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Ab initio coupled-cluster calculations for the fcc and hcp structures of rare-gas solids
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In order to gain more insight into factors governing the relative stability of the fcc and hcp structures of the
rare-gas solids Ne through Xe, we performedab initio coupled-cluster calculations for the most important
three- and four-body terms in the many-body expansion of the cohesive energy. These terms are combined with
empirical two-body potentials derived from dimer data and with a multipole expansion for the long-range
three-body terms. In addition, we calculated phonon spectra, in harmonic approximation, for the two structures.
Including zero-point energies, our results agree very well with experimental data for the fcc structure. The
hypothetical hcp structure, which is lower in energy with two-body potentials, is destabilized by short-range
three-body terms and, even more important, by the contribution of zero-point vibration.
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I. INTRODUCTION

The theoretical prediction of the lattice structure of t
heavier rare-gas solids~neon, argon, krypton, and xenon! has
been a long-debated issue. Earlier calculations favored
hexagonal close-packed~hcp! structure whereas experimen
tally only the face-centered cubic~fcc! one was observed~cf.
Ref. 1 and references cited therein!. Just a few years ago, tw
groups claimed, on the basis of a three-atom perturba
analysis,2,3 that nonadditive short-range exchange contrib
tions are responsible for the stability of the fcc structure. I
very recent paper, applying relativistic pseudopotentials
valenceab initio coupled-cluster treatment,4 we documented
the importance of three-body terms for cohesive energies
lattice constants of the rare-gas crystals Ne-Xe. We n
want to extend the latter treatment, which was done for
fcc structure, by investigating the relative importance
three-body terms for hcp, at the same level of approximat

The largest part of the cohesive energy of rare-gas c
tals is due to two-body interactions dominated by the van
Waals term2C/r 6. For these two-body terms, highly acc
rate analytic model potentials are available whose coe
cients were fitted to experimental data of rare-gas dimers5–9

These two-body potentials marginally favor the hcp str
ture. Three-body contributions can be separated into a sh
range part, where the Pauli repulsion is non-negligible,
into a long-range part, where only dispersion effects are
portant. It is for the first one that we performab initio cal-
culations, at the coupled-cluster level, with single and dou
excitations and perturbatively including triples@CCSD~T!#.
For the latter part, we apply a multipole expansion with
leading induced-dipole term10 and some of the highe
interactions.11–13 We also include the leading short-rang
four-body term, calculated at the CCSD~T! level. For the
weakly bound rare-gas crystals, the zero-point vibratio
energy~ZPE! cannot be neglected; we calculate the ZPE
PRB 620163-1829/2000/62~9!/5482~7!/$15.00
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rectly from phonon spectra which, in turn, are determin
from the static two-body potentials, in a harmonic appro
mation. Taking all these contributions into account, we
port cohesive energies and lattice constants, both for the
perimental fcc structure and for the hypothetical hcp one
well as bulk moduli for the fcc structure.

The paper is organized as follows: In Sec. II we expla
the methods used for the different contributions in more
tail. In Sec. III we present and discuss the results obtai
for the two structures. Conclusions follow in Sec. IV.

II. METHODOLOGY

Interaction energies per atom are calculated, as funct
of the lattice constanta, according to

E~a!5E(2)~a!1E(3)~a!1E(4)~a!1EZPE~a!. ~1!

Here, theE(n) are static electronicn-body contributions de-
fined as in Ref. 4, andEZPE is the zero-point energy.

