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Spin spiral ground state of y-iron
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Using density-functional theory we calculate the magnetic ground-state propertieBeofor a large set of
spiral vectors and lattice constants. The effective single-particle equations are solved by means of an advanced
version of the augmented spherical waves method which takes into account the full-shape potential and the
intra-atomic noncollinearity of the magnetization. Together with the generalized gradient approximation the
experimentally determined spiral magnetic ground state is reproduced successfully. Symmetry properties of the
intra-atomic noncollinearity of the magnetization are analyzed and illustrated for spiral magnetic structures.
We conclude thaty-Fe is an itinerant electron system possessing well-defined atomic moments.

[. INTRODUCTION atomic spheres, takes into account intra-atomic noncollinear-
ity of the magnetization. Furthermore, the generalized gradi-
Since the appearance of the experimental work ofent approximatiol’ (GGA) is employed in the calculations.
Tsunoda and Tsunodaet al? the spiral magnetic ground In contrast to Bylander and Kleinman who restricted their
state ofy-Fe has attracted a great deal of theoretical attencalculations to the lattice constant of Cu, we extend our cal-
tion. Very recent publications on this topi¢ show that the ~culations to lattice parameters ranging fra@w6.7a, to a
interest is still unbroken. =6.95,. This interval includes the lattice constant fpiFe,
y-Fe is the fcc phase of iron which is stable at tempera®= 6-76, and fcc-Cua=6.822,. (a, is the Bohr radius.
tures above the magnetic phase transition. At low tempera- 10 Study the properties of the intra-atomic magnetization
turesy-Fe can be stabilized in the form of small clusters in aVe analyze.the symmetry of the spiral structures in terms of
Cu matrix. The magnetic structure of the clusters was founcﬁhe generalized Spin-space groups and \_/er|fy tha'zm' .
to be a spin spirdf with a spiral vector varying frong ponent of the magnetization must vanish at any point in
ce, the property used in the calculations of Bylander and
=(0.1,0,1) for purey-Fe toq=(0.13,0,1) fory-Fe;gy_xCo, =pa property y

o Co . it of 2/ Kleinman.
with x=4 (whereq is given in units of 2/a). The paper is organized as follows. The MASW method is

The generalization of the methods of density-functionalyescriped briefly in Sec. Il and is followed by an analysis of
theory to cases of incommensurate spin spiral structures wage symmetry properties of the spiral magnetic structures at
suggested in Ref. 8. These structures were shown to becom@ng'in Sec. IIl. In Sec. IV the results of the calculations of

manageable because of their special symmetry propertiegye spiral magnetic states ip-Fe are presented and dis-
Subsequently, numerous first-principles calculations of theyssed. We close with brief conclusions.

total energy ofy-Fe as a function of the spiral vectgrwere
reported®"9-12All calculations confirmed the spiral charac-
ter of the ground state iy-Fe but did not succeed in repro-
ducing the experimental value. Initial studie$ ' based on Throughout the calculations the MASW method is used
the local-density approximation found the minimum of thewhich, in contrast to the standard augmented spherical
total energy atj=(0,0,0.6). In calculatiortd that employ the ~ waves®!* method, employs the full-shape potential inside
generalized gradient approximatidiGGA) one finds that a  the atomic spheres. Since this is standard in all full-potential
minimum of the total energy remains gt (0,0,0.6). The methods it need not be discussed here any further. It suffices
results depend, however, on the value of the lattice constanto say that an expansion in spherical harmonics to order
If it is varied over some range of values another minimum=6 is used for the potential in the case of iron. Not yet
emerges aig=(0.5,0,1) which, unfortunately, also differs standard is another important improvement: the standard
from the experimental value. Bylander and Kleinfidused ~ASW method assigns to each atomic sphere a spin-
a full-potential scheme, the GGA, and at last a “spin stiff- quantization axis neglecting the off-diagonal elements of the
ness correction,allowing fomtra-atomicnoncollinearity of  potential matrix in this local frame. In contrast to this the
the magnetization, but concluded that the theoretical tool8MASW method accounts for the noncollinearity of tinéra-
were insufficiently accurate to yield the experimental valueatomic magnetization by determining the fulb22 potential
of g. Thus, clearly, the correct description of the ground statenatrix for each point inside the atomic spheres. Pioneering
of y-Fe becomes a challenge for density-functional theory inwork on intra-atomic noncollinearity has been done by Nor-
applications to the 8 metals. dstran and Singh* followed by the work of other authors

