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Schwinger boson theory of anisotropic ferromagnetic ultrathin films
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Ferromagnetic thin films with magnetic single-ion anisotropies are studied within the framework of
Schwinger bosonization of a quantum Heisenberg model. Two alternative bosonizations are discussed. We
show that qualitatively correct results are obtained even at the mean-field level of the theory, similar to
Schwinger boson results for other magnetic systems. In particular, the Mermin-Wagner theorem is satisfied: a
spontaneous magnetization at finite temperatures is not found if the ground state of the anisotropic system
exhibits a continuous degeneracy. We calculate the magnetization and effective anisotropies as functions of
exchange interaction, magnetic anisotropies, external magnetic field, and temperature for arbitrary values of the
spin quantum number. Magnetic reorientation transitions and effective anisotropies are discussed. The results
obtained by Schwinger boson mean-field theory are compared with the many-body Green’s-function technique.
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I. INTRODUCTION

Schwinger boson theories are very successful in desc
ing magnetism in various quantum systems.1–7 Qualitatively
correct results are mostly obtained even in the mean-fi
approximation, e.g., quantum Heisenberg ferromagnets
antiferromagnets are well described for arbitrary spin qu
tum number for two and more spatial dimensions. In parti
lar in two-dimensional~2D! isotropic Heisenberg magnets n
spontaneous magnetization is found for nonz
temperatures,3,4,6 in accordance with the Mermin-Wagne
theorem.8 There are basically two reasons why Schwing
boson mean-field~SBMF! theory works well even in low
dimensions:~i! Since the bosonized spin degrees of freed
are integrated over in the functional integral, spin fluctu
tions are taken into account and~ii ! the approach does no
constitute an expansion around an ordered state, un
Holstein-Primakov bosonization,9 and thus works for both
ordered and disordered ground states.

Thefirst aimof the present paper is to test the applicab
ity of SBMF theory to another class of quantum-magne
models, namely the Heisenberg ferromagnet with single-
~on-site! anisotropies. We will restrict ourselves to the tw
dimensional case, which is the most interesting one, but
same methods can be used in any number of dimensions
anisotropic Heisenberg model in two dimensions is of p
ticular interest, since it describes ultrathin ferromagne
films, including the important cases of the 3d transition met-
als iron, cobalt, and nickel. Thin ferromagnetic films are
great technological relevance, e.g., for magnetic disk driv
They also show many interesting physical effects, of wh
we only mention the observed reorientation transitions a
function of both film thickness and temperature.10–20 Much
theoretical work has already been done on anisotropic fil
which we briefly review below. However, it would be des
able to have an alternative approach for comparison.
second aimof this paper is to provide such an approa
using Schwinger bosonization. We apply this method to
calculation of the magnetization with and without an exter
magnetic field. In addition we determine effective anisot
pies, which are crucial for comparisons of measureme
PRB 620163-1829/2000/62~9!/5634~13!/$15.00
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performed at finite temperaturesT to ab initio calculations of
anisotropies atT50. The effective anisotropies describe th
dependence of the free energy on the polar angles (u,f) of
the magnetization.

From the theoretical point of view, two-dimensional a
isotropic ferromagnets are of particular interest, since
anisotropies reduce the symmetry of the system. For
ample, an easy axis leads to a discrete, Ising-type symm
while a easy plane leads to anXY-type symmetry. According
to the Mermin-Wagner theorem,8 a spontaneous magnetiza
tion at finite temperatures is possible in the first case but
in the second.21 We will show that SBMF theory yields
qualitatively correct results for both of these cases.

We now summarize previous work on thin magne
films. So far, most approaches rely on simple mean-fi
approximations, which are of limited validity for low
dimensional systems. In particular, they do not satisfy
Mermin-Wagner theorem. A finite magnetization can be
duced by magnetic anisotropies,21 which, however, cannot be
described by a perturbative expansion around the symm
state. Thus improved approaches are needed, which sh
also allow us to determine the magnetic properties in
whole range of temperatures and for systems with n
equivalent lattice sites. For example, magnetic reorienta
transitions have been studied within spin-wave theories
particular, Holstein-Primakov bosonization9 has been
applied,22 which is, however, limited to low temperatures.

The magnetic properties of 2D anisotropic ferromagn
have also been studied using many-body Green’s functio
which allow calculations in the whole temperature range
interest.23–27This method has also been applied to thin film
of several layers.28–33 Within this theory the higher-orde
Green’s functions are approximated by the so-called Tya
cov ~or random-phase aproximation! decoupling,23 i.e., one
of the spin operator components is replaced by its expe
tion value, whereas the expectation values of the other
components vanishes. Note that within this approach the
commutation relations are preserved. By comparison wit
recent quantum Monte Carlo calculation for anisotropic 2D
magnet withS51/2 on a square lattice in an external ma
netic field,34,7 it has been shown that this approach yields
5634 ©2000 The American Physical Society
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PRB 62 5635SCHWINGER BOSON THEORY OF ANISOTROPIC . . .
reasonable description for the magnetization.35 In addition,
the long-range magnetic dipole interaction can be treate
well within the same decoupling scheme. On the other ha
single-ionanisotropies have to be treated differently, sin
the inclusion of such terms leads to an ambigo
description.36 Anderson and Callen,37 as well as Lines38 have
proposed interpolation schemes, which are valid only
small single-ion interactions as compared to the excha
coupling. For most cases of interest this condition is fulfille
In order to calculate the effective anisotropiesKi(T) and the
temperature-dependent magnetic reorientation, nonvanis
expectation values of at least two spin operator compon
have to be determined simultaneously.27 Whereas the inclu-
sion of the magnetic dipole coupling is straightforward, t
inclusion of single-ion anisotropies turns out to be tedious
particular for spin quantum numbersS.1, and for higher-
order anisotropies. We emphasize that within these Gree
function approaches the magnetic anisotropies canno
handled as small perturbations. Also, this approach suf
from the ambigous decoupling schemes for these single
terms. Thus a theory not suffering from these proble
would be desirable.

