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Current effect on vortex-antivortex depairing in type-Il superconductors
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An iterated mean-field approach is here considered to describe the contribution of the applied current to the
generation of thermally excited vortices. The Lorentz term is added to the vortex-antivortex pairing potential
and the obtained interaction, following the Kosterlitz-Thouless scheme, is screened by the dielectric constant.
The recoursion equations are solved and an expression of the resistivity vs temperature, in the limit of low
applied currents, is obtained above a current dependent critical temperature, whose expression is in good
agreement with the experimental results.

[. INTRODUCTION smaller pairs, polarized in the field of the larger ones, must
be taken into account. Kosterlitz and Thoufeg&T) propose
The dissipation in type-l1l superconductors is usually at-to consider, for a pair with size a dielectric constang(r)

tributed to the viscous motion of flux lines under the influ- which reduces the interactidi), giving rise to an effective
ence of the Lorentz force. In most experimental conditions:harge:qz(T)=q§(T)/s(r). By increasing the temperature
the fluxons are generated by an external magnetic field anghe v-a density becames larger and consequently also the
in these cases the vortices, with an hexagonal configuratiogcreening effect. At a temperatuﬂg (KT critical tempera-
(Abrikosov latticg, are mainly oriented with the applied ture) the interaction is completely cancelédll renormaliza-
field, producing well-known dissipative processeaithout  tion) and the system exhibits a phase transition between a
the magnetic field the resistivity is still attributed to the mo- paired configuration and unpaired one.
tion of flux lines, but their origin and dynamics are still an  Different electrical properties are expected in the two
open question. Widely accepted proposals consider flux gerphases, corresponding to the mechanisms invoked to produce

eration as due to the thermal fluctuations of the order parammnoving vortices with a resistivity proportional to the free
eter phas@.? According to the Ginsburg-Landau theory, the yortex densityn; :*

supercurreni is related tof and to the potential vectaX(r)
as j(r)=(hmng2m)[VO(r)— (e c)A(r)]. The previous p=2m&p.Nn;, 2
equation withfV 4(r)-dr= =27 defines the current vorti-
ces, whose dimensions are of the order of the penetratiowherep, is the normal-state resistivity.
depth\. Each vortex encloses a normal region core with a ForT>T‘,2 unpaired vortices are thermally produced and
guantum magnetic fluxby and a radius equal to the coher- one has an Ohmic respon‘%e:
ence lengthe.

These excitations are more p_robaple in planar systems, p=Ap, exp(—zm), 3)
where the reduced dimensionality favors thermal
fluctuation This happens in films whedy< £ (d, being the  \here b is a sample-dependent parameter arfd-(T°
thicknes$ or in layered c_ompou_nds, like c_uprates, if the _T)/(Tco_TE) is an appropriate reduced temperature.
distancez between the noninteracting planes is larger téan ForT<TE the Lorentz forcé=, =] ¢, /c dissociates loose

(& belr;_g th_ec-aX|s coherence lengthin these cases the pairs with an efficiency increasing with the applied current
core radius is,p - ._density: non-Ohmic behavior is then expected. In this case
e total potential(l) is modified by a term due to the current

of vortices @) and antivorticega) is energetically favored in contribution:

two-dimensional(2D) systems. At low temperatures these
vortices are coupled by a logarithmic field:

r2mj
Uj(r)=Uo(r)—F|-r=q2(In—— r) (4

r & ﬁnse
Uo(r):qgm(g)- (1)

The energy has a maximum = (an¢e)/(2mj) which is
wherer is thev-a pair size ¢>£). This interaction provides Overcome by a classical jump with the depairing réte
an analogy with the 2D Coulomb gas, where a temperaturexexg —U;(r)/KT]=(j/j*) 2T “where j* = (hinge)/(2mé) is
dependent effective charge is associated to each vorteshe Ginzburg-Landau critical current. #fis the recombina-
go(T)==Jmhing(T)/2m (gy>0 for vortices; qo<O for  tion probability at the equilibrium:l“—ynfz=0 and n;
antivortice3,® with ng(T)=n(0)(1—T/T,,) the areal su- ~T*2 Then the non-Ohmic contribution is described by a
percarrier density r(S(T)=n§d(T)d), Teo the Ginzburg- power law:p~j&™, wherea(T)=q?%2kT decreases witfl
Landau critical temperature. Then each pair is thought of aand it is expected to jump from 2 to @niversal jump con-
an electrical dipole and, at large density, the screening oflition) at the critical temperaturTéE.
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The linear dissipation in Eq3) and the power depen- 04
dence of thd -V characteristics are considered as the signa-
ture for the applicability of the KT theory to 2D o 03F T
superconductors? = E S R :
An alternative point of view considers E@) as starting T 02b AT E
point, where the pair energy is reduced by the current; the E SN T=CT=kéJ>
couple generation and the screening effect are consequently Soor:o N
favored. Now the complete depairing occurs at temperature L T<T)
T«(j), which decreases with the current. This picture is con- 0 L=, \C>° ‘ ‘
sidered by Piersdh!! who uses a rigorous real-space 02 2 02

renormalization-group theory to study the critical behavior of
vortices in a layered system in the presence of current. In that FIG. 1. Hyperbolic trends of 2y(1—4J)¥2 vs x, as indicated
work a linear dependence of the critical temperature is pro-

. . in the text, for three values of temperature. That corresponding to
posed. The agreement with the experimental data covers @_|, (T=T,) separates the two regions: that of the coupled

limited region of thej-T p'Iane, While'a deviation whep pairs (C>0, T<T,) and that of free vorticesq<0, T>T,).
approaches to zero, remains unexplained.

