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Analytical solutions for exchange bias and coercivity in ferromagneticÕantiferromagnetic bilayers
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Analytical expressions have been derived for the exchange bias field, coercivity, and effective anisotropy
field in ferromagnetic/antiferromagnetic bilayers in the framework of a model assuming the formation of a
planar domain wall at the antiferromagnetic side of the interface with the reversal of the ferromagnetic
orientation. It is shown that there are five different sets of analytical expressions for the hysteresis loop
displacement and coercivity, which depend on the interfacial exchange coupling strength and ferromagnetic
anisotropy, and only one expression for the effective anisotropy field. These expressions are compared with the
previously reported theoretical results, and the validity of the latter is discussed. It is shown that in the
framework of the present model, the hysteresis loop, ac susceptibility, and ferromagnetic resonance measure-
ments of exchange anisotropy should give the same values for the exchange bias field. The difference between
the exchange bias field values, estimated experimentally by ac susceptibility and through hysteresis loop
measurements for Co/CoO bilayers, is explained as well.
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I. INTRODUCTION

The exchanged anisotropy,1 one of the manifestations o
which is a shift in the magnetization curve away from t
zero-field axis, refers to the exchange interactions at the
terface between ferromagnetic~FM! and antiferromagnetic
~AF! materials. Exchange bias in thin films has found imp
tant technological application in such devices as magnet
sistive sensors.2,3 Even though this phenomenon was disco
ered four and a half decades ago and despite exten
investigations and technological importance, its microsco
origin has not yet been understood.

The simplest theory,1 assuming that the exchange bi
effect arises from the exchange coupling at an uncomp
sated FM/AF interface, leads to an exchange field which
typically two orders of magnitude larger than the experim
tally observed ones. To explain this discrepancy, two al
native models which do not require an uncompensa
FM/AF interface, a random-field model by Malozemoff,4 and
a planar domain-wall model by Mauri and co-workers,5 have
been proposed. The latter model suggests the formation
domain wall at the interface with the reversal of the F
orientation, which would effectively lower the interfacial e
ergy cost of reversing the FM layer without removing t
condition of strong interfacial FM/AF coupling. Unlike th
model of Mauriet al., the AF domain walls in the Maloz
emoff’s model are normal to the interface, and the excha
bias is interpreted in terms of random exchange fields du
interface roughness. However, this model has intrinsic f
tures which depend on details of microstructure.

The spin-flop model proposed recently by Koon6 sug-
gested the existence of unidirectional anisotropy in thin fil
with a fully compensated AF interface. The micromagne
numerical calculations indicate the stability of the interfac
exchange coupling with a perpendicular orientation betw
FM and AF axes directions. One limitation of Koon’s mod
is that he restricted the motion of the spins during field
versal to the plane parallel to the interface. Schulthess
Butler,7 based on a microscopic Heisenberg model, yield
PRB 620163-1829/2000/62~9!/5627~7!/$15.00
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interfacial spin-flopped state similar to Koon’s. However,
lowing the spins to have out-of-plane components, they
contrary conclusions with respect to exchange biasing: t
calculations indicated enhanced uniaxial anisotropy or
hanced coercivity, but not a shifted loop.

The above-cited models, as well as others proposed in
literature, have attained different degrees of agreement w
existing experimental results. Models which, like the one
Mauri et al., include the existence of AF domain wall i
exchange coupled systems, account quantitatively for
1022 reduction of the exchange field from the ideal interfa
model case,4,5,8–10 as well as for accumulative memory e
fects of the thermal and field history of real FM/A
bilayers.11 Up to now, however, there exists no basic, gen
ally applicable, predictive theory or model,12,13 the reason
being the strong dependence of the exchange bias on
particular chemical and spin structure at the FM/AF interfa
for each real system.

