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Self-consistent optical potential for atoms in solids at intermediate and high energies
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Graduate School for Science, Chiba University, Inage, Chiba 263-8522, Japan
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Department of Theoretical Physics, Lund University, So¨lvegatan 14A, S-223 62 Lund, Sweden

~Received 8 February 2000!

We develop an approximation for the optical potential in a solid valid at intermediate and high energies, say,
energies from 50 eV and larger. The approximation builds on the GW expression. We separate the random
phase approximation polarization propagator in a core electron and a valence electron part, and then have a
corresponding separation of the optical potential. For the valence electron optical potential we use a local
density approximation because the charge density changes fairly slowly, whereas we use a nonlocal optical
potential for the core electron part. We apply this method to electron-Ar and -Kr elastic scattering, and also to
electron scattering from atoms in van der Waals solids, semiconductors, and metals. We find satisfactory
agreement with the observed results. We also study the importance of using a nonlocal potential for the core
part and the sensitivity to a parameter, the average excitation energy. We compare the present results with
those calculated by the Hartree-Fock, Dirac-Hara, and Hedin-Lundqvist potentials. The Hedin-Lundqvist po-
tential is rather good for the description of large-angle scattering, whereas none of the local potentials can
describe small-angle scattering well.
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I. INTRODUCTION

Elastic and inelastic scattering of electrons provides u
ful information on the atomic structure and properties of b
solids as well as solid surfaces. Low-energy elect
diffraction1 ~LEED! and reflection high-energy diffraction2

~RHEED! utilize elastic scattering of a beam of electro
from a surface. Photoelectron diffraction3 and x-ray absorp-
tion fine structure4 ~XAFS! use elastic scattering of photo
electrons excited from a specific deep core level. In the c
of extended energy-loss fine structure~EELFS!, both inelas-
tic scattering of the probe electrons and elastic scatterin
secondary excited photoelectrons play an important role5

It has long been recognized that elastic scattering of e
trons is determined by the self-energy for the one-elect
Green’s function~optical potential! and its associated one
electron damping function,6–8 and explicit discussions hav
been made for x-ray photoemission spectroscopy~XPS!,9 ex-
tended XAFS~EXAFS!,10 and EELFS.11,12

Consider elastic electron scattering on a neutral atom.
Hartree and exchange potentials are short ranged and d
exponentially while the polarization potentialVpol goes as
1/r 4. In the Born approximation the scattering amplitude
just the Fourier transform of the potential. The long tail
Vpol has small large-q components, and thus gives littl
backscattering. Byron and Joachain13 studied elastic electron
scattering on atoms~helium and neon! at 400 eV including a
~simplified! Vpol . They found thatVpol was quite important
not only for small-angle scattering. Thus it could be impo
tant to include core polarization also for solids where
long-ranged tails in the potentials are cut off by screen
effects. We have earlier developed a theory for a practi
self-consistent and nonlocal optical potential in a solid14 and
applied it to electron atom scattering@He,15 Ne, and Ar~Ref.
16!#, where good agreement with the experimental res
was obtained. Here this theory is extended in particular
PRB 620163-1829/2000/62~9!/5387~12!/$15.00
e-

n

se

of

c-
n

e
cay

f

-
e
g
l,

ts
s

regards the effects of the ion core polarization potentia
solid-state problems.

To calculate elastic scattering from atoms in a solid
muffin-tin-type potential is constructed from which a set
phase shifts is obtained. The construction of an effect
one-electron potential requires knowledge of the electro
charge density and a theory for calculating the exchan
correlation potential. A simplified local exchange potent
was proposed by Slater.17 For electrons with a uniform den
sity r in a large box, the Hartree-Fock exchange contribut
can be found analytically. Slater averaged this exchange c
tribution for electrons below the Fermi surface, and assum
that the exchange potential in a solid could be approxima
by a local potential whose value at pointr was set equal to
this electron-gas-averaged exchange taken at the solid-
densityr(r ), which gives the Slater exchange potential

Vex~r !;2~3/2!~3r~r !/p!1/3. ~1.1!

This potential is widely used, not only for electrons belo
the Fermi level, but also for scattering problems, where i
basically incorrect. Thus for high energies exchange sca
ing can be neglected, whereas the Slater exchange pote
still has an influence. Another even more widely used vari
of Slater’s intuitive ideas is theXa potential. Here the Slate
potential is multiplied by an empirical parametera, VXa

5aVex , wherea often is taken as 2/3.18 The X2/3 potential
is the same as the exchange-only Kohn-Sham ground-s
potential22 and as the Dirac potential.19 Sometimes it is
called the Kohn-Sham-Ga´spár potential since Ga´spár18 long
ago found that, for the Cu atom, it gave better agreem
with the pure Hartree-Fock potential than did the Slater o
For scattering problems the exchange potential before a
aging is more motivated. This potential is local and ene
dependent, and it was shown by Hara20 to be successful for
5387 ©2000 The American Physical Society
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electron scattering from atoms and molecules. It is of
called the ‘‘Dirac-Hara’’ potential even though there is litt
reason to attach the name Dirac here.