Finally, we summarize other approaches. First, mean-fi
theories have been used,39–44which are particularly simple to
apply for complicated systems, e.g., with nonequival
atomic layers in a thin film or several nonequivalent latt
sites. Classical as well as quantum-mechanical Heisen
spins have been studied allowing for an arbitrary direction
the magnetization. The inclusion of single-ion anisotropie
quite simple. A perturbative treatment of the anisotrop
yields analytical expressions for the effectiv
anisotropies.45,42,40 However, these approaches complete
neglect both thermal and quantum fluctuations, which
crucial for low-dimensional systems. Kawazoeet al.46 have
treated the magnetic reorientation of thin ferromagnetic fil
within a continuum approach for the system and mean-fie
like expressions for the magnetization density. A continu
approach to the magnetic reorientation has also been
within a renormalization-group treatment.47

On the other hand, following earlier work48,16 Millev
et al.49 treat the magnetization of a thin film as a macr
scopic, classical magnetic moment and discuss its gro
state as a function of anisotropy and external magnetic fi
The anisotropy constants appearing in their work are to
understood as effective anisotropies obtained from exp
ment or from some more advanced calculation. This
proach has to assume that the effects of thermal and qua
fluctuations, the lattice structure, and the spin quantum n
ber S can be described by a suitable renormalization of
anisotropy constants. From a theoretical point of view,
problem has just been transferred to the calculation of th
effective anisotropies. This has to be done using more
vanced methods such as Schwinger bosonization~discussed
below! or many-body Green’s functions.

Finally, Monte Carlo simulations have been performed
the effective anisotropies and magnetic reorientation of
romagnetic monolayers. So far, only classical spins h
been studied for the anisotropic case,50 while quantum
Monte Carlo results exist for the isotropic case only.34,7

More complicated systems such as thin films with seve
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layers or including the dipole interaction have not been st
ied yet.

Following the goals set above, we derive in Sec. II SBM
theories for films with second- and fourth-order single-i
anisotropy. We employ two different bosonization schem
known as SU(N) and O(N) bosonization. In Sec. III we
show representative results and compare them with res
from simple mean-field theories and from many-bo
Green’s-function methods. We focus on two areas of curr
interest: In Sec. III A we discuss the change of magnetizat
as a function of external field and of temperature, in parti
lar the reorientation transitions, and present a number
phase diagrams. In Sec. III B we calculate temperatu
dependent effective anisotropies. A summary and con
sions are given in Sec. IV.

II. SCHWINGER BOSON THEORY

In this section we summarize the SBMF theory for
anisotropic 2D ferromagnet, using two different, but relate
bosonizations. The first one employs the SU(2) symmetry
the spins1 in the absence of anisotropies and leads to
SU(N)-symmetric mean-field theory, whereN→`. The sec-
ond makes use of the mapping between the Lie gro
SU(2) and O(3) and results in an O(N) mean-field theory.6

We first sketch the SU(N) theory, which is described in
greater detail in the Appendix. The derivation for the O(N)
theory is similar and we only present the results.

The main idea of SU(2) Schwinger boson theory is
map the spin operators onto boson operatorsb↑ and b↓ ac-
cording to1,3

S15b↑
†b↓ , ~1!

S25b↓
†b↑ , ~2!

Sz5~b↑
†b↑2b↓

†b↓!/2. ~3!

This mapping isexact; in particular the spin commutation
relations are correctly reproduced. However, the boson
tion introduces unphysical degrees of freedom, which h
to be removed by the constraint

b↑
†b↑1b↓

†b↓52S, ~4!

where S is the spin quantum number. Whereas the abo
scheme employs the SU(2) spin symmetry group, one
also take advantage of the mapping between SU(2) and
group O(3)—both have the same algebra up to the choice
representation—to formulate an alternative O(3) Schwin
boson theory.6 For both groups well-defined expansion
around a mean-field theory are obtained by generalizatio
N boson fields and expanding in small 1/N.4 In particular, in
the limit N→` mean-field theory becomes exact.

Read and Sachdev6 have derived SU(N) and O(N) SBMF
expressions for the magnetization of isotropic 2D ferrom
nets, where their main interest was in the quantum Hall f
romagnet at filling factorn51.51,52 Recently, the leading-
order fluctuation corrections, i.e., the first order of the 1N
expansion, have been calculated7 and compared to quantum
Monte Carlo simulations34,7 and experimental results.53 The
SU(N) and O(N) theories are found to be qualitatively co
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5636 PRB 62CARSTEN TIMM AND P. J. JENSEN
rect. In the quantum Hall system the magnetic degrees
freedom are carried by conduction electrons withS51/2.
Thus single-ion anisotropies do not play any role.54

We describe the anisotropic 2D ferromagnet by a Heis
berg model on a 2D square lattice, augmented by seco
and fourth-order single-ion anisotropies,

H52J(̂
i j &

Si•Sj2B•(
i

Si2K2(
i

~Si
z!22K4

'(
i

~Si
z!4

2K4
i (

i
@~Si

x!41~Si
y!4#, ~5!

whereS•S5S(S11) and the sum over̂i j & is over nearest
neighbors, counting each bond once.J is the exchange con
stant andB is the external magnetic field. Positive anisotro
parametersK2 ,K4

'.0 favor a perpendicular magnetizatio
~easy-axis magnet!, while the opposite sign favors an in
plane magnetization~easy-plane magnet!. Two important
special cases areK4

i 50, corresponding to uniaxial symme
try, andK250, K4

i 5K4
' , corresponding to cubic symmetry

Equation~5! is viewed as amicroscopicHamiltonian for a
ferromagnetic monolayer, where the anisotropy parame
are obtained, for example, from first-principles calculatio
The same Hamiltonian can also be used approximately a
effectivemodel for films with several layers, in which cas
the anisotropy constants are to be understood as aver
parameters containing both bulk and surface contributio
Since anisotropy energies~and also the exchange couplingJ)
can be quite different for the surface layers and for the bu
the effective parameters can be tuned by changing the
thickness.

Equation~5! does not include the magnetic dipolar inte
action

Hdip5
v

2 (
i , j ( iÞ j )

FSi•Sj

r i j
3

2
3~Si•r i j !~Sj•r i j !

r i j
5 G , ~6!

wherer i j 5r i2r j is the separation vector of sitesi and j, v
5m0g2mB

2/4p, m0 is the permeability of free space,g is the
Landé factor, andmB is the Bohr magneton. The dipola
interaction is difficult to treat in the present framewor
mainly because of its long-range nature. One may incor
rate it in a simple mean-field way by replacing one of t
two spin operators in Eq.~6! by its thermal average, which
is, in our notation, the magnetizationM . In a continuum
approximation this leads to

Hdip>2
1

2

2pv

3a3
~Mx ,M y ,22Mz!•(

i
Si , ~7!

where a is the lattice constant. Equation~7! describes the
interaction with an effectivedemagnetizingfield. This term
explicitly breaks spin symmetry in that it prefers the magn
tization to lie in thexy plane, as is well known. In this
approximation, the rotational symmetrywithin the plane is
retained. A better description would also break this resid
symmetry. This is the reason why a magnetic monolayer
a finite in-plane magnetization even if only the exchan
coupling and the magnetic dipole interaction are conside
as has been shown using a Green’s-function approach32,27
of
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Since we are mainly interested in the effects of the single-
anisotropy terms in the Hamiltonian and in spontaneo
symmetry breaking, we neglectHdip for most of this paper.