Anisotropic magnetoresistance8 and ac susceptibility
measurements14 found an exchange anisotropy energy se
eral times larger than that obtained from hysteresis loop m
surements. Two other reversible measurement techniq
ferromagnetic resonance~FMR! and Brillouin light scatter-
ing, gave values about 20% less and 25% larger than th
measured via superconducting quantum interference de
~SQUID! magnetometry and magnetoresistan
respectively.15,16 This fact has led some authors to class
the measuring techniques in two categories, reversible
irreversible, interpreted with different models.9,12 Very re-
cently, Xi et al.,17 based on the model of Mauriet al., inves-
tigated theoretically the irreversible and reversible measu
ments of exchange anisotropy and derived express
relating the exchange field measured by various techniq
with the interface coupling field and the effective doma
wall field.

In Mauri et al.’s work5 magnetization curves have bee
calculated numerically on the basis of the coherent rota
model for various interfacial exchange coupling consta
and fixed FM anisotropy, and the main characterist
5627 ©2000 The American Physical Society



a

cu
e
o
it

ic

ca

n

-
a
s
ol
in

n

o

x
-

in

r
th
,
e
it

th
rg

be
e

rg
vi
ep

g
of

d
ion

ly
an-

ima
e
he
-

ion
nes

two
ing
een

al
om-

5628 PRB 62J. GESHEV
of easy axis~coercivity and loop displacement! and hard axis
~effective anisotropy field! curves have been plotted as
function of the interface exchange parameterl. We tried to
reproduce the above dependencies using numerical cal
tions, and found some quantitative discrepancies betw
our results and those of Mauriet al.5 We also succeeded t
derive analytical expressions for the normalized coerciv
hc , the loop shiftheb , and the effective anisotropy fieldha .
Excellent agreement between our analytical and numer
data has been found.

The purpose of the present work was to find analyti
expressions forhc , heb , andha as functions ofl. The par-
ticular case of the value of FM anisotropy constantKFM
considered in the original work of Mauriet al. has been
treated as well. The validity of the analytical expressio
previously derived is also discussed.

II. MODEL

The model proposed by Mauriet al.5 assumes that the AF
layer with uniaxial anisotropy is infinitely thick and the do
main wall can form at the AF side of the interface. At
certain distance from the interface, a FM film with thickne
t much smaller than the thickness of the domain wall f
lows. The spins of the ferromagnet rotate coherently, all
cluding the same angleb with the FM easy magnetizatio
axis, which is chosen to coincide with the AF one. LetA and
K be the exchange stiffness and crystalline anisotropy c
stants in the antiferromagnet, respectively, anda the angle of
the AF moment at the interface with respect to the easy a
When the magnetic fieldH is applied along the easy direc
tion, the total magnetic energy in units ofsw(52AAK,
which is the energy per unit surface of a 90° domain wall
the AF!, can be written as

d52cosa2l cos~a2b!1m cos2b2h cosb, ~1!

where the constant terms are neglected. The first term co
sponds to the domain-wall energy, the second term is
exchange energy withl5JE /sw the normalized exchange
where JE is the effective interfacial coupling energy. Th
third term is the anisotropy energy on the ferromagnet w
m52KFMt/sw the normalized anisotropy constant wi
positiveKFM , and the last term is the magnetostatic ene
with h5HMst/sw the normalized magnetic field, whereMs
is the FM saturation magnetization.

For the limiting casesl!1 and l@1, one can readily
obtain5 the exchange bias fieldHeb

Heb5H 2JE /Mst for l!1

2sw /Mst for l@1.

More details for the applicability of this approach can
obtained analytically, or by numerically calculating magn
tization curves of the ferromagnetic film from Eq.~1! by
finding the anglesa0 andb0 for which d is at minimum. For
the numerical calculations, we used two-variable ene
minimization procedure similar to the one used in our pre
ous works.18,19 In the hysteresis loop calculations, the st
for the normalized field was 1023, the initial step for the
la-
en

y

al

l

s

s
-
-

n-

is.

re-
e

h

y

-

y
-

anglesa andb was 1023 rad, and the angles correspondin
to the energy minimum were determined to an accuracy
10216 rad.

