetizaibg) still E 02 | \
has a well-defined value given by Ed.4). ; :
Within the simplified treatment of the dipolar interaction 0, PR
discussed above, a demagnetizing field proportional to 0 ‘ ‘ ‘ :
(Mgx,Mgy,—2Mg,) would be added td’. By using a 0 0.2 0.4 0.6 0.8 1

Green’s-function method it can be shown that this yields an reduced temperature T/ T,

acceptable result for the magnetization if the magnetic dipole

coupling is small as compared to the exchange Coufiﬁng. FIG. 1. Magnetization as predicted by various theories as a

function of reduced temperature/T, for a film in a vanishing

Finally, we give the results of Q) SBMF theory with-
out derivation. The free energy per boson reads

1 - = —
BFSMN = — §SA+33KZE§+ 818K ; P:+ 818K} (Py+P})

i _aA—A+pB’ ; _aA
+ 1277BJS[d'|n(1 e )+diin(1l—e™*)
+diln(1—e A A8')] (15)
with the effective field
B, =B, +10&/,P?, (16)
B, =B, + 108&K,P2, (17)
B!=B,+6K,P,+10&K/P3, (18)
and the magnetization is
MO — _ B_’[ln(l_eforBB’)
0 AmBISR’
—In(1—e~ A8y, (19)

external magnetic field3=0, with an easy axis defined W, /J
=0.01, spinS=1, and no higher-order anisotropies. The magnetic
dipole coupling is neglected. The inset shows the magnetization as
a function of the absolute temperatur&) in units of exchangd.

The line denoted by “RPA”(random-phase approximatiprefers

to a calculation within a many-body Green’s-function approach
with Anderson-Callen decoupling of the single-ion anisotrépy.

ever, an easy-axis uniaxial anisotrogg,>0 explicitly
breaks the SU(2) spin symmetry down to a residual Ising
symmetry. A discrete symmetry can be spontaneously bro-
ken and one expects a finite-temperature phase transition be-
tween an ordered and a disordered phase. BotiN$lahd
O(N) theory indeed yield a finitd.. Figure 1 shows the
magnetization of a spin-1 system with a second-order
uniaxial anisotropy,/J=0.01 in the absence of an external
magnetic field, as a function of the reduced temperature
T/T.. As usual, simple mean-field theory overestimates the
magnetization. In particular, at low temperatures the magne-
tization approache (T=0) exponentially due to the ne-
glect of spin waves. On the other hand, SI)(and ON)
Schwinger boson theories and many-body Green’s function
method$’ correctly predict an almost linear behavior. How-
ever, the absolute temperature scales are rather different, as
shown in the inset of Fig. 1. Numerical resulesg, from

The general form of these expressions is similar to th&uantum Monte Carlo simulations, would be very useful to
SU(N) case and we thus expect qualitatively similar resultscheck the absolute value @t .

Ill. RESULTS AND DISCUSSION

One can obtain analytical expressions Tarby expand-
ing the saddle-point equations for a small magnetization
M,,. The results aré

In this section we discuss a number of results obtained °?

from SBMF theory and compare them with other ap- >

proaches. Our aim is mainly to show that SBMF theory TSUN) — 4mdS (20)
yields qualitatively correct results in the presence of single- ¢ IN[1+47IS/K,(S—1/2)]

ion anisotropies. We further show that these results are com-

parable to Green’s-function methods, although they ardor SU(N) theory and
much easier to obtain. We first discuss the magnetizdiign

and then effective anisotropies.

4m)S
TOMN = (22)

¢ B3I+ 7ISUKH(S—1/2)]

A. Magnetization

SBMF theory correctly predicts the magnetization of anfor O(N) theory. Both expressions have the same functional
isotropic 2D Heisenberg ferromagnet to vanish at finite temform. In particular, T, vanishes in the limiK,—0%, as it
peratures in the absence of an external magneticfiglol-  should, andl,=0 for S=1/2. For comparison, using a con-
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tinuum approximation similar to the one employed here, the 2 .
many-body Green’s-function method yields [ TTTT=< ~——
15 @ S~ "
RPA_ 473SS+1) 22 \\ R Mi
©  3IM1+4372IF4KA(S—1/2)] 1y N
N A
within the Anderson-Callen decoupling of the second-order = 05 | \
anisotropy?’ Note that all three expressions show the loga- § easy axis, KjJ=0.01, k=0 |
rithmic dependence of . on K,, while the dependence on ® 0 :
the spin quantum number differs. % 2 1
Since the results of SW) and ON) theory qualitatively S e 1
agree with each other, we concentrate on IS)JHn the fol- g 1.5 + (b)
lowing. In the case of a hard axik,<0, andKl,=O, the
residual symmetry is oKY type. Because of the continuous 17 il
degeneracy there should be no spontaneous magnetiZation.
This is indeed found within SBMF theory. If we include a 0.5 -
dipolar interaction by means of Ed7), a finite in-plane easy axis, K,=0, K}/J=0.02
magnetization emerges, since in this approximation the di- 0 0 0_52 0.04

pole coupling acts similarly to an external field.

