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Spin spiral ground state of g-iron

K. Knöpfle, L. M. Sandratskii, and J. Ku¨bler
Institut für Festkörperphysik, Technische Universita¨t, D-64289 Darmstadt, Germany

~Received 15 March 2000!

Using density-functional theory we calculate the magnetic ground-state properties ofg-Fe for a large set of
spiral vectors and lattice constants. The effective single-particle equations are solved by means of an advanced
version of the augmented spherical waves method which takes into account the full-shape potential and the
intra-atomic noncollinearity of the magnetization. Together with the generalized gradient approximation the
experimentally determined spiral magnetic ground state is reproduced successfully. Symmetry properties of the
intra-atomic noncollinearity of the magnetization are analyzed and illustrated for spiral magnetic structures.
We conclude thatg-Fe is an itinerant electron system possessing well-defined atomic moments.
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I. INTRODUCTION

Since the appearance of the experimental work
Tsunoda1 and Tsunodaet al.2 the spiral magnetic ground
state ofg-Fe has attracted a great deal of theoretical att
tion. Very recent publications on this topic3–7 show that the
interest is still unbroken.

g-Fe is the fcc phase of iron which is stable at tempe
tures above the magnetic phase transition. At low temp
turesg-Fe can be stabilized in the form of small clusters in
Cu matrix. The magnetic structure of the clusters was fou
to be a spin spiral1,2 with a spiral vector varying fromq
5(0.1,0,1) for pureg-Fe toq5(0.13,0,1) forg-Fe1002xCox

with x54 ~whereq is given in units of 2p/a).
The generalization of the methods of density-functio

theory to cases of incommensurate spin spiral structures
suggested in Ref. 8. These structures were shown to bec
manageable because of their special symmetry proper
Subsequently, numerous first-principles calculations of
total energy ofg-Fe as a function of the spiral vectorq were
reported.3–7,9–12All calculations confirmed the spiral chara
ter of the ground state ing-Fe but did not succeed in repro
ducing the experimentalq value. Initial studies9–11 based on
the local-density approximation found the minimum of t
total energy atq5(0,0,0.6). In calculations12 that employ the
generalized gradient approximation13 ~GGA! one finds that a
minimum of the total energy remains atq5(0,0,0.6). The
results depend, however, on the value of the lattice cons
If it is varied over some range of values another minimu
emerges atq5(0.5,0,1) which, unfortunately, also differ
from the experimental value. Bylander and Kleinman4–7 used
a full-potential scheme, the GGA, and at last a ‘‘spin sti
ness correction,’’allowing forintra-atomicnoncollinearity of
the magnetization, but concluded that the theoretical to
were insufficiently accurate to yield the experimental va
of q. Thus, clearly, the correct description of the ground st
of g-Fe becomes a challenge for density-functional theory
applications to the 3d metals.

In the present paper we apply an advanced version of
augmented spherical waves~ASW! method, called modified
ASW ~MASW!, to the analysis of this problem. The MASW
method, besides using the full-shape potential inside
PRB 620163-1829/2000/62~9!/5564~6!/$15.00
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atomic spheres, takes into account intra-atomic noncolline
ity of the magnetization. Furthermore, the generalized gra
ent approximation13 ~GGA! is employed in the calculations
In contrast to Bylander and Kleinman who restricted th
calculations to the lattice constant of Cu, we extend our c
culations to lattice parameters ranging froma56.7a0 to a
56.95a0. This interval includes the lattice constant forg-Fe,
a56.76a0, and fcc-Cu,a56.822a0. (a0 is the Bohr radius.!

To study the properties of the intra-atomic magnetizat
we analyze the symmetry of the spiral structures in terms
the generalized spin-space groups and verify that thez com-
ponent of the magnetization must vanish at any point
space, the property used in the calculations of Bylander
Kleinman.

The paper is organized as follows. The MASW method
described briefly in Sec. II and is followed by an analysis
the symmetry properties of the spiral magnetic structure
hand in Sec. III. In Sec. IV the results of the calculations
the spiral magnetic states ing-Fe are presented and dis
cussed. We close with brief conclusions.