In the present paper we apply an advanced version of thas, for instance, Refs. 4-7,15,16. We here limit ourselves to
augmented spherical wavéaASW) method, called modified a short description of the potential matrix in the MASW
ASW (MASW), to the analysis of this problem. The MASW method.
method, besides using the full-shape potential inside the In noncollinear magnetic systems the spin projection on a

Il. CALCULATIONAL APPROACH
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single axis is not a good quantum number. The wave func- TABLE I. Symmetry operations of different spiral magnetic

tions are spinors and the density matrix is given by structures iny-Fe.
g=2m/a(0,0,y) g=2m/a(«,0,1)
P =2 YD) Y(r). (1)
nk E CZZ U2><C2x U2xC2y
- +
This matrix can be diagonalized at each paiimt space with Caz Caz  UaCan UnCa E Uzl
Oy O'y UZXI UZXUZ O'y UZXCZy

the help of the spir-rotation matricedJ(r). To formulate
the GGA, gradients and higher derivatives of the spin-7d® Tda
density matrix are calculated at a given paintesulting in
;jgnvl?tlve'n:atrtﬁesl wh||ch are trandgfortr11ed bty the iame t’;‘av'vhere m(r) is the intra-atomic magnetization at point

rix U(r) into the local spin-coordinate system where thegj, o the magnetization is invariant with respect to the sym-

density matrix is diagonal. Then the diagonal elements of thg, o, yransformatiofad aglt} it satisfies the following re-
density and derivative matrices are treated as usual in thl%tion'

GGA formalism to obtain the diagonal potential matrix in the
local coordinate frame. Next, the matrd(r) is used to m;(agri) = asm;(r;), (5)
transform the potential back to the global system:

UZXSZZ U2XSIZ

wherem;(r;) is the magnetization inside the atomic sphere

pi1(t) pyy(r) PlTOTC(r) 0 of atomi and the vector; is measured from the center of the
o( ):( ) =ut ( loc )U(r) sphere. The atomisandj are connected by the space trans-
p(r) pp(r) 0 pp(n) formation
loc
Huf(r)(%gf) |o? )U(r) {arltia=apa +t=4;. 6)
v (1) If i=] andagr;=r; in Eq. (5) we obtain a restriction on the
(v”(r) m(ﬂ) magnetization at the given pointotherwise a relation of the
= =v(r). (2) magnetization at two different points is obtained.
vi(r) v (r) The symmetry properties of spiral structures are discussed

The full spatial dependence of all quantities inside the atomié? detail in Ref. 18. In Table | we collect the symmetry
spheres is preserved in the MASW method in contrast to th@Perations for the spiral structures studied in this paper. The

standard ASW. More details of the MASW method can bePPerations shown do not include space translations. The op-
found in another paper by these authtrs. erationsC, are space rotations by, C, are rotations by
* /2, o are space reflections,is the inversion, and,

are rotation reflectionstJ,, are spin rotations about the
axis by 7. For some operations the spin transformation is
unity and is omitted in the notation.

The symmetry group of a magnetic crystal is determined At the points on symmetry lines and planes, the opera-
by both the atomic positions and the directions of the atomidions collected in Table | impose restrictions on the values of
moments. As in all earlier theoretical studies®*2we focus  the components of the magnetization. For example, operation
on spiral structures with atomic moments within theplane  Uxco, leaves all points witle=0 invariant and transforms

Ill. SYMMETRY OF THE CRYSTAL AND MAGNETIC
STRUCTURE

defined by the vectors the magnetization asU,,(my(r),my(r),m,(r))=(m(r),
—my(r),—m,(r)). Therefore, at each point in the plaze
éz(cos(qa,-),sin(q-ai),O), (3) =0, my(r), andm,(r) must be zero. For a general point in

the atomic sphere, symmetry determines the relative direc-

whereeg is the direction of the spin of the atom at the posi-tion of magnetization with respect to the magnetization at
tion g andq is the spiral vector. equivalent points. For example, the symmetry operdtlg

