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Ab initio coupled-cluster calculations for the fcc and hcp structures of rare-gas solids
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In order to gain more insight into factors governing the relative stability of the fcc and hcp structures of the
rare-gas solids Ne through Xe, we performaal initio coupled-cluster calculations for the most important
three- and four-body terms in the many-body expansion of the cohesive energy. These terms are combined with
empirical two-body potentials derived from dimer data and with a multipole expansion for the long-range
three-body terms. In addition, we calculated phonon spectra, in harmonic approximation, for the two structures.
Including zero-point energies, our results agree very well with experimental data for the fcc structure. The
hypothetical hcp structure, which is lower in energy with two-body potentials, is destabilized by short-range
three-body terms and, even more important, by the contribution of zero-point vibration.

I. INTRODUCTION rectly from phonon spectra which, in turn, are determined
from the static two-body potentials, in a harmonic approxi-
The theoretical prediction of the lattice structure of themation. Taking all these contributions into account, we re-
heavier rare-gas solidaeon, argon, krypton, and xendmas  port cohesive energies and lattice constants, both for the ex-
been a long-debated issue. Earlier calculations favored therimental fcc structure and for the hypothetical hcp one, as
hexagonal close-packeticp) structure whereas experimen- Well as bulk moduli for the fcc structure. .
tally only the face-centered cubitcc) one was observe(f. The paper is organized as follows: In Sec. Il we explain
Ref. 1 and references cited thergidust a few years ago, two thgz methods used for the dlfferen.t contributions in more'de—
groups claimed, on the basis of a three-atom perturbatioF?‘"- In Sec. Il we present and_ discuss th_e results obtained
analysis?® that nonadditive short-range exchange contribufor the two structures. Conclusions follow in Sec. IV.
tions are responsible for the stability of the fcc structure. In a
very recent paper, applying relativistic pseudopotentials in a Il. METHODOLOGY
valenceab initio coupled-cluster treatmefitve documented _ : .
the importance of three-body terms for cohesive energies and Interacpon energies per atom are calculated, as functions
lattice constants of the rare-gas crystals Ne-Xe. We nov?! the lattice constara, according to
want to extend the latter treatment, which was done for the
fcc structure, by investigating the relative importance of E(a)=E®(a)+EP(a) + E™(a) + Ezpela). @
three-body terms for hep, at the same level of approximationere theE(™ are static electronia-body contributions de-

The largest part of the cohesive energy of rare-gas Crysined as in Ref. 4, ané ,pg is the zero-point energy.
tals is due to two-body interactions dominated by the van der

Waals term— C/r®. For these two-body terms, highly accu-
rate analytic model potentials are available whose coeffi-
cients were fitted to experimental data of rare-gas diffiéers. The two-body contributions, which are derived from
These two-body potentials marginally favor the hcp struc-dimer data, cover the main part of the cohesive energy of the
ture. Three-body contributions can be separated into a shortare-gas solids. Thus relatively small errors in this part may
range part, where the Pauli repulsion is non-negligible, andesult in large absolute errors when compared to experiment.
into a long-range part, where only dispersion effects are imin Table I, we list ourab initio results of Ref. 4 obtained at
portant. It is for the first one that we perforab initio cal- the CCSI¥T) level using scalar-relativistic pseudopotentials
culations, at the coupled-cluster level, with single and doublend[ 7s7p]6d5f4g valence basis sets, together with results
excitations and perturbatively including triple€CSD(T)]. obtained with model potentials fitted to experimental data.
For the latter part, we apply a multipole expansion with aAlthough the basis sets used are quite elaborateghihinitio
leading induced-dipole terfh and some of the higher two-body potentials yield only between 92 and 95 % of the
interactions:! 13 We also include the leading short-range “experimental” two-body contributions to the cohesive en-
four-body term, calculated at the CC8D level. For the ergy. In order to eliminate these errors we will base all sub-
weakly bound rare-gas crystals, the zero-point vibrationakequent data on the empirical two-body model potentials of
energy(ZPE) cannot be neglected; we calculate the ZPE di-the HFDB type®~° which have been published for all the