II. CALCULATIONAL APPROACH

Throughout the calculations the MASW method is us
which, in contrast to the standard augmented spher
waves10,11 method, employs the full-shape potential insi
the atomic spheres. Since this is standard in all full-poten
methods it need not be discussed here any further. It suffi
to say that an expansion in spherical harmonics to ordl
56 is used for the potential in the case of iron. Not y
standard is another important improvement: the stand
ASW method assigns to each atomic sphere a s
quantization axis neglecting the off-diagonal elements of
potential matrix in this local frame. In contrast to this th
MASW method accounts for the noncollinearity of theintra-
atomicmagnetization by determining the full 232 potential
matrix for each point inside the atomic spheres. Pioneer
work on intra-atomic noncollinearity has been done by N
dström and Singh,14 followed by the work of other authors
as, for instance, Refs. 4–7,15,16. We here limit ourselve
a short description of the potential matrix in the MASW
method.

In noncollinear magnetic systems the spin projection o
5564 ©2000 The American Physical Society



n

in

m
he
th
t

he

m
th
b

e
m

si-

tri
a

tri
e

th
e
c
t

er
wi

m-

re
e
s-

sed
ry
The
op-

is

ra-
of

tion

in
rec-
at

ion
op-
m-
of

ere

the
ag-

it

ic

PRB 62 5565SPIN SPIRAL GROUND STATE OFg-IRON
single axis is not a good quantum number. The wave fu
tions are spinors and the density matrix is given by

r~r !5(
nk

cnk~r !cnk
† ~r !. ~1!

This matrix can be diagonalized at each pointr in space with
the help of the spin-12 -rotation matricesU(r ). To formulate
the GGA, gradients and higher derivatives of the sp
density matrix are calculated at a given pointr resulting in
derivative matrices which are transformed by the same
trix U(r ) into the local spin-coordinate system where t
density matrix is diagonal. Then the diagonal elements of
density and derivative matrices are treated as usual in
GGA formalism to obtain the diagonal potential matrix in t
local coordinate frame. Next, the matrixU(r ) is used to
transform the potential back to the global system:

r~r !5S r↑↑~r ! r↑↓~r !

r↓↑~r ! r↓↓~r !
D 5U†~r !S r↑↑

loc~r ! 0

0 r↓↓
loc~r !

D U~r !

→U†~r !S v↑↑
loc~r ! 0

0 v↓↓
loc~r !

D U~r !

5S v↑↑~r ! v↑↓~r !

v↓↑~r ! v↓↓~r !
D 5v~r !. ~2!

The full spatial dependence of all quantities inside the ato
spheres is preserved in the MASW method in contrast to
standard ASW. More details of the MASW method can
found in another paper by these authors.17

III. SYMMETRY OF THE CRYSTAL AND MAGNETIC
STRUCTURE

The symmetry group of a magnetic crystal is determin
by both the atomic positions and the directions of the ato
moments. As in all earlier theoretical studies3–7,9–12we focus
on spiral structures with atomic moments within thexy plane
defined by the vectors

êi5„cos~q•ai !,sin~q•ai !,0…, ~3!

whereêi is the direction of the spin of the atom at the po
tion ai andq is the spiral vector.

The symmetry of these spiral structures imposes res
tions on the shape of the intra-atomic charge density, m
netization, and potentials. The knowledge of these res
tions is helpful in developing efficient calculational schem
and also in analyzing the calculated data.

The symmetry of the spiral structures is described by
spin-space groups8 which, in contrast to the usual spac
groups, allow different transformations of spin and spa
variables. The operators of the spin space groups have
form $aSuaRut%, whereaS is a spin rotation,aR is a space
rotation, andt is a space translation. By rotations we und
stand here the pure rotations and rotations combined
inversion. The operators are defined by

$aSuaRut%m~r !5aSm~$aRut%21r !5aSm„aR
21~r2t!…,

~4!
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where m(r ) is the intra-atomic magnetization at pointr .
Since the magnetization is invariant with respect to the sy
metry transformation$aSuaRut% it satisfies the following re-
lation:

mi~aRr i !5aSmj~r j !, ~5!

wheremi(r i) is the magnetization inside the atomic sphe
of atomi and the vectorr i is measured from the center of th
sphere. The atomsi and j are connected by the space tran
formation

$aRut%ai5aRai1t5aj . ~6!

If i 5 j andaRr i5r i in Eq. ~5! we obtain a restriction on the
magnetization at the given pointr i otherwise a relation of the
magnetization at two different points is obtained.

The symmetry properties of spiral structures are discus
in detail in Ref. 18. In Table I we collect the symmet
operations for the spiral structures studied in this paper.
operations shown do not include space translations. The
erationsC2 are space rotations byp, C4 are rotations by
6p/2, s are space reflections,I is the inversion, andS4
are rotation reflections;U2x are spin rotations about thex
axis by p. For some operations the spin transformation
unity and is omitted in the notation.