The symmetry of these spiral structures imposes restrideads to the relation (my(r),my(r),m,(r))=(my(—r),
tions on the shape of the intra-atomic charge density, mag=my(—r),—m,(—r)) at pointsr and —r.
netization, and potentials. The knowledge of these restric- Further information on the properties of the magnetization
tions is helpful in developing efficient calculational schemescan be obtained by taking into account the time-reversal op-
and also in analyzing the calculated data. eration. Although the time reversal itself cannot be a sym-

The symmetry of the spiral structures is described by thenetry operation of a magnetic crystal, the combination of
spin-space groupswhich, in contrast to the usual space time reversal with an appropriate operatians|ag|t} might
groups, allow different transformations of spin and spacdeave a magnetic crystal invariant. Indeed, in our case there
variables. The operators of the spin space groups have the an additional symmetry operatids,,® leaving the spiral
form {ag ag|t}, whereag is a spin rotationag is a space —structures under consideration invariant. HErés the time-
rotation, and is a space translation. By rotations we under-reversal operation. Since this operation does not act on the
stand here the pure rotations and rotations combined witepace variable it leads to a symmetry restriction on the mag-

inversion. The operators are defined by netization at each point r:  (my(r),my(r),my(r))
=(my(r),my(r),—m,(r)). As a resultm,(r)=0 at each
{ag aglttm(r)=asm({ag/t} ") =asm(ag (r—1)), pointr. Note that operations of the kind,,® can be sym-

(4) metry operations of the physical problem only if spin-orbit
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FIG. 1. Magnetic momentsétop) and total energiegbottom) ) . . . .
calculated with the MASW method using the GGA for ferromag- ~ 1Urning now to a detailed discussion of the spiral mag-
netic (FM), antiferromagnetic(AFM), nonmagnetic, and spiral Netic states we show tlgdependence of the total energy in
structures(SS in cubic (@ and y) iron as a function of atomic Flg 2. These calculations were carried out for planar Spirals
volume. characterized by the polar angte= /2 and the vectors)

=(0,0,y) with O=<y=<1 andg=(«,0,1) with O<a=<0.5.

coupling can be neglected. Otherwise the spin and spade®’ the range of lattice constaras=6.7a, to a=6.9,, the

variables are coupled and must be transformed in the sanppiral structures provide the states havi_ng total energies
way. lower than the collinear states, those of minimal energy be-

ing shown in Fig. 1.
We see that the form of the total-energy curves changes

IV. CALCULATIONAL RESULTS drastically with variation of the lattice parameter. Far
=6.95, the minimum of the total energy corresponds to the
ferromagnetic statgj=(0,0,0). Furthermore, there are two

To test the reliability of our new calculational technique local minima at g~(0,0,0.5) andqg=(0.5,0,1). Fora
and to locate the spin spiral states in the magnetic phase 6.9, down toa=6.8a, the minimal energy corresponds
diagram of cubic iron we carried out calculations of variousto the spiral withq~(0,0,0.55). This state was discussed in
states ofa-Fe (bcc-Fe and y-Fe for a broad range of lattice most of the earlier calculations. Aa=6.75, and a
parameters. A selection of our results is shown in Fig. 1=6.83; nearq=(0,0,0) a high-moment and a low-moment
where, comparing the two structures, we graph the total enphase coexistcompare with Fig. L
ergy as a function of atomic volume. The seven data points For a<6.75a, we observe the formation of a new total-
labeled SS in Fig. 1 are minimum-energy spiral ground statesnergy minimum atj=~ (0.15,0,1). Thigy value is in perfect
corresponding to the following lattice constants=6.7a,, agreement with the experimental value reported. The inset in
6.793,, 6.83;, 6.822A,, 6.81,, 6.9,, and 6.9%,. Fig. 2 exposes the details Bfq) in the region of this mini-