A. Two-body contributions
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TABLE 1. Ab initio vs empirical two-body contributions to co- This shows that the choice of a high-level correlation method
hesive energiesin uH) determined at the following lattice con- s critical for obtaining reliable results.

stants: 4.299 ANe), 5.255 A (Ar), 5.631 A (Kr), 6.110 A (Xe). In order to check requirements for basis-set quality, we
performed a series of test calculations for the dimer and the
equilateral trimer, with bond lengths fixed at nearest-

Ne Ar Kr Xe

E@ —099.0 —32243 —4490.6 —6474.24 neighbor distances of the crystal @t,, (see Table ). We

E(ef%p ~1050.3 —34988 —4878.0 —6818.3 start with a contractefbs5p]4d2f basis setbasis B of Ref.

E@) —3490.4 4), which will be our reference basis set. It goes without
saying that counterpoise corrections for BSSE are essential.

°References 6-9. (Not applying them would lead to a tremendous overbinding

"Reference 5. for the two-body term, of nearly a factor of 2; cf. also Ref. 17

for a systematic study of BSSE effects, in the case of the

rare gases considered in this work. In addition, for Ar Weneon and argon dimerin a first step, we add an additional
perform calculations with the more recent model potential ofyit,se 1s1p set in an even tempered way. The influence is

Ref. 5. We add up all pair contributions in a sphere of abouty v negligible as long as BSSE corrections are included.

;gg OQOthaetotrrnsn(;/;/l?loc: é:r(?(r)rre_spct))rgljj tooa S£h$uza:j.?fl:r°ﬁ %l a second step, we augment flis5p]4d2f basis set by a
fec uncat 1S w 0.0aH. Wer*  polarization set consisting of one diffusefunction (even

ence between the HFB-and Ref. 5 model-potential results . - Lo
. t?mpereai and oneg function [optimized for the dimer; ex-
for argon may serve as an estimate of the overall accuracy o

these potentials; it is below 10H, i.e., 0.3% of the two- pqnent; 0.33(-Ne), 0.23 (Ar), 0.204 (Kr), an((j) O.'183(X¢)]'
body cohesive energy. With this basis set, an increase of 20-30% is obtamed_ for
the two-body term, while for the three-body term the in-
o crease is~10%, i.e., significantly smaller. Our most ex-
B. Short-range three-body contributions tended basis set was thies7p]6d5f4g basis setbasis D of
In the range where both Pauli repulsion and van deRef. 4. With respect to the previous set, the two-body term
Waals—type interactions are important accuedienitio cal-  still becomes larger in magnitude by5% (reaching about
culations are required. We hence performed CCOSRalcu- 93% of the experimental HDB- value, while the three-
lations for all trimer configurations occurring in the crystal body term is slightly reduced.
lattice, with two(or threg side lengths equalling the nearest-  Another strategy to improve the basis set consists in add-
neighbor distance(For the fcc structure, four such trimers ing extra functions at bond midpoint$!® We explored the
exist, with angles of 60, 90, 120, and 180°, respectivelygeffect of adding a $1pld bond-midpoint set with a com-
while for the hcp lattice two additional ones occur with mon exponent, to our5s5p]4d2f reference basis; the ex-
angles of 109 and 146°All calculations were done using ponent was optimized for the dimer dissociation endidy:
the MOLPRO-96 program packag¥ scalar-relativistic 0.387, Ar: 0.288, Kr: 0.246, and Xe: 0.211For the two-
pseudopotentials were employed for simulating the Rg  body term this basis set yields essentially the same value as
cores(supplemented by a core-polarization potential in thethe large[ 7s7p]6d5f4g basis. The same holds true for the
case of Xg, and various valence basis sets were tested, cthree-body term, and the increase with respect to the refer-
below. The three-body contributions to the crystal cohesiveence basis is below 10% again, in this case.
energy were extracted from the trimer results applying coun- In order to compare our results with those published by
terpoise correctiot for basis-set superposition errors Lotrich and Szalewiczfor Ar, we performed all-electron test
(BSSH, as described in detail in Ref. 4. calculations with their basis s&t,i.e., the[8s5p]2d1f set
Let us now consider the influence of the correlation levelof Ref. 21. This basis yields nearly the same value for the
and of the one-particle basis set on the computed three-bodwo-body term as our reference basis, but the three-body
interaction terms. It turns out that the contribution of triple contribution is by 3% higher than with our most extended
excitations in the coupled-cluster correlation treatmentasis set.
[CCSOT) vs CCSO is substantial. At the experimental lat-  Summarizing, we can conclude that we miss a non-
tice constang,,, the contribution of triples amounts to about negligible percentage {10%) of the three-body energy
15% of the total short-range three-body terms, at smallewith our reference basis séivhich has been used for the
distances {-0.9a,,, the percentage is even highg0%). calculations to be discussed belowut the basis-set depen-

