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Phononic crystals with planar defects
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We study the effect of planar defects in phononic crystals of spherical scatterers. It is shown that a plane of
impurity spheres introduces modes of vibration of the elastic field localized on this plane at frequencies within
a frequency gap of a pure phononic crystal; these show up as sharp resonances in the transmittance of elastic
waves incident on a slab of the crystal. A periodic arrangement of impurity planes along a given direction
creates narrow impurity bands with a width which depends on the position of these bands within the frequency
gap of the pure crystal and on the separation between the impurity planes. We show how a slight deviation
from periodicity~one impurity plane is different from the rest! reduces dramatically the transmittance of elastic
waves incident on a slab of the crystal.
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I. INTRODUCTION

Phononic crystals are composite materials whose ela
properties, as described by the mass densityr and the Lame´
coefficientsl and m, vary periodically in space. In recen
years there has been a growing interest in the study
phononic crystals, especially in relation to the possibility
phononic band gap materials~see, e.g., Ref. 1, and referenc
therein!. By definition these exhibit regions of frequenc
~phononic gaps! over which no vibrations are possible with
the infinite crystal. This implies that an elastic wave, wh
ever its direction of propagation and its polarization~longi-
tudinal or transverse!, incident on a slab of the material o
some thickness will be totally reflected by it, if its frequen
lies within a phononic gap. Obvious technological applic
tions of the above are nonabsorbing mirrors and vibrati
free cavities which might be very useful in high-precisi
mechanical systems operating in a given frequency rang

On the theory side one would like to be able to calcul
the frequency band structure of a phononic crystal and
the transmission and reflection coefficients of elastic wa
incident on a slab of the material of finite thickness. In
previous publication1 ~to be referred to as paper I! we pre-
sented a formalism which can do that for phononic crys
consisting of nonoverlapping spheres embedded in an el
medium of different mass density and Lame´ coefficients. In
the present paper we apply the formalism of paper I t
specific system consisting of nonoverlapping solid sphe
embedded in a solid host medium. We assume that
spheres are centered on the sites of an fcc lattice and
the crystal as a sequence of~001! planes along thez axis. We
calculate the frequency band structure of the infinite crys
and the transmission coefficient for an elastic wave incid
on a slab of the material parallel to the~001! surface consist-
ing of a finite number of planes of spheres. For a thick s
the transmittance vanishes over the exact range of the b
gap ~of the infinite crystal! as one would expect; but o
greater interest is the fact that the transmittance behave
PRB 620163-1829/2000/62~9!/5536~5!/$15.00
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almost the same manner for a thin slab consisting of just
planes of spheres.

Linear and point defects in phononic crystals have be
investigated by Torreset al.2 In the present work we study
the effect of planar defects, i.e., of impurity planes, on t
transmittance of a slab. An impurity plane has the same t
dimensional~2D! periodicity as the rest of the planes of th
slab, but the spheres centered on this plane are differen
our example they have a different radius. This leads to
states: vibrational modes of the elastic field localized on
impurity plane, which show up as transmission resonance
frequencies within the gap of the pure crystal.

Finally we consider a crystal whose unit cell along thez
direction consists of a number of planes one of which~im-
purity plane! is different from the other planes of the un
cell. This leads to impurity bands within the frequency g
of the pure crystal, the width of which depends on the po
tion of the impurity band within the gap and on the sepa
tion between the impurity planes. We show that a slight
viation from periodicity reduces dramatically th
transmission coefficient of an elastic wave incident on a s
of the crystal. In all calculations of the transmittance of
slab we assume that the material that exists between
spheres of the slab extends to infinity on either side of
slab.

II. PROPERTIES OF THE PURE CRYSTAL

The pure crystal consists of nonoverlapping lead sphe
centered on the sites of an fcc lattice. The elastic proper
of the spheres are characterized by the mass densityr and
the longitudinal and transverse velocities of propagation,
noted bycl andct , respectively. The latter are given bycl

2

5(l12m)/r and ct
25m/r. For lead we have r

511.357 gr cm23, cl52158 m s21, ct5860 m s21.
The space between the spheres is filled with epoxyr
51.180 gr cm23, cl52540 m s21, ct51160 m s21).

