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Two-magnon Raman scattering in insulating cuprates: Modifications
of the effective Raman operator
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~Received 15 March 2000!

Calculations of Raman scattering intensities in spin-1/2 square-lattice Heisenberg model, using the Fleury-
Loudon-Elliott theory, have so far been unable to describe the broad line shape and asymmetry of the two
magnon peak found experimentally in the cuprate materials. Even more notably, the polarization selection rules
are violated with respect to the Fleury-Loudon-Elliott theory. There is comparable scattering inB1g andA1g

geometries, whereas the theory would predict scattering in onlyB1g geometry. We review various suggestions
for this discrepency and suggest that at least part of the problem can be addressed by modifying the effective
Raman Hamiltonian, allowing for two magnon states with arbitrary total momentum. Such an approach based
on the Sawatzsky-Lorenzana theory of optical absorption assumes an important role of phonons as momentum
sinks. It leaves the low-energy physics of the Heisenberg model unchanged but substantially alters the Raman
line-shape and selection rules, bringing the results closer to experiments.
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I. INTRODUCTION

Raman scattering provides an important tool for exam
ing the structure of antiferromagnetic materials. Even thou
optical processes in Mott insulators necessarily depend
the energy bands in a complex way, the Fleury-Loud
Elliott theory1,2 allows one to bypass that complexity an
develop a theory for the line shape of the Raman spe
entirely within the framework of pure spin models. Th
theory has been highly successful in many cases and is
primary reason why the Raman scattering becomes an in
tigative tool for these class of materials. However, in case
the cuprates such as La2CuO4, the stochiometric parent com
pounds of the high-temperature superconducting mater
the Fleury-Loudon-Elliott theory runs into several difficu
ties. This has been a subject of intense debate, and m
explanations have been proposed ranging from the in
equacy of the theory to novel and exotic microscopic phys
in these materials. The goal of this paper is to review
various explanations and to examine how far a simple mo
fication to the effective ‘‘Raman Hamiltonian’’ that allow
two-magnon states with arbitrary total momentum, can h
bridge the gap between theory and experiments.

It is fair to say that Raman scattering provided some
the earliest accurate estimates for the antiferromagnetic
change constant in the cuprates.4 This, by itself, is proof that
the peak-frequency of the Raman scattering inten
matches reasonably with theoretical expectations. Furt
more, the line shape of the spectra is reasonably unive
from one material to another within the insulatin
cuprates,5–8 and although there are details in the shape wh
dependence on the incident photon energy can be cle
recognized, the gross features of the line shape are lar
independent of such resonance effects. Thus the discrep
between theory and experiment only come in when a m
detailed calculation of the line shape is performed within
Fleury-Loudon-Elliott theory. The experimental spectra
much broader, perhaps by about a factor of 3, and has a
PRB 620163-1829/2000/62~9!/5525~6!/$15.00
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asymmetry extending towards high energies. The most
table discrepency with the theory is that in the experime
there is comparable scattering intensity inA1g and B1g po-
larizations of incident and outgoing light, whereas theo
predicts scattering predominantly inB1g geometry only. The
fact that the main features of the spectra are so unive
suggests that it is intrinsic and significant.

The theoretical work focusing on these discrepencies
be grouped into the following categories:

~i! Inaccuracies of numerical calculations: Even given
system well described by a nearest-neighbor Heisenb
model and an effective spin Hamiltonian which describes
Raman scattering process, the calculation of Ram
scattering line shape remains a challenging task. The s
wave theory,9 which works well for higher spin and highe
dimensional systems, need not be accurate for a t
dimensional~2D! spin-half system. Improved calculation
have involved higher-order spin-wave theory,10 series
expansions,11 exact-diagonalization of small systems,12 and
finite temperature quantum Monte Carlo simulations13

These calculations have established the first few momen
the spectra quite well. The quantum Monte Carlo calculat
is perhaps the best in terms of getting the line shape cor
and suggests that the actual line shape can be fairly diffe
from spin-wave theory. It may be both broader than sp
wave theory and have some of the high-energy asymme
but perhaps not as much as in the experiments.