Representativehc(l) andheb(l) dependencies, obtaine
from the numerically calculated easy axis magnetizat
curves, are plotted in Fig. 1 for severalm values. All hc

versus l curves show minima, which become relative
deeper and sharper with the increase of the uniaxial FM
isotropy. It can be seen that form values smaller than a
certain critical valuemcrit , there are nol regions with zero
coercivity. The exchange bias field curves present max
which, like the minima in thehc(l) dependencies, becom
more pronounced for higher FM anisotropy and shift to t
range of lowerl values. Note that for weak and strong in
terfacial coupling, all theheb(l) curves coincide.

In Fig. 2, the symbols denote the normalized fieldshc ,
heb , and ha versusl for the case ofm520.25, obtained
from the numerically calculated magnetization curves;ha is
the effective anisotropy field (5Ms /x), wherex is the ini-
tial susceptibility, obtained from the hard axis magnetizat
curves. A comparison between these curves and the o
given by Mauriet al.5 ~Fig. 3 in their paper! shows that there
are significant quantitative differences between these
sets of curves. The solid lines in Fig. 2 are the correspond
analytical solutions. There is an excellent agreement betw
our analytical results and the numerically obtained data.

In what follows, it is demonstrated how these analytic
solutions have been derived. The analytical results are c

FIG. 1. The normalized loop shift2heb ~a! and coercivityhc ~b!
as a function of the exchange parameterl for several normalized
ferromagnetic anisotropy constantm values.
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pared with the numerical and theoretical ones previously
ported, and the validity of the latter has been discussed.

The total normalized magnetic energy is given by Eq.~1!.
Only positive l and negativem ~uniaxial FM anisotropy!
have been considered. The equilibrium state is determine
equating the partial derivatives toa andb to zero:

]d

]a
5sina1l sin~a2b!50 ~2!

and

]d

]b
52l sin~a2b!2m sin 2b1h sinb50. ~3!

For fixed m, this gives a relation betweena, b and h by
eliminating ofl

sina5m sin 2b2h sinb. ~4!

The stability of this equilibrium is then examined with th
aid of the conditions

]2d

]a2

]2d

]b2
2S ]2d

]a]b D 2

.0 ~5!

and

]2d

]a2
.0 ~6!

or

]2d

]b2
.0. ~7!

In these conditions,a is eliminated by using Eq.~4!.

FIG. 2. The normalized coercivityhc , the loop shift2heb , and
the effective anisotropy field,ha5Ms /x versus the exchange pa
rameter l for a fixed ferromagnetic anisotropy constantm
520.25. The symbols represent the data calculated numeric
The solid lines are the corresponding analytical solutions. The
ted vertical lines separate the regions, for which different analyt
expressions have been used.
-

by

III. ANALYTICAL RESULTS

There are two possible situations for a magnetizat
curve to intercept the abscissa:~i! b5p/2 for a certain field
valueha,p/2 during a continuous magnetization rotation, a
~ii ! the magnetization vector jumps from a state withb
,p/2 to a state withb.p/2 when the stability of the equi
librium at the former state is lost. Following the procedu
described in the previous section, the fieldha,p/2 is easy to
be obtained. Ifl is in the range determined by the conditio
B1>1 @obtained with the aid of Eqs.~5!–~7!#, where

B15l2~11l2!23/2~22m!21, ~8!

then

ha,p/252
l

A11l2
. ~9!

The conditionB1>1 gives thel range for fixedm for which
cosb50. There is a limitingm value for this to happen
which can be determined by isolatingm from the expression
B151 and calculating its first and second derivatives tol2.
From the conditions]m/]l250 and ]2m/](l2)2,0, one
obtains that cosb can be zero ifmP(2323/2,0).