TABLE Il. The leading two-body and three-body tertfis wH) calculated at the experimental lattice constant using different valence
basis sets. BF stands for bond-midpoint functions.

Ne Ar Kr Xe
Basis set two-body three-body two-body three-body two-body three-body two-body three-body
[5s5pl4d2f —101.03 1.74 —334.38 13.84 —424.55 22.14 —645.47 32.39
[7s7p]6d5f4g —126.44 1.86 —414.09 14.28 —576.10 23.92  —831.47 35.64
[5s5pl4d2f+ (1slpld) BF —123.91 1.87 —412.80 14.26 —578.36 23.89 —834.68 35.59
Model potentiat —131.73 —453.61 —637.48 —893.83

8References. 6-9.
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FIG. 1. Three-body contributions to the cohesive energy vs fcc lattice cor{staiut line). Both the short-range patsquaresand the
long-range partdiamond$ fall approximately linearly with increasing distance.

dence is considerably less pronounced percentagefanske tions with the[5s5p]4d2f “reference” basis set and ap-
much less so in absolute vaju¢han for the two-body plied the counterpoise correction in an analogous way as for
energy. the three-body terms. The numbers obtained are small but
non-negligible, and there is a strong dependence on the lat-
C. Long-range three-body contributions tice constant. Since the curvature is negative, this leads to a

Three-bod tributi f ther tri p i decrease of the bulk modulus. The influence on the lattice
ree-body contributions from other trimer Configurations . ygtant jtself, on the other hand, is very small since the

than those characten;ed n th? previous paragraph are ¥ aximum contribution comes for a value of the lattice con-
sumed to be purely dispersionlike in our scheme. Althoug tant near the experimental one

individual magnitudes are very small, the large number o
terms leads to a non-negligible total effect. We treat these S
terms by a multipole expansion, to third-order perturbation E. Zero-point vibrational energy

theory forddd, ddqg, dqqg, qqq, andddo interactions ¢, g, The rare-gas solids are weakly bound systems where the
ando stand for dipole, quadrupole, and octopole moments zero-point vibrational energ§ZPE) cannot be neglected. If
and add the fourth-order contribution for the leadiddd  the dynamical properties of the crystal are described within
interaction'? The interatomic potential parameters are takenthe harmonic approximation, it is easy to define the zero-
from Ref. 13. For the unknown parameter in théo term,  point crystal energyper rare-gas atojras sum of the indi-

we use the lower bound of the values provided by Standardidual frequencies of the independent oscillators:

and Certairf> To achieve convergence in the longe-range

three-body contribution(changes smaller than 0.3%we 1 3 (=

need a sphere of about 6000 atoms. The dependence of both Ezp5=m E fiwj(k)= EﬁJ wg(w)dw. (2
long-range and short-range three-body contributions with the .l 0