In the presence of an external magnetic figldne always
expects a finite magnetization. For an isotropic film this FIG. 2. Reorientation transitions as a function of external mag-
magnetization is parallel to the applied field, whereas in theetic field for a film with exchangd= 100 and spirS=2 at tem-
presence of anisotropy the magnetization may be orientegeratureT/J=1. (a) Film with second-order easy-axis anisotropy
along a different direction. In addition, a magnetic reorientaX,/J=0.01 andK} =K, =0. The field is applied in the direction,
tion transition can occur, which may be controlled by vary-i.e., perpendicularly to the easy axis. The solid and dashed lines
ing the temperaturd, the external magnetic field, or the  represent the andz components of the magnetization. In this case
film thickness. In Fig. 23 the magnetization components a second-order reorientation transition takes pldbg.The same
parallel and perpendicular to the magnetic field are shown aguantities for a film with forth-order easy-axis anisotrofy/J
functions of its strength. The field is applied perpendicularly=0-02 andK,=K},=0. Here, a first-order reorientation transition
to the easy ax|S, Wh'Ch |S reallzed by a Second_order unlax|éﬁ.kes place, denqted by the arrows. The dotted lines refer to meta-
anisotropyK,/J=0.01. Within our theory we find a linear Stable states of higher energy.
increase of the in-plane magnetization along the magnetic-
field direction below a critical reorientation fiell.,. Since
the modulus of the magnetization is almost constant, the per- 1
pendicular magnetization component decreases correspond-
ingly. At B=B¢, _the latter component vanishes cp_ntinu- comxistence
ously, corresponding to a second-order phase transition. For T

magnetic field B /J

B=B,., the magnetization is parallel to the field and in-
creases only weakly witB. Figure Zb) shows a similar
situation, with the easy axis realized by tfeurth-order
uniaxial anisotropyK; >0, while KZZKU‘:O. Again a re-
orientation transition is obtained as a function of the in-plane
magnetic field. However, since here the magnetization
changes discontinuously, the transition is of first order. We
expect that the dependence of the order of the transition on
the order of the uniaxial anisotropy is a universal feature,
since the same behavior has been observed within simpler -1
theories:®4° -1 0 1

To show the interplay of the various interaction terms, we K(T)
now discuss several phase diagrams. For comparison, Fig. 3
shows the well-known phase diagram in tﬁ@-lCﬁ plane lFIG. 3. Phasg di_agram for tmﬁective_ani_sotropie‘islcz('l;)s 1asng
for K}=0 andB=0 derived under the assumption that the’4(T) for a vanishing external magnetic field uad,=0.""

magnetization behaves like a macroscopic, classical ma I—qhere;;'f:;rt'iszr:ﬂ%r;asv‘ﬁtsha:ssfoggdéod?:"gefﬂrgy (Ijg(f;ern:e:giiitlgps of
netic moment®1849The anisotropies should be viewed as, g P P P ’

. . . in-plane, canted indicated by arrows. These phases are separated
effective quantities, which depend on temperature, etc, P d y P P

) R either by a first-ordefsolid line) or by a second-order phase tran-
ROUgTy’ asgerpgndlcular magnetization Is ijundKézDO sition (dashed lines which merge at the ftricritical poinfC,,
andC3>0,>" an in-plane one fok’,<<0 andK'; <0, anda _ L —0, corresponding to the isotropic, £2)-symmetric case.
canted one fo’,>0 andK;<0. These magnetic phases A coexistence region between the perpendicular and in-plane
are separated by continuo(second-ordgror discontinuous phases exists near the first-order phase transition boundary, indi-

(first-orde) phase transition boundaries, which merge in acated by the dotted lines.
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FIG. 5. Phase diagram for a thin film as in Fig. 4 but with a
finite in-plane magnetic anisotropyﬂ,/JwABX 104, big enough
to allow a finite in-plane magnetization at this temperature. The
square denotes the point of full cubic symmetif,E0, Ky
= Kﬂl). The dotted lines are borders of two coexistence regions. In
the left one both perpendicular and in-plane magnetization are
metastable, while in the right one perpendicular and canted states
are metastable.