A. Two-body contributions

The two-body contributions, which are derived fro
dimer data, cover the main part of the cohesive energy of
rare-gas solids. Thus relatively small errors in this part m
result in large absolute errors when compared to experim
In Table I, we list ourab initio results of Ref. 4 obtained a
the CCSD~T! level using scalar-relativistic pseudopotentia
and@7s7p#6d5 f 4g valence basis sets, together with resu
obtained with model potentials fitted to experimental da
Although the basis sets used are quite elaborate, theab initio
two-body potentials yield only between 92 and 95 % of t
‘‘experimental’’ two-body contributions to the cohesive e
ergy. In order to eliminate these errors we will base all su
sequent data on the empirical two-body model potentials
the HFD-B type,6–9 which have been published for all th
5482 ©2000 The American Physical Society
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PRB 62 5483AB INITIO COUPLED-CLUSTER CALCULATIONS FOR . . .
rare gases considered in this work. In addition, for Ar
perform calculations with the more recent model potentia
Ref. 5. We add up all pair contributions in a sphere of ab
750 000 atoms which corresponds to a spherical cutof
50afcc ; the truncation error is below 0.05mH. The differ-
ence between the HFD-B and Ref. 5 model-potential result
for argon may serve as an estimate of the overall accurac
these potentials; it is below 10mH, i.e., 0.3% of the two-
body cohesive energy.

B. Short-range three-body contributions

In the range where both Pauli repulsion and van
Waals–type interactions are important accurateab initio cal-
culations are required. We hence performed CCSD~T! calcu-
lations for all trimer configurations occurring in the cryst
lattice, with two~or three! side lengths equalling the neares
neighbor distance.~For the fcc structure, four such trimer
exist, with angles of 60, 90, 120, and 180°, respective
while for the hcp lattice two additional ones occur wi
angles of 109 and 146°.! All calculations were done using
the MOLPRO-96 program package;14 scalar-relativistic
pseudopotentials15 were employed for simulating the Rg81

cores~supplemented by a core-polarization potential in
case of Xe!, and various valence basis sets were tested
below. The three-body contributions to the crystal cohes
energy were extracted from the trimer results applying co
terpoise corrections16 for basis-set superposition erro
~BSSE!, as described in detail in Ref. 4.

Let us now consider the influence of the correlation le
and of the one-particle basis set on the computed three-b
interaction terms. It turns out that the contribution of trip
excitations in the coupled-cluster correlation treatm
@CCSD~T! vs CCSD# is substantial. At the experimental la
tice constantaexp the contribution of triples amounts to abo
15% of the total short-range three-body terms, at sma
distances (;0.9aexp) the percentage is even higher~30%!.

TABLE I. Ab initio vs empirical two-body contributions to co
hesive energies~in mH) determined at the following lattice con
stants: 4.299 Å~Ne!, 5.255 Å ~Ar!, 5.631 Å ~Kr!, 6.110 Å ~Xe!.

Ne Ar Kr Xe

Eab initio
(2) 2999.0 23224.3 24490.6 26474.24

Eemp
(2) 21050.3 23498.8 24878.0 26818.3

Eemp
(2) 23490.4

aReferences 6–9.
bReference 5.
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This shows that the choice of a high-level correlation meth
is critical for obtaining reliable results.

In order to check requirements for basis-set quality,
performed a series of test calculations for the dimer and
equilateral trimer, with bond lengths fixed at neare
neighbor distances of the crystal ataexp ~see Table II!. We
start with a contracted@5s5p#4d2 f basis set~basis B of Ref.
4!, which will be our reference basis set. It goes witho
saying that counterpoise corrections for BSSE are essen
~Not applying them would lead to a tremendous overbind
for the two-body term, of nearly a factor of 2; cf. also Ref. 1
for a systematic study of BSSE effects, in the case of
neon and argon dimer.! In a first step, we add an additiona
diffuse 1s1p set in an even tempered way. The influence
mostly negligible as long as BSSE corrections are includ
In a second step, we augment the@5s5p#4d2 f basis set by a
polarization set consisting of one diffusef function ~even
tempered! and oneg function @optimized for the dimer; ex-
ponents 0.33~Ne!, 0.23 ~Ar!, 0.204 ~Kr!, and 0.183~Xe!#.
With this basis set, an increase of 20–30 % is obtained
the two-body term, while for the three-body term the i
crease is;10%, i.e., significantly smaller. Our most ex
tended basis set was the@7s7p#6d5 f 4g basis set~basis D of
Ref. 4!. With respect to the previous set, the two-body te
still becomes larger in magnitude by,5% ~reaching about
93% of the experimental HDF-B value!, while the three-
body term is slightly reduced.

