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We develop an approximation for the optical potential in a solid valid at intermediate and high energies, say,
energies from 50 eV and larger. The approximation builds on the GW expression. We separate the random
phase approximation polarization propagator in a core electron and a valence electron part, and then have a
corresponding separation of the optical potential. For the valence electron optical potential we use a local
density approximation because the charge density changes fairly slowly, whereas we use a nonlocal optical
potential for the core electron part. We apply this method to electron-Ar and -Kr elastic scattering, and also to
electron scattering from atoms in van der Waals solids, semiconductors, and metals. We find satisfactory
agreement with the observed results. We also study the importance of using a nonlocal potential for the core
part and the sensitivity to a parameter, the average excitation energy. We compare the present results with
those calculated by the Hartree-Fock, Dirac-Hara, and Hedin-Lundqvist potentials. The Hedin-Lundqvist po-
tential is rather good for the description of large-angle scattering, whereas none of the local potentials can
describe small-angle scattering well.

[. INTRODUCTION regards the effects of the ion core polarization potential in

Elastic and inelastic scattering of electrons provides usesolid-state problems.
ful information on the atomic structure and properties of bulk  To calculate elastic scattering from atoms in a solid, a
solids as well as solid surfaces. Low-energy electrormuffin-tin-type potential is constructed from which a set of
diffraction' (LEED) and reflection high-energy diffractibn Phase shifts is obtained. The construction of an effective
(RHEED) utilize elastic scattering of a beam of electrons One-electron potential requires knowledge of the electronic
from a surface. Photoelectron diffractioand x-ray absorp- charge density and a theory for calculating the exchange-
tion fine structuré (XAFS) use elastic Scattering of photo_ correlation potential. A Slmp'lfled local exchange potential
electrons excited from a specific deep core level. In the caswas proposed by Slatef.For electrons with a uniform den-
of extended energy-loss fine structyeELFS), both inelas- sity p in a large box, the Hartree-Fock exchange contribution
tic scattering of the probe electrons and elastic scattering ¢fan be found analytically. Slater averaged this exchange con-
secondary excited photoelectrons play an importantsrme_ tribution for electrons below the Fermi surface, and assumed

It has long been recognized that elastic scattering of ele¢hat the exchange potential in a solid could be approximated
trons is determined by the self-energy for the one-electrofy a local potential whose value at pointvas set equal to
Green’s function(optical potential and its associated one- this electron-gas-averaged exchange taken at the solid-state
electron damping functiofr,® and explicit discussions have densityp(r), which gives the Slater exchange potential
been made for x-ray photoemission spectrosd{Bs), ex-
tended XAFS(EXAFS),1° and EELFS!2 Vey(1)~—(312)(3p(r)/m)*3. (1.3