FIG. 4. Phase diagram of a thin film in thé,-K; plane in a
vanishing external magnetic field as calculated from SBMF theory
The parameters are sp8 2, exchangel=100, temperaturd/J
=3, and in-plane anisotronyﬂzo. The phase to the lower left of
the phase diagram now exhibits no net magnetizafiés,0. The
open circle denotes the isotropic, G)-symmetric casd,=Kj
=0. The other symbols are the same as in Fig. 3.

tricritical point. A coexistence region between the perpen-
dicular and the in-plane magnetization is located close to thétable. The free energy for small, and thus the stability of
first-order phase transition line. As usual, the first-orderthis saddle point, is solely determined by the lowest-order
phase boundary has been drawn where the free energies afisotropyK,.
both phases are equal. In-plane and canted magnetic phases do not appear in Fig.
The simple phase diagram of Fig. 3 does not apply to 2D4, since this system is either in the Ising or in K& uni-
systems, since there should be no net in-plane magnetizatiofersality class. However, such phases do exist if the in-plane
if solely uniaxial anisotropies are taken into account. Thesymmetry is explicitely broken, e.g., by a single-ion in-plane
reason is that in this case a ground state with finite in-plananisotropyKUﬁ&O, by an external magnetic field, or by the
magnetization would be continuously degenefaféie ori-  dipole interaction. Here we consider a small fourth-order in-
gin of this problem of course lies in the neglect of fluctua-plane anisotropyKUl/J~4.3>< 10 4>0. The other param-
tions. eters are unchanged. The resulting phase diagram is shown
This picture is changed if fluctuations are included byin Fig. 5, exhibiting now three phases similar to Fig. 3. How-
means of SUJ) SBMF theory: Figure 4 shows the phase ever, the transition between the canted and perpendicular
diagram in theK,-K; plane for a thin film at a finite tem- phases is now of first orddthe first-order line extends to
peratureT/J=3 for spinS=2.%° The anisotropy parameters arbitrarily large negative;). The first-order character is
are now the microscopic ones contained in the Hamiltonianypically weak—the jump in the magnetization is rather
(5). Note that the scale of the anisotropies in Fig. 4 is smallsmall. The coexistence regions are also shown in Fig. 5. Note
since the temperatur®/J=3 is significantly lower than the that for even smallek; thermal fluctuations would destroy
typical temperature scaleS” of Eq. (20). This means that the in-plane magnetization, resulting in a phase diagram
very small anisotropies are sufficient to induce a finite magsimilar to Fig. 4.
netization, since&, enters logarithmically i, Eg. (20). Considering now a thin film with a finite number of
In Fig. 4 only two phases are present: A phase without ne&tomic layers, the anisotropies have to be viewed as averages
magnetization located approximately in the regikp<<O  over all layers and can be tuned by varyimgA variation of
and K; <0 and a phase with perpendicular magnetizatiorthe film thickness thus refers to a certain traject¢inisot-
otherwise. These two phases are separated by either a firsepy flow”?) in the corresponding phase diagram, e.g., Fig.
order or a second-order transition. The tricritical point, at5. In this way we can in principle describe reorientation tran-
which the two merge, has shifted to finite, temperaturesitions as a function of film thickness.
dependend values of the anisotropkg.>0 andK,.>0. Finally, we consider the effect of a finite magnetic field.
For smaller anisotropies thermal fluctuations overcome th&Ve keep the absolute value of the field constaBi,)
tendency to order. A coexistence region is found in the vi-=0.01, and change only its direction. For simplicity we re-
cinity of the first-order transition. The first-order line is no strict ourselves to the caetélfo, and consider the case
longer straight and approaches the tricritical point with a=2 andT/J=1 as an example. The magnetic field is rotated
vertical tangent. For negativ€; the second-order transition in the xz plane from#=0 to =, whered is the angle
line is given byK,=const, similar to Fig. 3. Thus the loca- between the field and the film normal. Figur@6shows the
tion of this transition depends only dfy,. At this transition  phase diagram for the casg; =0. The magnetization tries
the zero-magnetizationM=0) saddle point becomes un- to be aligned parallel to the magnetic field, but is hindered by
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@) F=—-B-M—K,cos §—Kzcos §—K cos 6