These methods employ the Hartree-Fock approxima
for a uniform electron gas. One expects that going bey
the Hartree-Fock approximation to the electron self-ene
within a local density approximation should give an im
proved scattering potential. Hedin and Lundqvist21 ~HL! sug-
gested a scheme based on the Sham-Kohn theory,22 where
the electron gas self-energyS0„q,«(q)… is used with a
density-dependent momentumq(r ). Following Hedin and
Lundqvist21 Lee and Beni applied such a potential to electr
scattering from atoms in the intermediate-energy region,
ing the plasmon pole approximation to the GW self-ener
and showed that this potential gives an excellent descrip
of the EXAFS data for Br2 , GeCl4, and Ge.23 Several au-
thors have compared these potentials for LEED~Refs. 24–
26! and XAFS calculations.23,27–30 In principle the Hedin-
Lundqvist potential should give the best result among th
methods described above; however, the results are no
clear-cut; sometimes we can find a valuea in the Xa poten-
tial which gives a better result than the Hedin-Lundqv
potential.26

We have developed a method to calculate a self-consis
nonlocal energy-dependent optical potential based on
din’s GW approximation.7,8 Previous short communication
described an outline of the theory,14 and applied it to
electron-atom scattering15,16 where we found good agree
ment between the calculated and experimental results.
also studied the effect of self-consistency and the sensiti
to an average excitation energy. In this work we give a
tailed description of the method, and compare the ela
electron scattering cross sections calculated from the pre
nonlocal optical potential with those from the Hartree-Fo
~HF! approximation and from different local density approx
mations. Results are shown both for scattering from free
oms and from atoms in a solid.

II. BASIC THEORY

The optical potential for the target stateu0& is given to
lowest nontrivial order in a Van Hove–type expansion11

S0~E!5 (
n(Þ0)

^0uVun&^nuVu0&
E2En2h2S0~E2vn!1 ih

, ~2.1!

whereE5E01«k , vn5En2E0 (En andE0 are the energy
eigenvalues of the target HamiltonianHs , Hsun&5Enun& and
Hsu0&5E0u0&), and V is the interaction potential betwee
the scattering electron and the target:

V5(
pq

F(
lm

cl
†cm^pl uuqm&1^puVenuq&Gcp

†cq . ~2.2!

HereVen is the Coulomb interaction between the scatter
electron and the positive nuclei in the target, and^pl uuqm&
an antisymmetrized Coulomb matrix element.11 The one-
electron states of the scattering electron are denoted byp and
q, and those of electrons in the target byl andm. The inter-
actionVen gives no contribution to the inelastic matrix el
ments ^0uVun& (nÞ0). When we consider core excitatio
processes as in XAFS and XPS spectra, the core hole ef
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are included only in the one-electron scattering Hamilton
h5Te1^0uVu0&, where Te is kinetic energy operator; we
can handle the core hole optical potential in the same wa
the ground-state optical potential except for some mi
differences.12 Furthermore, we have shown that the optic
potential given by Eq.~2.1! is roughly equivalent to the self
energy in the GW approximation,11 so that we will develop a
practical method to calculate the atomic optical potential
solids and surfaces based on the GW approximation.

Detailed discussions of the crystal potential have be
given long ago by Hedin.7,8 As shown below, both the po
larization propagatorP and one-electron Green’s functionG
can be split into core and valence parts. The core polariza
is assumed to be much smaller than the valence polariza
We thus have an expansion in powers ofPc for the self-
energy~optical potential!, which is shown in Ref. 8, p. 129
where the following expression for the self-energy~optical
potential! is given:

S05GvWv1Vex
c 1GvWvPcWv1•••. ~2.3!

Here GvWv is the self-energy from the valence electron
while Vex

c is the bare exchange andGvWvPcWv the screened
polarization potential from the ion cores. The precise defi
tions of these quantities are given below.

The next question to consider is the effect of screening
the core-polarization term. For a free atom the screenin
small, and we have to a good approximationGvvPcv, where
v is the bare Coulomb potential. For long distances from
ion core it further reduces to the well-known local potent
2ae2/r 4, wherea is the dipole polarizability.7 In a solid we
expect from simple physical reasons that for long distan
we should have a statically screened polarization poten
GvWv(0)PcWv(0). Since anr 24 potential already is very
weak, the additional screening should make it negligible o
side the Wigner-Seitz cell of the ion under consideratio
Inside the Wigner-Seitz cell, on the other hand, we do
expect much screening to take place due to the cost in kin
energy to localize the screening charge.

The full random phase approximation~RPA! polarization
propagator is8

P~r ,r 8;v!52 (
k

unocc

(
l

occ
2~«k2« l !

~«k2« l !
22v2

f kl~r ! f kl* ~r 8!,

f kl~r !5E ck~x!c l* ~x!dj. ~2.4!

Here x5(r ,j) includes both space and spin variables. T
sum overk runs over unoccupied electron states, whilel runs
over the occupied core and valence electron states. By s
ting the summation overl into core and valence contribu
tions,P can be written as a sum of core and valence par

P5Pc1Pv. ~2.5!

Similarly we can split the summation overk in the expres-
sion for the one-electron Green’s function,

G~x,x8;v!5 (
k

occ1unocc ck~x!ck* ~x8!

v2«k
, ~2.6!



y

e
ll

th

fo

th

k
oc

s,
o
lo
n
he

rix
c

l-

ol

ce
r

a
er
ed

xi-
ex-
a-

for

rent

d-
local
tials

ED
s a
rate

e-
y a
um

r
The

-

PRB 62 5389SELF-CONSISTENT OPTICAL POTENTIAL FOR ATOMS . . .
to obtain

G5Gc1Gv. ~2.7!