For m<2323/2, the point of intersection of the magnet
zation curve with the abscissa is determined as follows.
givenh the equilibrium loses its stability at certain values
b depending onh @the expression in Eq.~5! shifts from posi-
tive to negative, whereas the other expression used, Eqs~6!
or ~7! remains positive#. Substituting this critical value pai
of h andb in Eq. ~3! then gives a relation betweenl, m, and
the critical value ofha,b at which the equilibrium is lost. The
critical fields thus obtained are

h0,052
l

11l
12m, ~10!

h0,p52
l

12l
22m, ~11!

hp,p5
l

12l
22m, ~12!

and, for all other cases

ha,b5
m

16l~l22c2!
@12~l611!172c~l411!

1~6823/m2!l41112c2~l211!1~240c168!l2#,

~13!

where

c5
1

2
@l4/3~22m!22/32l221#. ~14!

The conditions determining which of the expressions~9!–
~13! for the critical fields must be used, are examined w
the aid of Eqs.~5!–~7! for each particular case.

Let h1 and h2 be the normalized fields for which th
descending and ascending parts of a hysteresis loop inte
the abscissa, respectively. Using these notations, the nor
ized coercivity and exchange bias field are

hc52
h12h2

2
, ~15!

ly.
t-
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5630 PRB 62J. GESHEV
heb5
h11h2

2
. ~16!

The dependencieshc(l) and heb(l) for the representative
case ofm520.1 are shown in Fig. 3~a!. The symbols are the
results obtained from the numerical calculations, and
solid curves are the corresponding analytical solutions.
low, the expressions forhc and heb for both cases,m
<2323/2, andmP(2323/2,0), are given.

Expressions forhc„l… and heb„l… for µ«„À3À3Õ2,0…

The hc(l) and heb(l) dependencies shown in Fig. 3~a!
are form520.1 which is larger than2323/2, so they can be
used as a demonstration for the present case. Thel range is
divided into five regions, from I to V, for which differen
expressions forhc and heb have been derived. Some repr
sentative hysteresis loops are plotted in Fig. 4 for eight
ferent l values, corresponding to the regions indicated
Fig. 3. It is most convenient to begin the description fro
region IV, wherehc50.

Region IV

The coercivity is zero because in this regionha,p/2
<h0,0. In the descending part of the loop, the magnetizat
starts to deviate from saturation ath0,0. The corresponding
magnetization drop, however, is not big enough for a s

FIG. 3. ~a! The normalized coercivityhc and the loop shift
2heb as a function of the exchange parameterl for ferromagnetic
anisotropy constantm520.1. The symbols denote the numeric
calculation data, and the solid curves correspond to the analy
solutions.~b! Dependencies of the expressionsB1 , B2 , B3, and
B4 on l, which determine the boundaries of the five regions in~a!.
e
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with b.p/2 to be reached, and the curve crosses the
scissa by continuous rotation ath5ha,p/2 . The left and right
boundaries forl for this region can be determined by equa
ing the differenceha,p/22h0,0 to zero, which gives a condi
tion B251, where

B25l~2m!21@~11l!212~11l2!21/2#. ~17!

If l fulfills the conditionB2.1, thenha,p/2,h0,0, the fields
h1 andh2 are both equal toha,p/2 @Eq. ~9!#, thus

hc50, ~18!

heb5ha,p/252
l

A11l2
. ~19!

It is then clear that the limiting FM anisotropy value for ze
coercivity in thehc(l) curves is the above obtained limitin
value for which cosb50, i.e., mcrit52323/2

(;20.192 45). Note that in this region,heb does not depend
explicitly on m and, subsequently, all theheb(l) curves with
mP(2323/2,0) will coincide. This can be seen in Fig. 1~a!:
the curve form520.1 coincides with the one form50.0 for
lP(0.97,2.95).

