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Phononic crystals with planar defects

I. E. Psarobdsand N. Stefanou
Section of Solid State Physics, University of Athens, Panepistimioupolis, GR-157 84, Athens, Greece

A. Modinos
Department of Physics, National Technical University of Athens, Zografou Campus, GR-157 73, Athens, Greece

(Received 3 April 2000

We study the effect of planar defects in phononic crystals of spherical scatterers. It is shown that a plane of
impurity spheres introduces modes of vibration of the elastic field localized on this plane at frequencies within
a frequency gap of a pure phononic crystal; these show up as sharp resonances in the transmittance of elastic
waves incident on a slab of the crystal. A periodic arrangement of impurity planes along a given direction
creates narrow impurity bands with a width which depends on the position of these bands within the frequency
gap of the pure crystal and on the separation between the impurity planes. We show how a slight deviation
from periodicity(one impurity plane is different from the réseduces dramatically the transmittance of elastic
waves incident on a slab of the crystal.

[. INTRODUCTION almost the same manner for a thin slab consisting of just two
planes of spheres.

Phononic crystals are composite materials whose elastic Linear and point defects in phononic crystals have been
properties, as described by the mass densiand the Lame investigated by Torrest al? In the present work we study
coefficients\ and u, vary periodically in space. In recent the effect of planar defects, i.e., of impurity planes, on the
years there has been a growing interest in the study dfansmittance of a slab. Animpurity plane has the same two-
phononic crystals, especially in relation to the possibility ofdimensional2D) periodicity as the rest of the planes of the
phononic band gap materidisee, e.g., Ref. 1, and references S1ab, but the spheres cente_red on thls_ plane are different. In
therein. By definition these exhibit regions of frequency OU' €xample they have a different radius. This leads to gap

(phononic gapsover which no vibrations are possible within states: vibrational modes of the elastic field localized on the

the infinite crystal. This implies that an elastic wave what-MPurity plane, which show up as transmission resonances at
L : . N frequencies within the gap of the pure crystal.

ever its direction of propagation and its polarizatidongi- Finallv we consider a crvstal whose unit cell alond the

tudinal or transvergeincident on a slab of the material of y y g

. . s direction consists of a number of planes one of which-
some thickness will be totally reflected by it, if its frequency purity plane is different from the other planes of the unit

lies within a phononic gap. Obvious technological applica-cg|| “This |eads to impurity bands within the frequency gap

tions of the above are nonabsorbing mirrors and vibrationys the pure crystal, the width of which depends on the posi-

free cav_ltles which might b_e very us_eful in high-precision +jon of the impurity band within the gap and on the separa-

mechanical systems operating in a given frequency range. tion between the impurity planes. We show that a slight de-
On the theory side one would like to be able to Ca'CU'atQ/iation from periodicity reduces dramatica”y the

the frequency band structure of a phononic crystal and alsgansmission coefficient of an elastic wave incident on a slab

the transmission and reflection coefficients of elastic wavesf the crystal. In all calculations of the transmittance of a

incident on a slab of the material of finite thickness. In aslab we assume that the material that exists between the

previous publicatioh (to be referred to as paper we pre-  spheres of the slab extends to infinity on either side of the

sented a formalism which can do that for phononic crystalslab.

consisting of nonoverlapping spheres embedded in an elastic

medium of different mass denSity and L'amfﬂClentS In Il. PROPERTIES OF THE PURE CRYSTAL

the present paper we apply the formalism of paper | to a

specific system consisting of nonoverlapping solid spheres The pure crystal consists of nonoverlapping lead spheres

embedded in a solid host medium. We assume that theentered on the sites of an fcc lattice. The elastic properties

spheres are centered on the sites of an fcc lattice and vie@f the spheres are characterized by the mass depsityd

the crystal as a sequence(6D)) planes along the axis. We the longitudinal and transverse velocities of propagation, de-

calculate the frequency band structure of the infinite crystalnoted byc; andc,, respectively. The latter are given

and the transmission coefficient for an elastic wave incidente (A +2u)/p and cZ=ulp. For lead we havep

on a slab of the material parallel to th@01) surface consist- =11.357 grcm?®, ¢,=2158 ms?!, ¢,=860 ms?.