We calculate the complex frequency band structure of
infinite crystal~extending fromz→2` to z→`) associated
5536 ©2000 The American Physical Society
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PRB 62 5537PHONONIC CRYSTALS WITH PLANAR DEFECTS
with the~001! surface in the manner described in paper I. F
any given reduced wavevectorki , within the surface Bril-
louin zone~SBZ! of this surface, we calculate the frequen
lines kz(v;ki) as functions of the angular frequencyv. Our
results, obtained with an angular momentum cutoffl max54
and 13 2D reciprocal vectorsg are converged within an ac
curacy 1023. The ordinary frequency band structure whi
interests us here, corresponds to real sections@regions of
frequency over whichkz(v;ki) is real# of these lines. In Fig.
1~a! we show the frequency bands of the elastic field forki
50 @along the direction normal to the~001! plane#. We
present our results in dimensionless units;a denotes the lat-
tice constant of the fcc lattice andct the propagation velocity
of transverse elastic waves in epoxy. The radiusS of the
spheres equals 0.25a in the present case which correspon
to a fractional volume occupied by the spheres, denoted bf,
equal to 0.262. The bands shown in Fig. 1~a! by black~grey!
lines correspond to longitudinal~transverse! modes of vibra-
tion of the elastic field inside a sufficiently thick slab of th
material. These modes are excited only by longitudi
~transverse! waves incident normally on the surface of th
slab. This is demonstrated quite clearly in Fig. 1~b!, which
shows the transmission coefficient of a plane wave incid
normally on a slab of the material consisting of 16 planes
spheres parallel to the~001! surface. The shaded curve show
the transmission coefficient for a transverse incident w
and the black line that of a longitudinal incident wave. W
hasten to add~see also paper I! that in a composite materia
the modes of vibration of the elastic field need not be pur
longitudinal or purely transverse even along symmetry dir
tions and, therefore, the fact that they behave so in the
tem under consideration is worth noting. Off the normal
rection (ki5” 0) the frequency bands are clearly hybridiz
and they are excited by either longitudinal or transverse
cident plane waves. The bands shown by dotted lines in
1~a! are deaf bands. Theg50 component of the correspond

FIG. 1. The phononic band structure at the center (ki50) of the
SBZ of a ~001! surface of an fcc crystal of lead spheres in epo
~a!; and the corresponding transmittance curve of a slab of
planes of spheres parallel to the same surface~b!. The fractional
volume occupied by the spheres is 0.262. In~a! the black lines
represent longitudinal modes, the grey lines transverse modes
the dotted lines are deaf bands. Correspondingly, in~b! the black
line shows the transmittance of longitudinal incident elastic wav
and the shaded curve that of transverse incident waves.
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ing modes of vibration vanishes and that being the only co
ponent which couples with the external elastic field in t
frequency range under consideration, they cannot be exc
by an incident plane wave, leading to total reflection of t
latter. Finally, we point out the oscillations in the transm
sion coefficient, over the allowed regions of frequenc
which are due to interference effects resulting from multip
reflection between the surfaces of the slab~Fabry-Perrot-type
oscillations!.

In Fig. 2 we show the transmission coefficient of an ela
tic wave incident normally on a thin~001! slab consisting of
just two planes of spheres, and compare it with the sa
quantity for a thick slab~of 16 planes of spheres!, which as
we have seen is determined by the frequency band struc
of the infinite crystal. We see that over the frequency reg
that constitutes the frequency gap of the infinite crystal,
transmittance of a slab consisting of just two planes
spheres is not zero, but it is nevertheless about two order
magnitude smaller than its value at frequencies below
above the gap edges. The Fabry-Perrot-type oscillations
of course different in the two cases since they depend
rectly on the thickness of the slab.

An absolute frequency gap extends betweenv la/ct
55.29 andvua/ct57.38, as demonstrated in Fig. 3. Th
shows the projection of the frequency band structure on
SBZ, along the symmetry lines of the latter shown in t
inset. The shaded areas correspond to frequencies for w
there exists at least one propagating Bloch wave~an eigen-
mode of the elastic field! in the infinite crystal; in the fre-
quency regions represented by the blank areas none ex
We verified, by calculating the frequency lines at selec
points of the SBZ, that the gap does exist over the en
SBZ, and that it is therefore an absolute phononic gap
tending fromv la/ct55.29 tovua/ct57.38. The above val-

6

nd

s,
FIG. 2. Transmittance of longitudinal~black lines! and trans-

verse~shaded curves! elastic waves incident normally on a slab
the phononic crystal described in the caption of Fig. 1, consisting
two planes of spheres~a!, and 16 planes of spheres~b!.
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5538 PRB 62I. E. PSAROBAS, N. STEFANOU, AND A. MODINOS
ues of the lower and upper edges of the gap are diffe
from the valuesv la/ct'6.2 andvua/ct'8.0, respectively,
found by Kafesakiet al.,3 who studied the same system usi
the plane-wave method. We believe our results to be
more accurate. It is now recognized that the plane-w
method is not particularly suited to the study of phono
crystals consisting of nonoverlapping spheres in a host
dium, because of the very large number of plane waves
quired to obtain convergent results.4