We now give an overview over the derivation: After r
placing the spin operators in the Hamiltonian~5! by bosons,
the bosonic system is generalized from two toN boson spe-
cies. We mention that we take care to preserve the quan
properties of the spin operators in the anisotropy terms as
perform the limit N→`. Then the partition functionZ is
written as a functional integral over complex auxillia
fields. The constraint on boson number is incorporated us
a Lagrange-multiplier field and the exchange interaction
well as the anisotropy terms are decoupled by means
Hubbard-Stratonovich transformation. Within the mean-fie
approximation the auxilliary fields are then replaced by co
stants, which have to be obtained from saddle-point eq
tions.

The resulting mean-field free energyF0 depends on the
four auxilliary parametersP̄ and L̄. One has to find the
saddle points ofF0 with respect to these parameters a
check their stability, as discussed in the Appendix.L̄ can be
interpreted as a chemical potential that globally enforces
constraint on boson number, whereas the vectorP̄ is related
to the magnetization, see below. Introducing rescaled ani
ropy parameters55

K̃25K2

S21/2

S
, ~8!

K̃4
',i5K4

',i~S21/2!~S21!~S23/2!

S3
, ~9!

and the inverse temperatureb51/kBT, the free energy read

bF052SL̄1
bK̃2

2
P̄z

21
3bK̃4

'

2
P̄z

41
3bK̃4

i

2
~ P̄x

41 P̄y
4!

1
1

8pbJS
@diln~12e2L̄1bB8/2!

1diln~12e2L̄2bB8/2!# ~10!

with the dilogarithm function diln and the effective magne
field

Bx85Bx14K̃4
i P̄x

3 , ~11!

By85By14K̃4
i P̄y

3 , ~12!

Bz85Bz12K̃2P̄z14K̃4
'P̄z

3 . ~13!

We emphasize that the whole mathematical apparatus
SU(N) SBMF theory is contained in Eqs.~10!–~14!. Note
that these expressions reduce to the isotropic case6,7 for K2

5K4
'5K4

i 50 and that the second-order~fourth-order!
anisotropies only enter the results ifS>1 (S>2).

The mean-field magnetization is given by
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M0[22
dF0

dB
52

1

8pbJS

B8

B8

3@ ln~12e2L̄1bB8/2!2 ln~12e2L̄2bB8/2!#, ~14!

whereB85uB8u. As shown in the Appendix,P̄i as obtained
from the saddle-point equations equals the magnetiza
componentM0,i , if the free energyF0 depends onP̄i . On
the other hand, ifF0 does not depend onP̄i , the latter quan-
tity can assume any value, while the magnetizationM0,i still
has a well-defined value given by Eq.~14!.

Within the simplified treatment of the dipolar interactio
discussed above, a demagnetizing field proportional
(M0,x ,M0,y ,22M0,z) would be added toB8. By using a
Green’s-function method it can be shown that this yields
acceptable result for the magnetization if the magnetic dip
coupling is small as compared to the exchange coupling56

Finally, we give the results of O(N) SBMF theory with-
out derivation. The free energy per boson reads

bF0
O(N)52

1

3
SL̄13bK̃2P̄z

2181bK̃4
'P̄z

4181bK̃4
i ~ P̄x

41 P̄y
4!

1
1

12pbJS
@diln~12e2L̄1bB8!1diln~12e2L̄!

1diln~12e2L̄2bB8!# ~15!

with the effective field

Bx85Bx1108K̃4
i P̄x

3 , ~16!

By85By1108K̃4
i P̄y

3 , ~17!

Bz85Bz16K̃2P̄z1108K̃4
i P̄z

3 , ~18!

and the magnetization is

M0
O(N)52

1

4pbJS

B8

B8
@ ln~12e2L̄1bB8!

2 ln~12e2L̄2bB8!#. ~19!

The general form of these expressions is similar to
SU(N) case and we thus expect qualitatively similar resu

III. RESULTS AND DISCUSSION

In this section we discuss a number of results obtai
from SBMF theory and compare them with other a
proaches. Our aim is mainly to show that SBMF theo
yields qualitatively correct results in the presence of sing
ion anisotropies. We further show that these results are c
parable to Green’s-function methods, although they
much easier to obtain. We first discuss the magnetizationM0
and then effective anisotropies.

A. Magnetization

SBMF theory correctly predicts the magnetization of
isotropic 2D Heisenberg ferromagnet to vanish at finite te
peratures in the absence of an external magnetic field.6 How-
n

to

n
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e
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-

ever, an easy-axis uniaxial anisotropyK2.0 explicitly
breaks the SU(2) spin symmetry down to a residual Is
symmetry. A discrete symmetry can be spontaneously b
ken and one expects a finite-temperature phase transition
tween an ordered and a disordered phase. Both SU(N) and
O(N) theory indeed yield a finiteTc . Figure 1 shows the
magnetization of a spin-1 system with a second-or
uniaxial anisotropyK2 /J50.01 in the absence of an extern
magnetic field, as a function of the reduced temperat
T/Tc . As usual, simple mean-field theory overestimates
magnetization. In particular, at low temperatures the mag
tization approachesM (T50) exponentially due to the ne
glect of spin waves. On the other hand, SU(N) and O(N)
Schwinger boson theories and many-body Green’s func
methods27 correctly predict an almost linear behavior. How
ever, the absolute temperature scales are rather differen
shown in the inset of Fig. 1. Numerical results,e.g., from
Quantum Monte Carlo simulations, would be very useful
check the absolute value ofTc .

One can obtain analytical expressions forTc by expand-
ing the saddle-point equations for a small magnetizat
M0,z . The results are57

Tc
SU(N)5

4pJS2

ln@114pJS2/K2~S21/2!#
~20!

for SU(N) theory and

Tc
O(N)5

4pJS2

3 ln@11pJS2/K2~S21/2!#
~21!

for O(N) theory. Both expressions have the same functio
form. In particular,Tc vanishes in the limitK2→01, as it
should, andTc50 for S51/2. For comparison, using a con

FIG. 1. Magnetization as predicted by various theories a
function of reduced temperatureT/Tc for a film in a vanishing
external magnetic field,B50, with an easy axis defined byK2 /J
50.01, spinS51, and no higher-order anisotropies. The magne
dipole coupling is neglected. The inset shows the magnetizatio
a function of the absolute temperatureT/J in units of exchangeJ.
The line denoted by ‘‘RPA’’~random-phase approximation! refers
to a calculation within a many-body Green’s-function approa
with Anderson-Callen decoupling of the single-ion anisotropy.27
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5638 PRB 62CARSTEN TIMM AND P. J. JENSEN
tinuum approximation similar to the one employed here,
many-body Green’s-function method yields

Tc
RPA5

4pJS~S11!