04 |

=

anged — K}, sin 6(3/4+ cos4p)— . ... (23
2K, The effectiveanisotropies/C,(T), etc. depend strongly on
temperature. They have to be distinguished fromrttiero-
scopic anisotropiesk,, etc,. appearing in the Hamiltonian
(5). Experimentally, the effective anisotropies are deter-
mined from, e.g., ferromagnetic resonan@eR) experi-
ments. To compare the microscopic anisotropies calculated
at T=0 with measurements of the effective anisotropies per-
formed at finite temperatures, the temperature dependence of
the latter has to be known. This task will be pursued in the
present section by use of the Schwinger boson technique.
The main source of the temperature dependence of the
effective anisotropies is the decreasing magnetization
Ki~0.53 M(T).*? Other sources, such as the population change of
: : : spin-orbit splitted energy levels near the Fermi enéryill
0.3 0.4 05 0.6 0.7 not be considered here, since the thermal variation due to
angle 6/n these effects occurs mainly at higher temperatures. Note that
the effective anisotropies depend on microscopic anisotropy
C{'erms of various ordef§ and can even be present at finite
with K,>0. A magnetic field of strengtB/J=0.01 is applied in emperatures if corresponding microscopic ones are absent

; o 42
the xz plane, forming an anglé with the film normal. We assume from the Ham”tomaﬁlﬁ . . .
J=100, S=2, T=1J, and K,=0. Furthermore, in(@ K.=0 For the determination of the effective anisotropies we pro-

whereas inb) Kj/JwS.SX 10~ 3. The thick solid lines denote first- <?eed_ Sim"a”Y as_in Ref. 42'_ In order to turn the mf’;\g_netiza-
order transitions ending in critical points. The dotted lines are thdion into a direction ¢,¢) different from the equilibrium
boundaries of coexistence regions. The inset shows the magnetizAN€, We apply an auxiliary magnetic fieBd For the magne-
tion as a function of for the casga) with K,=0, K,=K,., and tization we use the SBMF resuM,, Eq. (14). There are
Ko=2Koe, Koe. infinitely many choices of the magnetic fieBlthat result in

the same magnetization direction. This freedom of choice
introduces some arbitrariness, since the resulting effective
anisotropies depend on the choiceBofWe here choose the
field B=(B,0,0) along thex axis and vary only its strengfi}.

We insert the SBMF result for the free enerfgy, Eq. (10),

. R ) into Eq. (23). To obtain the effective anisotropies we calcu-
dicular magnetization component as a functiongoor K, late the angle®, ¢ and the free energy parametrically for a

— — — H 1
=0, Ky=Kje, andK,=2Ky.. A negative value oKy does g ticient number of values of the magnetic-field strerBth
not change this behavior, except that the coexistence regions, q it Eq.(23) to the resulting data.

becomes more narrow. Fét; >0, however, the first-order
line extends to smalleiK, and splits into a two-prong fork,

02

magnetization M

Ki': 0
...... (b)
0.4

0.2}

FIG. 6. Phase diagram for a thin film in tH€,-6 plane as
calculated from SBMF theory. An easy-axis magnet is assume

the anisotropies. For a sufficiently smé&ll, the magnetiza-
tion follows the field continuously, whereas f#ér, larger

than a critical valu&, it exhibits a jump. This behavior is
illustrated by the inset in Fig.(6), which shows the perpen-

We now apply this method to a system with uniaxial easy-
> 1O ° N 'K, axis anisotropy. In this case the free energy does not depend
as shown in Fig. @). Each prong ends in a critical point. o the anglep in the absence of a magnetic field and hence
The metastability regions are also indicated in Fifp)6The  {he effective anisotropies involving vanish. Then the free
forklike feature grows for increasing; and the critical energy has the form

points even enter the negatile region for sufficiently large

K3 . As a side remark, in the language of catastrophy theory *

the phase diagram in th&g,K7 ,6) space shown in Fig. 6 FotB-M=— 22 K, cos' 6. (24)
can be described by lautterfly catastrophy. The special cut "

K3 =0, Fig. a), shows acusp®! We calculate the free enerdy, for equally spaced values of

the direction cosine casby varying the field strengtB. If a
first-order reorientation transition takes place at some field
value B, we use only fieldB8<B,,,. We finally obtain the
The effective magnetic anisotropies are most generallgffective anisotropies by a least-square fit. Figure 7 shows
defined through the dependence of the free energy on thide effective anisotropies for a thin film witls=2, J
magnetization direction. The anisotropic part of the free en=100, and uniaxial anisotropies,/J=0.02, K;/J=0.01
ergyF(T,6,¢) (6 and¢ being the polar and azimutal angles (filled symbol3g andK,/J=0.02,K;/J=—0.01(open sym-
of the magnetizationdepends on the symmetry of the lattice bols). We here consider relatively large anisotropies for il-
and is usually written with the help of spherical harmonics|ustrative purposes so that higher-order anisotropies do not
Y™,5240or as a series in powers of the direction cositfes. vanish in the numerical errors. The odd effective anisotropies
For example, we give the expression for tetragonal symmek;, etc., vanish because of symmetry. A small sixth-order
try, including also the Zeeman term, effective anisotropyCg(T) appears at finite temperatures, as