Another strategy to improve the basis set consists in a
ing extra functions at bond midpoints.18,19 We explored the
effect of adding a 1s1p1d bond-midpoint set with a com
mon exponent, to our@5s5p#4d2 f reference basis; the ex
ponent was optimized for the dimer dissociation energy~Ne:
0.387, Ar: 0.288, Kr: 0.246, and Xe: 0.211!. For the two-
body term this basis set yields essentially the same valu
the large@7s7p#6d5 f 4g basis. The same holds true for th
three-body term, and the increase with respect to the re
ence basis is below 10% again, in this case.

In order to compare our results with those published
Lotrich and Szalewicz3 for Ar, we performed all-electron tes
calculations with their basis set,20 i.e., the@8s5p#2d1 f set
of Ref. 21. This basis yields nearly the same value for
two-body term as our reference basis, but the three-b
contribution is by 3% higher than with our most extend
basis set.

Summarizing, we can conclude that we miss a no
negligible percentage (;10%) of the three-body energ
with our reference basis set~which has been used for th
calculations to be discussed below!, but the basis-set depen
nce

ody
TABLE II. The leading two-body and three-body terms~in mH) calculated at the experimental lattice constant using different vale
basis sets. BF stands for bond-midpoint functions.

Ne Ar Kr Xe
Basis set two-body three-body two-body three-body two-body three-body two-body three-b

@5s5p#4d2 f 2101.03 1.74 2334.38 13.84 2424.55 22.14 2645.47 32.39
@7s7p#6d5 f 4g 2126.44 1.86 2414.09 14.28 2576.10 23.92 2831.47 35.64
@5s5p#4d2 f 1(1s1p1d) BF 2123.91 1.87 2412.80 14.26 2578.36 23.89 2834.68 35.59
Model potentiala 2131.73 2453.61 2637.48 2893.83

aReferences. 6–9.
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FIG. 1. Three-body contributions to the cohesive energy vs fcc lattice constant~solid line!. Both the short-range part~squares! and the
long-range part~diamonds! fall approximately linearly with increasing distance.
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dence is considerably less pronounced percentage-wise~and
much less so in absolute value! than for the two-body
energy.

C. Long-range three-body contributions

Three-body contributions from other trimer configuratio
than those characterized in the previous paragraph are
sumed to be purely dispersionlike in our scheme. Althou
individual magnitudes are very small, the large number
terms leads to a non-negligible total effect. We treat th
terms by a multipole expansion, to third-order perturbat
theory forddd, ddq, dqq, qqq, andddo interactions (d, q,
ando stand for dipole, quadrupole, and octopole momen!,
and add the fourth-order contribution for the leadingddd
interaction.12 The interatomic potential parameters are tak
from Ref. 13. For the unknown parameter in theddo term,
we use the lower bound of the values provided by Stand
and Certain.22 To achieve convergence in the longe-ran
three-body contribution~changes smaller than 0.1%!, we
need a sphere of about 6000 atoms. The dependence of
long-range and short-range three-body contributions with
lattice constanta is mainly linearly falling for increasinga
~see Fig. 1!.

D. Four-body contributions

In order to get an indication of the magnitude of fou
body contributions to the cohesion of the rare-gas solids,
calculated the four-body increment of the most comp
four-atom cluster occurring in the lattice, i.e., a regular t
rahedron with side length equaling the nearest-neighbor
tance. The weight of this increment is the same for fcc a
hcp; hence it has no influence on the energy difference
tween the two structures. We performed CCSD~T! calcula-
as-
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tions with the@5s5p#4d2 f ‘‘reference’’ basis set and ap
plied the counterpoise correction in an analogous way as
the three-body terms. The numbers obtained are small
non-negligible, and there is a strong dependence on the
tice constant. Since the curvature is negative, this leads
decrease of the bulk modulus. The influence on the lat
constant itself, on the other hand, is very small since
maximum contribution comes for a value of the lattice co
stant near the experimental one.