Consider elastic electron scattering on a neutral atom. The
Hartree and exchange potentials are short ranged and dec&fis potential is widely used, not only for electrons below
exponentially while the polarization potentisl,, goes as the _Ferml_ level, but also for S(_:atterlng problems, where it is
1/r*. In the Born approximation the scattering amplitude isbasically incorrect. Thus for high energies exchange scatter-
just the Fourier transform of the potential. The long tail ofiNg can be neglected, whereas the Slater exchange potential
Vp0| has small |argﬂ. ComponentS, and thus gives little still has an influence. Another even more W|de|y used variant
backscattering. Byron and Joachdistudied elastic electron ©f Slater’s intuitive ideas is th¥, potential. Here the Slater
scattering on atoméelium and neonat 400 eV including a Potential is multiplied by an empirical parameter Vy_
(simplified) V.. They found thaV, was quite important = aV,,, wherea often is taken as 2/ The X,,5 potential
not only for small-angle scattering. Thus it could be impor-is the same as the exchange-only Kohn-Sham ground-state
tant to include core polarization also for solids where thepotentiaf? and as the Dirac potenti&l. Sometimes it is
long-ranged tails in the potentials are cut off by screeningalled the Kohn-Sham-Gaa potential since Gspa*® long
effects. We have earlier developed a theory for a practicalago found that, for the Cu atom, it gave better agreement
self-consistent and nonlocal optical potential in a S8lahd  with the pure Hartree-Fock potential than did the Slater one.
applied it to electron atom scatterifige'® Ne, and Ar(Ref.  For scattering problems the exchange potential before aver-
16)], where good agreement with the experimental resultaging is more motivated. This potential is local and energy
was obtained. Here this theory is extended in particular adependent, and it was shown by HZrto be successful for
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electron scattering from atoms and molecules. It is ofterare included only in the one-electron scattering Hamiltonian
called the “Dirac-Hara” potential even though there is little h=T.+(0|V|0), where T, is kinetic energy operator; we
reason to attach the name Dirac here. can handle the core hole optical potential in the same way as
These methods employ the Hartree-Fock approximatiothe ground-state optical potential except for some minor
for a uniform electron gas. One expects that going beyondiifferences:? Furthermore, we have shown that the optical
the Hartree-Fock approximation to the electron self-energyotential given by Eq(2.1) is roughly equivalent to the self-
within a local density approximation should give an im- energy in the GW approximatior,so that we will develop a
proved scattering potential. Hedin and Lundqtfi$HL) sug-  practical method to calculate the atomic optical potential in
gested a scheme based on the Sham-Kohn tfféompere  solids and surfaces based on the GW approximation.
the electron gas self-energ¥o(q,e(q)) is used with a Detailed discussions of the crystal potential have been
density-dependent momentur(r). Following Hedin and given long ago by Hedii® As shown below, both the po-
Lundqvist® Lee and Beni applied such a potential to electronlarization propagatoP and one-electron Green’s functi@h
scattering from atoms in the intermediate-energy region, uscan be split into core and valence parts. The core polarization
ing the plasmon pole approximation to the GW self-energyjs assumed to be much smaller than the valence polarization.
and showed that this potential gives an excellent descriptioVe thus have an expansion in powers RS for the self-
of the EXAFS data for By, GeCl,, and Ge?® Several au- energy(optical potential, which is shown in Ref. 8, p. 129,
thors have compared these potentials for LE@2fs. 24—  where the following expression for the self-ener@ptical
26) and XAFS calculation$?’~°In principle the Hedin- potentia) is given:
Lundqvist potential should give the best result among those
methods described above; however, the results are not so 30=G"W’ + V¢, + G"W/PW’ + - - ... (2.3
clear-cut; sometimes we can find a valwen the X, poten- v )
tial which gives a better result than the Hedin-Lundquistti€re G'W’ is the self-energy from the valence electrons,
potential?® while Vg, is the bare exchange a@'W’P°W" the screened
We have developed a method to calculate a self-consisteﬁplarization potentia_l _from the_ion cores. The precise defini-
nonlocal energy-dependent optical potential based on Hélons of these quantities are given below. o
din’s GW approximatior{:® Previous short communications  The next question to consider is the effect of screening in
described an outline of the thedf,and applied it to the core-polarization term. For afreg atom the screening is
electron-atom scatterify'® where we found good agree- Small, and we have to a good approximat(etv P°v, where
ment between the calculated and experimental results. We iS the bare Coulomb potential. For long distances from the
also studied the effect of self-consistency and the sensitivitjon COre it further reduces to the well-known local potential
to an average excitation energy. In this work we give a de— @€/r*, wherea is the dipole polarizability.In a solid we
tailed description of the method, and compare the elasti€XPect from simple physical reasons that for long distances
electron scattering cross sections calculated from the preseW€ should have a statically screened polarization potential
nonlocal optical potential with those from the Hartree-FockG*W’(0)P°W(0). Since anr~* potential already is very
(HF) approximation and from different local density approxi- Weak, the additional screening should make it negligible out-
mations. Results are shown both for scattering from free atside the Wigner-Seitz cell of the ion under consideration.

oms and from atoms in a solid. Inside the Wigner-Seitz cell, on the other hand, we do not
expect much screening to take place due to the cost in kinetic
Il. BASIC THEORY energy to localize the screening charge.

The full random phase approximatioRPA) polarization
The optical potential for the target sta@) is given to  propagator i$

lowest nontrivial order in a Van Hove—type expansfon
unocc occ

) 2(ex—¢)) .
Sy E)= S (0[V[n)(n|V|0) (2.1 P(rr'iow)=— Ek: | mfm(r)m(f ),
0 n(#0) E_En_h_EO(E_wn)—i_in, . k l
whereE=E+¢,, w,=E,—Eq (E,, andE, are the energy B
eigenvalues of the target Hamiltoniahy, Hy|n)=E,|n) and fla(D=| ¢4 () dé. (2.4
H¢/0)=E,|0)), andV is the interaction potential between . . .
the scattering electron and the target: Here x=(r,¢) includes both space and spin variables. The

sum overk runs over unoccupied electron states, whilens
+ + over the occupied core and valence electron states. By split-
V=2 % ¢/ (Pl I[am)+(plVerdd) [CpCq- (2.2 ting the summation over into core and valence contribu-
P tions, P can be written as a sum of core and valence parts,
Here V., is the Coulomb interaction between the scattering
electron and the positive nuclei in the target, gptl|gm) P=P°+Pv. (2.5
an antisymmetrized Coulomb matrix eleméhtThe one-
electron states of the scattering electron are denotgdand
g, and those of electrons in the targetlbgndm. The inter-
action V., gives no contribution to the inelastic matrix ele- 0CCHUNOCE .
ments(0|V|n) (n#0). When we consider core excitation Gixxw)= S (X) e (X) 2.6
processes as in XAFS and XPS spectra, the core hole effects Y K o—g '