The symbolGvvPcv stands for a convolution in energ
space,11 which can be done analytically, giving

@GvvPcv#~x,x8;v!

5 (
k

unocc

(
l

core

(
k8

valence vkl~r !ck8~x!ck8
* ~x8!vkl* ~r 8!

v2vkl2«k8

,

~2.8!

wherevkl5«k2« l , and

vkl~r !5*v~rÀr 8!ck* ~x8!c l~x8!dx8

The more tightly bound the core levell is, the smaller its
contribution tovkl(r ) due to the smaller overlap with th
unoccupied functionk. Thus the outermost core level wi
give the dominant contributions.

We replacevkl by a constantD, the average excitation
energy. This approximation has been very successful in
free atom case.13 We define a functionA(r ,r 8),

A~r ,r 8!5 (
k

unocc

(
l

core

vkl~r !vkl* ~r 8!

5E v~r2r1!v~r 82r2!@d~x12x2!2r~x1 ,x2!#

3rc~x2 ,x1!dx1dx2 , ~2.9!

where the last equality follows by closure, andr andrc are
the one-electron density matrices for all electrons and
core electrons, respectively. Withvkl5D we then have

Vpol~x,x8;v!5@GvvPcv#~x,x8;v!

5A~r ,r 8!Gv~x,x8;v2D!. ~2.10!

With the use of closure we avoid the summation over
unoccupied states. Still the density matrixr(x1 ,x2) contains
a sum over the occupied Bloch functions. We will here ta
a simplified approach and represent the sum over Bl
functions in each atomic cella by a sum over localized
functionsRn

aYlm . This is well motivated for rare gas solid
but a more serious approximation for, say, metals. In a m
accurate treatment one could consider representing the B
functions with muffin-tin orbitals, but this would mean a
integration ink space, which would substantially increase t
computational work.

If r is in cell a and the core functionl is in a neighboring
cell b, thenvkl(r ) is small and depends on the dipole mat
element betweenk and l. To lowest order the interatomi
contribution toA from the first term in Eq.~2.9! is, on the
other hand~taking the core functions as completely loca
ized!,

Nc
b

urÀRbauur 8ÀRbau
, ~2.11!

where Nc
b is the total number of core electrons in cellb,

which is a large contribution that does not contain any dip
e

r

e

e
h

re
ch

e

matrix element. To lowest order the second term in Eq.~2.9!,
however, exactly cancels this contribution sin
*r(x1 ,x2)rc(x2 ,x1)dx1dx25Nc

b when the integration ove
x1 andx2 is restricted to cellb. We will evaluate the inter-
atomic contributions toA from a multipole expansion using
bare potentialv(r2r1). The results are taken as an upp
limit to what we can expect to have with a properly screen
potentialW.

Byron and Joachain13 simplified the expression for the
core-polarization potential in Eq.~2.10!, and were able to
obtain an explicit local approximation. They also appro
mated the exchange potential by taking the electron gas
pression with the local electron density. These approxim
tions for the optical potential gave quite good results
electron-atom scattering.13

It is not easy to assess the accuracy of the many diffe
approximations made by Byron and Joachain,13 and their ap-
proximations are further difficult to generalize to the soli
state case. Instead we prefer to actually evaluate the non
expressions for both the exchange and polarization poten
from the ion cores.

III. ATOMIC OPTICAL POTENTIALS IN SOLIDS

When one studies electron spectroscopies such as LE
and XAFS, the elastic scattering from each atomic site i
crucial physical process. It is therefore important to sepa
the total effective one-electron potentialVcryst into atomic
scattering potentialsva centered at sitesa. The va are usu-
ally spherically averaged to simplify the formulas. The on
electron Green’s function can then be represented b
T-matrix expansion in terms of a homogeneous medi
Green’s functiong05(«p2Te2D1 iG)21. WhenrPa and
r 8Pb, we have to lowest order

g~r ,r 8!5g01g0tag01g0tbg01•••, ~3.1!

whereta is theT matrix for sitea. The damping propagato
g0 is small already at the nearest neighbor distance.
energy-independent termA defined by Eq.~2.9! also de-
creases with the distanceur2r 8u @see Eq.~3.25!#. It is hence
enough to consider only one-site contributions tog(r ,r 8) at
higher energies, say,«p*100 eV. For a spherically symmet
ric potentialva , the Green’s functionga is expanded as

ga~r ,r 8!5(
L

gl
a~r ,r 8!YL~ r̂ !YL* ~ r̂ 8!,

gl
a~r ,r 8!522i p̄ exp~ id l

a!Rl
a~ p̄r ,! f l

a~ p̄r .!, ~3.2!

whered l
a is the phase shift of thel th partial wave at sitea,

p̄5@2(«p2D1 iG)#1/2, Rl
a and f l

a are the regular and ir-
regular solutions for the potentialva , andr .5max(r,r8) and
r ,5min(r,r8). In the large-r limit they have the asymptotic
forms

Rl
a~ p̄r !;sin~ p̄r 2 lp/21d l

a!/~ p̄r !, f l
a~ p̄r !;hl~ p̄r !,

~3.3!

wherehl is the spherical Hankel function ofl th order.



y

et

th

st

of
on
-

mi-

re

e
nd

say

r

r
this

5390 PRB 62T. FUJIKAWA, K. HATADA, AND L. HEDIN
Next we investigate how to calculate the energ
independent termA(r ,r 8). In each atomic regiona we aver-
age the core charge density to obtain a spherically symm
function

da
c ~r !5

1

4pE dr̂rc~r !. ~3.4!