3 ln@113p2JS/4K2~S21/2!#
~22!

within the Anderson-Callen decoupling of the second-or
anisotropy.37 Note that all three expressions show the log
rithmic dependence ofTc on K2, while the dependence o
the spin quantum number differs.

Since the results of SU(N) and O(N) theory qualitatively
agree with each other, we concentrate on SU(N) in the fol-
lowing. In the case of a hard axis,K2,0, andK4

i 50, the
residual symmetry is ofXY type. Because of the continuou
degeneracy there should be no spontaneous magnetiza8

This is indeed found within SBMF theory. If we include
dipolar interaction by means of Eq.~7!, a finite in-plane
magnetization emerges, since in this approximation the
pole coupling acts similarly to an external field.

In the presence of an external magnetic fieldB one always
expects a finite magnetization. For an isotropic film th
magnetization is parallel to the applied field, whereas in
presence of anisotropy the magnetization may be orien
along a different direction. In addition, a magnetic reorien
tion transition can occur, which may be controlled by va
ing the temperatureT, the external magnetic fieldB, or the
film thickness. In Fig. 2~a! the magnetization componen
parallel and perpendicular to the magnetic field are show
functions of its strength. The field is applied perpendicula
to the easy axis, which is realized by a second-order unia
anisotropyK2 /J50.01. Within our theory we find a linea
increase of the in-plane magnetization along the magne
field direction below a critical reorientation fieldBreo. Since
the modulus of the magnetization is almost constant, the
pendicular magnetization component decreases corresp
ingly. At B5Breo the latter component vanishes contin
ously, corresponding to a second-order phase transition.
B>Breo the magnetization is parallel to the field and i
creases only weakly withB. Figure 2~b! shows a similar
situation, with the easy axis realized by thefourth-order
uniaxial anisotropyK4

'.0, while K25K4
i 50. Again a re-

orientation transition is obtained as a function of the in-pla
magnetic field. However, since here the magnetizat
changes discontinuously, the transition is of first order.
expect that the dependence of the order of the transition
the order of the uniaxial anisotropy is a universal featu
since the same behavior has been observed within sim
theories.58,49

To show the interplay of the various interaction terms,
now discuss several phase diagrams. For comparison, F
shows the well-known phase diagram in theK2-K 4

' plane
for K 4

i 50 andB50 derived under the assumption that t
magnetization behaves like a macroscopic, classical m
netic moment.48,16,49 The anisotropies should be viewed
effective quantities, which depend on temperature, e
Roughly, a perpendicular magnetization is found forK2.0
andK 4

'.0,59 an in-plane one forK2,0 andK 4
',0, and a

canted one forK2.0 andK 4
',0. These magnetic phase

are separated by continuous~second-order! or discontinuous
~first-order! phase transition boundaries, which merge in
e
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a

FIG. 2. Reorientation transitions as a function of external m
netic field for a film with exchangeJ5100 and spinS52 at tem-
peratureT/J51. ~a! Film with second-order easy-axis anisotrop
K2 /J50.01 andK4

'5K4
i 50. The field is applied in thex direction,

i.e., perpendicularly to the easy axis. The solid and dashed l
represent thex andz components of the magnetization. In this ca
a second-order reorientation transition takes place.~b! The same
quantities for a film with forth-order easy-axis anisotropyK4

'/J
50.02 andK25K4

i 50. Here, a first-order reorientation transitio
takes place, denoted by the arrows. The dotted lines refer to m
stable states of higher energy.

FIG. 3. Phase diagram for theeffectiveanisotropiesK2(T) and
K 4

'(T) for a vanishing external magnetic field undK 4
i 50.48,16,49

Three different phases are found, defined by different direction
the magnetization with respect to the film plane~perpendicular,
in-plane, canted!, indicated by arrows. These phases are separ
either by a first-order~solid line! or by a second-order phase tra
sition ~dashed lines!, which merge at the tricritical pointK2c

5K 4c
' 50, corresponding to the isotropic, SU(2)-symmetric case.

A coexistence region between the perpendicular and in-pl
phases exists near the first-order phase transition boundary,
cated by the dotted lines.
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tricritical point. A coexistence region between the perpe
dicular and the in-plane magnetization is located close to
first-order phase transition line. As usual, the first-ord
phase boundary has been drawn where the free energi
both phases are equal.

The simple phase diagram of Fig. 3 does not apply to
systems, since there should be no net in-plane magnetiza
if solely uniaxial anisotropies are taken into account. T
reason is that in this case a ground state with finite in-pl
magnetization would be continuously degenerate.8 The ori-
gin of this problem of course lies in the neglect of fluctu
tions.

This picture is changed if fluctuations are included
means of SU(N) SBMF theory: Figure 4 shows the pha
diagram in theK2-K4

' plane for a thin film at a finite tem
peratureT/J53 for spinS52.60 The anisotropy parameter
are now the microscopic ones contained in the Hamilton
~5!. Note that the scale of the anisotropies in Fig. 4 is sm
since the temperatureT/J53 is significantly lower than the
typical temperature scale 4pJS2 of Eq. ~20!. This means that
very small anisotropies are sufficient to induce a finite m
netization, sinceK2 enters logarithmically inTc , Eq. ~20!.

In Fig. 4 only two phases are present: A phase without
magnetization located approximately in the regionK2,0
and K4

',0 and a phase with perpendicular magnetizat
otherwise. These two phases are separated by either a
order or a second-order transition. The tricritical point,
which the two merge, has shifted to finite, temperatu
dependend values of the anisotropiesK2c.0 and K4c

' .0.
For smaller anisotropies thermal fluctuations overcome
tendency to order. A coexistence region is found in the
cinity of the first-order transition. The first-order line is n
longer straight and approaches the tricritical point with
vertical tangent. For negativeK4

' the second-order transitio
line is given byK25const, similar to Fig. 3. Thus the loca
tion of this transition depends only onK2. At this transition
the zero-magnetization (M50) saddle point becomes un

FIG. 4. Phase diagram of a thin film in theK2-K4
' plane in a

vanishing external magnetic field as calculated from SBMF theo
The parameters are spinS52, exchangeJ5100, temperatureT/J
53, and in-plane anisotropyK4

i 50. The phase to the lower left o
the phase diagram now exhibits no net magnetization,M50. The
open circle denotes the isotropic, SU(2)-symmetric caseK25K4

'

50. The other symbols are the same as in Fig. 3.
-
e
r
of

D
ion
e
e

-

n
l,

-

et

n
rst-
t
-

e
i-

stable. The free energy for smallM , and thus the stability of
this saddle point, is solely determined by the lowest-or
anisotropyK2.