Similarly we can split the summation ovérin the expres-
sion for the one-electron Green'’s function,
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to obtain matrix element. To lowest order the second term in2c),
el however, exactly cancels this contribution since
G=G"+G". 2.7) Tp(X1,%2) p&(X2,X1)d%,d%,=N# when the integration over
X1 andx, is restricted to cell3. We will evaluate the inter-
atomic contributions té\ from a multipole expansion using a
bare potentiab (r—r,). The results are taken as an upper

The symbolG”v P stands for a convolution in energy
space'! which can be done analytically, giving

[GYuP%](X,X"; ) limit to what we can expect to have with a properly screened
potential W.
unocc core valence V(1) e (X) e, (X o (r') Byron and Joachafd simplified the expression for the

= ; El 2 core-polarization potential in E¢2.10, and were able to
K obtain an explicit local approximation. They also approxi-
(2.9 mated the exchange potential by taking the electron gas ex-
pression with the local electron density. These approxima-
tions for the optical potential gave quite good results for
via(n)=Jo(r=r") g (x") g (x")dx’ electron-atom scattering. .
It is not easy to assess the accuracy of the many different
The more tightly bound the core levelis, the smaller its approximations made by Byron and Joachdiand their ap-
contribution tovy(r) due to the smaller overlap with the proximations are further difficult to generalize to the solid-
unoccupied functiork. Thus the outermost core level will state case. Instead we prefer to actually evaluate the nonlocal
give the dominant contributions. expressions for both the exchange and polarization potentials
We replacew,, by a constant\, the average excitation from the ion cores.
energy. This approximation has been very successful in the
free atom cas&® We define a functiod\(r,r’),

W~ Wy~ Egr

wherewy =¢&,—¢;, and

Ill. ATOMIC OPTICAL POTENTIALS IN SOLIDS

unocccore

A(r,r')= ; 2 vi(Dog(r’)

When one studies electron spectroscopies such as LEED
and XAFS, the elastic scattering from each atomic site is a
crucial physical process. It is therefore important to separate
the total effective one-electron potentil,, . into atomic
scattering potentials,, centered at sitea. Thev, are usu-
ally spherically averaged to simplify the formulas. The one-

X p&(Xz, Xq)dx A%, (2.9 elgctrrc))n Gregn’s fungction can ptr?én be represented by a
where the last equality follows by closure, apdindpc are T-matrix expansion in terms of a homogeneous medium
the one-electron density matrices for all electrons and fofsreen’s functiongy= (¢, Te—A+il') 1. Whenr e a and
core electrons, respectively. With,;=A we then have r' e g, we have to lowest order

=J v(r=r)u(r’ =ra)[8(xs—Xz) = p(X1,%p) ]

VPOl(x, X" 0) =[G'v P ](X,X ;@) 9(r,r')=do+dot.Jo+Jotgdo+ - - -, (3.2

=AMrG (XX 0—4). (210 wheret,, is theT matrix for sitea. The damping propagator

With the use of closure we avoid the summation over thego iS small already at the nearest neighbor distance. The
unoccupied states. Still the density matpigx; ,x,) contains  energy-independent teriA defined by Eq.(2.9) also de-
a sum over the occupied Bloch functions. We will here takecreases with the distan¢e—r’| [see Eq(3.25]. It is hence
a simplified approach and represent the sum over Bloclenough to consider only one-site contributiongyfo,r’) at
functions in each atomic cellk by a sum over localized higher energies, say,,=100 eV. For a spherically symmet-
functionsR2Y,,. This is well motivated for rare gas solids, fic potentialv,, the Green’s functiom, is expanded as
but a more serious approximation for, say, metals. In a more
accurate treatment one could consider representing the Bloch , a A ~,
functions with muffin-tin orbitals, but this would mean an galrr ):; g (r,rHYLYE(r),
integration ink space, which would substantially increase the
computational work. - — —

If r is in cell « and the core functiohis in a neighboring gi'(r,r’)=—2ip exp(i 6")R"(pr ) fi’(pr-), (3.2
cell B, thenv(r) is small and depends on the dipole matrix , , ) ,
element betweerk and I. To lowest order the interatomic Wheredi' is the phase shift of thith partial wave at sitey,
contribution toA from the first term in Eq(2.9) is, on the p=[2(e,~A+il)]"% R and f{" are the regular and ir-
other hand(taking the core functions as completely local- regular solutions for the potential,, andr . =max,r’) and
ized), r-=min(r,r'). In the larger limit they have the asymptotic

forms
NA

c

: 21 = . — o~ — — —

Ryl —Ry 1D Re(pr)~sin(pr —mi2+ &)/(pr),  fi(pr)~hi(pr),
3.3

where N? is the total number of core electrons in cgll 33

which is a large contribution that does not contain any dipolevhereh; is the spherical Hankel function ¢th order.
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Next we investigate how to calculate the energy-

independent termA(r,r"). In each atomic regioa we aver-
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RBa: RB_RC( .