At the points on symmetry lines and planes, the ope
tions collected in Table I impose restrictions on the values
the components of the magnetization. For example, opera
U2xsz leaves all points withz50 invariant and transforms
the magnetization asU2x„mx(r ),my(r ),mz(r )…5„mx(r ),
2my(r ),2mz(r )…. Therefore, at each point in the planez
50, my(r ), andmz(r ) must be zero. For a general point
the atomic sphere, symmetry determines the relative di
tion of magnetization with respect to the magnetization
equivalent points. For example, the symmetry operationU2xI
leads to the relation „mx(r ),my(r ),mz(r )…5„mx(2r ),
2my(2r ),2mz(2r )… at pointsr and2r .

Further information on the properties of the magnetizat
can be obtained by taking into account the time-reversal
eration. Although the time reversal itself cannot be a sy
metry operation of a magnetic crystal, the combination
time reversal with an appropriate operation$aSuaRut% might
leave a magnetic crystal invariant. Indeed, in our case th
is an additional symmetry operationU2zQ leaving the spiral
structures under consideration invariant. HereQ is the time-
reversal operation. Since this operation does not act on
space variable it leads to a symmetry restriction on the m
netization at each point r : „mx(r ),my(r ),mz(r )…
5„mx(r ),my(r ),2mz(r )…. As a result mz(r )50 at each
point r . Note that operations of the kindU2zQ can be sym-
metry operations of the physical problem only if spin-orb

TABLE I. Symmetry operations of different spiral magnet
structures ing-Fe.

q52p/a(0,0,g) q52p/a(a,0,1)

E C2z U2xC2x U2xC2y

C4z
2 C4z

1 U2xC2b U2xC2a E U2xI
sx sy U2xI U2xsz sy U2xC2y

sdb sda U2xS4z
2 U2xS4z

1
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coupling can be neglected. Otherwise the spin and sp
variables are coupled and must be transformed in the s
way.

IV. CALCULATIONAL RESULTS

A. Spiral magnetic states ing-iron

To test the reliability of our new calculational techniqu
and to locate the spin spiral states in the magnetic ph
diagram of cubic iron we carried out calculations of vario
states ofa-Fe ~bcc-Fe! andg-Fe for a broad range of lattic
parameters. A selection of our results is shown in Fig.
where, comparing the two structures, we graph the total
ergy as a function of atomic volume. The seven data po
labeled SS in Fig. 1 are minimum-energy spiral ground sta
corresponding to the following lattice constants:a56.7a0 ,
6.75a0 , 6.8a0 , 6.822a0 , 6.85a0 , 6.9a0, and 6.95a0.

The calculations reproduce all important features of
phase diagram of cubic Fe: in agreement with experiment
ground state of iron is a ferromagnetic bcc structure. For
fcc structure we obtain two ferromagnetic phases, a lo
moment phase at smaller volumes and a high-moment p
at larger volumes. The high-moment phase has lower ene
But the antiferromagnetic phase of fcc iron has an e
lower total energy at small volumes, crossing the ferrom
netic state at a higher volume. In the vicinity of this cros
over the spiral state possesses the lowest total energy.
equilibrium lattice constant ofa55.44a0 and the calculated
magnetic moment of 2.26mB of the bcc ground state are i
excellent agreement with the experimental valuesa
55.42a0 ~Ref. 19! and 2.23mB .20

FIG. 1. Magnetic moments~top! and total energies~bottom!
calculated with the MASW method using the GGA for ferroma
netic ~FM!, antiferromagnetic~AFM!, nonmagnetic, and spira
structures~SS! in cubic (a and g) iron as a function of atomic
volume.
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Turning now to a detailed discussion of the spiral ma
netic states we show theq dependence of the total energy
Fig. 2. These calculations were carried out for planar spi
characterized by the polar angleu5p/2 and the vectorsq
5(0,0,g) with 0<g<1 and q5(a,0,1) with 0<a<0.5.
For the range of lattice constantsa56.7a0 to a56.9a0, the
spiral structures provide the states having total energ
lower than the collinear states, those of minimal energy
ing shown in Fig. 1.