In-plane and canted magnetic phases do not appear in
4, since this system is either in the Ising or in theXY uni-
versality class. However, such phases do exist if the in-pl
symmetry is explicitely broken, e.g., by a single-ion in-pla
anisotropyK4

i Þ0, by an external magnetic field, or by th
dipole interaction. Here we consider a small fourth-order
plane anisotropyK4

i /J'4.331024.0. The other param-
eters are unchanged. The resulting phase diagram is sh
in Fig. 5, exhibiting now three phases similar to Fig. 3. Ho
ever, the transition between the canted and perpendic
phases is now of first order~the first-order line extends to
arbitrarily large negativeK4

'). The first-order character is
typically weak—the jump in the magnetization is rath
small. The coexistence regions are also shown in Fig. 5. N
that for even smallerK4

i thermal fluctuations would destro
the in-plane magnetization, resulting in a phase diagr
similar to Fig. 4.

Considering now a thin film with a finite numbern of
atomic layers, the anisotropies have to be viewed as aver
over all layers and can be tuned by varyingn. A variation of
the film thickness thus refers to a certain trajectory~‘‘anisot-
ropy flow’’ 49! in the corresponding phase diagram, e.g., F
5. In this way we can in principle describe reorientation tra
sitions as a function of film thickness.

Finally, we consider the effect of a finite magnetic fiel
We keep the absolute value of the field constant,B/J
50.01, and change only its direction. For simplicity we r
strict ourselves to the caseK4

i 50, and consider the caseS
52 andT/J51 as an example. The magnetic field is rotat
in the xz plane fromu50 to u5p, whereu is the angle
between the field and the film normal. Figure 6~a! shows the
phase diagram for the caseK4

'50. The magnetization tries
to be aligned parallel to the magnetic field, but is hindered

.

FIG. 5. Phase diagram for a thin film as in Fig. 4 but with
finite in-plane magnetic anisotropyK4

i /J'4.331024, big enough
to allow a finite in-plane magnetization at this temperature. T
square denotes the point of full cubic symmetry (K250, K4

'

5K4
i ). The dotted lines are borders of two coexistence regions

the left one both perpendicular and in-plane magnetization
metastable, while in the right one perpendicular and canted st
are metastable.
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the anisotropies. For a sufficiently smallK2 the magnetiza-
tion follows the field continuously, whereas forK2 larger
than a critical valueK2c it exhibits a jump. This behavior is
illustrated by the inset in Fig. 6~a!, which shows the perpen
dicular magnetization component as a function ofu for K2

50, K25K2c , andK252K2c . A negative value ofK4
' does

not change this behavior, except that the coexistence reg
becomes more narrow. ForK4

'.0, however, the first-orde
line extends to smallerK2 and splits into a two-prong fork
as shown in Fig. 6~b!. Each prong ends in a critical poin
The metastability regions are also indicated in Fig. 6~b!. The
forklike feature grows for increasingK4

' and the critical
points even enter the negativeK2 region for sufficiently large
K4

' . As a side remark, in the language of catastrophy the
the phase diagram in the (K2 ,K4

' ,u) space shown in Fig. 6
can be described by abutterflycatastrophy. The special cu
K4

'50, Fig. 6~a!, shows acusp.61

B. Effective anisotropies

The effective magnetic anisotropies are most gener
defined through the dependence of the free energy on
magnetization direction. The anisotropic part of the free
ergyF(T,u,f) ~u andf being the polar and azimutal angle
of the magnetization! depends on the symmetry of the lattic
and is usually written with the help of spherical harmon
Y l

m ,62,40 or as a series in powers of the direction cosine42

For example, we give the expression for tetragonal sym
try, including also the Zeeman term,

FIG. 6. Phase diagram for a thin film in theK2-u plane as
calculated from SBMF theory. An easy-axis magnet is assum
with K2.0. A magnetic field of strengthB/J50.01 is applied in
the xz plane, forming an angleu with the film normal. We assume
J5100, S52, T5J, and K4

i 50. Furthermore, in~a! K4
'50,

whereas in~b! K4
'/J'5.331023. The thick solid lines denote first

order transitions ending in critical points. The dotted lines are
boundaries of coexistence regions. The inset shows the magne
tion as a function ofu for the case~a! with K250, K25K2c , and
K252K2c , K2c .
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F52B•M2K2 cos2 u2K3 cos3 u2K 4
' cos4 u

2K 4
i sin4 u~3/41 cos 4f!2 . . . . ~23!

The effectiveanisotropiesK2(T), etc. depend strongly on
temperature. They have to be distinguished from themicro-
scopic anisotropiesK2, etc,. appearing in the Hamiltonia
~5!. Experimentally, the effective anisotropies are det
mined from, e.g., ferromagnetic resonance~FMR! experi-
ments. To compare the microscopic anisotropies calcula
at T50 with measurements of the effective anisotropies p
formed at finite temperatures, the temperature dependenc
the latter has to be known. This task will be pursued in
present section by use of the Schwinger boson techniqu

The main source of the temperature dependence of
effective anisotropies is the decreasing magnetiza
M (T).42 Other sources, such as the population change
spin-orbit splitted energy levels near the Fermi energy,63 will
not be considered here, since the thermal variation due
these effects occurs mainly at higher temperatures. Note
the effective anisotropies depend on microscopic anisotr
terms of various orders,43 and can even be present at fini
temperatures if corresponding microscopic ones are ab
from the Hamiltonian.42

For the determination of the effective anisotropies we p
ceed similarly as in Ref. 42. In order to turn the magneti
tion into a direction (u,f) different from the equilibrium
one, we apply an auxiliary magnetic fieldB. For the magne-
tization we use the SBMF resultM0, Eq. ~14!. There are
infinitely many choices of the magnetic fieldB that result in
the same magnetization direction. This freedom of cho
introduces some arbitrariness, since the resulting effec
anisotropies depend on the choice ofB. We here choose the
field B5(B,0,0) along thex axis and vary only its strength.42

We insert the SBMF result for the free energyF0, Eq. ~10!,
into Eq. ~23!. To obtain the effective anisotropies we calc
late the anglesu, f and the free energy parametrically for
sufficient number of values of the magnetic-field strengthB
and fit Eq.~23! to the resulting data.

We now apply this method to a system with uniaxial ea
axis anisotropy. In this case the free energy does not dep
on the anglef in the absence of a magnetic field and hen
the effective anisotropies involvingf vanish. Then the free
energy has the form

F01B•M52 (
n52

`

Kn cosn u. ~24!