age the core charge density to obtain a spherically symmetri¥/e note that® |Fy (Rg,)|* depends om. To get rid of

function

1 A
dz(r)=EJ drp®(r). (3.9

Though bothr andr’ are in the same atomic region, and

r, are not necessarily in the same atomic region. From tha:,(’(r,r’;Rﬂa)=(rr D>
first term in the large parentheses in Eg.9), we have an

intraatomic contribution téA\(r,r"),

2
L r ) YL(DYE(T), (3.5

4
|a(f,r')=§L: (ﬁ

where bothr andr’ belong to atomic regiorr, and also
r.(=r,) is in regiona. Herel ,(r,r’), is

L (r,r")=S+S,+S;, (3.6)
si=rr) Cagegrdan, @2
rlore
S|2=r|>+ljr<d§(r1)r1dr1, (3.9
Ra
S'3=(rr’)'f dS(ry)ry?dry, (3.9

whereR,, is the radius of the atomic regiom (muffin-tin
radiusg.

In addition to this intraatomic contribution to the first

term of Eq.(2.9) we have the interatomic term, whereand
r’ are still in regiona, whereas ;(=r5,) is in regiongs (B
# ). This term is given by

1Erry=3 ( o

e \21'+1

2

) |FLL’(Rﬁa)|2(rr,)|<r2|,>ﬁ
XYL(NYE(T")

:2 FL(r, T Re) YL(DYE(T'), (3.10

where in terms of Gaunt's

=[YL(D)YL()Y . (r)dr

integral G(LL'|L")

am(—1)(21+21"'=1)1!
(2'-puE+nnRg

FLL’(R,Ba)z

XG(+1",m —=m,LIL")Y 11 —m(Rga),

(3.11

Fu(rriR >=E( -l >2|F (Rga) 2 Hr )
LBt R Ba X 2|,+1 LL Ba B
(3.12
(r?)g= f:ﬂd,‘g(r)rz'”dr, (3.13

this difficulty, we use the spherically averaged value of
Sm|FLL (Rg,)|?. Finally we have the averaged expression
of F_ in Eqg. (3.10 in terms of the Clebsch-Gordan coeffi-
cient(101”0[1+1'0), which is denoted?,

A7 (21421 =1

7ol @r+nner+ 1R

Ba
(3.19

Due to the small extension of the core functions, the domi-
nant contribution comes froni =0,

X(r?"y 421"+ 1)(1'010[1 +1"0)2.

47 (rr") p

Fo(r,r';Rg,)=——— ——=NP.
TR = )2 RAZ°
This is the same result as obtained from averaging él\ggr
in Eq. (2.17).
The second term in the large parentheses in (B is
more difficult to calculate in general. We note that

occ core

p<x1,x2>p°<x2,xl>=2i 2 dij(x1)d} (%), (3.15

where dij(x)=¢>i(x)¢>}*(x), and we assume that the core
orbital j is localized on sitex. We take bottr; andr, to be
in the same regioa. For the occupied states we will not use
Bloch functions but instead take a simplified approach and
use localized function®yY, . This is well motivated for
rare gas solids, but a more serious approximation for say
metals.

By spherically averaging;;(x) at each sitex, we can get
a simple representation for E(B.15 as

p(X1,X2) pS(X2,X1)

core core occ
~ 2 d(rdi(r)+ > X de(r)dira),
m m n#m
(3.1
I’l,rzea,

wherem andn stand for one-electron atomic states 2p ., ,
2pg, and so on, in atomy, which have the same angular
quantum numbet = (I,m). The quantityd;,(=dp,,) is the
spherically averaged electron density of théa atomic func-
tion at sitea, anddy,, is the cross charge from theth and
nth atomic functions on site: written in terms of the radial
parts of the atomic wave functiond;, (r)=Rn(r)Rn(r)*.
As mentionedRy, refers to a localized function, which for
metals has a fractional occupation number. When we use this
simple approximation in Eq2.9), theintraatomic contribu-
tion to A can be written as

Ja<r,r'>=§ J%(r)m(r'wgn Imn(NIma(r ),
(3.19
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with 1 21"+ 1)21"+1)
pol ’. - rA1 2
10 . VITnries) = o ; i1 (orolio)
J“(r)=4w[—f rade(rq)dr +J r.de(rqy)dr ] .
m rlo 1¥m\t1 1 r 1¥mit1 1 ><A|,(r,r’)gff,(r,r’;p). (3.27