ing of a finite number of planes of spheres. For a thick slablhe space between the spheres is filled with epopy (

the transmittance vanishes over the exact range of the band1.180 grecm?3, ¢,=2540 ms!, ¢,=1160 ms?).

gap (of the infinite crystal as one would expect; but of We calculate the complex frequency band structure of the

greater interest is the fact that the transmittance behaves infinite crystal(extending fromz— —« to z—~) associated
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FIG. 1. The phononic band structure at the cenker() of the 102
SBZ of a(001 surface of an fcc crystal of lead spheres in epoxy
(a); and the corresponding transmittance curve of a slab of 16
planes of spheres parallel to the same surfd@ge The fractional 5 B N . B
volume occupied by the spheres is 0.262.(& the black lines 10
A - 0 2 4 6 8 10
represent longitudinal modes, the grey lines transverse modes, and wa/c
the dotted lines are deaf bands. Correspondinglybjnthe black t

line shows the transmittance of longitudinal incident elastic waves,

and the shaded curve that of transverse incident waves. FIG. 2. Transmittance of Iongitudin&black |ine$ and trans-
verse(shaded curveselastic waves incident normally on a slab of

rthe phononic crystal described in the caption of Fig. 1, consisting of

. . . . LE
with the (001) surface in the manner described in paper I. Fo wo planes of sphere), and 16 planes of spherés).

any given reduced wavevectgy, within the surface Bril-
louin zone(SB2) of this surface, we calculate the frequency ing modes of vibration vanishes and that being the only com-
linesk,(w;k|) as functions of the angular frequenay Our  ponent which couples with the external elastic field in the
results, obtained with an angular momentum cutgff,=4  frequency range under consideration, they cannot be excited
and 13 2D reciprocal vectoggare converged within an ac- by an incident plane wave, leading to total reflection of the
curacy 10°3. The ordinary frequency band structure which latter. Finally, we point out the oscillations in the transmis-
interests us here, corresponds to real sectioagions of sjion coefficient, over the allowed regions of frequency,
frequency over whiclk,(w;k|) is real of these lines. In Fig. which are due to interference effects resulting from multiple
1(a) we show the frequency bands of the elastic fieldkpr reflection between the surfaces of the slgabry-Perrot-type

=0 [along the direction normal to th€01) pland. We  oscillations.

present our results in dimensionless unétglenotes the lat- In Fig. 2 we show the transmission coefficient of an elas-
tice constant of the fcc lattice amg the propagation velocity tic wave incident normally on a thif001) slab consisting of

of transverse elastic waves in epoxy. The radiusf the just two planes of spheres, and compare it with the same
spheres equals 0.85n the present case which correspondsquantity for a thick slalfof 16 planes of sphergswhich as

to a fractional volume occupied by the spheres, denotefd by we have seen is determined by the frequency band structure
equal to 0.262. The bands shown in Figa)lby black(grey) of the infinite crystal. We see that over the frequency region
lines correspond to longitudin@ransversemodes of vibra-  that constitutes the frequency gap of the infinite crystal, the
tion of the elastic field inside a sufficiently thick slab of the transmittance of a slab consisting of just two planes of
material. These modes are excited only by longitudinalspheres is not zero, but it is nevertheless about two orders of
(transversg waves incident normally on the surface of the magnitude smaller than its value at frequencies below or
slab. This is demonstrated quite clearly in Figb)1 which  above the gap edges. The Fabry-Perrot-type oscillations are
shows the transmission coefficient of a plane wave incidendf course different in the two cases since they depend di-
normally on a slab of the material consisting of 16 planes ofectly on the thickness of the slab.