Here the KT transition in 2D superconductors in the PreSEquations(7) are different from the more rigorous Edd)

ence of applied current is studied by means of an "iterated, (s of Ref. 9, but in the limit of low current and near the
mean-field approximation” approach, following the proce- .yitical point the conclusions are similar.

dure used by FischEfto study the interplanar coupling ef- ~ ‘Near the critical condition T~Ty.|x|<1), the solution
fect. The obtained scale recoursion equations are solved ang Egs.(7) is
a dependence of the critical current vs temperature in good
agreement with the experiments is found. x2— 4m?y2=C(T,j)—1,. ®)
Il. THE MODEL The quantityl;=2fJdx=1672y3(1")J(I")dl’ of Eq. (8)
should be evaluated by an iterative method, however, since
J(I) grows exponentially witH, in fair approximation, for
J(1)<1 one had = 167%y?J.
No| 2 2W+U (1) In Eq. (8), C=x5—4m?y3+ 167%y2J, (%o andyo being
—2) e ;{ - k—TJ) (5)  theinitial values ofk andy for | =0 andJy,=j/j*) and in the
§ low current conditionsj(<j*), as usual in the experiments,
whereW is the formation energy for single vortices aNgis IS the same integration constant of the KT theb#t tem-
the probability that a vortex core is situated in a cell of aregPeratures near(j),C is expanded in power of the tempera-
£, ture: C=Br(7<1) with C(0)=0 andB=C'(0)= —2x¢X;

The interaction potential for a pair of sizés screened by +8m%yoyg and 7=[Ty(j) = T1/[Teo—Tk(j)]. ThenC=0
the smaller couples and, by introducing the dielectric confor T=T,(j) and it changes its sign fromf<T,(j) (C

In the presence of curreftthe density of the pairs with
separatiorr is

Np(r)=

stante(r), one has >0) to T>Ty(j) (C<0).
By substitutingl ; in Eq. (8) one has
o= g o mmglor
i(r) Aen\ 77 Aine r'. (6) 4772y2=X2_C ©
1-43°
As usual the dielectric constantdgr)=1+4my(r) and
in terms of the pair polarizabilityx=q3r2/4kT, one has Sincex?—C is always positivé;*®y real values are as-
s(r)=1+47rf2¢dr’f(2,”d0r’np(r’,a)a(r’). sured if J<1/4 and forJ=1/4 the maximum length value

To know the pairing status in the function oyone hasto |.=In(j*/4j) may be considered as a cutoff in the integral
derive the coupled Egg¢5) and (6) and it is convenient to (6). Equation(9) represents a set of hyperbol@gg. 1) on
introduce the length scale=In(r/&) and the three variables: the plane(x,27wy+/(1—4J)), one for each temperature, along
x(1)=[2/wK(1)]-1: where wK(I)=qg3/2¢(1)kT (reduced whichl varies. The behavior of the system is indicated by the
stiffness constahis thev-a coupling strength in the screen- limit of x andy when|—I.; in this way one takes into
ing condition;y(l) =exp{2l—[2W+U;(1)/2kT}: the pair ex- ~ consideration all the pairs.
citation probability; J(I)=(j/j*)e": the adimensional cur- ~ For J=0 Egs.(7), (8), and(9) are the same as the KT
rent contribution. theory andl.—<, being the integration upper limit of the

At low depairing conditionsy<1) the scaling equations KT recoursion equations.
are ThenT(j)=TP and whenC=0 (T=T}) Eq. (9) repre-

sents a straight line which, fdr—, givesx=0 (7K=2)
dx/dl=8m?y?, (78 (universal jump condition This critical behavior delimits
two regimes:
dy/dl=2y(x+J)/(x+1), (7b) (a) whenC>0 (T<TY), x approaches to a finite value
andy— 0, meaning a nonzero coupling strength and all vor-
dJ/dl=J. (70 tices paired.
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(b) whenC<0 (T>TP), x—o andy—oo, indicating a -4 ‘
zero coupling strength and a complete dissociation. b . . f;))f
ThenT, divides the totally paired configuration from the % 29
unpaired onéKT transition.° = B %l o, v e
For J# 0 the solutions of Eq47) are e oo T e, ]
(@ for C=0 [T=Ty(j)]: =l Y 0000 o e _
& O a ’ v
(Ep— (108 e ’
x()=——,
1-(21+15)%g 16 b e, c
3 5 7 9
1-T/T0)-0.5
21— 43y()=x(1). (10b) (T