E. Zero-point vibrational energy

The rare-gas solids are weakly bound systems where
zero-point vibrational energy~ZPE! cannot be neglected. I
the dynamical properties of the crystal are described wit
the harmonic approximation, it is easy to define the ze
point crystal energy~per rare-gas atom! as sum of the indi-
vidual frequencies of the independent oscillators:

EZPE5
1

2rN (
k, j

\v j~k!5
3

2
\E

0

`

vg~v!dv. ~2!

In the first expression,k is the wave vector andj enumerates
phonon branches;r numbers the different atoms in the un
cell, andN is the number of wave vectors in the Brilloui
zone~BZ!. The second formula corresponds to a continuo
description using the frequency distribution functiong(v),
For g(v) two approximations are often used: The Einste
approximation replacesg(v) by a d function, which simu-
lates the motion of a single atom in the field of i
neighbors.23 The Debye approximation substitutesg(v)
'v2 with a cutoffvD to keep the integral finite; this result
in a zero-point energy of98 kBTD whereTD is the experimen-
tal Debye temperature.24 The Einstein approximation has th
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FIG. 2. Harmonic phonons of the fcc krypton lattice computed with the HFD-B two-body potential at the lattice constanta55.646 Å
~solid line!. The energy is given in meV and thek vectors as fractions of 2p/afcc . The squares show the experimentally measured phon
~Ref. 28!.
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advantage that anharmonic effects can be included~quasihar-
monic treatment,25! but, of course, neither the harmonic n
the anharmonic parts are exact.

We stick to the first expression of Eq.~2!, i.e., we refrain
from imposing somea priori assumption on the frequenc
distribution. However, for the explicit determination of th
phonon branches, the harmonic approximation is implied
only contributions from the two-body model potentials a
used. For a ZPE determination accurate to 0.05mH it is
sufficient to include the interaction between about 8000
oms. This is a much smaller value than for the two-bo
energy due to the rapid decrease of the derivatives of
two-body potential and the weighting of these terms with
cosine prefactor in the dynamical matrix. Thek grid is cho-
sen to be homogeneous in the BZ avoiding the coincide
with special points and directions. Again, the number ok
points is chosen so large that the concomitant error in
ZPE is below 0.05mH. Comparing our results for fcc rare
gas crystals with the measured phonon spectrum,26–29 we
find reasonable agreement for all branches~see the krypton
results in Fig. 2!; just the magnitude of the phonons is to
large, by up to 15% for neon, which is consistent with t
estimates for the anharmonic effects and the influence
three-body terms.30 Plotting the hcp phonons in the 010 an
001 direction~see Fig. 3 for krypton!, we find the expected
branches as observed, e.g., for hcp metals or the hcp he
crystal.

III. RESULTS AND DISCUSSION

A. Ground-state properties of the fcc rare-gas solids

For the experimentally observed fcc structure, we de
mined the cohesive energy, the lattice constant and the
d
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modulus. In Table III we present different contributions
the cohesive energy evaluated at the experimental la
constant. It is seen that the static two-body contribution ov
estimates the binding energy by between 12% for xenon
30% for neon. Including the~repulsive! three-body contribu-
tions, this overbinding is reduced. While for neon the effe
is small ~only 3% of the cohesive energy!, its importance
rises for the heavier rare-gas solids to;8% ~for xenon!. The
short-range part amounts to about 70% of the three-b
contribution. A purely multipolar description of the three
body potential severely underestimates it, yielding only 10
of the short-range part compared with theab initio results.
The four-body contribution is small~between 0.4% for neon
and 1.0% for xenon!, but its importance increases for th
heavier rare gases. The zero-point energy is repulsive, to
course. It amounts to 30% of the cohesive energy for ne
10% for argon, 5% for krypton, and 3% for xenon. We es

TABLE III. The influence of different contributions~as defined
in Sec. II! to the cohesive energy~in mH) for the fcc structure at the
experimental lattice constant.

Ne Ar Kr Xe

E(2) 2993.4 23464.2 24840.6 26799.1
Es.r.