The calculations reproduce all important features of themum. At a=6.75, the minimum near the experimental
phase diagram of cubic Fe: in agreement with experiment thealue is slightly lower than afj=(0,0,0.65). The trend be-
ground state of iron is a ferromagnetic bcc structure. For theomes much clearer fa=6.7a,.
fcc structure we obtain two ferromagnetic phases, a low- Bylander and Kleinmalf used only the lattice constant of
moment phase at smaller volumes and a high-moment phagau (a=6.8221,) for their calculations; this may be the rea-
at larger volumes. The high-moment phase has lower energgon why they did not obtain the total-energy minimum at the
But the antiferromagnetic phase of fcc iron has an everexperimental spiral vector. For this lattice constant we obtain
lower total energy at small volumes, crossing the ferromagin agreement with their resuft a total-energy minimum at
netic state at a higher volume. In the vicinity of this cross-q=(0,0,0.6). Our calculations show that the relaxation of the
over the spiral state possesses the lowest total energy. Theilk of the precipitates to lower lattice parameters character-
equilibrium lattice constant oh=5.44a, and the calculated istic for y-Fe can be essential for the formation of the spiral
magnetic moment of 2.26; of the bcc ground state are in structure with the experimentally determingd This relax-
excellent agreement with the experimental valuas ation of the lattice constant is observedynFe epitaxially
=5.42, (Ref. 19 and 2.23:5.%° grown on Cu. For layers with more than 5 monolayers Fe the

A. Spiral magnetic states iny-iron
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FIG. 4. Total-energy spectra(q) calculated with constrained

lattice constant relaxes from the Cu value in the first twoan d unconstrained intra-atomic magnetization.

layers to the lattice constant of-Fe (@a=6.76) in the

interior?! . . . . .
T . . intra-atomic magnetization. In the previous section we have
We now reveal the physical interactions responsible for

: - . shown a noticeable influence of the intra-atomic noncol-
the formation of the total-energy minimum at the experimen-,

. linearity on the form of thee(qg) curve. On the other hand,
tal g value. For this purpose we carry out a number of cal- ) . .
culations of E(q) for a=6.7a, using different approxima- the cha_nge (_)f the total energy resulting from the intra-atomic
. . 70 . noncollinearity is much smaller than the scale of the total
tions. In Fig. 3 we compare the(q) curves calculated with

three different approaches: our standard calculational Schemetnergy change connected with the interatomic noncollinear-
(MASW+GGA), the MASW method without gradient cor- |?/. Here by taking a closer look at one selected spiral state

rection(MASW+LDA) and the standard ASW with gradient we discuss the strength, symmetry, and spatial dependence

correction (ASW+GGA). The ASW+ GGA results clearly of the_ deviation of the intra-atomic magnetization from the
show that the gradient correction alone cannot improve théjlrectlon of the atomic moment.
9 P To better visualize the effect we chose a spiral with

standard ASW calculation. The decisive changes come abou:t(0 0,0.65) which is characterized by a strong noncollinear-
through either the full-potential calculations or the intra- fa y 9

atomic noncollinearity or both since these are the feature'sfy of the spins of neighboring atoms. In Fig. 5 we show the

that distinguish MASW from the standard ASW method. In T-zplfane ?ﬁgnaetgzrﬁlitéogefﬁ{et?i&ﬁ?ﬁigﬁtﬂ' tﬁelgig’oigiiate
fact, except for a slight shift, the gradient correction in the(;ri .in OIIZOI‘ thez=0 plane[Fig. 5a)] there is no deviation of
MASW calculations leads to only moderate changek (@f) gn. hez=o p 9. Ad)] :

. . . the magnetization from the direction of the atomic moment.
near the experimentaj. However, since there is a strong

change ofE(q) for other values ofy the gradient correction On the basis of the symmetry analysis we have shown in

/ : L Sec. lll that the magnetization at each point in this plane
must be considered important for the description of the mag- X

. X must be exactly parallel to the axis due to the symmetry
netic properties ofy-Fe.