An example for a magnetization curve for this region
shown in Fig. 4~e! for l52.0. The curve does not show
hysteresis, it is only shifted from the origin byha,p/2 .

al

FIG. 4. Easy axis hysteresis loops form520.1 andl50.15
~b!, 0.40 ~c!, 0.75 ~d!, 2.0 ~e!, 4.0 ~f!, 7.0 ~g!, and 9.0~h!, which
correspond to regions I–IV, III, II, and V in Fig. 3, respectivel
The loop forl50 is given in~a! as well. The solid lines represen
the normalized toMs magnetization of the ferromagnetic layer; th
dashed lines represent the normalized magnetization of the inte
antiferromagnetic plane, when different from the ferromagne
one.
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Region III

This is thel range for which the hysteresis loop inte
cepts the zero magnetization axis by an irreversible jump
the descending part and by continuous rotation in the asc
ing one. The condition for this isB1.1, excluding the re-
gion for which B2>1 ~i.e., region IV!. Here h15h0,0, h2
5ha,p/2 , and

hc5
l

2 S 1

11l
2

1

A~11l2!
D 2m, ~20!

heb52
l

2 S 1

11l
1

1

A~11l2!
D 1m. ~21!

The hysteresis loops forl50.75 and 4.0, plotted in Figs
4~d! and ~f!, correspond to the left and right parts of th
region, respectively.

Region II

Here, the left boundary forl values, obtained using Eqs
~5! – ~7!, is determined by the conditionB3.1 ~and conse-
quentlyl,1), where

B35l2~2m!21~l21!23,

and the right one fromB4.1 ~and as a resultl.1), where

B452B3 ,

excluding the regions III and IV. In this case,h15h0,0 @Eq.
~10!#, h25ha,b @Eq. ~13!#, and hc(l) and heb(l) are ob-
tained using Eqs.~15! and~16!. The hysteresis loops for thi
region shown in Figs. 4~c! and ~g!, are forl50.4 and 7.0,
respectively. The loops intercept the abscissa by irrevers
jumps in both parts, but there is still reversible rotation fo
certainh range for the ascending part of the loops.

The dependencies ofB1 , B2 , B3, and B4 on l, which
determine the boundaries of the five regions, are show
Fig. 3~b!.

Region I

This is the smalll range:l varies between 0 and al
value determined by the conditionsl,1 @which comes from
Eq. ~6!# and B351, i.e., the left boundary of region III. In
this regionh15h0,0, h25h0,p , and

hc52
l2

12l2
22m, ~22!

heb52
l

12l2
. ~23!

The limiting case ofl!1 implies heb52l, the result ob-
tained by Mauriet al. A loop corresponding to this region
with l50.15, is given in Fig. 4~b!.
in
d-

le

in

Region V

This is the last region (l higher than a certain value!,
where the conditions obtained with the aid of Eqs.~5! and
~6! are B4<1 and l.1. The critical fields areh1
5h0,0, h25hp,p , and

hc5
l

12l2
22m, ~24!

heb5
l2

12l2
. ~25!

Using Eq.~25!, one derives the result of Mauriet al. for this
limiting case ofl@1:heb521. The hysteresis loop show
in Fig. 4~h! for l59.0, is an example for this highl values
region.

Expressions forhc„l… and heb„l… for µÏÀ3À3Õ2

In Fig. 2, where the coercivity, exchange bias field, a
the effective anisotropy field versusl dependencies form
520.25 are shown, thel range is divided into three region
only. Due to the sufficiently smallm value in this case, there
is no l for which the magnetization curve intercepts t
abscissa by continuous rotation and therefore there are nl
regions corresponding to regions III and IV in Fig. 3~a!. The
analytical expressions forhc(l) andheb(l) for the rest three
regions are the same as those derived above for the ca
mP(2323/2,0).

Effective anisotropy field ha

The effective anisotropy field is obtained numerica
from the hard axis magnetization curves@the last term in Eq.
~1! should be replaced byh cos(p/22b)# asha5Ms /x. The
analytical expression forha is easily derived following, e.g.
the procedure used by Xiet al.:17 in the smallh range, the
anglesa andb are very small, sinb'b, and direct relation-
ship betweenb andh is obtained by eliminatinga from Eq.
~2!. The result isb52h sin(p/2)/@l/(11l)22m#. The ini-
tial susceptibility is thenx5]@Mscos(p/22b)#/]h for h
50, which gives

x5Ms Y S l

11l
22m D and ha5Ms /x5

l

11l
22m.