Though bothr andr 8 are in the same atomic region,r1 and
r2 are not necessarily in the same atomic region. From
first term in the large parentheses in Eq.~2.9!, we have an
intraatomic contribution toA(r ,r 8),

I a~r ,r 8!5(
L

S 4p

2l 11D 2

I a~r ,r 8! lYL~ r̂ !YL* ~ r̂ 8!, ~3.5!

where bothr and r 8 belong to atomic regiona, and also
r1(5r2) is in regiona. HereI a(r ,r 8) l is

I a~r ,r 8! l5S1
l 1S2

l 1S3
l , ~3.6!

S1
l 5~rr 8!2 l 21E

0

r ,

da
c ~r 1!r 1

2l 12dr1 , ~3.7!

S2
l 5

r ,
l

r .
l 11Er ,

r .

da
c ~r 1!r 1dr1 , ~3.8!

S3
l 5~rr 8! lE

r .

Ra
da

c ~r 1!r 1
22ldr1 , ~3.9!

where Ra is the radius of the atomic regiona ~muffin-tin
radius!.

In addition to this intraatomic contribution to the fir
term of Eq.~2.9! we have the interatomic term, wherer and
r 8 are still in regiona, whereasr1(5r2) is in regionb (b
Þa). This term is given by

I a
b~r ,r 8!5(

LL8
S 4p

2l 811
D 2

uFLL8~Rba!u2~rr 8! l^r 2l 8&b

3YL~ r̂ !YL* ~ r̂ 8!

5(
L

FL~r ,r 8;Rba!YL~ r̂ !YL* ~ r̂ 8!, ~3.10!

where in terms of Gaunt’s integral G(LL8uL9)
[*YL( r̂ )YL8( r̂ )YL9

* ( r̂ )dr̂

FLL8~Rba!5
4p~21! l 8~2l 12l 821!!!

~2l 821!!! ~2l 11!!! Rba
l 1 l 811

3G~ l 1 l 8,m82m,LuL8!Yl 1 l 8,m82m~R̂ba!,

~3.11!

FL~r ,r 8;Rba!5(
L8

S 4p

2l 811
D 2

uFLL8~Rba!u2~rr 8! l^r 2l 8&b ,

~3.12!

^r 2l&b5E
0

Rb
db

c ~r !r 2l 12dr, ~3.13!
-

ric

e

Rba5Rb2Ra .

We note that(m8uFLL8(Rba)u2 depends onm. To get rid of
this difficulty, we use the spherically averaged value
(m8uFLL8(Rba)u2. Finally we have the averaged expressi
of FL in Eq. ~3.10! in terms of the Clebsch-Gordan coeffi
cient ^ l0l 80u l 1 l 80&, which is denotedFl

0 ,

Fl
0~r ,r 8;Rba!5~rr 8! l(

l 8
H 4p~2l 12l 821!!!

~2l 11!!! ~2l 811!!! Rba
l 1 l 811J 2

3^r 2l 8&b~2l 811!^ l 80l0u l 1 l 80&2. ~3.14!

Due to the small extension of the core functions, the do
nant contribution comes froml 850,

Fl
0~r ,r 8;Rba!5

4p

~2l 11!2

~rr 8! l

Rba
2l 12

Nc
b .

This is the same result as obtained from averaging overR̂ba
in Eq. ~2.11!.

The second term in the large parentheses in Eq.~2.9! is
more difficult to calculate in general. We note that

r~x1 ,x2!rc~x2 ,x1!5(
i

occ

(
j

core

di j ~x1!di j* ~x2!, ~3.15!

where di j (x)5f i(x)f j* (x), and we assume that the co
orbital j is localized on sitea. We take bothr1 andr2 to be
in the same regiona. For the occupied states we will not us
Bloch functions but instead take a simplified approach a
use localized functionsRn

aYLn
. This is well motivated for

rare gas solids, but a more serious approximation for
metals.

By spherically averagingdi j (x) at each sitea, we can get
a simple representation for Eq.~3.15! as

r~x1 ,x2!rc~x2 ,x1!

; (
m

core

dm
a ~r 1!dm

a ~r 2!1 (
m

core

(
nÞm

occ

dmn
a ~r 1!dmn

a ~r 2!,

~3.16!

r1 ,r2Pa,

wherem andn stand for one-electron atomic states 2s, 2p1 ,
2p0, and so on, in atoma, which have the same angula
quantum numberL5( l ,m). The quantitydm

a (5dmm
a ) is the

spherically averaged electron density of themth atomic func-
tion at sitea, anddmn

a is the cross charge from themth and
nth atomic functions on sitea written in terms of the radial
parts of the atomic wave functions,dmn

a (r )5Rm
a (r )Rn

a(r )* .
As mentionedRm

a refers to a localized function, which fo
metals has a fractional occupation number. When we use
simple approximation in Eq.~2.9!, the intraatomiccontribu-
tion to A can be written as

Ja~r ,r 8!5(
m

Jm
a ~r !Jm

a ~r 8!1 (
mÞn

Jmn
a ~r !Jmn

a ~r 8!,

~3.17!
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with

Jm
a ~r !54pH 1

r E0

r

r 1
2dm

a ~r 1!dr11E
r

`

r 1dm
a ~r 1!dr1J .