B. Effective anisotropies
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6o, ‘ ' ] theoreni also in these cases, in that a finite spontaneous
g, magnetization is only found if the ground state is not con-
[ el . . .
L3N tinuously degenerate. The theory can describe the various
N4 T *eo oK i magnetic order-disorder transitions as well as the reorienta-
@ * 2, tion transitions found in experiment. The bosonization
a '200 method can serve as an alternative technique for quantum
2 2 fg’gf% *s S, i spin systems, besides the many-body Green’s-function
.8 Baa, 0 aeee $eg, R *3 g approactt’ Our results for magnetization and effective
& o e tEa,, s L e anisotropies qualitatively agree with the ones obtained by the
£ o o K, """eea, :‘333;& | latter method. Microscopic calculations of effective anisotro-
® LA pies as functions of temperature are important, since they—
LooBn® E}(" i and not the microscopic anisotropies appearing in the
fooo® * Hamiltonian—are obtained from experiments. However, the
-2

0 260 4(‘)0 660 absolute value of the critical temperature at which the spon-
reduced temperature T/J taneous magnetization becomes finite strongly depends_ on
the details of the theory. Compared to the Green’s-function
FIG. 7. Effective anisotropiek,, K,, andKg as functions of ~method, Schwinger boson theory has the advantage of treat-
temperature calculated from SBMF theory. A thin film is assumeding any spin valu&and any orientation of the magnetization
with S=2, J=100, K,/J=0.01, Kl,=0, andK}/J=10"3 (filled relative to the anisotropy axes and the external magnetic field
symbolg andKz/J=—10"23 (open symbols We use rather large on the same footing. It is also numerically much less de-
microscopic anisotropies to demonstrate more clearly the appearmanding. Other types of anisotropies, for example of hex-
ance of a small sixth-order effective anisotrogy, which is shown  agonal surfaces, can be incorporated in a straightforward
scaled by a factor of 50. The big symbols denote the exact values ahanner. Finally, Schwinger boson mean-field theory is a
T=0. well-controlled approximation in the sense that fluctuations
about the equilibrium solution can be treated systematically
well as anisotropies of even higher order, which are muchyithin a 1N expansiorf.
smaller, although no corresponding terms are present in the we conclude with enumerating possible generalizations
Hamiltonian. The exact values 0f,4(0) for T—~0 are of the theory that are of particular interest for a realistic
K,(0)=K,S(S—1/2)=K,S* and K,(0)=K;S(S—1/2)(S  description of magnetic thin films: The first is the explicit
—1)(S— 3/2)=Rﬁ8“,62*4°'42 cf. Egs. (8) and (9). Our ap- description of_ thin films of seyeral layers, where the_ ex-
proach reproduces these limiting values. Note that the speci§l@nge couplings, the magnetic moments, and the anisotro-
generalization of the anisotropy terms from SU(2) to B)(  PI€S areé microscopic quantities which depend on the layer
discussed in the Appendix is required to obtain these resultd1dex. This can be done by a straightforward generalization
For T—T, the effective anisotropies vanish d,(T) of the_thgory, where one or]Iy has. to kegp track of additional
o« M"(T).5245 Thereforel,(T) decreases faster with increas- layer indices. The second is the inclusion of the long-range

. : o magnetic dipole interaction. This interaction is an additional
Ing f[emperature thaii,(T) _and exh|b|ts amore sm_ooth_ be- source of anisotropy, which acts quite differently from the
havior nearT.. The effective anisotropies shown in Fig. 7

litativel ith bodv G s-funct single-ion anisotropies, resulting for instance in the forma-
?gsatjll t23'5ve y agree wi many-body — Sreen's-iunclion g, of magnetic domain¥ We reiterate that both the effect

Finall hasize that th lculati f effecti of several layers and the dipole interaction can be treated in
rinally, we emphasize that the calculation of elleclive, present theory as it is, albeit only in a mean-field manner.