~26!

In terms ofJE , sw, andKFM , the above expression forha
gives the normalized tosw denominator in the expression fo
x in the work of Xi et al.,17 as expected. It can be seen th
ha52h0,0 for all m.

IV. DISCUSSION

Equations~23! and~25! show that the exchange bias fie
does not depend explicitly on the uniaxial anisotropy forl in
the regions I and V. This explains the coincidence of
heb(l) curves in these regions. With the decrease of the
anisotropy, thel values for whichheb start to depend onm,
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increase for weak interfacial coupling and decrease
strong coupling. It is interesting to note that

hc5H heb l22m in region I

heb /l22m in region V.

As it was mentioned above, there are some quantita
discrepancies between the results form520.25 shown in
Fig. 2, and those of Mauriet al.5 plotted in Fig. 3 in their
work for the same FM anisotropy value. Probably, the rat
large initial step of 3° fora andb in the energy minimiza-
tion used there is responsible for the deviations of th
curves from the analytically obtained ones. Some of the c
clusions drawn in their paper should be corrected in the li
of the analytical solutions derived here.

The steady-state situation~loop shifted from the origin by
;1) is virtually reached forl close to 10 and not to 4. Th
coercivity and the effective anisotropy field, however, are
from saturation even for rather highl values. The analytica
expression forhc(l) for this case is given by Eq.~24! and
even for l540 the coercivityhc(40)50.95 hc(`). The
condition B4<1 determines that the hysteresis loops form
520.25 become square forl higher than 4.365 and not fo
l@1. The same remark is valid for a value ofl above which
the reversal of the FM magnetization is accompanied b
total reversal of the interface AF magnetization. Anoth
point to be corrected is the one stating that form520.25 the
most important result of the easy axis calculation is that
exchange field can only become smaller than 1 whenl is
smaller than 1: the actual value is;1.8.

Very recently, Xi et al.17 on the basis of the model o
Mauri et al. derived analytical expressions for the exchan
bias field considering three different irreversible and reve
ible measurement techniques. For the case of easy axis
teresis loop measurements, they investigated the simple
of zero FM anisotropy, and the analytical expression
tained for the absolute value of the normalized tosw ex-
change bias field,Jhl ~i.e., Jhl /sw5uheb

hl u), is

Jhl

sw
5

JE

AJE
21sw

2
, ~27!

It is easy to demonstrate that in terms ofl this expression
equals l/A11l2. The same expression for the absolu
value of the loop displacement for region IV comes from E
~19!. It can be applied for region IV only, i.e., forl for
which B2>1; however, whenm50, it is valid for all l. The
corresponding to this caseheb(l) curve is also shown in Fig
1.

Expressions for ac susceptibility measurements,Jac(l)
for all l, and for FMR measurements,JFMR(l) for weak and
strong interfacial coupling, have also been obtained by
et al.17 Their JFMR(l) expressions coincide with the one
derived here for regions I and V, respectively. This mea
that hysteresis loop and FMR measurements of excha
anisotropy for magnetic systems whose behavior can be
scribed in the framework of the Mauriet al.’s model, should
not give different values for the exchange coupling for the
two limiting regions. This conclusion is in excellent agre
ment with the results of Rubinsteinet al.,20 which investi-
gated the ferromagnetic resonance field shift in a Co
r
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Permalloy bilayer. They found this shift to be equal to t
algebraic sum of the uniaxial anisotropy and the excha
bias fields, obtained with SQUID magnetometry. The re
tively small difference ('20%) between the exchange bia
field value determined by FMR and that obtained throu
hysteresis measurements by McMichaelet al.16 for
Ni80Fe20/NiO ~attributed by the authors to asymmetric ma
netization reversal mechanisms!, also supports our conclu
sion.