(3) 18.9 148.6 230.1 343.0
El.r.

(3) 7.7 59.4 93.0 145.1
E(4) 3.2 24.9 38.9 58.9
EZPE 212.7 288.3 214.7 200.1
Ecoh 2750.9 22943.0 24263.9 26052.0
Eexp 2752.2a 22943.9b 24264.3b 26051.2b

aReference 33.
bReference 34.
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FIG. 3. Harmonic phonons of the hypothetical hcp krypton lattice computed with the HFD-B two-body potential at the lattice constan
a55.646 Å ~solid line!. The energy is given in meV and thek vectors as fractions of 2p/ahcp.
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mate the error of the calculated zero-point energy to;15%,
due to the missing three-body contributions and anharmo
ity effects; this is our main source of error. The error bar
the two-body contributions is;0.3% ~cf. Sec. II A!, and
;10% for the short-range three-body contribution~due to
the finite basis sets used!. About the same~absolute! error
can be expected to arise from the neglect of further fo
body contributions.~Note that our value listed in Table III is
a lower bound to the total four-body contributions, since
calculated only the largest increment.! Overall we have to
deal with a maximum error of65% for the cohesive energy
Comparing our results with experiment, we find mu
smaller deviations (60.5%) indicating rather efficient erro
cancellation.

In the next step, we calculated the fcc lattice constant~see
Table IV!. The two-body contribution leads to a sizable u
derestimation of the lattice constant~by up to 4% for neon!.
Higher-body terms enlarge the lattice constant only sligh
~largest effect for xenon:10.6%!, whereas the zero-poin
energy yields a significant increase. Taking all contributio
into account, our calculated values agree well with the
perimental ones~deviation,0.7%).

The bulk modulus~see Table V! calculated at the theoret
ical equilibrium lattice constant, for each of the differe
levels of approximation, is strongly overestimated at the tw
body level~by up to a factor of 2!. For neon, the main re
duction is due to the zero-point energy whereas for
heavier rare-gas solids the effect is a mixture of many-b
contributions and zero-point energy. Our final result ag
within 610% with the experimental data, which by them
selves have uncertainties of the same magnitude.

B. Comparison between the fcc and hcp structure

Table VI shows energy differences between the fcc a
hcp structures calculated at the different levels of appro
c-
r
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mation for the corresponding equilibrium lattice constan
~The optimization of the hcp lattice constants always yie
the same nearest-neighbor distances as for the correspon
fcc ones, to ,131023 Å). The two-body contribution
slightly favors the hcp structure. The corresponding fcc-h
energy difference is not very sensitive to the value of
lattice constant where it is determined~see lines 1 and 2 in
Table VI!. For Ar, we can also compare the result obtain
with the HDF-B potential to the one with the potential o
Ref. 5. We get virtually the same numbers (0.43mH vs
0.44mH). On the other hand, Lotrich and Szalewicz3 report
a value of only 0.1mH with the potential of Ref. 5. We can
only guess that the deviation is due to the smaller numbe
atoms taken into account.~About 8000 atoms in a cube ar
used in Ref. 3, as compared to a sphere of 750 000 atom
our case, and the absolute value of the two-body energy
the fcc structure is by 0.67mH smaller than ours.!

TABLE IV. The influence of different contributions to the lat
tice constant of the fcc structure~in Å). The energy terms of Table
III are consecutively included.

Ne Ar Kr Xe

a(2) 4.277 5.213 5.556 6.054
a(13,s.r.) 4.290 5.239 5.584 6.076
a(13,l.r.) 4.296 5.249 5.597 6.088
a(14) 4.297 5.251 5.598 6.087
a1ZPE 4.468 5.311 5.633 6.111
aexp 4.464a 5.311b 5.670c 6.132d

aReference 35.
bReference 36.
cReference 37.
dReference 38.
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The short-range three-body contributions favor the
structure, but would render it stable only for xenon, in o
calculations. Taking into account the long-range contrib
tions, too, which favor hcp again, the net effect of the thr
body contributions is almost zero. This is in contradiction
the values published by Lotrich and Szalewicz3 ~LS! for ar-
gon. Although the total amount of the three-body contrib
tions ~LS: 217mH, this work: 223mH) and the hcp-fcc dif-
ferences obtained with our short-range three-bo
contributions (0.35mH) and those of LS (0.32mH) agree
well, there is a sizable deviation due to the long-range c
tributions. Whereas we adopted empirical parameters f
literature, Lotrich and Szalewicz31 used interaction param
eters fitted to theirab initio data.