~ii ! The Heisenberg model is not good enough for t
cuprates: Other work has focused on extending the nea
neighbor Heisenberg model in order to get better agreem
with the experiments. For example, one could introduce s
ond neighbor antiferromagnetic interactions to explain sc
tering inA1g geometries.11 A more radical proposal has bee
the possibility of substantial or dominant ring-exchan
terms,14,15 which can dramatically broaden the spectra. T
consistency of such an approach with other measurem
~most notably neutron scattering! has not been shown.

~iii ! Line shape depends on resonance: Chubukov
Frenkel16 and independently Kampfet al. have argued tha
5525 ©2000 The American Physical Society
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the line shape does depend on the frequency of incident
ton energy17,18 and these features can also make the spe
appear broader and give enhanced scattering at higher
quencies.

~iv! Other degrees of freedom, most notably phonons
important: It has been argued by several authors that c
pling between spin and phonons can lead to substa
broadening of the spectra. Calculations in this respect h
included modeling phonons by substantial modulation of
cal coupling constants19 as well as by spin-wave theory.20

Again, the consistency of strong spin-phonon couplings
neutron scattering and other measurements have not
shown. In particular, the fact that neutron-scattering m
surements, especially the temperature-dependent correl
length j(T) and the spin dynamics, agree remarkably w
with the Heisenberg model21,22does not leave room for suc
couplings.

~v! Magnons are not good elementary excitations at sh
wavelengths: One of the most exciting suggestions from
physics point of view has been to invoke spinons and
magnons as elementary excitations of the system, at lea
short wavelengths.23–26Such an approach naturally leads to
much broader spectra, and can be considered to be succe
at a phenomenological level. The primary difficulty with th
approach is that the existence of spinonlike excitations
two dimensions remains highly controversial.

~vi! The need to go beyond the spin-subspace to desc
the scattering process: The work of Shastry and Shraim27

has presented a comprehensive theoretical framework for
derstanding the Fleury-Loudon-Elliott scheme for effect
Raman Hamiltonians starting from an electronic Ham
tonian. However, the cuprate materials are far from the lar
U limit where such a scheme can be rigorously shown
work, and thus multiple bands and detailed band struc
may play a role here. However, as noted before, the fact
the spectral features are reasonably universal over diffe
family of materials suggests a more generic explanation m
be appropriate.

In this paper, we primarily concern ourselves with t
numerical calculation of the Raman-scattering line sh
with a modified effective Hamiltonian. Such an approa
does not alter the ground-state properties and elementar
citations of the system, but only the way in which the Ram
scattering process is described within the spin subspace.
basic idea is based on the work of Sawatzsky a
Lorenzana28 for optical absorption in the cuprates. They a
gued that the optical absorption was assisted by phon
whose role can be incorporated into the theory by sim
assuming that they acted as momentum sinks. Thus op
absorption could proceed through excitation of two magn
with arbitrary total momentum. Here we explore the ana
gous situation for Raman scattering aided by phonons. T
immediately leads to scattering in bothB1g and A1g geom-
etries. Furthermore, the spectral features come closer to
periments. Given our finite-size numerical calculations, i
difficult to say whether these are now in complete agreem
with experiments.

II. PHONON-ASSISTED SCATTERING:
THE SINGLE-SITE OPERATOR „SSO…

Let us first examine the rationale behind the very succe
ful Fleury-Loudon1 theory as formulated by Elliott.2 Al-
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though Raman scattering proceeds through virtual charge
citations, the scattering process can be described by
effective spin Hamiltonian, simply by incorporating the im
portant symmetries of the problem. This is possible beca
the initial and final states both lie well below the charge g
and thus the resulting excitation must be a pure spin exc
tion. Since light has very long wavelength and the scatter
involves the electric field and not the magnetic field, t
effective Raman Hamiltonian must have zero total mom
tum and be a spin singlet. It must be linear in the polari
tions of incoming and outgoing electric-field vectors a
must be a scalar. If we further assume the dominance
nearest-neighbor superexchange, the effective Raman Ha
tonian is essentially fully determined apart from an over
multiplicative constant. It takes the Fleury-Loudon-Ellio
form

HR5(̂
i j &

~eW in• r̂ i j !~eWout• r̂ i j !SW i•SW j . ~1!

where the sum runs over the nearest-neighbor pairs,e in and
eout are the incoming and outgoing electric-field polarizati
vectors, andr̂ i j is a unit vector connecting the sitesi and j.