The analytical expression foruheb
acu5Jac(l)/sw has been

obtained by Xiet al. assuming that~by analogy with another
case of an exchange-biased system simpler than the one
sidered here! the loop shift is the first term of the denomina
tor of the x expression@Eq. ~26!#. The denominator, how-
ever, represents the effective anisotropy field, and not
algebraic sum of the exchange bias field and the unia
anisotropy field~coercivity!. One can see that in regions
IV, and V, the heb does not depend onm explicitly, but
which of theheb expressions should be used is determin
by the inequalities involvingB1 , B2 , B3, and B4, and all
these expressions depend onm. Actually, none of the five
expressions forheb has form identical with the first term o
the denominator of Eq.~26!, even for the case ofm50. Thus
the expression given by Xiet al. does not represent the ex
change bias field for systems described by the Mauri’s mo
and, consequently,cannot be compared with the ones ob
tained for other measurement techniques. The quant
which can be compared from easy axis hysteresis loop m
surements and hard axis ac susceptibility measurements
the field for which the descending part of a normalized h

FIG. 5. ~a! Hard axis magnetization curve,~b! the corresponding
susceptibility, and~c! the easy axis hysteresis loop for the case
reduced anisotropy constantm520.1 and exchange parameterl
50.05.
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teresis loop starts to decrease from 1~i.e., h0,0), and the
effective anisotropy field obtained from a hard axis ac s
ceptibility curve, respectively.

Although the experimentally measured hysteresis lo
have not been shown in the paper of Stro¨m et al.,14 the dif-
ference between the exchange bias field values estimate
ac susceptibility and through hysteresis loop measurem
for their Co/CoO bilayers can be explained in light of t
discussions above. In the energy expression of the v
simple phenomenological model used in the work of Str¨m
et al., only the terms corresponding to the exchange ani
ropy and the magnetostatic energy have been considered
heb

ac was found to be the denominator of thex expression.
The uniaxial anisotropy, however, cannot be ignored for C
CoO bilayers: for thin Co films it might be a little smalle
than for bulk Co (53106 erg/cm3), but exchange biased FM
films always show an enhanced coercivity associated w
the AF layer.12 Hence more complex model should be us
to describe the behavior of Co/CoO bilayers. As discus
above, in the framework of the model of Mauriet al., Ms /x
represents the effective anisotropy field and notheb

ac ~for x
obtained from hard axis measurements! and consequently
the measuredMs /x values could be much higher than th
heb obtained from easy axis hysteresis loop data. This
demonstrated in Fig. 5, where the hard axis magnetiza
and susceptibility curves, as well as the easy axis hyster
loop for the case ofm520.1 andl50.05 are plotted. The
corresponding values forxmax, Ms /xmax, h0,0, andheb are
given as well. TheMs /xmax is five times higher thanheb in
this particular case, and is equal toh0,0, as expected.
n
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V. SUMMARY

In the present work, analytical expressions were deriv
for the exchange bias field, coercivity and effective anis
ropy field in FM/AF bilayers in the framework of the mode
of Mauri et al. It was demonstrated that, depending on t
interfacial exchange coupling strength and the FM anis
ropy, there are five different sets of analytical expressions
the hysteresis loop displacement and coercivity, and only
expression for the effective anisotropy field. These expr
sions were compared with the previously reported theoret
results, and their validity was discussed.

It was shown that, contrary to the Xiet al. conclusions,
the hysteresis loop, ac susceptibility, and FMR measu
ments of exchange anisotropy for magnetic systems wh
behavior can be described in the framework of the Ma
et al.’s model, shouldnot give different values for the ex
change bias field. The difference between the exchange
field values, estimated experimentally by ac susceptibi
and through hysteresis loop measurements for Co/CoO b
ers, was explained as well.
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