III. PLANAR DEFECTS

Next we consider a slab of the phononic crystal consist
of five planes of spheres, one of which may be different fr
the other four. It has the same 2D periodicity parallel to
surface of the slab, but the spheres of this, so-called, im
rity plane may be different: they have a smaller or larg
radius than the spheres of the other planes. Our results
summarized in the six diagrams of Fig. 4. The first thr
~a!–~c!, show the transmittance of a transverse elastic w
incident normally on a slab of five planes of spheres. For F
4~a! all five planes are the same, as in the infinite crys
described in the preceding paragraphs, and the transmitt
vanishes, as expected, over the frequency region corresp
ing to the frequency gap of the infinite crystal forki50,
shown in Fig. 1~a!. For Figs. 4~b! and 4~c! the middle plane
is different from the other four. The spheres of this pla
have a smaller radius:Si50.8S for Fig. 4~b! and Si50.6S
for Fig. 4~c!, where S is the radius of the spheres in the ot
planes. The transmission resonance that now appears
frequency within the gap signifies the existence of a state
the elastic field centered on the impurity plane: a mode
vibration of the elastic field that extends to infinity parallel
the surface of the slab~in the manner of a Bloch wave!, but
decays rapidly normal to the impurity plane on either side
it. It appears that the normal mode of vibration~with ki
50) at the top of the valence band~we use the term by
analogy to semiconductor physics to denote the freque
band below the gap!, splits off this band, becoming a loca
ized ~on the impurity plane! vibration, with a frequency

FIG. 3. Projection of the frequency band structure on the SBZ
the ~001! surface of the fcc phononic crystal described in the c
tion of Fig. 1. The blank areas show the frequency gaps in
considered frequency region. The inset shows the SBZ of the~001!
fcc surface.
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higher in the gap the smaller the radius of the impur
spheres. Figures 4~d!–4~f! demonstrate the same phenom
enon for longitudinal waves incident normally on the sla
For Fig. 4~d! all five planes are the same as in the infin
crystal, and the transmission coefficient accords with the c
responding frequency band structure shown in Fig. 1~a!. For
Figs. 4~e! and 4~f! the spheres of the middle plane have
radius smaller than that of the other four planes:Si50.6S for
Fig. 4~e! andSi50.5S for Fig. 4~f!. We note that while the
trend is the same, the resonance frequency stays closer t
top of the valence band for longitudinal waves.

We note that the transmission coefficient equals unity
the resonance frequency. This is the case when the impu
plane lies in the middle of the slab; when the impurity pla
is any other than the middle plane, the transmission coe
cient at the resonance frequency is less than unity, as d
onstrated in Fig. 5. This figure shows the transmission co
ficient for a transverse plane wave incident normally on
slab of five planes of spheres one of which is an impur
plane. The spheres centered on this plane have a radiuSi
50.7S, where S is the radius of the spheres of the oth
planes. The top diagram is obtained when the impurity pla
is the middle plane of the slab, the middle diagram is o
tained when the impurity plane is the second from the s
face, and the third diagram is obtained when the impu
plane lies at the surface of the slab. Only in the first cas
the transmission coefficient at resonance equal to un
When the impurity plane is removed from the center of t
slab by one plane, the value of the transmission coefficien
resonance diminishes by at least two orders of magnit
~middle diagram!, and the resonance disappears altoget
when the impurity plane is removed to the surface of

f
-
e

FIG. 4. Transmittance of elastic waves incident normally on
slab of an fcc crystal of lead spheres in epoxy. The slab consis
five planes of spheres parallel to the~001! surface. The sphere
have a radiusS50.25a, except those of the middle plane whic
have a different radiusSi @~a!: Si5S, ~b!: Si50.8S, ~c!: Si50.6S,
for a transverse incident wave;~d!: Si5S, ~e!: Si50.6S, ~f!: Si

50.5S, for a longitudinal incident wave#.
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PRB 62 5539PHONONIC CRYSTALS WITH PLANAR DEFECTS
slab. Similar results are obtained for a longitudinal incide
wave. This is indeed a general characteristic of resonant
neling. We note, for example, the similarity of the abo
results with those obtained in the transmission of an elec
through a double barrier, when the well between the t
barrier tops allows for a resonance state of the tunne
electron. When the double barrier is symmetric the transm
sion coefficient at resonance equals unity, when the dou
barrier is not symmetric the transmission coefficient is l
than unity.5

In Fig. 6 we show the variation withki of the resonance
frequency, associated with an impurity plane at the middle
a slab of five planes of spheres. The spheres of the mi
plane have a radiusSi50.7S, whereS50.25a is the radius
of the spheres in the other planes. The gap states/resona
along X̄M̄ and M̄ Ḡ are hybridized, excited by both longitu
dinal and transverse incident plane waves. The sta
resonances alongḠX̄ corresponding to the two top bands a
excited by s-polarized transverse waves~the displacemen
vector is parallel to the surface of the slab!; the third band is
excited by both longitudinal andp-polarized waves~the dis-
placement vector lies in the plane of incidence!. We note that
all three bands of gap states are restricted within a ra
narrow range of frequencies about the midgap frequency