(3.18
) . ) As demonstrated before it is enough only to incluggand
We see thatl, has only a spherically symmetric contribu- A, in the expansion Eq3.27.14 We thus obtained an ex-

tion. _ o _ o plicit expression fo/°',
The interatomic contributionJ? is not difficult to evalu-
ate, ol ) 1 A —
r,r';e,))=-— r,r' r,r';
PO, p)= 2 —[Aolr,r)ai(r.1';p)
B 1 — afl af .1 - _
= 2 3O, @19 F3A(r VTP, (328
where by taking ,=r, J*4(r) is given as whereqg; is defined by
1 ~ nﬁ] = POAY | /AR I+1 1A
J%ﬁ(r): Ef dram, (C(#B) (32@ g|(r,r 1p)_mg|—l(rrr 5p)+mg|+l(r:r :p)
©or (3.29

Here nf is the number of electrons on si@, and Rga

—R,—R,. If we evaluate the angular integral in 5G.20, Each g, includes the radial solution for the potential

V,"O'(sp) to be determined. Sinc¥P°' depends org, and

we have . T .
0,1 We in principle have to solve coupled self-consistent
B B equations.
I =g W=
Ba IRgal IV. RESULTS AND DISCUSSION
Cross terms such a  give no contribution ta*? because The total crystal potentiaV/°"Ystis given by the Hartree
of the orthogonality betweemth andnth shell functions. potential plus the self-energy, in Eq. (2.3). For the poten-
ThereforeA(r,r’) can be written as tial from the valence electronss’=G"W', we use the
Hedin-Lundqvist local approximatioft, for Vg, a proper
L , Ak nonlocal exchange potential(HF), and for VP°
Alrr )‘2 ACrLEDIYLD YL, (321 =G"WYPW" the potential we just have discussed. The core

electrons are taken as localized, also the outer core electrons
whereA is a sum of one- and two-center terms, which form valence bands in rare gas crystals. The occupied
Bloch functions are replaced by localized functions with oc-
(3.22 cupation numbers which can be fractionas'3p® for Si,
' 3s! for Na, and 21744s% for Fe.
We want to study the scattering properties of this poten-
A(r,r ) o=(4m) 1 (r,r")o—4md, (r,r"),], (3.23  tial. To obtain a sum of potentials centered on different sites
(called « or B) we use the muffin-tin approximation. The
2 potential inside the muffin tins is spherically averaged. The
[ (r,r") (1=12), (3.29 average of the potential outside the muffin tiNg, (a com-
plex numbey, is subtracted. In applications to different spec-
2 troscopies we need a Green's functidB(E)=[E—T,
(s e+ —Vveys—1 We can then takBE— To—V,] ! as the unper-
Ré’j“ ' turbed propagator andv€"Ys'-V,) as the scattering poten-
(3.25 tial. The handling of a nonlocal potential at the muffin-tin
, radius causes problems. We have simply pift,r')=0
We find a g(_)od convergence for_the two-center sum, th?/\/henr or r' is larger than the muffin-tin radius, and taken
second term in Eq(3.22), when we include the surrounding v« ontribution toV, asV(R,R), whereR is the muffin-tin

atoms up to the third shell for the systems considered hereradius, and/ stands folS, or VP!, This potential is denoted

Th? optical pqtenual can be gllven Aby E@';Z.G) after the by FH, and results obtained with the FH potential are always
spherical averaging of the potential oveandr’ in the same  represented by a full-drawn line in the figures. The FH re-

A, ) =ALrr )+ > ARy,
B#Fa

) 4
Ayr,r')= 11

Ag(r1r’)|:

(4m)? [ 1+1
3 \21+1

atomic region, sults are compared with other choices of potentials.
VPOl(r 1 Egte,) = > VP, ;SP)YL(F)Y’L*(F’), A. Elastic scattering from free Ar and Kr atoms
L
(3.26 Several theoretical methods based on local density ap-