lattice constant is mainly linearly falling for increasing

(see Fig. 1 In the first expressiork is the wave vector andenumerates

phonon branches; numbers the different atoms in the unit
cell, andN is the number of wave vectors in the Brillouin
zone(BZ). The second formula corresponds to a continuous
In order to get an indication of the magnitude of four- description using the frequency distribution functig(w),
body contributions to the cohesion of the rare-gas solids, w&or g(w) two approximations are often used: The Einstein
calculated the four-body increment of the most compacgpproximation replaceg(w) by a é function, which simu-
four-atom cluster occurring in the lattice, i.e., a regular tet-lates the motion of a single atom in the field of its
rahedron with side length equaling the nearest-neighbor disieighbors®> The Debye approximation substituteg o)
tance. The weight of this increment is the same for fcc ands w? with a cutoff wp to keep the integral finite; this results
hcp; hence it has no influence on the energy difference bdn a zero-point energy ofkgTp whereTp, is the experimen-
tween the two structures. We performed CG8Dcalcula-  tal Debye temperaturé.The Einstein approximation has the

D. Four-body contributions
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FIG. 2. Harmonic phonons of the fcc krypton lattice computed with the HEFBvo-body potential at the lattice constaart=5.646 A
(solid line). The energy is given in meV and thkevectors as fractions of 2/a;,.. The squares show the experimentally measured phonons
(Ref. 28.

advantage that anharmonic effects can be incldedsihar- modulus. In Table Il we present different contributions to
monic treatment?) but, of course, neither the harmonic nor the cohesive energy evaluated at the experimental lattice
the anharmonic parts are exact. constant. It is seen that the static two-body contribution over-
We stick to the first expression of E@), i.e., we refrain  estimates the binding energy by between 12% for xenon and
from imposing somea priori assumption on the frequency 30% for neon. Including th&epulsive three-body contribu-
distribution. However, for the explicit determination of the tions, this overbinding is reduced. While for neon the effect
phonon branches, the harmonic approximation is implied aniés small (only 3% of the cohesive enerpyits importance
only contributions from the two-body model potentials arerises for the heavier rare-gas solidst® % (for xenor). The
used. For a ZPE determination accurate to Qu®b it is  short-range part amounts to about 70% of the three-body
sufficient to include the interaction between about 8000 ateontribution. A purely multipolar description of the three-
oms. This is a much smaller value than for the two-bodybody potential severely underestimates it, yielding only 10%
energy due to the rapid decrease of the derivatives of thef the short-range part compared with tak initio results.
two-body potential and the weighting of these terms with aThe four-body contribution is smalbetween 0.4% for neon
cosine prefactor in the dynamical matrix. Thegrid is cho- and 1.0% for xenon but its importance increases for the
sen to be homogeneous in the BZ avoiding the coincidencheavier rare gases. The zero-point energy is repulsive, too, of
with special points and directions. Again, the numberkof course. It amounts to 30% of the cohesive energy for neon,
points is chosen so large that the concomitant error in thd0% for argon, 5% for krypton, and 3% for xenon. We esti-
ZPE is below 0.05wH. Comparing our results for fcc rare-
gas crystals with the measured phonon speC%ﬁ?,We TABLE lll. The influence of different contributionés defined
find reasonable agreement for all brancksse the krypton in Sec. I) to the cohesive energjn wH) for the fcc structure at the
results in Fig. 2 just the magnitude of the phonons is too experimental lattice constant.
large, by up to 15% for neon, which is consistent with the

estimates for the anharmonic effects and the influence of Ne Ar Kr Xe
three-body termd’ Plotting the hcp phonons in the 010 and _,
001 direction(see Fig. 3 for kryptoyy we find the expected E(3) _gfg"g _Sii‘;'é _4824;')61 _67(‘;3;0
branches as observed, e.g., for hcp metals or the hcp heIqurféf- ' ' ’ '
£ 7.7 59.4 93.0 145.1
crystal. s
E@ 3.2 24.9 38.9 58.9
Epe 212.7 288.3 214.7 200.1
. RESULTS AND DISCUSSION Econ —-750.9  —2943.0  —-42639  —6052.0
A. Ground-state properties of the fcc rare-gas solids Eexp —752.7 —2943.9 —4264.3 ~6051.2