We calculate the free energyF0 for equally spaced values o
the direction cosine cosu by varying the field strengthB. If a
first-order reorientation transition takes place at some fi
valueBreo we use only fieldsB<Breo. We finally obtain the
effective anisotropies by a least-square fit. Figure 7 sho
the effective anisotropies for a thin film withS52, J
5100, and uniaxial anisotropiesK2 /J50.02, K4

'/J50.01
~filled symbols! andK2 /J50.02, K4

'/J520.01 ~open sym-
bols!. We here consider relatively large anisotropies for
lustrative purposes so that higher-order anisotropies do
vanish in the numerical errors. The odd effective anisotrop
K3, etc., vanish because of symmetry. A small sixth-ord
effective anisotropyK6(T) appears at finite temperatures,

d,
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za-



c
t

c

ul

s-
-
7
n

ve
u
a

va
n

e

ul
am

so
in
o

e
a
e
e

ous
n-

ious
nta-
on
tum
tion
e
the

ro-
y—
the
the
on-

on
ion
eat-
n
eld
e-

ex-
ard

a
ns
ally

ns
tic
it
x-
tro-
yer
ion
nal
ge
al

he
a-
t
d in
er.
g-
ion
ro-
ese

l
the
ors-

ory
To
il-

site

e

e

es

PRB 62 5641SCHWINGER BOSON THEORY OF ANISOTROPIC . . .
well as anisotropies of even higher order, which are mu
smaller, although no corresponding terms are present in
Hamiltonian. The exact values ofK2,4(0) for T→0 are
K2(0)5K2S(S21/2)5K̃2S2 and K4(0)5K4

'S(S21/2)(S

21)(S23/2)5K̃4
'S4,62,40,42 cf. Eqs. ~8! and ~9!. Our ap-

proach reproduces these limiting values. Note that the spe
generalization of the anisotropy terms from SU(2) to SU(N)
discussed in the Appendix is required to obtain these res
For T→Tc the effective anisotropies vanish asKn(T)
}Mn(T).62,45ThereforeK4(T) decreases faster with increa
ing temperature thanK2(T) and exhibits a more smooth be
havior nearTc . The effective anisotropies shown in Fig.
qualitatively agree with many-body Green’s-functio
results.35

Finally, we emphasize that the calculation of effecti
anisotropies with this method suffers from ambiguities d
to the freedom of choice of the magnetic field and the p
ticular fitting procedure employed. Furthermore, this deri
tion employs a static calculation of the magnetization a
free energy in order to describe a dynamical~FMR! experi-
ment. These problems are common to all calculations of
fective anisotropies we are aware of. A full quantum
mechanical, dynamical theory of FMR would be very usef
One possible approach would be to incorporate spin dyn
ics into the Schwinger boson theory.

IV. CONCLUSIONS AND OUTLOOK

In summary, we have presented the Schwinger bo
mean-field theory for anisotropic 2D ferromagnets, us
two different bosonizations. In this study we have focused
the theoretical treatment of single-ion anisotropies of
Heisenberg-type Hamiltonian. The anisotropy energies br
the full SU(2) spin symmetry, leading to a lower residu
symmetry, e.g., of Ising orXY type. We have shown that th
results for the magnetization satisfy the Mermin-Wagn

FIG. 7. Effective anisotropiesK2 , K4, andK6 as functions of
temperature calculated from SBMF theory. A thin film is assum
with S52, J5100, K2 /J50.01, K4

i 50, andK4
'/J51023 ~filled

symbols! and K4
'/J521023 ~open symbols!. We use rather large

microscopic anisotropies to demonstrate more clearly the app
ance of a small sixth-order effective anisotropyK6, which is shown
scaled by a factor of 50. The big symbols denote the exact valu
T50.
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theorem8 also in these cases, in that a finite spontane
magnetization is only found if the ground state is not co
tinuously degenerate. The theory can describe the var
magnetic order-disorder transitions as well as the reorie
tion transitions found in experiment. The bosonizati
method can serve as an alternative technique for quan
spin systems, besides the many-body Green’s-func
approach.27 Our results for magnetization and effectiv
anisotropies qualitatively agree with the ones obtained by
latter method. Microscopic calculations of effective anisot
pies as functions of temperature are important, since the
and not the microscopic anisotropies appearing in
Hamiltonian—are obtained from experiments. However,
absolute value of the critical temperature at which the sp
taneous magnetization becomes finite strongly depends
the details of the theory. Compared to the Green’s-funct
method, Schwinger boson theory has the advantage of tr
ing any spin valueSand any orientation of the magnetizatio
relative to the anisotropy axes and the external magnetic fi
on the same footing. It is also numerically much less d
manding. Other types of anisotropies, for example of h
agonal surfaces, can be incorporated in a straightforw
manner. Finally, Schwinger boson mean-field theory is
well-controlled approximation in the sense that fluctuatio
about the equilibrium solution can be treated systematic
within a 1/N expansion.4

We conclude with enumerating possible generalizatio
of the theory that are of particular interest for a realis
description of magnetic thin films: The first is the explic
description of thin films of several layers, where the e
change couplings, the magnetic moments, and the aniso
pies are microscopic quantities which depend on the la
index. This can be done by a straightforward generalizat
of the theory, where one only has to keep track of additio
layer indices. The second is the inclusion of the long-ran
magnetic dipole interaction. This interaction is an addition
source of anisotropy, which acts quite differently from t
single-ion anisotropies, resulting for instance in the form
tion of magnetic domains.64 We reiterate that both the effec
of several layers and the dipole interaction can be treate
the present theory as it is, albeit only in a mean-field mann
The third interesting generalization is the inclusion of ma
netic dynamics. This would allow to describe the precess
of a nonequilibrium magnetization and constitute a mic
scopic theory of ferromagnetic resonance. We leave th
questions as projects for the future.
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APPENDIX

In this Appendix we present the Schwinger boson the
for anisotropic ferromagnetic films in some more detail.
derive the mean-field equations we start from the Ham
tonian ~5!. We replace the spin operators at each lattice
by two Bose fieldsb↑ i andb↓ i according to Eqs.~1!–~3!. The
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fields b↑ i and b↓ i have to satisfy the constraint~4! at each
lattice site. With the matrix

S~ i ![S b↑ i
† b↑ i b↑ i

† b↓ i

b↓ i
† b↑ i b↓ i

† b↓ i
D , ~A1!

the Hamiltonian reads, up to an additive constant,

H52
J

2 (̂
i j &

Sb
a~ i !Sa

b~ j !2
B

2 (
i

sb
aSa

b~ i !

2
K2

4 (
i

@~sz!b
aSa

b~ i !#22
K4

'

8 (
i

@~sz!b
aSa

b~ i !#4

2
K4

i

8 (
i

~@~sx!b
aSa

b~ i !#41@~sy!b
aSa

b~ i !#4! ~A2!

with the Pauli matricess5(sx,sy,sz). Summation over re-
peated greek indices is implied.