proximations have been developed to calculate scattering
whereVf°' is expressed in terms @, g,», and Clebsch- phase shift$2*~*and used to predict LEELRefs. 24—25
Gordan coefficients, and XAFS spectrd®?’~3*However, factors such as atomic
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(@ Ar 300eV Ar 300eV
1 ;
- — -HF
801 ] —Hh A= 0ev)
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£ £ /
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1 0.2
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Degree Degree
(b) Ar 500eV FIG. 2. Results foe-Ar scattering, but with a larger scattering
80 - angle (¢=45°). The same notation as in Fig. 1.
. .-\'. |
70 \ — -HF earlier work, and as emphasized by Lee and Béttig larg-
__H'.i A= QOeV : est contribution to the value of DCSs is due to nonlocal
~ :::Eﬂ%g:ﬁgg% effects, of which the contribution from the optical potential
3 is much larger than that from the HF exchange potential.
g . With increasing energy the contribution from the optical po-
] 1
° (a) Kr 300eV
] 140 - :
120 -\ i ]
0 ‘ ‘ : DA —FH(A=QeV)
0 5 10 15 20 25 30 35 100 &, ) :::anﬁziggw ]
Degree o TNy
=1
FIG. 1. Differential cross sectiofDCS) in a.u. as a function of 2 1
scattering angle for electron elastic scattering from A@aB00 eV \U'; ]
and (b) 500 eV. The solid line shows the result for the present &
method withA=0 eV, the dashed line with=20 eV, and the ]
dotted line withA=40 eV. Some experimental results are also
shown for comparison. Experimental des, A, ¥, and @ are §
from, respectively, Refs. 31-34. The results from the Hartree-Fock
and Hedin-Lundgvist potentials are also shown for comparison. 0 0 5 1‘0 1‘5 20 25 30 35
Degree
vibrations® and spherical wave effeéfswere not taken into
account, and the comparisons are thus uncertain. It is henc ) Kr 500eV
of interest instead to compare with results from our method, '
which has been shown to give satisfactory results for the ——rr 1
intermediate-energy region for electron scattering on free at- —--HL
oms(He, Ne, and Ar.*>%In this section we show results for :Fﬂgﬁ:%g}; ]
e-Ar and eKr elastic scattering, and compare with results «~ .. v [Z FH{A=40eV
from use of the Hartree-Fock and the Hedin-Lundqvist po- 3 .
tentials. E
Differential cross sectiondCSs3 in a.u? as a function of A ]
scattering angle for elastic scattering at 300 and 500 eV anc ©
for different values ofA are shown in Figs. 1 and 2 for Ar ]
and in Fig. 3 for Kr. The solid lines show the results for b
=0 eV, the dashed lineA =20 eV, and the dotted line&
=40 eV. Some experimental data and the result from the o0 : n s 20 2¥5~ o 35

Hartree-Fock and the Hedin-Lundqvist approximations are Degree
also shown. The dependence on the parameisrmoderate.

The best agreement for the present method is found &ith  FIG. 3. Results foe-Kr scattering. The same notation as in Fig.
=40 eV for Ar and with 0-20 eV for Kr. As shown in our 1. Experimental dat¥ are from Ref. 32.
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FIG. 4. The calculated elastic electron scattering cross sections FIG. 5. Results fore-Ar scattering. The same notation as in
from Ne at 200 eMa@) and 400 eV(b) for five different methods Fig. 4.

compared with experimental results. Two methods, Hartree-Fock
(HF) and Dirac-HaraDH), include only static effects, whereas the for Ar and Kr, the full FH theory gives quite good results

other three methods, Hedin-LundqvigilL), the present method (with A=20 eV). It should be noted that in the small-angle
(FH), and mixed FH-HL(2p) (see tex}, include dynamic effects.  region the experimental results have large uncertainties since

. . unscattered electrons easil me into th r.
tential tends to zero, and we can see that the difference be- y come into the detecto

tween the FH and HF values diminishes when we go from
300 to 500 eV. The HL approximation, which is a local
approximation for the FH potential, clearly does a poor job In solids the atoms are in close proximity of each other,

in representing the large nonlocal effects. The discrepancwhich distorts their electronic structure from spherical sym-
even increases slightly with energy. The minimum in themetry. However, experience has shown that for many mate-
experimental cross section at ab@st 100° is reproduced in  rials the situation can be simplified by using the muffin-tin
all approximations, and the cross sections are correctly preapproximatiorﬁ We then take the largest possible nonover-
dicted to be small, but the percentage errors are léfgge  lapping spheres drawn about each nucleus, and use a spheri-
2). While the optical potential increases the HF DCS valuesally symmetric potential inside and a constant potential out-
for forward scattering, it decreases them for backscatteringside the muffin tins. Here we will only study muffin-tin

The HL results are better for backscattering than for forwardootentials.
scattering. First we apply our optical potential theory to elastic scat-

In Figs. 4 and 5 we show results for Ne and Ar at 200 andering from Ne and Ar in their van der Waals solids. For
400 eV using different theories. We find that the local ap-these systems there is @&'W" term in Eq.(2.3), whereas
proximation of HF, the Dirac-HaréDH) theory, agrees ex- two-center terms such as the interatomic polarization term
tremely well with the HF approximation. We further find that A{j given by Eq.(3.25 play some role. Another solid-state
when we modify the FH method to treat the outermost shelkffect is the truncation when we construct the muffin-tin po-
with the HL approximation, the result comes very close totential. Here we study these two effects on electron scattering
the HL approximation. This indicates, as expected, that thérom atoms in solids.
outermost shell dominates, and that the inner shells give very The truncation of the atomic region has influence on the
small contributions to the optical potential. Also for Ne, asconvergence of the partial wave expansion. Figure 6 shows

B. Elastic scattering from rare gas atoms in a solid
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FIG. 6. Forward differential cross section in a.u. for electron scattering angle for electron elastic scattering from (Bleand Ar

elastic scattering frona) Ne and(b) Ar in a solid state environ- ) iy 4 solid state environment at 200 eV. The same notation as in
ment at 200 eV. The potential is truncated at the muffin-tin radiusprevious figure.