Thus in theB1g configuration, where the incoming an
outgoing light are polarized in the plane of the copper oxid
at right angles to each other and at an angle 45° from thx
andy axes of the CuO2 lattice, the effective scattering opera
tor becomes

OB1g
5 (

^ i j &,x
SW i•SW j2 (

^ i j &,y
SW i•SW j , ~2!

where the first sum is over the nearest neighbor bonds
allel to thex axis, and the second sum is over the near
neighbor bonds parallel to they axis.

In contrast, the effective Hamiltonian vanishes in theB2g
configuration, where the incoming and outgoing light are p
larized in the plane of the copper oxides at right angles
each other, with one being along thex and the other along
the y axis. In the A1g configuration, the Fleury-Loudon
Elliott operator becomes

OA1g
5 (

^ i j &,x
SW i•SW j1 (

^ i j &,y
SW i•SW j , ~3!

which is just the Heisenberg Hamiltonian and, thus, result
no scattering. Thus the theory predicts scattering inB1g ge-
ometry only. The spectra obtained by treating this effect
Hamiltonian in the two magnon approximation forS>1,
provide a remarkably accurate description of the experime
in K2NiF4 and other materials.3 Numerical calculations for
S51/2, and their lack of agreement with the cuprate mate
als will be discussed in the following sections.

Here we will examine the possibility that the phonons
impurities play an important role in the Raman-scatter
process, even though they do not much effect the system
the absence of incident light. One way to mimic the role
phonons follows from the work of Lorenzana an
Sawatzky28 on optical absorption in antiferromagnets. Th
key effect of phonons, in their theory, is to act as a mom
tum sink, allowing absorption via two-magnon states of
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bitrary total momentum. This theory has proved to be v
successful in describing optical absorption in the quasi-
material Sr2CuO3.29

We can incorporate this idea of phonons acting as m
mentum sinks in Raman scattering by modifying the Ram
scattering operator. The most natural choice is to cons
the following single-site operator~SSO! for theB1g configu-
ration:

OB1g
5 (

^ j &,x
SW 0•SW j2 (

^ j &,y
SW 0•SW j , ~4!

and, for theA1g configuration:

OA1g
5 (

^ j &,x
SW 0•SW j1 (

^ j &,y
SW 0•SW j . ~5!

Notice that the latter no longer commutes with the antifer
magnetic Heisenberg Hamiltonian, and can thus prod
scattering in theA1g channel. In general, one would expe
that by including two magnons at arbitrary momentum
two magnons will scatter less with each other in the fi
state and thus lead to a broadening of the spectra. Whe
this effect combined with quantum fluctuations can lead t
spectra consistent with the experiments becomes a nume
issue.

III. COMPUTATIONAL METHODS

Results shown in this paper will be based on exact dia
nalization computations of Raman spectra. The antife
magnetic Heisenberg model is used for systems of 16 an
sites. To obtain a ground-state vectoruc0& having energyE0,
a conjugate gradient method was used.30 Once that was ac
complished, it was possible to compute zero-temperature
man spectra using a variety of methods, which we will n
discuss. Let us assume that our scattering operator isO; the
equation for the scattering intensityI at the shifted frequency
v has the form

I ~v!52
1

p
ImF K c0UO†

1

v1E01 i e2H
OUc0L G , ~6!

whereH is the Hamiltonian of the system ande is a small
real number introduced to allow computation. This equat
can also be expressed in a Fermi’s golden rule form,

I ~v!5(
n

u^cnuOuc0&u2d@v2~En2E0!#, ~7!

whereucn. andEn are eigenvectors and eigenvalues of t
system.

There are many possible ways to perform this calculat
using these two equation forms. One standard method
use a continued fraction calculation on the first for
Dagotto12 describes how this calculation can be perform
More recent techniques relying on the second form of
scattering equation are simpler to implement, however.
first one we shall examine, which is sometimes called
spectral decoding technique, was introduced by Loh
y
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Campbell.31 Let us define a set of vectorsufn. using the
well-known Lanczo¨s iteration technique:32

uf0&5
Ouc0&

A^c0uO†Ouc0&
, ~8!

uf1&5Huf0&2
^f0uHuf0&

^f0uf0&
uf0&, ~9!

and

ufn11&5Hufn&2
^fnuHufn&

^fnufn&
ufn&2

^fnufn&

^fn21ufn21&
ufn21&.