. - e third interesting generalization is the inclusion of mag-
to the fregdom of choice of the magnetic field anq the ParG, etic dynamics. This would allow to describe the precession
ticular fitting procedure employed. Furthermore, this deriva

tion emol tati lculation of the madnetization n- f a nonequilibrium magnetization and constitute a micro-
on empioys a stalic calcuiation ol the magnetization a copic theory of ferromagnetic resonance. We leave these
free energy in order to describe a dynami@@R) experi-

) uestions as projects for the future.
ment. These problems are common to all calculations of efg prol

fective anisotropies we are aware of. A full quantum-
mechanical, dynamical theory of FMR would be very useful. ACKNOWLEDGMENTS
One possible approach would be to incorporate spin dynam-
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In summary, we have presented the Schwinger boson
mean-field theory for anisotropic 2D ferromagnets, using
two different bosonizations. In this study we have focused on
the theoretical treatment of single-ion anisotropies of a In this Appendix we present the Schwinger boson theory
Heisenberg-type Hamiltonian. The anisotropy energies breafor anisotropic ferromagnetic films in some more detail. To
the full SU(2) spin symmetry, leading to a lower residualderive the mean-field equations we start from the Hamil-
symmetry, e.g., of Ising oXY type. We have shown that the tonian(5). We replace the spin operators at each lattice site
results for the magnetization satisfy the Mermin-Wagnerby two Bose fieldd,; andb,; according to Eqs1)—(3). The

APPENDIX
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fields b,; andb; have to satisfy the constraitd) at each  Analogously, theN-dependent fourth-order anisotropies are

lattice site. With the matrix obtained,
blb., blb, (S—1/2)(S—1)(S—3/2)
[ Pribi Bribyi L= L
S(')_(bLbu bLbu)' (A1) KaN=SZTN) (S—2IN)(S—aN) K4 (A7)
the Hamiltonian reads, up to an additive constant, and®
J B Ril=kil=okilig_ _ _
HZ_E% SIS~ o S o) Ril=K3 1=K l(s—1/2(S-1)(S-3/2/S%.  (A8)
ij i

| The fourth-order anisotropy contributions now correctly van-
K, K3 ish for S<2 even at the mean-field level.
a i\72 a 14
S a Z [(02)885(')] 8 Z [("Z)Bsg(')] In order to write down a functional integral over the Bose
fields, we have to normal order the bosonic operators. The
ﬂl By weBrid exchange term is trivial, since the operators at different lat-
i Z ([(e)ESE T +[(")ESEHTY)  (A2)  tices sites commute. By commuting the operators in the an-
isotropy terms, using the constraifd3), and dropping a
with the Pauli matricesr= (¢*,0¥,0%). Summation over re- constant we obtain
peated greek indices is implied.
This expression is how generalized NoBose fieldsb,, . o J - .. B wcBy;
ThenS becomes ailNx N matrix of operatordb, and the Hsum =" <.2,> S3(1)Sa(i) - 2 Z 75Sa(1)
constraint is generalized to
K2N
o . acfi\12-
blb,=NS. (A3) N > L(e)ESii)
The Pauli matrices are generalizedNo<N block-diagonal KL
matrices with the original Pauli matrices repeated along the _ 4N 2 :[(aZ)gsg(i)]“:
diagonal. We keep the notatiar?, etc. 2N3 5
There is some freedom in the generalization of the Hamil-

tonian toN boson flavors—we mainly have to make sure that _ KU;,N S ([0 %S T4+ [(0¥) 2L (i)]):
the correctN=2 case is recovered. If we naively generalize ON3 5 T poa T e "
the second-order anisotropy term as—(K,/2N)

x[EaB(aZ)ZSﬁf]Z, we run into problems, which are most (A9)

easily illustrated for the case=1/2. ForN=2 the operator
S has the eigenvalues 1/2 so that §%)2 only has the ei-
genvalue 1/4. This is, of course, the reason whykhderm
is irrelevant forS=1/2. However, forS=1/2 andN>2 (N
even we find N/2+1 different eigenvalues of the spin

component §%)§S? andN/4+1 (or N/4+1/2) different ei- K n=Kan+ 6NS*4 KLy~ 6NS+4
genvalues of th&, term for N (not) an integer multiple of ’ ' N2 ’ N2
4. Thus in the limitN— o the second-order anisotropy term ) .
has infinitely many different eigenvalues even @ 1/2, !f we want to do a consistent theory to order zero iN We
which looks like a semiclassical approximation. Clearly, theCan Just drog the corrections. However, since the prefactors
mean-field results would depend &3 for S=1/2, whichis ~ (6NS+4)/N“=3S+1 are not small foN=2 it may be bet-
incorrect. To remedy this problem we introduce anter O keep them. Note also thgt they <_:ance| for cubic sym-
N-dependent anisotrog{, such that the energy difference Metry. In the following we omit the prime &, but keep