~3.18!

We see thatJa has only a spherically symmetric contribu
tion.

The interatomiccontributionJa
b is not difficult to evalu-

ate,

Ja
b~r ,r 8!5 (

m

core

Jm
ab~r !Jm

ab~r 8!, ~3.19!

where by takingr a5r , Jm
ab(r ) is given as

Jm
ab~r !5

1

4pE dr̂a

nm
b

ura2Rbau
, ~aÞb!. ~3.20!

Here nm
b is the number of electrons on siteb, and Rba

5Rb2Ra . If we evaluate the angular integral in Eq.~3.20!,
we have

Jm
ab~r !5

nm
b

uRbau
, Ja

b~r ,r 8!5
Nc

b

uRbau2
.

Cross terms such asdmn
b give no contribution toJm

ab because
of the orthogonality betweenmth and nth shell functions.
ThereforeA(r ,r 8) can be written as

A~r ,r 8!5(
L

A~r ,r 8! lYL~ r̂ !YL* ~ r̂ 8!, ~3.21!

whereA is a sum of one- and two-center terms,

A~r ,r 8! l5Aa~r ,r 8! l1 (
bÞa

Aa
b~r ,r 8! l , ~3.22!

Aa~r ,r 8!05~4p!2@ I a~r ,r 8!024pJa~r ,r 8!0#, ~3.23!

Aa~r ,r 8! l5S 4p

2l 11D 2

I a~r ,r 8! l ~ l>1!, ~3.24!

Aa
b~r ,r 8! l5

~4p!2

3 S l 11

2l 11D ^r 2&b

Rba
2l 14 ~rr 8! l1•••.

~3.25!

We find a good convergence for the two-center sum,
second term in Eq.~3.22!, when we include the surroundin
atoms up to the third shell for the systems considered he

The optical potential can be given by Eq.~3.26! after the
spherical averaging of the potential overr̂ andr̂ 8 in the same
atomic region,

Vpol~r ,r 8;E01«p!5(
L

Vl
pol~r ,r 8;«p!YL~ r̂ !YL* ~ r̂ 8!,

~3.26!

whereVl
pol is expressed in terms ofAl 8 , gl 9 , and Clebsch-

Gordan coefficients,
e

e.

Vl
pol~r ,r 8;«p!5

1

4p (
l 8 l 9

~2l 811!~2l 911!

2l 11
^ l 80l 90u l0&2

3Al 8~r ,r 8!gl 9
a

~r ,r 8; p̄!. ~3.27!

As demonstrated before it is enough only to includeA0 and
A1 in the expansion Eq.~3.27!.14 We thus obtained an ex
plicit expression forVl

pol ,

Vl
pol~r ,r 8;«p!5

1

4p
@A0~r ,r 8!gl~r ,r 8; p̄!

13A1~r ,r 8!g̃l~r ,r 8; p̄!#, ~3.28!

whereg̃l is defined by

g̃l~r ,r 8; p̄!5
l

2l 11
gl 21~r ,r 8; p̄!1

l 11

2l 11
gl 11~r ,r 8; p̄!.

~3.29!

Each gl includes the radial solution for the potenti
Vl

pol(«p) to be determined. SinceVl
pol depends ongl and

gl 61 we in principle have to solve coupled self-consiste
equations.

IV. RESULTS AND DISCUSSION

The total crystal potentialVcryst is given by the Hartree
potential plus the self-energyS0 in Eq. ~2.3!. For the poten-
tial from the valence electrons,Sv5GvWv, we use the
Hedin-Lundqvist local approximation,21 for Vex

c a proper
nonlocal exchange potential~HF!, and for Vpol

5GvWvPcWv the potential we just have discussed. The co
electrons are taken as localized, also the outer core elect
which form valence bands in rare gas crystals. The occup
Bloch functions are replaced by localized functions with o
cupation numbers which can be fractional, 3s13p3 for Si,
3s1 for Na, and 3d7.44s0.6 for Fe.

We want to study the scattering properties of this pot
tial. To obtain a sum of potentials centered on different si
~called a or b) we use the muffin-tin approximation. Th
potential inside the muffin tins is spherically averaged. T
average of the potential outside the muffin tins,V0 ~a com-
plex number!, is subtracted. In applications to different spe
troscopies we need a Green’s functionG(E)5@E2Te
2Vcryst#21. We can then take@E2Te2V0#21 as the unper-
turbed propagator and (Vcryst2V0) as the scattering poten
tial. The handling of a nonlocal potential at the muffin-t
radius causes problems. We have simply putV(r ,r 8)50
when r or r 8 is larger than the muffin-tin radius, and take
the contribution toV0 asV(R,R), whereR is the muffin-tin
radius, andV stands forVex

c or Vpol. This potential is denoted
by FH, and results obtained with the FH potential are alwa
represented by a full-drawn line in the figures. The FH
sults are compared with other choices of potentials.