For the experimentally observed fcc structure, we deter?Reference 33.
mined the cohesive energy, the lattice constant and the bufiReference 34.
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FIG. 3. Harmonic phonons of the hypothetical hcp krypton lattice computed with the BiRilp-body potential at the lattice constant
a=5.646 A (solid ling). The energy is given in meV and tikevectors as fractions of 2/ ayg.

mate the error of the calculated zero-point energy-tth%, mation for the corresponding equilibrium lattice constants.
due to the missing three-body contributions and anharmonioThe optimization of the hcp lattice constants always yields
ity effects; this is our main source of error. The error bar forthe same nearest-neighbor distances as for the corresponding
the two-body contributions is-0.3% (cf. Sec. IlA), and  fcc ones, to<1x10 2 A). The two-body contribution
~10% for the short-range three-body contributi@ue to  slightly favors the hcp structure. The corresponding fcc-hcp
the finite basis sets usedAbout the sameabsolutg error  energy difference is not very sensitive to the value of the
can be expected to arise from the neglect of further fourjatiice constant where it is determinésee lines 1 and 2 in
body contributions(Note that our value listed in Table lllis  Tgple VI). For Ar, we can also compare the result obtained

a lower bound to the total four-body contributions, since weyith the HDFB potential to the one with the potential of
calculated only the largest incremenOverall we have to Ref. 5. We get virtually the same numbers (048 vs

. . 0 )
deal W'th amaximum error Ot 5% for.the coheswg ENergy. .44 wH). On the other hand, Lotrich and Szalewiceport
Comparing our results with experiment, we find much . .
- S - a value of only 0.1xH with the potential of Ref. 5. We can
smaller deviations £ 0.5%) indicating rather efficient error o
cancellation only guess that the deviation is due to the smaller number of
. atoms taken into accountAbout 8000 atoms in a cube are
In the next step, we calculated the fcc lattice constaee
b, used in Ref. 3, as compared to a sphere of 750 000 atoms in

Table IV). The two-body contribution leads to a sizable un-
derestimation of the lattice constality up to 4% for neop ~ Our case, and the absolute value of the two-body energy for

Higher-body terms enlarge the lattice constant only slightlythe fcc structure is by 0.6&H smaller than ours.

(largest effect for xenon:+0.6%), whereas the zero-point

energy Yyields a significant increase. Taking all contributions TABLE IV. The influence of different contributions to the lat-
into account, our calculated values agree well with the exiice constant of the fcc structuta A). The energy terms of Table

perimental onegdeviation<<0.7%). [l are consecutively included.
The bulk modulugsee Table Y calculated at the theoret-
ical equilibrium lattice constant, for each of the different Ne Ar Kr Xe

levels of approximation, is strongly overestimated at the two-_,,

. 4.277 21 . .054
body Iev_el(by up to a factor of _2 For neon, the main re- 5, 4290 :232 2222 2836
duction is due to the zero-point energy whereas for the ' ' ' '
. . . : (+31r) 4.296 5.249 5.597 6.088
heavier rare-gas solids the effect is a mixture of many-bodf1
- : : 4 4.297 5.251 5.598 6.087
contributions and zero-point energy. Our final result agreé : : ' '
04 s : : _a'ZPE 4.468 5.311 5.633 6.111
within +=10% with the experimental data, which by them
selves have uncertainties of the same magnitude. Aexp 4.464 531 5.670 6.137

“Reference 35.
PReference 36.

Table VI shows energy differences between the fcc andReference 37.
hcp structures calculated at the different levels of approxi“Reference 38.

B. Comparison between the fcc and hcp structure
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TABLE V. The influence of different contributions to the bulk TABLE VI. The energy difference between the fcc and hcp
modulus of the fcc structurén kbarg. The energy terms of Table structures(in wH) evaluated at equilibrium lattice constants opti-
Il are consecutively included. mized for the various levels of approximation. The numbers in the
parentheses are calculated at the experimental lattice constant.