spheres parallel to tH@01) surface. The shaded curve shows An absolute frequency gap extends betweera/c;

the transmission coefficient for a transverse incident wave=5.29 andw,a/c,=7.38, as demonstrated in Fig. 3. This
and the black line that of a longitudinal incident wave. Weshows the projection of the frequency band structure on the
hasten to addsee also pape) that in a composite material SBZ, along the symmetry lines of the latter shown in the
the modes of vibration of the elastic field need not be purelyinset. The shaded areas correspond to frequencies for which
longitudinal or purely transverse even along symmetry directhere exists at least one propagating Bloch wée eigen-
tions and, therefore, the fact that they behave so in the sysnode of the elastic fie)din the infinite crystal; in the fre-
tem under consideration is worth noting. Off the normal di-quency regions represented by the blank areas none exists.
rection (;#0) the frequency bands are clearly hybridized We verified, by calculating the frequency lines at selected
and they are excited by either longitudinal or transverse inpoints of the SBZ, that the gap does exist over the entire
cident plane waves. The bands shown by dotted lines in FiggsBZ, and that it is therefore an absolute phononic gap ex-
1(a) are deaf bands. Thg=0 component of the correspond- tending fromw,a/c,=5.29 tow,a/c,=7.38. The above val-
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FIG. 3. Projection of the frequency band structure on the SBZ of
the (002) surface of the fcc phononic crystal described in the cap- s
tion of Fig. 1. The blank areas show the frequency gaps in the 107
considered frequency region. The inset shows the SBZ of00#® 10° (c) .
fcc surface. 2 4 8 4 6 8 10

a)a/ct

ues of the lower and upper edges of the gap are different
from the value&)|a/ct%gg andcg alc,~8.0 gregpectively FIG. 4. Transmittance of elastic waves incident normally on a
. u .0, , . .
: : . slab of an fcc crystal of lead spheres in epoxy. The slab consists of
Iﬁ:nd|:ze'fifae\,s:kr?]tg?rl{sgm\?vzt%%ﬁgvg]eofj?r?:;)(g etrcr: Ezmt% ive planes of ;ypheres parallgl to tI(ﬂOl)psur);ace. The spheres
P . ’ - ave a radiusS=0.25, except those of the middle plane which
more accurate. It is now recognized that the plane-wave =~ o radius: [(a): S =S, (b): S =0.85, () S=0.65
method is not particularly suited to the study of phononic, " o o dent vx;av«éd):lﬁz's (e):. Si’:o.'ﬁs (f):' S;

crystals consisting of nonoverlapping spheres in a host me- 4 s5 ¢or a longitudinal incident wave

dium, because of the very large number of plane waves re-

quired to obtain convergent resufts. higher in the gap the smaller the radius of the impurity
spheres. Figures(d)—4(f) demonstrate the same phenom-
IIl. PLANAR DEEECTS enon for longitudinal waves incident normally on the slab.