Having thus established the importance of intra—atomicOp?:raa:'%lUngrfé$¢0 there is no svmmetry restriction forc-
noncollinearity and the full potential for a correct description. hep N y try L

. o ing the in-plane magnetization to be collinear to the direction
of the magnetic ground state of-Fe, it is natural to ask,

which of these two effects is dominant. To attempt an answeOf the atomic moment. Indeed, inspection of the Fig) 5

X o . é(d) shows noticeable deviations of the magnetization from
the total energy is calculated by constraining the magnetlza}— . S X .
. ) e : ; hex axis. Vectors of the magnetization at different points of
tion to be collinear inside the atomic spheres. In Fig. 4 th

; : he same cross section are not exactly collinear. From Figs.
results of the constrained MASW calculation are compare (b)—5(d) it is clearly seen that each cross section vith
with those of the unconstrained MASW calculation. For the™ . y o
collinear structures witlq= (0,0,0) andy=(0,0,1) both cal- =0 supp_lles a nonzero contribution to thecomponent of
culations give identical results since the intra-atomic magne:—:}ﬁuatitg?'ig Tgma?ir\]/té Taf:és ffgrr EEE pllzr:]iz?:;lzizo 1t£1e |(t:0|2
tization is collinear. For structures with stromgteratomic " g P o0 "
noncollinearity, e.g., fog=(0,0,0.6), the difference of the positive. We can, however, show that these contributions

total energies for the two calculations increases up to O'gompensate and the atomic magnetic moment obtained by

mRyd. There is also a noticeable shift of the position of the"’]tegr"’ltlon over the whole atomic sphere possesses zero pro-

total energy minimasee insert in Fig. ¥ Since the intra- Jection on they a>.<is. Thi; property is a consequence of the
atomic noncollinearity is important we next discuss its prop_symmetry ope_rat|ons which transform the points of the plane
erties in detail. z=d to the points of the plane= —d and the corresponding

magnetization from rf,,m,0) to (m,,—m,,0). This prop-
erty is illustrated in Figs. &) and 3d).
To characterize the intra-atomic noncollinearity quantita-
This section is devoted to the properties of the intra-tively we show in Fig. 6 the anglé(r) between the magne-
atomic spin density, in particular to the noncollinearity of thetization and the direction of the atomic moment at the points

B. Intra-atomic magnetization
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V. CONCLUSIONS

An advanced version of the ASW method is used for an
(b) z = L.15ag extensive study of the magnetic propertiesyeffe. This ver-
L sion takes into account the full-shape potential inside the
FIG. 5. Magnetization in severaly planes. The arrows are plot-

. atomic spheres and the noncollinearity of the magnetization
}ﬁi;n;:jg(%? by a factor 3 if) compared tda) and by a factor 6 on an intra-atomic scale. The spatial variation of the densi-
' ties is taken into account by using the GGA. We succeeded

i i in describing the magnetic ground stateyefe. The equi-
of the (101) axis. The(101) axis connects two nearest atoms librium spiral vectorg=(0.15,0,1) obtained in the calcula-

of _the fcc lattice. For the spiral structure used in the calcUsjpns is in very good agreement with the experimental value.
lation the angle between the atomic moments of the WQye analyze the role of effects due to intra-atomic noncol-
neighboring atoms is equal to 117°. Figure 6 shows that ifinearity and the full potential and compare the results of

s_pite _of a_Ia_rge interatomic angle the intra-atomic nont_:oI-LDA and GGA calculations. Symmetry properties of the
linearity within the atom increases only slowly. The leadinginira-atomic magnetization are described and exemplarily vi-
variation of the magnetization direction occurs at the bordeggjized.

of the atomic sphere where the magnetic density is small. In \ye show thaty-Fe has a well defined atomic moment.

the spatial region where thed3tates have a large probabil- This means in particular that even though the magnetization
ity amplitude, determining the value and direction of thejs strongly noncollinear on an interatomic scale, large devia-

atomic magnetic moment, the deviation of the intra-atomicjong of the magnetization from the direction of the atomic
magnetization from the direction of the atomic moment iSmoment is seen mainly at the border of the atomic sphere
small compared to the interatomic angle. This result allowsyhere the value of the magnetic density is small.

us to draw the conclusion that in the casejyeFe we deal

with a well-defined atomic moment formed by the itinerant
3d electrons. It would be of interest to carry out similar
calculations in the case of nickel where the atomic moment This work was supported by the Deutsche Forschungsge-

is much smaller and a stronger variation of the direction ofmeinschaft(DFG) with its SFB-Program(252) Darmstadt,
the magnetization within an atomic sphere can be expectedtrankfurt, Mainz.
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