We see that the form of the total-energy curves chan
drastically with variation of the lattice parameter. Fora
56.95a0 the minimum of the total energy corresponds to t
ferromagnetic stateq5(0,0,0). Furthermore, there are tw
local minima at q'(0,0,0.5) and q5(0.5,0,1). For a
56.9a0 down to a56.8a0 the minimal energy correspond
to the spiral withq'(0,0,0.55). This state was discussed
most of the earlier calculations. Ata56.75a0 and a
56.8a0 nearq5(0,0,0) a high-moment and a low-mome
phase coexist~compare with Fig. 1!.

For a<6.75a0 we observe the formation of a new tota
energy minimum atq'(0.15,0,1). Thisq value is in perfect
agreement with the experimental value reported. The inse
Fig. 2 exposes the details ofE(q) in the region of this mini-
mum. At a56.75a0 the minimum near the experimentalq
value is slightly lower than atq5(0,0,0.65). The trend be
comes much clearer fora56.7a0.

Bylander and Kleinman4,6 used only the lattice constant o
Cu (a56.822a0) for their calculations; this may be the rea
son why they did not obtain the total-energy minimum at t
experimental spiral vector. For this lattice constant we obt
in agreement with their results4,6 a total-energy minimum a
q5(0,0,0.6). Our calculations show that the relaxation of
bulk of the precipitates to lower lattice parameters charac
istic for g-Fe can be essential for the formation of the spi
structure with the experimentally determinedq. This relax-
ation of the lattice constant is observed ing-Fe epitaxially
grown on Cu. For layers with more than 5 monolayers Fe

FIG. 2. The total energyEtot(q) of g-Fe for q along two direc-
tions in the Brillouin zone and for different lattice constants.
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PRB 62 5567SPIN SPIRAL GROUND STATE OFg-IRON
lattice constant relaxes from the Cu value in the first t
layers to the lattice constant ofg-Fe (a56.76a0) in the
interior.21

We now reveal the physical interactions responsible
the formation of the total-energy minimum at the experime
tal q value. For this purpose we carry out a number of c
culations ofE(q) for a56.7a0 using different approxima-
tions. In Fig. 3 we compare theE(q) curves calculated with
three different approaches: our standard calculational sch
~MASW1GGA!, the MASW method without gradient cor
rection~MASW1LDA ! and the standard ASW with gradien
correction ~ASW1GGA!. The ASW1GGA results clearly
show that the gradient correction alone cannot improve
standard ASW calculation. The decisive changes come a
through either the full-potential calculations or the intr
atomic noncollinearity or both since these are the featu
that distinguish MASW from the standard ASW method.
fact, except for a slight shift, the gradient correction in t
MASW calculations leads to only moderate changes ofE(q)
near the experimentalq. However, since there is a stron
change ofE(q) for other values ofq the gradient correction
must be considered important for the description of the m
netic properties ofg-Fe.

Having thus established the importance of intra-atom
noncollinearity and the full potential for a correct descripti
of the magnetic ground state ofg-Fe, it is natural to ask
which of these two effects is dominant. To attempt an ans
the total energy is calculated by constraining the magnet
tion to be collinear inside the atomic spheres. In Fig. 4
results of the constrained MASW calculation are compa
with those of the unconstrained MASW calculation. For t
collinear structures withq5(0,0,0) andq5(0,0,1) both cal-
culations give identical results since the intra-atomic mag
tization is collinear. For structures with stronginteratomic
noncollinearity, e.g., forq5(0,0,0.6), the difference of the
total energies for the two calculations increases up to
mRyd. There is also a noticeable shift of the position of
total energy minima~see insert in Fig. 4!. Since the intra-
atomic noncollinearity is important we next discuss its pro
erties in detail.

B. Intra-atomic magnetization

This section is devoted to the properties of the int
atomic spin density, in particular to the noncollinearity of t

FIG. 3. Spiral magnetic states calculated with different schem
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intra-atomic magnetization. In the previous section we ha
shown a noticeable influence of the intra-atomic nonc
linearity on the form of theE(q) curve. On the other hand
the change of the total energy resulting from the intra-atom
noncollinearity is much smaller than the scale of the to
energy change connected with the interatomic noncolline
ity. Here by taking a closer look at one selected spiral st
we discuss the strength, symmetry, and spatial depend
of the deviation of the intra-atomic magnetization from t
direction of the atomic moment.

To better visualize the effect we chose a spiral withq
5(0,0,0.65) which is characterized by a strong noncolline
ity of the spins of neighboring atoms. In Fig. 5 we show t
in-plane magnetization for the planes withz50, 1.15a0, and
62.1a0. The atomic center coincides with the coordina
origin. For thez50 plane@Fig. 5~a!# there is no deviation of
the magnetization from the direction of the atomic mome
On the basis of the symmetry analysis we have shown
Sec. III that the magnetization at each point in this pla
must be exactly parallel to thex axis due to the symmetry
operationU2xsz .