~10!

With this set of vectors defined, we now have a simple tri
agonal form for the Hamiltonian matrix that can be eas
diagonalized. We can now say that the eigenvectorsucn& are
related to theufn& by the relationship

ucn&5(
m

cm
n ufm&. ~11!

It can now be shown that

u^cnuOuc0&u25uc0
nu2^c0uO†Ouc0&. ~12!

The final spectrum can be displayed by replacing the Di
delta functions in Eq.~7! with finite Lorentzians of an arbi-
trary width.

Spectral decoding is a very useful technique, but it h
some disadvantages. It relies on the Lanczo¨s method for ei-
genvector computation above the ground state, and i
known that the Lanczo¨s method can produce eigensolutio
which are either incorrect or are duplicates of other solutio
found previously. Techniques exist for checking the valid
of solutions provided by the Lanczo¨s method,32 which we
shall call sorting, but they can be cumbersome. It would
preferable to use another technique where sorting is not
essary.

For the spectra computed in this paper, the kernel po
nomial method33 ~KPM! was used. In KPM, a convergen
approximation to the true spectrum is computed us
Chebyshev polynomials. The delta function in Eq.~7! is re-
placed with a Chebyshev expansion of the delta functi
and Gibbs damping factors are included to eliminate
Gibbs phenomenon. Calculations are performed using
operatorX instead ofH, whereX is simply rescaled so tha
all energies lie between21 and 1. Similarly, we usex in-
stead ofv, wherex is v rescaled to lie between 0 and 2. Th
final calculation involved is

I ~x!5
1

pA12~x21!2 Fg0m012(
m

gmTm~x21!mmG ,
~13!

where theTm are Chebyshev polynomials, thegm are Gibbs
damping factors, and the momentsmm are defined by

mm5^c0uO†Tm~X!Ouc0&. ~14!
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The Tm(X) here are Chebyshev polynomials of the opera
X. In practice, the moments are most easily calculated u
Chebyshev recurrence relations. Using these relations, c
puting M moments requires onlyM /211 calculations.

KPM results are equivalent to those of other metho
mentioned above. KPM is used here because it is simple
implement computationally than other methods for a giv
level of accuracy.

IV. RESULTS

Now let us examine some of our results. Calculations
the 16 site model were performed on a 200-MHz perso
computer. The Ne´el state was used as a starting point
ground state calculations. Spin-flip symmetry was used
reduce the final size of the Hilbert space to 6435. Mem
requirements were minimal, and calculations were acco
plished in minutes. The 26 site system spectra were c
puted on various machines with Alpha processors. Again
spin-flip symmetry was the only symmetry used, the N´el
state was used as an initial approximation to the ground s
and the Hilbert space had a dimensionality of 5 200 300. S
eral hundred megabytes of RAM were required, and the
culations were completed in several hours time.

Figure 1 shows some computed spectra in theB1g con-
figuration for a 16 site Heisenberg model of the square lat
with periodic boundary conditions. If we examine th
Fleury-Loudon-Elliott spectrum@the solid curve in part~a!#
and the SSO spectrum@the solid curve in part~b!# we see
that there is much more activity in the SSO spectrum, a

FIG. 1. ~a! 16 site Fleury-Loudon-Elliott typeB1g scattering
spectrum~solid! compared with experiment~dashed!. ~b! Single-
site operator scattering for the same system~solid! compared with
experiment~dashed!.
r
g

m-

s
to
n

r
al
r
to
y
-
-

a

te,
v-
l-

e

d

that its greatest activity occurs more toward the peak de
mined by experiment11 for La2CuO4 ~dashed curves!. In Fig.
2, we see the SSO spectrum broadened and shifted slig
so that its main peak is in the same location as the exp
mental curve. Here we see that the spectrum is beginnin
resemble the experimentally determined one fairly close
with its characteristic asymmetry. In the computedA1g spec-
trum from the single-site operator, we find even more e
couraging results. For a 16 site model, the SSO spect
shown in Fig. 3 is peaked at almost exactly the same loca
~about 4.2 J! as the experimentally determined spectrum. T
scaling used here is the same scaling used to match the
heights for theB1g spectrum. It is interesting to note that th
scaling, chosen independently of theA1g results, puts the
peak at exactly the correct height.