A. Elastic scattering from free Ar and Kr atoms

Several theoretical methods based on local density
proximations have been developed to calculate scatte
phase shifts13,23–30and used to predict LEED~Refs. 24–26!
and XAFS spectra.23,27–30However, factors such as atom
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vibrations35 and spherical wave effects36 were not taken into
account, and the comparisons are thus uncertain. It is h
of interest instead to compare with results from our meth
which has been shown to give satisfactory results for
intermediate-energy region for electron scattering on free
oms~He, Ne, and Ar!.15,16In this section we show results fo
e-Ar and e-Kr elastic scattering, and compare with resu
from use of the Hartree-Fock and the Hedin-Lundqvist p
tentials.

Differential cross sections~DCSs! in a.u.2 as a function of
scattering angle for elastic scattering at 300 and 500 eV
for different values ofD are shown in Figs. 1 and 2 for A
and in Fig. 3 for Kr. The solid lines show the results forD
50 eV, the dashed linesD520 eV, and the dotted linesD
540 eV. Some experimental data and the result from
Hartree-Fock and the Hedin-Lundqvist approximations
also shown. The dependence on the parameterD is moderate.
The best agreement for the present method is found witD
540 eV for Ar and with 0–20 eV for Kr. As shown in ou

FIG. 1. Differential cross section~DCS! in a.u. as a function of
scattering angle for electron elastic scattering from Ar at~a! 300 eV
and ~b! 500 eV. The solid line shows the result for the prese
method withD50 eV, the dashed line withD520 eV, and the
dotted line with D540 eV. Some experimental results are al
shown for comparison. Experimental datad, m, ., and j are
from, respectively, Refs. 31–34. The results from the Hartree-F
and Hedin-Lundqvist potentials are also shown for comparison
ce
,
e
t-

-

d

e
e

earlier work, and as emphasized by Lee and Beni,23 the larg-
est contribution to the value of DCSs is due to nonlo
effects, of which the contribution from the optical potenti
is much larger than that from the HF exchange potent
With increasing energy the contribution from the optical p

t

k

FIG. 2. Results fore-Ar scattering, but with a larger scatterin
angle (u>45°). The same notation as in Fig. 1.

FIG. 3. Results fore-Kr scattering. The same notation as in Fi
1. Experimental data. are from Ref. 32.
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tential tends to zero, and we can see that the difference
tween the FH and HF values diminishes when we go fr
300 to 500 eV. The HL approximation, which is a loc
approximation for the FH potential, clearly does a poor j
in representing the large nonlocal effects. The discrepa
even increases slightly with energy. The minimum in t
experimental cross section at aboutu5100° is reproduced in
all approximations, and the cross sections are correctly
dicted to be small, but the percentage errors are large~Fig.
2!. While the optical potential increases the HF DCS valu
for forward scattering, it decreases them for backscatter
The HL results are better for backscattering than for forw
scattering.

In Figs. 4 and 5 we show results for Ne and Ar at 200 a
400 eV using different theories. We find that the local a
proximation of HF, the Dirac-Hara~DH! theory, agrees ex
tremely well with the HF approximation. We further find th
when we modify the FH method to treat the outermost sh
with the HL approximation, the result comes very close
the HL approximation. This indicates, as expected, that
outermost shell dominates, and that the inner shells give v
small contributions to the optical potential. Also for Ne,

FIG. 4. The calculated elastic electron scattering cross sect
from Ne at 200 eV~a! and 400 eV~b! for five different methods
compared with experimental results. Two methods, Hartree-F
~HF! and Dirac-Hara~DH!, include only static effects, whereas th
other three methods, Hedin-Lundqvist~HL!, the present method
~FH!, and mixed FH1HL~2p! ~see text!, include dynamic effects.
e-

cy

e-

s
g.
d

d
-

ll

e
ry

for Ar and Kr, the full FH theory gives quite good resul
~with D520 eV!. It should be noted that in the small-ang
region the experimental results have large uncertainties s
unscattered electrons easily come into the detector.

B. Elastic scattering from rare gas atoms in a solid

In solids the atoms are in close proximity of each oth
which distorts their electronic structure from spherical sy
metry. However, experience has shown that for many m
rials the situation can be simplified by using the muffin-
approximation.1 We then take the largest possible nonov
lapping spheres drawn about each nucleus, and use a sp
cally symmetric potential inside and a constant potential o
side the muffin tins. Here we will only study muffin-tin
potentials.

First we apply our optical potential theory to elastic sc
tering from Ne and Ar in their van der Waals solids. F
these systems there is noGvWv term in Eq.~2.3!, whereas
two-center terms such as the interatomic polarization te
Aa

b given by Eq.~3.25! play some role. Another solid-stat
effect is the truncation when we construct the muffin-tin p
tential. Here we study these two effects on electron scatte
from atoms in solids.