For the planesz5” 0 there is no symmetry restriction forc
ing the in-plane magnetization to be collinear to the direct
of the atomic moment. Indeed, inspection of the Figs. 5~b!–
5~d! shows noticeable deviations of the magnetization fr
thex axis. Vectors of the magnetization at different points
the same cross section are not exactly collinear. From F
5~b!–5~d! it is clearly seen that each cross section withz5”
50 supplies a nonzero contribution to they component of
the atomic moment. Thus for the plane atz52.1a0 the con-
tribution is negative and for the plane atz522.1a0 it is
positive. We can, however, show that these contributio
compensate and the atomic magnetic moment obtained
integration over the whole atomic sphere possesses zero
jection on they axis. This property is a consequence of t
symmetry operations which transform the points of the pla
z5d to the points of the planez52d and the corresponding
magnetization from (mx ,my,0) to (mx ,2my,0). This prop-
erty is illustrated in Figs. 5~c! and 5~d!.

To characterize the intra-atomic noncollinearity quanti
tively we show in Fig. 6 the anglef(r ) between the magne
tization and the direction of the atomic moment at the poi

s.

FIG. 4. Total-energy spectraE(q) calculated with constrained
and unconstrained intra-atomic magnetization.
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of the ~101! axis. The~101! axis connects two nearest atom
of the fcc lattice. For the spiral structure used in the cal
lation the angle between the atomic moments of the
neighboring atoms is equal to 117 °. Figure 6 shows tha
spite of a large interatomic angle the intra-atomic nonc
linearity within the atom increases only slowly. The leadi
variation of the magnetization direction occurs at the bor
of the atomic sphere where the magnetic density is smal
the spatial region where the 3d states have a large probab
ity amplitude, determining the value and direction of t
atomic magnetic moment, the deviation of the intra-atom
magnetization from the direction of the atomic moment
small compared to the interatomic angle. This result allo
us to draw the conclusion that in the case ofg-Fe we deal
with a well-defined atomic moment formed by the itinera
3d electrons. It would be of interest to carry out simil
calculations in the case of nickel where the atomic mom
is much smaller and a stronger variation of the direction
the magnetization within an atomic sphere can be expec

FIG. 5. Magnetization in severalxy planes. The arrows are plot
ted enlarged by a factor 3 in~b! compared to~a! and by a factor 6
in ~c! and ~d!.
n.
-
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r
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The form of our curvef(r ) is in good agreement with the
results of Bylander and Kleinman.4 In addition, we relate the
variation of the magnetization direction to the value of t
magnetization.

V. CONCLUSIONS

An advanced version of the ASW method is used for
extensive study of the magnetic properties ofg-Fe. This ver-
sion takes into account the full-shape potential inside
atomic spheres and the noncollinearity of the magnetiza
on an intra-atomic scale. The spatial variation of the den
ties is taken into account by using the GGA. We succee
in describing the magnetic ground state ofg-Fe. The equi-
librium spiral vectorq5(0.15,0,1) obtained in the calcula
tions is in very good agreement with the experimental val
We analyze the role of effects due to intra-atomic nonc
linearity and the full potential and compare the results
LDA and GGA calculations. Symmetry properties of th
intra-atomic magnetization are described and exemplarily
sualized.

We show thatg-Fe has a well defined atomic momen
This means in particular that even though the magnetiza
is strongly noncollinear on an interatomic scale, large dev
tions of the magnetization from the direction of the atom
moment is seen mainly at the border of the atomic sph
where the value of the magnetic density is small.
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FIG. 6. Anglef between magnetization direction andx axis and
length of magnetizationum(r )u. Vector r varies along the~101!
direction.
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17K. Knöpfle, L. M. Sandratskii, and J. Ku¨bler ~unpublished!.
18L. M. Sandratskii, J. Phys.: Condens. Matter3, 8565 ~1991!; 3,

8587 ~1991!.
19R. Kohlhaas, P. Dunner, and N. Schmitz-Pranghe, Z. Ang

Phys.23, 245 ~1967!.
20R. Pauthenet,Conference on High Field Magnetism~North-

Holland, Amsterdam, 1983!, p. 77.
21B. Schirmer and M. Wuttig, Phys. Rev. B60, 12 945~1999!.