This expression is now generalized toN Bose fieldsba .
ThenS becomes anN3N matrix of operatorsba

†bb and the
constraint is generalized to

ba
†ba5NS. ~A3!

The Pauli matrices are generalized toN3N block-diagonal
matrices with the original Pauli matrices repeated along
diagonal. We keep the notationsz, etc.

There is some freedom in the generalization of the Ham
tonian toN boson flavors—we mainly have to make sure th
the correctN52 case is recovered. If we naively generali
the second-order anisotropy term as2(K2/2N)
3@(ab(sz)b

aSa
b#2, we run into problems, which are mos

easily illustrated for the caseS51/2. ForN52 the operator
Sz has the eigenvalues61/2 so that (Sz)2 only has the ei-
genvalue 1/4. This is, of course, the reason why theK2 term
is irrelevant forS51/2. However, forS51/2 andN.2 (N
even! we find N/211 different eigenvalues of thez spin
component (sz)b

aSa
b andN/411 ~or N/411/2) different ei-

genvalues of theK2 term for N ~not! an integer multiple of
4. Thus in the limitN→` the second-order anisotropy ter
has infinitely many different eigenvalues even forS51/2,
which looks like a semiclassical approximation. Clearly, t
mean-field results would depend onK2 for S51/2, which is
incorrect. To remedy this problem we introduce
N-dependent anisotropyK2,N such that the energy differenc
between the two lowest energy states of the second-o
anisotropy term,

De5
NK2,N

2
@S22~S22/N!2#52K2,NS2

2K2,N

N
~A4!

is kept constant for allN. In particular,De50 for S51/2
and allN. This is achieved by setting

K2,N5
S21/2

S21/N
K2 . ~A5!

In the mean-field approximation,N→`, we get55

K̃2[K2,̀ 5K2~S21/2!/S. ~A6!
e

l-
t

er

Analogously, theN-dependent fourth-order anisotropies a
obtained,

K4,N
',i5

~S21/2!~S21!~S23/2!

~S21/N!~S22/N!~S23/N!
K4

',i ~A7!

and55

K̃4
',i[K4,̀

',i5K4
',i~S21/2!~S21!~S23/2!/S3. ~A8!

The fourth-order anisotropy contributions now correctly va
ish for S,2 even at the mean-field level.

In order to write down a functional integral over the Bo
fields, we have to normal order the bosonic operators.
exchange term is trivial, since the operators at different
tices sites commute. By commuting the operators in the
isotropy terms, using the constraint~A3!, and dropping a
constant we obtain

HSU(N)52
J

N (̂
i j &

Sb
a~ i !Sa

b~ j !2
B

2 (
i

sb
aSa

b~ i !

2
K2,N8

2N (
i

:@~sz!b
aSa

b~ i !#2:

2
K4,N

'

2N3 (
i

:@~sz!b
aSa

b~ i !#4:

2
K4,N

i

2N3 (
i

:~@~sx!b
aSa

b~ i !#41@~sy!b
aSa

b~ i !#4!:,

~A9!

where :: denote normal ordering. The second-order ani
ropy has obtained a contribution from commuting the bos
in the fourth-order terms, similar to other approaches,45,42

K2,N8 5K2,N1
6NS14

N2
K4,N

' 2
6NS14

N2
K4,N

i . ~A10!

If we want to do a consistent theory to order zero in 1/N we
can just drop the corrections. However, since the prefac
(6NS14)/N253S11 are not small forN52 it may be bet-
ter to keep them. Note also that they cancel for cubic sy
metry. In the following we omit the prime atK2 but keep
these points in mind.

Next, we go over to the continuum limit7 and write down
the functional integral for the partition function. The co
straint ~A3! is implemented using a Lagrange multiplie
l(r ,t) at each point in spacer and imaginary timet.4 l is
to be integrated from2 i` to 1 i` but we can deform the
path of integration between these limits. The path of integ
tion has to cross the real axis on the positive side to avo
branch cut. The partition function reads

Z5E D2baDl expS 2
1

\E0

\b

dtE d2rL@b;l# D ,

~A11!

where nowba(r ,t) is a complex field. The Lagrangian is
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L@b;l#5
\

a2
ba* ]tba1JS~] jba* !~] jba!

2
J

N
ba* ~] jbb* !bb~] jba!2

B

2a2
sb

abb* ba

2
K2,N

2Na2
@~sz!b

abb* ba#22
K4,N

'

2N3a2
@~sz!b

abb* ba#4

2
K4,N

i

2N3a2
~@~sx!b

abb* ba#41@~sy!b
abb* ba#4!

1lba* ba2NSl. ~A12!

Here,a is the lattice spacing,]t is the time derivative, and] j
is a spatial derivative along thej direction. Summation ove
repeated indices is implied.

In the next step, the terms containing more than twoba
fields are decoupled using Hubbard-Stratonovich transfor
tions, thereby introducing additional auxiliary fieldsQ, P,
and R, which have to be integrated over in the function
integral. In a short-hand notation the decoupling of the
change term may be written7

2
J

N
ba* ~] jbb* !bb~] jba!→NJQjQj1 iJQjba* ~] jba!

2 iJQj~] jba* !ba . ~A13!

The K4
' term contains eight Bose operators, which are

coupled into four according to

2
K4,N

'

2N3
@~sz!b

abb* ba#4→
NK4,N

'

2
Rz

22
K4,N

'

N
Rz@~sz!b

abb* ba#2.

~A14!

To make the transformation well defined,Rz is to be inte-
grated from2` to 1` if K4

'.0 but from2 i` to 1 i` if
K4

',0. The remaining four-boson term is grouped toget
with the K2 term and decoupled,

2
K2,N12K4,N

' Rz

2N
@~sz!b

abb* ba#2

→
N~K2,N12K4,N

' Rz!

2
Pz

2

2~K2,N12K4,N
' Rz!Pz~sz!b

abb* ba . ~A15!