Ne Ar Kr Xe

B® 19.9 375 41.7 46.2 Ne Al K xe

B{+3) 19.2 34.4 37.8 41.3 two-body +0.13 +0.43 +0.61 +0.85

B(+3) 18.8 33.6 36.9 40.4 (+0.10) (+0.38) (+0.53) (+0.73)

B(+4) 18.8 33.1 36.1 39.6 three-body s.r. —0.08 —0.35 —0.53 —1.03

B+ZPE 10.4 27.9 32.9 37.2 three-body L.r. +0.03 +0.32 +0.54 +0.56

Bexp 10.9° 26.7 36.1° 36.4 ZPE -1.08 -324 264  -272
Total —-1.00 —2.84 -2.023 234

aReference 26.
bReference 39.
‘Reference 28.
‘Reference 29. We have determined ground-state properties of the rare-
gas solids Ne through Xe, by combining empirical eatal

The short-range three-body contributions favor the fccinitio based theoretical data. For the two-body contributions
structure, but would render it stable only for xenon, in ourE®®), we applied accurate empirical model potentials derived
calculations. Taking into account the long-range contribufrom dimer data. Three-body contributioES> were treated
tions, too, which favor hcp again, the net effect of the threeseparately, with respect to short-range and long-range terms.
body contributions is almost zero. This is in contradiction toFor the first ones, we performexb initio calculations at the
the values published by Lotrich and Szalewi¢zS) for ar-  CCSIDT) level, while the long-range part was evaluated us-
gon. Although the total amount of the three-body contribu-ing a multipole expansion. In addition, a first estimate has
tions (LS: 217 uH, this work: 223, H) and the hcp-fcc dif-  been obtained for the four-body contributions, which turned
ferences obtained with our short-range three-bodyout to be non-negligible for the heavier rare-gas solids. Fi-
contributions (0.35«H) and those of LS (0.32H) agree nally, the zero-point energi“"E has been calculated via the
well, there is a sizable deviation due to the long-range conharmonic phonon spectrum derived from the two-body
tributions. Whereas we adopted empirical parameters froomodel potential.
literature, Lotrich and Szalewitz used interaction param- All these contributions are essential for the accurate de-
eters fitted to theimb initio data. termination of the cohesive ener@y,,, the lattice constant

In our calculations, the largest contribution to the hcp-fcca, and the bulk moduluB. For the(experimental fcc struc-
difference comes from the zero-point energy. The latter fature we achieve agreement with experimentt@ wH for
vors the fcc structure by about 1—38H, which corresponds E.,,, 0.04 A (0.7% for a, and 3 kbars(10%) for B. For
to about 1% of the zero-point energy. Previous calculationsieon, the zero-point energy is by far the most important cor-
applying a simpler two-body potenttaland the Einstein ap- rection to E®, whereas for the heavier compounds the
proximation obtained a much smaller differen@01% of  many-body contributions gain in weight, witi®) exceeding
the zero-point energy For Ar, LS (Ref. 3 included the ef-  EZPEfor krypton and xenon.
fect of anharmonicity and of three-body terms to the ZPE, in  The fcc structure is favored energetically over the hcp one
the Einstein approximation, but still the stabilizing effect for by the combined effect of short-range three-body terms and
the hcp structure was below OuH. In total, we find the the zero-point vibrational energy; the main contribution
experimentally observed fcc structure to be lower in energycomes from ZPE, in our calculations, which is in contrast to
than the hcp one for all rare-gas crystals considéasdLS  previous estimates using the Einstein approximation. In view
for Ar), but our energy difference for Ar is by about an order of the importance of dynamics, further investigations focus-
of magnitude large2.8 vs 0.3uH) and due to different ing on contributions of three-body potentials and anharmonic
reasons than in the work of LS. terms to the phonon spectra appear to be called for.

IV. CONCLUSION
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