In our calculations, the largest contribution to the hcp-
difference comes from the zero-point energy. The latter
vors the fcc structure by about 1 –3mH, which corresponds
to about 1% of the zero-point energy. Previous calculati
applying a simpler two-body potential32 and the Einstein ap
proximation obtained a much smaller difference~0.01% of
the zero-point energy!. For Ar, LS ~Ref. 3! included the ef-
fect of anharmonicity and of three-body terms to the ZPE
the Einstein approximation, but still the stabilizing effect f
the hcp structure was below 0.1mH. In total, we find the
experimentally observed fcc structure to be lower in ene
than the hcp one for all rare-gas crystals considered~as LS
for Ar!, but our energy difference for Ar is by about an ord
of magnitude larger~2.8 vs 0.3mH) and due to different
reasons than in the work of LS.

TABLE V. The influence of different contributions to the bul
modulus of the fcc structure~in kbars!. The energy terms of Table
III are consecutively included.

Ne Ar Kr Xe

B(2) 19.9 37.5 41.7 46.2
Bs.r.

(13) 19.2 34.4 37.8 41.3
Bl.r.

(13) 18.8 33.6 36.9 40.4
B(14) 18.8 33.1 36.1 39.6
B1ZPE 10.4 27.9 32.9 37.2
Bexp 10.9a 26.7b 36.1c 36.4d

aReference 26.
bReference 39.
cReference 28.
dReference 29.
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IV. CONCLUSION

We have determined ground-state properties of the r
gas solids Ne through Xe, by combining empirical andab
initio based theoretical data. For the two-body contributio
E(2), we applied accurate empirical model potentials deriv
from dimer data. Three-body contributionsE(3) were treated
separately, with respect to short-range and long-range te
For the first ones, we performedab initio calculations at the
CCSD~T! level, while the long-range part was evaluated u
ing a multipole expansion. In addition, a first estimate h
been obtained for the four-body contributions, which turn
out to be non-negligible for the heavier rare-gas solids.
nally, the zero-point energyEZPE has been calculated via th
harmonic phonon spectrum derived from the two-bo
model potential.

All these contributions are essential for the accurate
termination of the cohesive energyEcoh, the lattice constant
a, and the bulk modulusB. For the~experimental! fcc struc-
ture we achieve agreement with experiment to;2 mH for
Ecoh, 0.04 Å ~0.7%! for a, and 3 kbars~10%! for B. For
neon, the zero-point energy is by far the most important c
rection to E(2), whereas for the heavier compounds t
many-body contributions gain in weight, withE(3) exceeding
EZPE for krypton and xenon.

The fcc structure is favored energetically over the hcp o
by the combined effect of short-range three-body terms
the zero-point vibrational energy; the main contributi
comes from ZPE, in our calculations, which is in contrast
previous estimates using the Einstein approximation. In v
of the importance of dynamics, further investigations focu
ing on contributions of three-body potentials and anharmo
terms to the phonon spectra appear to be called for.

TABLE VI. The energy difference between the fcc and h
structures~in mH) evaluated at equilibrium lattice constants op
mized for the various levels of approximation. The numbers in
parentheses are calculated at the experimental lattice constant

Ne Ar Kr Xe

two-body 10.13 10.43 10.61 10.85
(10.10) (10.38) (10.53) (10.73)

three-body s.r. 20.08 20.35 20.53 21.03
three-body l.r. 10.03 10.32 10.54 10.56
ZPE 21.08 23.24 22.64 22.72
Total 21.00 22.84 22.023 22.34
-

er,
pel,
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