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Metastable states of vortex matter can be converted to stable phases through the fluctuation energy dissipated
during isothermal field variations. The critical state model provides a calculation of the total energy dissipated
in the sample during a field cycle through the area enclosed withivthkloop. We present a formalism for
calculating the spatial distribution of the energy dissipation, and show that it rises quadratically near the
surface.

Supercooled or metastable phases of vortex matter have Bean had recognized that the energy dissipation due to
been receiving attentidn® and it has been reported that su- bulk pinning also corresponds to electric fields, generated by
percooled vortex phases persist further under field coolinghe time-varying magnetic fields, being parallel to the local
(FO) than under isothermal field variatiérf.We have pro-  shielding current densitys (of magnitude=Jc).*® This in-
posed that this is because energy dissipation during isotheterpretation was used by him to attack the case of rotating
mal field variations provides a fluctuation energy that causemagnetic fields applied parallel to the surface of an infinite
the metastable supercooled phase to cross the free-energibl® If both 3S(x) andE(x) can be obtained, this provides
barrier and transform to the stable equilibrium phi$@/e  a scheme for calculating the spatially resolved energy dissi-
shall refer to this process as a “metastable to stable transfosation throughi- E.
mation” for brevity) The total fluctuation energy produced \we first consider that the external field alongs raised
in the sample under a cyclic field variation is given by thefrom 0 to B,,, and assume that this is done at a constant rate
area within anM-H loop and can be calculated within the b, in time T. (We shall see later that our results for energy
critical state mode(CSM).'%~*? dissipation are independent bfor T, so that this is not a

Recent experiments have reported that differeneta-  restrictive assumption.In the region of the sample where
stable and equilibriupnphases can exist simultaneously in flux is penetrating, we haveB(x)/dt=bz so that curlE is
different regions of the sampfé.g'lSZeldov et all* had also nonzero and we getdqzy/dx) =—bh. The Sh|e|d|ng currents
shown that vortex-lattice melting occurs when the local magare set up to the pointg(t)=R— (bt/Jc), and the region
netic induction reaches a critical value, and different regionsnterior of xo(t) has seen no flux and provides the physical
of the sample exhibit vortex-lattice melting at different val- hoyndary condition thaE must vanish in the interior of
ues of applied fields. In the light of such measurements with (1) For timet<T=B,,/b, we thus have, fofx|>x(t)
local probes it appears that quasiequilibrium is established- R—(bt/Jo),
locally, and not globally, on experimental time scales. It is
thus important to calculate the spatially resolved energy dis- 3 _
sipation[,) and the fluctuation eneprgy cryeated locally, vgr)llen a B =[bt=J(R=X)]z
hard superconductor is subjected to an isothermal variation

of magnetic field. We shall consider here the case of an Js(x.t) == Jcy,
infinite slab in a parallel field as this geometry has the sim- .

plest algebra among the zero-demagnetization-factor cases of JE(X,t)

infinite cylinders in a parallel field. We shall also use Bean's ox Y,

simplifying assumption of a field-independedt ,° and

shall continue with the assumptiéty, =0 followed in most X

papers on the CSNF1® Ey(x,t)= —f bdx. (1)
We consider the case of a virgin zero-field-cool&&C) Xo()

slab with surfaces at=+= R, with an applied field along the

7 axis that is raised isothermally from O Ry.,. After estab- % The right-hand side of all the expressions vanishes for

lishing our formalism, we shall consider the case where th X|<X0(t.)' qu simplicity we shall only present expressions
external field is cycled from—B,, to B,, and back to or positivex in the rest of the paper. Ttlejocal rate of energy
—B,,. As is known, field profilegand energy dissipatioin ~ dissipation per unit volume is given b E and we get the
second and subsequent cycles do not depend on the sam@ial energyPy(x) dissipated ak, as the external field is
thermomagnetic histore.g., whether FC or ZFCWe shall ~ raised from 0 tdB,=bT, as

show explicitly that the value of the total energy dissipated . .