The solid line(dashed lingis for a potential with(without) inter-
atomic terms. The result for a free atduotted ling is shown for  solid and atruncated atomgive a convergedf(0)|2 for
comparison. nearly the samé,,,.. The effect of the unscreened two-
center terms in/P°!, given by the difference between R
the forward differential cross section in &uor electron  solid) and FH (truncated potentials, is quite large, but
elastic scattering fronfe) Ne and(b) Ar at 200 eV calculated screening reduces the effect considerably. As a rough factor
by use of the nonlocal optical potential described in Sec. lllfor this reduction we can take the square of the dielectric
The convergence of the partial-wave expansion is investifunction, 1.8 for Ne and 3.8 for Ar. We then find that the
gated; the solid lingdashed lingis the result foran atom in  interatomic coupling gives a smaller effect than that from
a solid (a truncated atom The result for a free atorfdotted  truncation. As observed in the previous work, the long-range
line) is also shown for comparison. Fan atom in a solid  polarization part of the optical potential is also responsible
the two-center terms in E€3.25 are fully included, whereas for the slower convergence in comparison with the Hartree-
they are neglected faa truncated atomlIn both cases the Fock potential, where good convergence was foung,
atomic region is truncated at half theX distance K=Ne, =6 (Ne) and| ;=8 (Ar).1®
Ar). We thus use a different atomic radius than for a free Figure 7 shows the differential cross section in%as a
atom; the boundary conditions at the radii give a set of phasgunction of scattering angle for electron elastic scattering
shifts. For free atoms the charge density vanishes at a suffirom Ne (a) and Ar (b) at 200 eV calculated by use of the
ciently large radius, whereas only inner core wave functiongresent optical potential with the three different methods de-
vanish at the muffin-tin radius, and outer core functis®/, scribed above. The deviation between free atom and solid
2p functions in Ne still have finite values. As expected the state(corrected for screeningcattering is usually largest for
convergence foan atom in a solid | ,=10(a),12(b)] is  forward scattering. We note that even for van der Waals
faster than fora free atom[l,,=15(a),18(b)] because of solids the solid-state effectfruncation plus screened inter-
the smaller atomic radius. In classical collision thedgy, atomic contributionsare non-negligible.
corresponds to an impact parameter; with a large atomic ra- In EXAFS the backscattering amplitudes play an impor-
dius we have a large impact parameter. Bothaéom in a  tant role. So far several calculations have been done based on
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FIG. 8. The amplitudéf (k)| (&), and the phase(k) (b) as FIG. 9. The same quantities as in Fig. 8, but for solid Ar.

functions of photoelectron wave vectiorfor solid Ne. Four differ-
ent potentials are used: HF, HL, and FH witiH in solid and
without interatomic term$FH truncategl

muffin-tin radius. In the case of Ar as compared with Ne the
HL potential gives somewhat better results for the amplitude
[f(7,k)|, while it gives somewhat worse results for the

the HL local density approximations for all electrdi$’  phasey (k).
The backscattering amplitude in the plane-wave approxima-

tion is written as C. Elastic scattering from atoms in metals and semiconductors

We have studied five different potentials where we use
the HF or HL potential for the ion core and the outer elec-
trons (&'3p? for Si, 3st for Na and 317“4s°€ for Fe), and
whereVP°' may be included or omitted. We use a notation,
where, e.g.(HF,HL) means that the HF potential is used for
core electrons and HL potential for outer electrons. The five
potentials are HE(HF,HF, HF+HL=(HFHL), HL

f(r,k)=|f(m,k)|expip(k)}. 4.7
Figure §a) shows|f(,k)| as a function of photoelectron
wave vectork for a Ne atom in a solid Neon, and Fig(b8
shows the phasgé(k) four different potentials, Hartree-Fock
(HF), Hedin-Lundgvist(HL), and the present nonlocal opti-
cal potential with(FH in a solid and without(FH truncated
interatomic effects. Figures(® and 9b) show similar re- =(HL,HL), FH+HF=(HF,HF)+VP°" and FH=(HF,HL)
sults for e-Ar scattering. First we note that the interatomic +VP°!. The case HFHL was studied earlier by
effects are small for backscattering, and thus tivecated  Echeniqué®