The truncation of the atomic region has influence on
convergence of the partial wave expansion. Figure 6 sh

ns

k

FIG. 5. Results fore-Ar scattering. The same notation as
Fig. 4.
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the forward differential cross section in a.u.2 for electron
elastic scattering from~a! Ne and~b! Ar at 200 eV calculated
by use of the nonlocal optical potential described in Sec.
The convergence of the partial-wave expansion is inve
gated; the solid line~dashed line! is the result foran atom in
a solid ~a truncated atom!. The result for a free atom~dotted
line! is also shown for comparison. Foran atom in a solid,
the two-center terms in Eq.~3.25! are fully included, whereas
they are neglected fora truncated atom. In both cases the
atomic region is truncated at half theX-X distance (X5Ne,
Ar!. We thus use a different atomic radius than for a fr
atom; the boundary conditions at the radii give a set of ph
shifts. For free atoms the charge density vanishes at a s
ciently large radius, whereas only inner core wave functio
vanish at the muffin-tin radius, and outer core functions~say,
2p functions in Ne! still have finite values. As expected th
convergence foran atom in a solid@ l max510(a),12(b)# is
faster than fora free atom@ l max515(a),18(b)# because of
the smaller atomic radius. In classical collision theoryl max
corresponds to an impact parameter; with a large atomic
dius we have a large impact parameter. Both anatom in a

FIG. 6. Forward differential cross section in a.u. for electr
elastic scattering from~a! Ne and~b! Ar in a solid state environ-
ment at 200 eV. The potential is truncated at the muffin-tin rad
The solid line~dashed line! is for a potential with~without! inter-
atomic terms. The result for a free atom~dotted line! is shown for
comparison.
I.
i-

e
e

ffi-
s

a-

solid and a truncated atomgive a convergedu f (0)u2 for
nearly the samel max. The effect of the unscreened two
center terms inVpol, given by the difference between FH~in
solid! and FH ~truncated! potentials, is quite large, bu
screening reduces the effect considerably. As a rough fa
for this reduction we can take the square of the dielec
function, 1.8 for Ne and 3.8 for Ar. We then find that th
interatomic coupling gives a smaller effect than that fro
truncation. As observed in the previous work, the long-ran
polarization part of the optical potential is also responsi
for the slower convergence in comparison with the Hartr
Fock potential, where good convergence was found,l max
56 ~Ne! and l max58 ~Ar!.16

Figure 7 shows the differential cross section in a.u.2 as a
function of scattering angle for electron elastic scatter
from Ne ~a! and Ar ~b! at 200 eV calculated by use of th
present optical potential with the three different methods
scribed above. The deviation between free atom and s
state~corrected for screening! scattering is usually largest fo
forward scattering. We note that even for van der Wa
solids the solid-state effects~truncation plus screened inte
atomic contributions! are non-negligible.

In EXAFS the backscattering amplitudes play an imp
tant role. So far several calculations have been done base

.

FIG. 7. The differential cross section in a.u. as a function
scattering angle for electron elastic scattering from Ne~a! and Ar
~b! in a solid state environment at 200 eV. The same notation a
previous figure.
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the HL local density approximations for all electrons.23,27

The backscattering amplitude in the plane-wave approxi
tion is written as

f ~p,k!5u f ~p,k!uexp$ ic~k!%. ~4.1!

Figure 8~a! shows u f (p,k)u as a function of photoelectro
wave vectork for a Ne atom in a solid Neon, and Fig. 8~b!
shows the phasec(k) four different potentials, Hartree-Foc
~HF!, Hedin-Lundqvist~HL!, and the present nonlocal opt
cal potential with~FH in a solid! and without~FH truncated!
interatomic effects. Figures 9~a! and 9~b! show similar re-
sults for e-Ar scattering. First we note that the interatom
effects are small for backscattering, and thus thetruncated
atom approximation is rather good for bothu f (p,k)u and
c(k). Further we see that when we go beyond the HF
proximation, the factoru f (p,k)u is substantially reduced a
observed earlier.23 The HL potential gives somewhat bett
results foru f (p,k)u andc(k) than the HF potential. All the
optical potentials reduce the backscattering intensity w
they increase the forward scattering. The nonlocal opt
potentials give a weak oscillation in bothu f (p,k)u andc(k),
which may be due to the truncation or sharp cutoff at

FIG. 8. The amplitudeu f (p,k)u ~a!, and the phasec(k) ~b! as
functions of photoelectron wave vectork for solid Ne. Four differ-
ent potentials are used: HF, HL, and FH with~FH in solid! and
without interatomic terms~FH truncated!.
a-

-

e
al

e

muffin-tin radius. In the case of Ar as compared with Ne t
HL potential gives somewhat better results for the amplitu
u f (p,k)u, while it gives somewhat worse results for th
phasec(k).

C. Elastic scattering from atoms in metals and semiconductors

We have studied five different potentials where we u
the HF or HL potential for the ion core and the outer ele
trons (3s13p3 for Si, 3s1 for Na and 3d7.44s0.6 for Fe!, and
whereVpol may be included or omitted. We use a notatio
where, e.g.,~HF,HL! means that the HF potential is used f
core electrons and HL potential for outer electrons. The fi
potentials are HF5~HF,HF!, HF1HL5~HF,HL!, HL
5~HL,HL!, FH1HF5(HF,HF)1Vpol, and FH5(HF,HL)
1Vpol. The case HF1HL was studied earlier by
Echenique.24