. . FIG. 2. Plots of the natural logarithmic ofg, vs (1
_ 1/2 e
On the[x,y(1—4J) "] plane, one has a straight line reach- —T/TY)~°5for the planar samples reported in Table I. The currents

ing thex axis (I —Ic) atx=0 (wK=2; universal jump con- | correspond to the voltagé,, indicated in Table I. The data of

dition). the samplegb) are shifted by two units in order to avoid superposi-
(b) for C>0 [T<T(j)I: tion. The obtained linear trends indicate the good approximation of
Eq. (16).
x(1)=—/C coth D), (119

A numerical solution is necessary to obtain thevalues
2m\1-4J3y(l)=/Ccsch(D), (11b  from the previous equation; on the other hand, at low density
current, whenJ<1 and nearT,(Xo<1), an approximate
where D=2C(I+1,)+coth i(x,/yC). On the [x,y(1 (Xo=<1) Pb

Y ! analytical solution is giveh, =2x//|C|= m/2\/7/2B. From
4J)Y?] plane, the curves have downward concavity. ForEq_ (13) the resistivity is

| —lc one hasx— — /C andy—0. The coupling strength is
nonzero and all vortices are paired.

(c) for C<O [T>T ()1 p=Ap,exp—2b/|7]). (15
x(I)=V|C|tanD"), (128 This result is qualitatively the same as the case without ap-
plied current with7°=7 and b=8=%/B, but in this case,
2m\1-4Jy(l)=/|C|se¢D"), (12 Tu(j) is current dependent and the resistivity is non-Ohmic.

This result is in agreement with the experimental data in

where D' =2/[C[(I +1,) +tan *(x/\[C[). On the[x,y(1  several planar samplé3,
—4J)"?] plane, the curves have upward concavity. For  For T<T,, a characteristic lengtli_ which represents
—lc one hasx— andy—c. The coupling strength is zero the mean distance between the vortices of a pair, is usually
(wK=0) and all vortices are dissociated. defined®* It corresponds to a length scald_

Herel,= [l /(= C)dI" =2 In[(j* —4))/(j* —4je")]. For =1, b [1/(1-T/TY], whereb’ is a sample-dependent
j =0 this term disappears and the solutioh€)—(12) are the  parameter. I =0 the couple is broken when —, that is
same as the KT theory. atT=TY, but forj >0 the depairing takes place for1, and

As in the KT caseT,(j) separates the paired and the free-l—k(j) is obtained when_(T)=1.. By reversingT,(j), on
configuration but, in this case, it is a decreasing function i”thej-T plane one has

theT-j plane, with two dissipative regions: far<T,(j) the
paired vortices do not contribute to the dissipation, while for

T>T,(j) free vortices generates a resistivity following Eq. i (T)= i*(T) oxd — E 1 16
(2). =77 27 N1-T/T0)"

For T>T,(j), one may define a characteristic length
[1.=In(&, /8], corresponding to the scale at which the vor-
tices begin to unbound; then the free vortex densitys
=1/(2w¢%) and from Eq.(2) the resistivity is

wherej*(T)=j*(0)(1— T/Tco)*?2 which may be consid-
ered as a constant if<Tco.
The curreng (T) plays a role of a temperature-dependent
— poexp—21.,) (13) critical current at which the dissipative process takes place.
P=Po - Figure 2 shows the logarithmic plot of, vs 1/(1
The dependence df, on the temperature is indirectly ob- — T/Ty) for five planar samples listed in Table I, which in-
tained by considering that the generated vortices at this scaudes one superlattideample b,** two thin films[samples

are all free, that iyo(T)=y(l.,T). Then (a) and(c)],****and two Josephson arrajsamples(d) and
(e)].2%171,, is the current at the lowest experimental voltage
1-4J, [ %o Ve, indicated in Table | as obtained from theV character-
T4 5e¢2 JIC|(1s +1,) +tan 1| — istics. 1 is assumed to be a good approximation of the criti-
\/m cal current. As is usually done, this can be considered a good

approximation of the critical current. The obtained straight
= (14) line confirms the validity of Eq(16) in a large range of
temperature.

_set{tan_l(%)
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TABLE I. List of the examined samples and their significant parameters, whose meaning is explained in

the text.
Jb"
Sample Composition Ref.  Thicknegsm) Vei(V) TY(K)  1*(0)(A) 2T
a Hg-Xe 4 10 1.x10°8 35 0.47 2.55
b YBCO/PrBaCu0;_y 14 2.4/10 1.x10°7 497 21.3 4.88
c YBCO monolayer 15 1.2 10107 26.38 0.06 2.05
d Nb-Au-Nb junction array 16 5810°1°  8.26 2041  6.58
e YBCO Ag junction array 17 18108 79.44 0.33 1.33
I1l. CONCLUSIONS current a numerical solution of E@14) is necessary.

The current contribution to the thermal generation of .A dgpendence of critical c_:urrent on temperature IS Op'
vortex-antivortex couples is here considered, as due to th@Ined in good agreement with the experimental results in
pair potential reduction. The increased pair density gives ris§€Veral planar superconductors.
to a larger screening effect, which produces a phase transi-
tion with a current dependent critical temperature, separating
a nondissipative regime from a dissipative one. ACKNOWLEDGMENT
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