atom approximation is rather good for botfi(,k)| and Figure 10 shows the differential cross sectjo(¥)|? as a
(k). Further we see that when we go beyond the HF apfunction of scattering angle (82 0<35°) for electron scat-
proximation, the factoff(,k)| is substantially reduced as tering in Si(a), Na (b), and Fe(c) crystals at 200 eV. In the
observed earlie? The HL potential gives somewhat better three upper curves we have an HL and in the two lower ones
results for|f(,k)| and (k) than the HF potential. All the an HF potential for the outer electrons. It is clear that the
optical potentials reduce the backscattering intensity whileehoice of potential for the outer electrons is more important
they increase the forward scattering. The nonlocal opticathan that for the ion core. The importance of the ion core is
potentials give a weak oscillation in both( 7r,k)| and ¢(k), related to how strongly bound the core electrons are. The
which may be due to the truncation or sharp cutoff at theminimum core excitation energy in Si, Fe, and Na, is respec-
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FIG. 11. The amplitud¢f(,k)| (a), and the phaseé/(k) (b) as
functions of the photoelectron wave vectofor a Si crystal. The
same five potentials as in Fig. 8 are used.

are treated by the local density approximation of the uniform
electron gas self-energy, which is a rather rough approxima-
tion. A full treatment of the non-locaG"W" expression,
however, leads to hard problems in finding a proper muffin-
tin potential.

Next we study the backscattering amplitudes which are
important in EXAFS analyses. Figures 11 —13show the am-
plitudes|f (k)| and phaseg (k) for Si, Na, and Fe crystals
as a function ok for the five different potentials discussed
above. In comparison with the small-angle scattering shown
in Fig. 10, the potential from the inner electrons is now more
important. Thus we see that with increasing energy the FH
= (HF,HL) + VP° and FH+ HF= (HF,HF)+ VP! curves ap-
proach each other, as do the HHF,HF and HF-HL
=(HF,HL) curves. This result is expected; forward scattering
corresponds to large impact parameters and dominance of
the outer electrons, while backscattering corresponds to

tively, 100, 53, and 31 eV, which is reflected in the spread okmall impact parameters and a large influence also of the
the curves. We note that addition \éP°' has about the same inner electrons. The fact that FHHF and HF curves are
effect irrespective of what potential is used for the outerseparate at high energies shows Bt has an appreciable

electrons; i.e., the difference between the-4AHF and the

short-range part. Our result for Fe is a little different from

HF curves is about the same as between the FH and thkat in the paper by Lee and Béfiibecause they used a

HF-+HL curves. We also remark that thel &lectrons in Fe

larger atomic radius.
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FIG. 12. The same as in Fig. 11, but for a Na metal. FIG. 13. The same as in Fig. 11, but for a Fe metal.

The HL curves, which contrary to the other four cases ] o .
have an HL and not an HF potential for the inner electronssmall values. The main uncertainties come from the choice

show no predictable behavior. This is not surprising since #f the effective excitation energy and from the truncation

local density electron gas expression cannot easily mimic &f the nonlocal potentia/*®" at the muffin-tin radius. The
nonlocal rapidly varying ion core exchange potential. Astruncation effects are more serious for small scattering angles

pointed out in Ref. 21, Sec. 6, while in the inner of atoms theand less so for backscattering when the inner parts of the
high electron density favors a local density description, thePotential are important. The uncertainties in the forward scat-

rapid variation of the charge density more than offsets thigering results are, however, of limited interest since forward
advantage. scattering is anyhow usually difficult to observe.

Our equations should in principle be solved self-
consistently. The self-consistency problem was studied in
earlier paper$>'®and a large effect was found for He but
not for Ne. Also in the present calculations only small effects

We have presented a theory for a crystal potential to bevere obtained. The input data for the self-consistency were
used in different electron spectroscopies like LEED,the Hartree solution for He and Hartree-Fock solution for Ne.
RHEED, XPS, XAFS, and EELFS at intermediate and highFor helium the Hartree solution is quite poor since there are
energies, say, above 50 eV. It is found that the corejust two electrons and exchange effects are comparatively
polarization contributionV?°' to the potential plays an im- large. If we instead take input data from HF or local density
portant role, not only for rare gas solids but also for metalsapproximation(LDA) self-consistency effects are generally
like sodium and iron, whereas for silicon, with its very com- much smaller than those from the choicefofand from the
pact ion core, the effects are smaller. truncations at the muffin-tin radiu$or solids.

In earlier work we studie®/P°' for atoms. Here the theory One point on which our theory should be improved is the
is developed in more detail, and we also study muffin-tinnechandling of the optical potential from the outer electrons
solid-state potentials. It is found that contributions\8°'  (valence and conduction electron&?=G*W’. We have
from unscreened interatomic couplings is appreciable, buhhere used the Hedin-Lundqvist approximation which is based
that screening effects reduce these contributions to quiten electron gas properties. A full treatment of a nonlacal

V. CONCLUDING REMARKS
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