Figure 10 shows the differential cross sectionu f (u)u2 as a
function of scattering angle (0°<u<35°) for electron scat-
tering in Si~a!, Na ~b!, and Fe~c! crystals at 200 eV. In the
three upper curves we have an HL and in the two lower o
an HF potential for the outer electrons. It is clear that t
choice of potential for the outer electrons is more import
than that for the ion core. The importance of the ion core
related to how strongly bound the core electrons are. T
minimum core excitation energy in Si, Fe, and Na, is resp

FIG. 9. The same quantities as in Fig. 8, but for solid Ar.
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5396 PRB 62T. FUJIKAWA, K. HATADA, AND L. HEDIN
tively, 100, 53, and 31 eV, which is reflected in the spread
the curves. We note that addition ofVpol has about the sam
effect irrespective of what potential is used for the ou
electrons; i.e., the difference between the FH1HF and the
HF curves is about the same as between the FH and
HF1HL curves. We also remark that the 3d electrons in Fe

FIG. 10. The differential cross sectionu f (u)u2 as function of the
scattering angle fore-Si ~a!, e-Na ~b!, ande-Fe ~c! at 200 eV. We
used five different potentials~see text!: HF5~HF,HF!, HF1HL
5~HF,HL!, HL5~HL,HL!, FH1HF5(HF,HF)1Vpol, and FH
5(HF,HL)1Vpol.
f

r

he

are treated by the local density approximation of the unifo
electron gas self-energy, which is a rather rough approxim
tion. A full treatment of the non-localGvWv expression,
however, leads to hard problems in finding a proper muffi
tin potential.

Next we study the backscattering amplitudes which
important in EXAFS analyses. Figures 11 –13show the a
plitudesu f (p,k)u and phasesc(k) for Si, Na, and Fe crystals
as a function ofk for the five different potentials discusse
above. In comparison with the small-angle scattering sho
in Fig. 10, the potential from the inner electrons is now mo
important. Thus we see that with increasing energy the
5(HF,HL)1Vpol and FH1HF5(HF,HF)1Vpol curves ap-
proach each other, as do the HF5~HF,HF! and HF1HL
5~HF,HL! curves. This result is expected; forward scatteri
corresponds to large impact parameters and dominanc
the outer electrons, while backscattering corresponds
small impact parameters and a large influence also of
inner electrons. The fact that FH1HF and HF curves are
separate at high energies shows thatVpol has an appreciable
short-range part. Our result for Fe is a little different fro
that in the paper by Lee and Beni,23 because they used
larger atomic radius.

FIG. 11. The amplitudeu f (p,k)u ~a!, and the phasec(k) ~b! as
functions of the photoelectron wave vectork for a Si crystal. The
same five potentials as in Fig. 8 are used.
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The HL curves, which contrary to the other four cas
have an HL and not an HF potential for the inner electro
show no predictable behavior. This is not surprising sinc
local density electron gas expression cannot easily mim
nonlocal rapidly varying ion core exchange potential.
pointed out in Ref. 21, Sec. 6, while in the inner of atoms
high electron density favors a local density description,
rapid variation of the charge density more than offsets
advantage.

V. CONCLUDING REMARKS

We have presented a theory for a crystal potential to
used in different electron spectroscopies like LEE
RHEED, XPS, XAFS, and EELFS at intermediate and h
energies, say, above 50 eV. It is found that the co
polarization contributionVpol to the potential plays an im
portant role, not only for rare gas solids but also for met
like sodium and iron, whereas for silicon, with its very com
pact ion core, the effects are smaller.

In earlier work we studiedVpol for atoms. Here the theory
is developed in more detail, and we also study muffin-tinn
solid-state potentials. It is found that contributions toVpol

from unscreened interatomic couplings is appreciable,
that screening effects reduce these contributions to q

FIG. 12. The same as in Fig. 11, but for a Na metal.
s
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small values. The main uncertainties come from the cho
of the effective excitation energyD and from the truncation
of the nonlocal potentialVpol at the muffin-tin radius. The
truncation effects are more serious for small scattering an
and less so for backscattering when the inner parts of
potential are important. The uncertainties in the forward sc
tering results are, however, of limited interest since forwa
scattering is anyhow usually difficult to observe.

Our equations should in principle be solved se
consistently. The self-consistency problem was studied
earlier papers,15,16 and a large effect was found for He bu
not for Ne. Also in the present calculations only small effe
were obtained. The input data for the self-consistency w
the Hartree solution for He and Hartree-Fock solution for N
For helium the Hartree solution is quite poor since there
just two electrons and exchange effects are comparati
large. If we instead take input data from HF or local dens
approximation~LDA ! self-consistency effects are genera
much smaller than those from the choice ofD and from the
truncations at the muffin-tin radius~for solids!.

One point on which our theory should be improved is t
handling of the optical potential from the outer electro
~valence and conduction electrons!, Sv5GvWv. We have
here used the Hedin-Lundqvist approximation which is ba
on electron gas properties. A full treatment of a nonlocalSv

FIG. 13. The same as in Fig. 11, but for a Fe metal.



e
p
te
s

shi
T.
is

5398 PRB 62T. FUJIKAWA, K. HATADA, AND L. HEDIN
may, however, as forVpol, meet difficulties in the muffin-
tinning process. Despite all the different limitations that w
have discussed, we feel that our theory represents an im
tant improvement on present ways to construct crystal po
tials and that it adds to our understanding of the propertie
the crystal potential.
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