Next we consider an infinite crystal~extending fromz→
2` to z→`) the unit cell of which, along thez axis,
consists of three fcc planes of spheres; we h
•••SSSiSSSiSSSi•••. The spheres of the third plane of th
unit slice have a radiusSi which is smaller than the radiusS
of the spheres of the other two planes. We putSi50.7S. The

FIG. 5. Transmittance of transverse elastic waves incident
mally on a slab of an fcc crystal of lead spheres in epoxy. The s
consists of five planes of spheres parallel to the~001! surface. The
spheres have a radiusS50.25a, except those of the middle plan
~top diagram!, or of the second plane from the surface~middle
diagram!, or of the surface of the slab~bottom diagram!, which
haveSi50.7S .
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resonances shown in Fig. 6 now develop into bands sho
by shaded regions in Fig. 7. These bands are neverthe
extremely narrow for mostki , which implies that the vibra-
tions are strongly localized on the impurity planes, with ve
little interaction between impurity planes. This is, of cours
consistent with the sharpness of the resonance seen in a
of five planes~see top diagram of Fig. 5!. We can vary the
width of the impurity bands by pushing them away from t
middle of the gap. PuttingSi50.8S displaces the impurity
bands of Fig. 7 towards the bottom of the gap; at theḠ point
this leads to a bandwidth ofDva/ct50.14 which is more
than three times that shown in Fig. 7 which equals 0.04.
can understand this by noting that the interaction betw
states localized on neighboring impurity planes depends
the separation,d, between the planes approximately
;exp@2uki(v;ki)ud#, whereki(v;ki) is the smallest~in mag-
nitude! of the imaginary parts of the frequency line
kz(v;ki) in the pure crystal over the frequency range of t
impurity band.uki(v;ki)u is largest in the middle of the ga

r-
b

FIG. 6. Variation withki of the resonance frequency associat
with an impurity plane at the center of a slab of five~001! fcc
planes of lead spheres in epoxy (S50.25a, Si50.7S).

FIG. 7. Projection of the frequency band structure on the SBZ
the~001! fcc surface of a phononic crystal of lead spheres in epo
The spheres are centered on the sites of an fcc lattice and the
cell of the structure along thez axis consists of three planes o
spheres:SSSi , with S50.25a and Si50.7S. The dotted lines re-
produce the results shown in Fig. 6 for comparison.
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5540 PRB 62I. E. PSAROBAS, N. STEFANOU, AND A. MODINOS
~for a givenki) and goes to zero at the edges of this gap
Finally, in Fig. 8 @curve ~A!# we show the transmissio

coefficient in the frequency region of the impurity band fo
transverse wave incident normally on a slab of a phono
crystal consisting of seven unit cells along thez direction,
when the unit slice consists of three~001! fcc planes:SSSi ,

FIG. 8. ~A!: Transmittance of transverse elastic waves incid
normally on a slab of seven unit slices of the phononic crys
described in the caption of Fig. 7, over the frequency range of
impurity band within the absolute gap.~B!: As in ~A! except thatSi

of the third unit slice is a little different~it equals 0.6S).
it
ic

with the spheres of the third plane having a radiusSi

50.7S with S50.25a. We note that the frequency gap of th
pure crystal (Si5S) for ki50 extends fromv la/ct55.29 to
vua/ct57.67. We recall that the gap states corresponding
the first six impurity planes~taken individually! manifest
themselves as transmission resonances atv ra/ct56.29 ~see
Fig. 5! while the seventh impurity plane, at the surface of t
slab, does not give a transmission resonance, as shown i
bottom diagram of Fig. 5. The interaction between the imp
rity planes removes the degeneracy of the above reson
level, leading to six discrete resonances in the transmis
spectrum, as shown in Fig. 8. Curve~B! of Fig. 8 is obtained
for a slab which differs from the above in that the spheres
the third plane of the third unit slice have a radiusSi
50.6S, instead ofSi50.7S. We note the dramatic reduction
by about four orders of magnitude, in the transmission co
ficient as a result of the presence of just one different im
rity plane. In a way this phenomenon, which may have
teresting technological applications, is to be expected;
different impurity plane decouples the vibrations on its rig
from those on its left. This suggests that a random distri
tion of impurity planes will lead to vibrational modes loca
ized over smaller regions of the slab. We have here a po
bility to study Anderson localization of classical waves in
effectively one-dimensional system~because ofki conserva-
tion! which allows direct comparison with corresponding e
perimental data, without the difficulty associated with cor
lation in the corresponding electronic problem.
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