Here, the direction of integration ofPz must be chosen suc
that (K2,N12K4,N

' Rz)Pz
2 is real and positive at the en

points. The decoupling of theK4
i terms is done similarly,

introducing additional fieldsRx,y andPx,y .
Up to this point no approximation, apart from the co

tinuum limit, has been made. Now we consider the me
field approximation for this system. This is exact forN→`
but serves as a lowest-order approximation forN52. The
mean-field theory is defined by all auxiliary fields being co
stant in time. Since the system is ferromagnetic, we ass
that they are constant in space as well and write them al̄,
a-

l
-

-

r

-

-
e

Q̄, P̄, and R̄. Then, the action is bilinear in the fieldsba .
Written in terms of Fourier transforms the mean-field pa
tion function reads

Z05ZcE )
a,k,ivn

d2ba~k,ivn!expS 2E d2k(
ivn

L0@b# D
~A16!

with the ba-independent part

Zc5 expS 2NNbJQ̄•Q̄a21Na2NSbl̄2NN
bK̃2

2
P̄z

2

2NN
bK̃4

'

2
R̄z

22NNbK̃4
'R̄zP̄z

22NN
bK̃4

i

2
@R̄x

21R̄y
2#

2NNbK̃4
i 3@R̄xP̄x

21R̄yP̄y
2# D , ~A17!

whereN is the number of sites. The Lagrangian is

L0@b#5ba2(
a

S 2 i\vn1JSk2a22
bJ

S
Q̄•Q̄a21a2l̄ D

3ba* ~k,ivn!ba~k,ivn!2ba2(
ab

S B

2
•sb

a

1K̃2P̄z~sz!b
a12K̃4

'R̄zP̄z~sz!b
a12K̃4

i @R̄xP̄x~sx!b
a

1R̄yP̄y~sy!b
a# Dbb* ba . ~A18!

After integrating out theba fields and performing the sum
over field indicesa, we obtain, up to an irrelevant consta
factor,

Z05Zc expS 2
N

2

Na2

4p2E d2k(
ivn

ln det M~k,ivn!D
~A19!

with the 232 matrix

M5~2 ib\vn1bJSk2a21L̄ !12
bB

2
•s2bK̃2P̄zs

z

22bK̃4
'R̄zP̄zs

z22bK̃4
i ~R̄xP̄xs

x1R̄yP̄ys
y!. ~A20!

Note thatZ0 only depends onl̄ andQ̄ through

L̄[a2bl̄2
bJ

S
Q̄•Q̄a2, ~A21!

just as in the isotropic case.7 Evaluation of the frequency
sum and momentum integral in Eq.~A19! yields the free
energy per boson



nt

nc
t
f

d-
th

om

ds

in

-

ent
i-

res-

so-

n-
rs.

on-
bal
d in
ive

5644 PRB 62CARSTEN TIMM AND P. J. JENSEN
bF0[2
1

NN
ln Z0

52SL̄1
bK̃2

2
P̄z

21
bK̃4

'

2
R̄z

21bK̃4
'R̄zP̄z

2

1
bK̃4

i

2
~R̄x

21R̄y
2!1bK̃4

i ~R̄xP̄x
21R̄yP̄y

2!

1
1

8pbJS
@diln~12e2L̄1bB8/2!

1diln~12e2L̄2bB8/2!# ~A22!

with B85uB8u and

Bx85Bx14K̃4
i R̄xP̄x , ~A23!

By85By14K̃4
i R̄yP̄y , ~A24!

Bz85Bz12K̃2P̄z14K̃4
'R̄zP̄z . ~A25!

The dilogarithm function is defined by the series represe
tion

diln x[2 (
n51

`
~12x!n

n2
. ~A26!

We are mainly interested in the magnetization

M0[22
dF0

dB
522

]F0

]B

52
1

8pbJS

B8

B8
@ ln~12e2L̄1bB8/2!

2 ln~12e2L̄2bB8/2!#. ~A27!

We have used that the derivatives ofF0 with respect toL̄

andP̄ vanish at the saddle point. A factor of 2 appears, si
in the physical system two bosons make up one spin. For
isotropic caseB8 equalsB and we recover the results o
Refs. 6 and 7.

Finally, we have to determine the auxiliary fields by fin
ing the lowest stable free-energy saddle point. We set
derivatives of lnZ0 with respect toL̄, P̄, andR̄ to zero and
solve the resulting equations simultaneously. Fr
] ln Z0 /]L̄50 we obtain the saddle-point equation

S52
1

8pbJS
@ ln~12e2L̄1bB8/2!1 ln~12e2L̄2bB8/2!#,

~A28!

which can be analytically solved forL.7 By taking the de-
rivatives with respect to the other auxiliary fields one fin
that for all saddle-point solutions

R̄i5 P̄i
2 , i 5x,y,z. ~A29!

This equation either follows directly from the saddle-po
equations or, for special values ofR̄i , the free energy is
a-

e
he

e

t

found to be independent of the correspondingP̄i so that we

can chooseP̄i to satisfy Eq.~A29!. We end up with a free

energy which depends on the four auxiliary parametersL̄

and P̄,

bF052SL̄1
bK̃2

2
P̄z

21
3bK̃4

'

2
P̄z

41
3bK̃4

i

2
~ P̄x

41 P̄y
4!

1
1

8pbJS
@diln~12e2L̄1bB8/2!

1diln~12e2L̄2bB8/2!# ~A30!

with

Bx85Bx14K̃4
i P̄x

3 , ~A31!

By85By14K̃4
i P̄y

3 , ~A32!

Bz85Bz12K̃2P̄z14K̃4
'P̄z

3 . ~A33!

In the uniaxial caseK4
i 50 there are only two relevant pa

rameters,L̄ and P̄z .
By solving the saddle-point equations] ln Z0 /]P̄i50 we

find that there are typically two solutions for each compon
P̄i . One isP̄i5M0,i , i.e., P̄i is the corresponding magnet
zation component, and the other is given byBi85Bi . For

example, in the uniaxial case,K4
i 50 (K̃4

i 50) the free en-

ergy does not depend onP̄x and P̄y whereasM0,x andM0,y
have well-defined values, which need not be zero in the p
ence of an external field. ThusP̄x,y cannot equalM0,x,y . The
saddle-point equations are solved by the second type of
lution, Bx,y8 5Bx,y , sinceK4

'50. On the other hand, thez

component isP̄z5M0,z .
It turns out that the relevant saddle point of the free e

ergyF0 is not a minimum with respect to all four paramete
For example, it is always a maximum with respect toL̄ ~or
l̄). Intuitively, one would expectL̄ to run off to infinity in
this case. However, sincel in Eq. ~A11! has to be integrated
from 2 i` to 1 i`, fluctuations inl are along the imaginary
direction,l(r ,t)5l̄1 iDl(r ,t), whereDl is real. In par-
ticular, this holds for global changes ofl̄. With respect to
Dl, the free energy indeed has a minimum atDl50. For
the Hubbard-Stratonovich fieldsP̄ and R̄ the direction of
fluctuations depends on the values of the anisotropy c
stants. The stability of each saddle point against glo
changes of the auxiliary parameters has to be checke
order to find the lowest stable one. Note that for posit
anisotropy constants the fluctuations ofP̄ and Q̄ are purely
real and the stability analysis becomes straightforward.
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