For Fig. 4d) all five planes are the same as in the infinite

Next we consider a slab of the phononic crystal consistingrystal, and the transmission coefficient accords with the cor-
of five planes of spheres, one of which may be different fromresponding frequency band structure shown in Fig). For
the other four. It has the same 2D periodicity parallel to theFigs. 4e) and 4f) the spheres of the middle plane have a
surface of the slab, but the spheres of this, so-called, impuadius smaller than that of the other four plar@gs: 0.6S for
rity plane may be different: they have a smaller or largerFig. 4e) andS;=0.5S for Fig. 4(f). We note that while the
radius than the spheres of the other planes. Our results ateend is the same, the resonance frequency stays closer to the
summarized in the six diagrams of Fig. 4. The first threetop of the valence band for longitudinal waves.
(a)—(c), show the transmittance of a transverse elastic wave We note that the transmission coefficient equals unity at
incident normally on a slab of five planes of spheres. For Figthe resonance frequency. This is the case when the impurity
4(a) all five planes are the same, as in the infinite crystaplane lies in the middle of the slab; when the impurity plane
described in the preceding paragraphs, and the transmittanggany other than the middle plane, the transmission coeffi-
vanishes, as expected, over the frequency region correspongient at the resonance frequency is less than unity, as dem-
ing to the frequency gap of the infinite crystal fey=0,  onstrated in Fig. 5. This figure shows the transmission coef-
shown in Fig. 1a). For Figs. 4b) and 4c) the middle plane ficient for a transverse plane wave incident normally on a
is different from the other four. The spheres of this planeslab of five planes of spheres one of which is an impurity
have a smaller radiuss;=0.8S for Fig. 4b) andS;=0.6S  plane. The spheres centered on this plane have a r&lius
for Fig. 4(c), where S is the radius of the spheres in the other=0.7S, where S is the radius of the spheres of the other
planes. The transmission resonance that now appears atp@nes. The top diagram is obtained when the impurity plane
frequency within the gap signifies the existence of a state o the middle plane of the slab, the middle diagram is ob-
the elastic field centered on the impurity plane: a mode otained when the impurity plane is the second from the sur-
vibration of the elastic field that extends to infinity parallel to face, and the third diagram is obtained when the impurity
the surface of the slabin the manner of a Bloch wayebut  plane lies at the surface of the slab. Only in the first case is
decays rapidly normal to the impurity plane on either side ofthe transmission coefficient at resonance equal to unity.
it. It appears that the normal mode of vibratiowith k;  When the impurity plane is removed from the center of the
=0) at the top of the valence bar@ve use the term by slab by one plane, the value of the transmission coefficient at
analogy to semiconductor physics to denote the frequencsesonance diminishes by at least two orders of magnitude
band below the gapsplits off this band, becoming a local- (middle diagrany and the resonance disappears altogether
ized (on the impurity plang vibration, with a frequency when the impurity plane is removed to the surface of the
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10° f: :f FIG. 6. Variation withk; of the resonance frequency associated
L - with an impurity plane at the center of a slab of fi\@01) fcc
10° & 2 planes of lead spheres in epox$=0.25, S=0.79).
107 e e resonances shown in Fig. 6 now develop into bands shown
2 4 6 8 10 by shaded regions in Fig. 7. These bands are nevertheless
walc, extremely narrow for most;, which implies that the vibra-

tions are strongly localized on the impurity planes, with very
FIG. 5. Transmittance of transverse elastic waves incident norjitt|e interaction between impurity planes. This is, of course,
mally on a slab of an fcc crystal of lead spheres in epoxy. The slalygnsistent with the sharpness of the resonance seen in a slab
consists of five planes of spheres parallel to @@1) surface. The of five planes(see top diagram of Fig.)5We can vary the
spheres have a radi&=0.25, except those of the middle plane width of the impurity bands by pushing them away from the

(top diagram, or of the second plane from the surfagmiddle . Ce . ; .
diagram, or of the surface of the slatbottom diagrany which middle of the gap. Putting=0.8S displaces the impurity

haveS =0.7S . bands of Fig. 7 towards the bottom of the gap; atlthgoint

this leads to a bandwidth of wa/c,=0.14 which is more
slab. Similar results are obtained for a longitudinal incidentthan three times that shown in Fig. 7 which equals 0.04. We
wave. This is indeed a general characteristic of resonant turean understand this by noting that the interaction between
neling. We note, for example, the similarity of the abovestates localized on neighboring impurity planes depends on
results with those obtained in the transmission of an electrothe separationd, between the planes approximately as
through a double barrier, when the well between the two-exq —|k(w;k)|d], wherek;(w;kj) is the smallestin mag-
barrier tops allows for a resonance state of the tunnelingiitude of the imaginary parts of the frequency lines
electron. When the double barrier is symmetric the transmisk,(w;k;) in the pure crystal over the frequency range of the
sion coefficient at resonance equals unity, when the doublgnpurity band.|k(w;k;)| is largest in the middle of the gap
barrier is not symmetric the transmission coefficient is less
than unity®