between the two lowest energy states of the second-orddéf€Se points in mind. _ . ,
anisotropy term Next, we go over to the continuum limiand write down

the functional integral for the partition function. The con-
straint (A3) is implemented using a Lagrange multiplier
(Ad)  \(r,7) at each point in spaceand imaginary timer.* \ is
to be integrated from-io to +io but we can deform the
is kept constant for alN. In particular,Ae=0 for S=1/2  path of integration between these limits. The path of integra-
and allN. This is achieved by setting tion has to cross the real axis on the positive side to avoid a
branch cut. The partition function reads

where :: denote normal ordering. The second-order anisot-
ropy has obtained a contribution from commuting the bosons
in the fourth-order terms, similar to other approacfre¥,

Kin. (AL0)

2K, N
N

NK
Ae= %[82— (S—2/N)2]=2K S~

S—-1/2
K2,N:mK2' (AS) 1 ﬁﬁ
Z:f DzbaD)\exp{—%f drf d2r£[b;)\]>,
0

In the mean-field approximatioftN—, we get® (A11)

RZEKZ,wz K, (S—1/2)/S. (A6)  where nowb,(r,7) is a complex field. The Lagrangian is
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_ fi . 5 P, andR. Then, the action is bilinear in the fields, .
LIb;A]= ;baﬂrbﬁ‘ls(&iba)(ajba) Written in terms of Fourier transforms the mean-field parti-
tion function reads

B
b%(9;b%)b(dba) — —5asbhb,,
N 232 ZO Zf

I1 dzba(k,iwn)exp(—f d?kY Lo[b])

a,k,iwy iwp
Kin A16
—2 (o o?)gbib, 17— N°a ——[(0?)gb5b,]* (A1

TN . .
with the b -independent part
K”
~ s — L ([(0)gblb,1*+[(0¥) 5b%b, 1% ﬁ
Z.= exp( — ANBJIQ- Qa2+ Na2NSBA — AN -2P?
+Ab%¥b,—NS\. (A12)
rd

Here,a is the lattice spacingi; is the time derivative, and _ '8 LR.P2— BKy R2+R2
is a spatial derivative along thedirection. Summation over MN 2 NN’BK MN 2 [Ret+Ry]

repeated indices is implied.

In the next step, the terms containing more than two
fields are decoupled using Hubbard-Stratonovich transforma-
tions, thereby introducing additional auxiliary field® P,
and R, which have to be integrated over in the functional\yhere \/is the number of sites. The Lagrangian is
integral. In a short-hand notation the decoupling of the ex-
change term may be writtén

— MNBKIX[R,P? 52]) (A17)

Lo[b]=paz, ( —ihw,+JISKaZ— B—SJ@ QaZ+a®\
N0 (9105 )ba(d1b,) —~NIQQ+1IQ;b% (4;b,) :

B
* H H _ 2 —
~13Q,(9;b%)b, (AL3) X b* (K,i wn)b,(K,iw,) — Ba aEﬁ (2 o
The Ky t_erm contains ei_ght Bose operators, which are de- +R252(az)g+ZRﬁﬁzsz(az)g+ZRQ[@EX(UX)g
coupled into four according to
L L L +R,Py(c¥)5]|b%b,,. (A18)

Kan W NKj, Kin N
= onal (@505 = 5 Ri - PRI (o) b
(A14)  After integrating out theb, fields and performing the sum

) ) ) . over field indicesa, we obtain, up to an irrelevant constant
To make the transformation well definel, is to be inte-  factor,

grated from—o to +oo if K;>0 but from—ic to +ic if
2

K3 <0. The remaining four-boson term is grouped together IV
with the K, term and decoupled, Zo=2 exp( _ E Na© dzkE Indet M(K,i w,,)
2 4772 iwn ,
K2N+2K4N z (A19)

with the 2X 2 matrix

. N(Kon+2K50R,) )
2 z . pB —
M= (—iBhw,+ BISKa’+A)1— — - o— BK,P,0?
— (Kon+ 2K5R)P (07 8b%b,, (A15) (Z1phontp 1= 0 BKoPo
Here, the direction of integration &f, must be chosen such —Zﬁﬁjﬁzﬁzaz—Zﬁ H( an' +R, Py(ry) (A20)

that (KZYN+2Kj'NRZ)P§ is real and positive at the end
points. The decoupling of thKU1 terms is done similarly, Note thatz only depends orfandathrough
introducing additional field&, , andP, 0