in the sample, as obtained from our formalism, agrees with Pd(X)=f 3(x)-|§(x)dt=J j(x)E(x)dt, (2)
that obtained from the area within tihé-H loop. 0 ty
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sinceE(x,t) vanishes ak for t<t;(x)=(R—x)J./b. Thus
using Eq.(1) we geth(x)=Jcbffl(x)dtf§0(t) ds. WhenB,,
is smaller than the field for full penetratioB* =J:R, we
get

Pa(x)=(Icb/2)[T—t1(x) J[X—Xo(T)] ()
and P4(x) vanishes forx<xy(T)=R—(B,/Jc). Substitut-
ing for T andt,(x), we get forB,,<B*

Pa(x)=(Jc/2)[Bn— (R=X)Ic][X—R+(Bn/Jc)]

=(1/2B(x)? 4

and we note thaB(x) is also the total change B atx as the

external field varies from 0 t®,,. For B,,>B*, we simi-
larly obtain

Py(x)=(1/2)J2x?+ IcX(By— B*) (5
andPy4(x) is finite for all x. The total change iB atx is now

from zero toB(x) =Jcx+ (B,,—B*), andP4(x) is no longer
simply related toB(x). We note from Eqs(4) and (5) that
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The results in Eq(8) agree with standard resuftsof the
CSM obtained from the area within tivé-H loop. This com-
pletes a necessary cross-check on our main results in Egs.
@—=(7).

We have assumed here thi{ is independent oB. The
above expressions fdP4(x) thus remain unchanged if the
applied field is cycled around a bias fiel8}, i.e., between
Bo—B,, and By+B,,. Our formalism goes through when
Jc(B) is not a constan®4(x) would then depend 0B, but
the leadingx dependence would be still given by Ed§)
and(7).

We now discuss the transformation from a metastable su-
percooled state, to the stable equilibrium state, under isother-
mal field variation. As discussed in Ref. 9, this field variation
produces a fluctuation energy and the transformation will
occur whene;+kgT~fg(T), where fg is the free-energy
barrier surrounding the supercooled state. As mentioned in
the introduction, quasiequilibrium in vortex matter appears
to be established only locally on experimental time scales.
The metastable to stable transformation would thus occur in
the neighborhood ot when

P4(x) is independent of the rate of ramping the external field

from 0 toB,,. The ramping could have also taken place in
smaller steps of unequal rate with no change in the total

energy dissipated at

We now consider the case of a sample with applied fieldand thex dependence oP
Beyi= — B Which has been prepared by reducing field iso-

thermally from aboveB*. The field is now raised t8,, and

lowered back to—B,,. Following the method outlined
above, we get the spatial distribution of the energy dissipate

during this complete cycle as
Pg(x)=2J2(x—x0)>=2[6B(x)]> for B,<B*, (6)

where 6B(x) is the amplitude of the excursion iB(x).
Again Py(x) vanishes for x[R—(By/Jc)]. And, for B,
=B*, we get

Py(X)=2J2x2+4J X[ By— B* ] 7)

Pa(x) +kgT~fg(T) (€)

d(x) is similar for unidirectional
[Egs.(4) and(5)] and cyclic[Egs.(6) and(7)] variations of

the applied field. For small variationB4(X) rises quadrati-
8ally close to the surface, and this can explain why meta-
Stable to stable transformations are triggered progressively
from the surfacé. Further, under cyclic fields withB,,
<B*, the metastable phase will continue to exist near the
center of the sample even under repeated cycling because
P4(x) vanishes fox<[R—(B,/Jc)].

To conclude, we have presented a calculation of the spa-
tially resolved energy dissipation when a hard supercon-
ductor is subjected to an isothermal field variation. This is an
experimentally relevant quantity because measurements with
local probes have shown that vortex matter attains quasiequi-
librium locally, and not globally over the sample. Our results

and againP4(x) is finite for all x. As a cross-check, we show that this local energy dissipation rises quadratically
calculate the total energy dissipated over the entire sampledith x asx rises towards the sample surface, implying that

asQ=(1/R) [RP4(x)dx, and get

Q=(2/3B3/B*
=2B*B,,— (4/3)B*?

for B,<B*

for B,=B*. (8)

metastable to stable transformations would, under ac fields,
be triggered from the surface.
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