. - . 8
In Fig. 6 we show the variation witk; of the resonance -

frequency, associated with an impurity plane at the middle of g | e S 1

a slab of five planes of spheres. The spheres of the middl
plane have a radiu§;=0.7S, whereS=0.2% is the radius
of the spheres in the other planes. The gap states/resonanc

alongm andMT are hybridized, excited by both longitu-
dinal and transverse incident plane waves. The states

resonances anrﬁ—Xcorresponding to the two top bands are
excited bys-polarized transverse wavdthe displacement
vector is parallel to the surface of the slathe third band is
excited by both longitudinal anp-polarized wavesthe dis- L .
placement vector lies in the plane of incidend&'e note that
all three bands of gap states are restricted within a rathe 4 = = = =

. . T X M T
narrow range of frequencies about the midgap frequency.

Next we consider an infinite crystéxtending fromz— FIG. 7. Projection of the frequency band structure on the SBZ of
—© to z—) the unit cell of which, along the axis,  the(001) fcc surface of a phononic crystal of lead spheres in epoxy.
consists of three fcc planes of spheres; we haverhe spheres are centered on the sites of an fcc lattice and the unit
---SSESSPSSS - -. The spheres of the third plane of the cell of the structure along the axis consists of three planes of
unit slice have a radiu§; which is smaller than the radi  spheresSS$, with S=0.25 and S;=0.7S. The dotted lines re-
of the spheres of the other two planes. We $ut 0.7S. The  produce the results shown in Fig. 6 for comparison.
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with the spheres of the third plane having a radifs
=0.7S with S=0.2%. We note that the frequency gap of the
pure crystal §=3S) for k=0 extends fromw,a/c;=5.29 to
w,alc;=7.67. We recall that the gap states corresponding to
the first six impurity planegtaken individually manifest
themselves as transmission resonances, atc,=6.29 (see

Fig. 5 while the seventh impurity plane, at the surface of the
slab, does not give a transmission resonance, as shown in the
bottom diagram of Fig. 5. The interaction between the impu-

Transmittance
S
III

III III III Il' 1

10° | — rity planes removes the degeneracy of the above resonance
- B level, leading to six discrete resonances in the transmission
F B spectrum, as shown in Fig. 8. Curi®) of Fig. 8 is obtained
10® : - I - for a slab which differs from the above in that the spheres of
6.26 6.28 6.30 6.32 the third plane of the third unit slice have a radiGs

walc, =0.6S, instead ofS,=0.7S. We note the dramatic reduction,
, , .. by about four orders of magnitude, in the transmission coef-
FIG. 8. (A): Transmittance of t.rans_verse elastic waves 'nc'dentficient as a result of the presence of just one different impu-
gormgg)lydqn e;]slab of se\f/?:r_l uglt sllcesh Off the phononic Cr);Stﬁlrity plane. In a way this phenomenon, which may have in-
described in the caption of Fig. ’Over_t e frequency range of t ?eresting technological applications, is to be expected; the
impurity band within the absolute gaB): As in (A) except tha§ different imourity plane decounles the vibrations on its right
of the third unit slice is a little differentit equals 0.6). ! punty p ecoup vibratl IS g
from those on its left. This suggests that a random distribu-
tion of impurity planes will lead to vibrational modes local-
(for a givenk|) and goes to zero at the edges of this gap. ized over smaller regions of the slab. We have here a possi-
Finally, in Fig. 8[curve (A)] we show the transmission bility to study Anderson localization of classical waves in an
coefficient in the frequency region of the impurity band for aeffectively one-dimensional systefpecause ok conserva-
transverse wave incident normally on a slab of a phononition) which allows direct comparison with corresponding ex-
crystal consisting of seven unit cells along thelirection,  perimental data, without the difficulty associated with corre-
when the unit slice consists of thré@01) fcc planesSS$, lation in the corresponding electronic problem.
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