We find similarly encouraging results with a 26 si
model. In Fig. 4, we again see theB1g spectra for the SSO
@solid curve of part~a!# and the Fleury-Loudon-Elliott opera

FIG. 2. The SSO spectrum of Fig. 1~b! broadened and shifted
slightly ~solid! to demonstrate the goodness of fit with experime
~dashed!.

FIG. 3. The 16 site SSOA1g spectrum compared with a sketc
of the experimental data. Note that no shifting is necessary in
example.
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PRB 62 5529TWO-MAGNON RAMAN SCATTERING IN INSULATING . . .
tor @solid curve, part~b!# compared with experiment fo
La2CuO4 ~dashed curves!. Again we see that the SSO spe
trum has more activity in better proportions than the Fleu
Loudon-Elliott curve does. The two magnon peak~the maxi-
mum! is shifted slightly closer to what experiment show
and there is more broadly distributed four magnon activity
the SSO curve. In short, the asymmetry and line broaden
seen in experiment is better suggested by the SSO spec
than by the pure Fleury-Loudon-Elliott spectrum. If we aga
broaden the SSO spectrum and shift it slightly, in the sa
manner as for the 16 site model, we see in Fig. 5 that
have a better approximation of the experimental
determined spectrum. In theA1g spectrum shown in Fig. 6
we see the same encouraging signs of extra activity fro
larger model, as compared with Fig. 3.

Lastly, it should be pointed out that the goodness of the
does appear to improve with increased system size. It wo
be helpful to see these calculations performed for larger
tems. The SSO lacks translational symmetry, unfortunat
which prohibits many reductions in Hilbert space size t
would otherwise be possible. For the moment, exact dia
nalization of larger systems is beyond the capabilities of
authors’ computing facilities. Only the quantum Monte Ca
method13 can deal with substantially larger sizes and sho
prove specially informative.

V. CONCLUSION

In this paper, we have presented numerical data fr
exact-diagonalization studies that suggest that improved
derstanding of magnetic Raman scattering in the insula

FIG. 4. ~a! 26 site Fleury-Loudon-Elliott typeB1g scattering
spectrum~solid! compared with experiment~dashed!. ~b! Single-
site operator scattering for the same system~solid! compared with
experiment~dashed!.
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cuprates can result from a modification of the Fleu
Loudon-Elliott Raman operator. This assumes that phon
participate in the Raman-scattering process, acting as
mentum sinks and allowing for Raman scattering from t
magnon states with arbitrary total momentum. This provid
a natural explanation for comparable Raman scattering
A1g andB1g configurations, and leads to a broadening of t
spectra. This is achieved without invoking substantial mo
lations of local exchange constants, which can strongly ef
long-wavelength properties. Due to limitations of sizes,
results presented are not fully conclusive about how cl
this brings the theoretical results to the experiments. Qu
tum Monte Carlo simulations may prove helpful in this r
gard.

Given the large number of experiments on insulating
prates, which can be modeled in terms of the square-lat
Heisenberg model, with a single nearest-neighbor excha
constantJ, it seems natural that this be regarded as a g
model for this system unless clear evidence to the cont
emerges. Raman scattering by itself cannot be invoked

FIG. 5. The SSO spectrum of Fig. 4~b! broadened and shifted
slightly ~solid! to demonstrate the goodness of fit with experime
~dashed!.

FIG. 6. The 26 site SSOA1g spectrum~solid! compared with a
sketch of the experimental data~dashed!.



fo
ou
ot
om
le
su

ra-
e
R-
er-

5530 PRB 62P. J. FREITAS AND R. R. P. SINGH
justify more fancy terms such as ring-exchange terms
these systems. Raman scattering is also not the ideal gr
for establishing the existence of spinons and other ex
excitations, although in the cuprates it definitely leaves ro
for such exotic physics. More direct probes of quasipartic
photoemission, and neutron scattering can be more per
sive in this regard.
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