Up to this point no approximation, apart from the con-
tinuum limit, has been made. Now we consider the mean- A=a2g\— BJ Q.Qa? (A21)
field approximation for this system. This is exact fér oo S '
but serves as a lowest-order approximation fbor2. The
mean-field theory is defined by all auxiliary fields being con-just as in the isotropic cageEvaluation of the frequency
stant in time. Since the system is ferromagnetic, we assumeum and momentum integral in EA19) yields the free
that they are constant in space as well and write them,as energy per boson
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- 1 nz found to be independent of the correspondﬁgso that we
BFo= NN 0 can chooseP; to satisfy Eq.(A29). We end up with a free
n energy which depends on the four auxiliary parameters
=— SX+ TZEE‘F TAQ‘F ,Bki_ Rzag andP,
+@(§2+§2)+3RL(§?+§?) BK 3Ki_ 3K/
X _ _ .
2 o BFo=—SA+ 5 Pi+ = Pi+ —— (P +P))
+ o [diln(1—e £ 1 -
87BIS i _ A A+BB'I2
o + SwBJS[dIIn(l e )
+diln(1—e A "AB2)] (A22) e
+diln(1—e "~ A30
with B’=|B’| and ( )] (A30)
By =B, +4KiR.P,, (A23)  with
B,=B,+4K,R,P,, (A24) )
o B! =B, +4K,P2, (A31)
B,=B,+2K,P,+4K,;R,P,. (A25)
The dilogarithm function is defined by the series representa- ~
tion B, =B, +4K}P:, (A32)
. o (1-x)"
diln x=— . A26 - =
nzl n2 (A26) B.=B,+2K,P,+4K;P3. (A33)
We are mainly interested in the magnetization
dF 9F In the uniaxial caseKU1=O there are only two relevant pa-
Mo=— d_BO:_ (9_80 rametersA andP,. B
By solving the saddle-point equatioddn Z,/dP;=0 we
/ _—_ find that there are typically two solutions for each component
== Sw/BJSE[In(l_e_M'BB ) P;. One isP;=My;, i.e., P; is the corresponding magneti-
B zation component, and the other is given By=B;. For
—In(L—e A=AB12)], (A27)  example, in the uniaxial cas&}=0 (K},=0) the free en-

We have used that the derivatives 6§ with respect toA

andP vanish at the saddle point. A factor of 2 appears, SincC&nce of an external field. Th

in the physical system two bosons make up one spin. For th
isotropic caseB’ equalsB and we recover the results of
Refs. 6 and 7.

Finally, we have to determine the auxiliary fields by find-
ing the lowest stable free-energy saddle point. We set th
derivatives of InZy with respect toA, P, andR to zero and
solve the resulting equations simultaneously. Fro

dln zo/azT:o we obtain the saddle-point equation

[In(1—e A*AB'2) 4 In(1—e A A8'12)],
(A28)

which can be analytically solved fok.” By taking the de-
rivatives with respect to the other auxiliary fields one finds
that for all saddle-point solutions

S= " 8npIs

P2

R=PZ, i=xyz (A29)

This equation either follows directly from the saddle-point
equations or, for special values &, the free energy is

m_

ergy does not depend d®, and P, whereasM,, andM,,
have well-defined values, which need not be zero in the pres-

W, cannot equaM, , . The
Saddle-point equations are solved by the second type of so-
lution, By, =B, since Kz=0. On the other hand, the

component isP,=Myg,.
It turns out that the relevant saddle point of the free en-
rgyF, is not a minimum with respect to all four parameters.

r example, it is always a maximum with respecﬁdor

\). Intuitively, one would expect to run off to infinity in

this case. However, sincein Eq.(Al11) has to be integrated
from —io to +ico, fluctuations in\ are along the imaginary
direction,A(r,7)=N+iAN(r,7), whereAN\ is real. In par-
ticular, this holds for global changes af With respect to
AN, the free energy indeed has a minimumAat=0. For

the Hubbard-Stratonovich field®8 and R the direction of
fluctuations depends on the values of the anisotropy con-
stants. The stability of each saddle point against global
changes of the auxiliary parameters has to be checked in
order to find the lowest stable one. Note that for positive
anisotropy constants the fluctuationsPfand Q are purely
real and the stability analysis becomes straightforward.

e
e

Fo
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