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Anderson prescription for surfaces and impurities
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~Received 17 February 2000!

We test the Anderson prescription, a BCS formalism for describing superconductivity in inhomogeneous
systems, and compare results with those obtained from the Bogoliubov–de Gennes formalism, using the
attractive Hubbard model with surfaces and nonmagnetic impurities. The Anderson approach captures the
essential features of the spatial variation of the gap parameter and electron density around a surface or an
impurity over a wide range of parameters. It breaks down, however, in the strong-coupling regime for a weak
impurity potential.
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In microscopic treatments of inhomogeneity effects in
perconductors, impurities are often averaged over in so
manner.1,2 In the last decade, partly because of the increa
computational resources now available, and partly beca
of the technical advances which allow small particle fabri
tion and single atom manipulation,3 the role of inhomoge-
neous effects in superconductors has received more w
spread attention.4 One of the theoretical frameworks fo
addressing these questions is the Bogoliubov–de Ge
~BdG! formalism.5 This formalism allows one to answe
questions regarding surfaces, interfaces, and impurity eff
at a level of detail not previously addressed. At present, h
ever, the scope of problems for which one can compute
sults accurately is limited by computer resources, since
trices whose dimension grows with system size require
diagonalization and should be solved self-consistently.
the other hand, the Anderson prescription,1 first presented to
examine the impact of impurities on superconductivity, is
BCS formalism for an inhomogeneous system and requ
onediagonalization of the single-particle problem. The pu
pose of this paper is to examine the limits of applicability
the Anderson approach, as compared to the BdG formal
We first summarize the two approaches, and then fol
with some concrete examples, utilizing surfaces and imp
ties as sources of inhomogeneities.

We find that the Anderson prescription works very w
for surfaces and in some regimes for a single impurity. T
is in some sense very surprising, since Anderson’s work1 is
often cited to emphasize that normal impurities have ess
tially no impact on superconducting properties. The pro
dure does break down for strong coupling with weak imp
rity scattering.

For our purposes we adopt a convenient model to desc
s-wave superconductivity, the attractive Hubbard Ham
tonian ~the results of our study will presumably apply
d-wave or other symmetry states!:

H2mNe52 (
i ,d
s

td ~ai 1d,s
† ais1H.c.!

2(
i ,s

~m2e i !nis2uUu(
i

ni↑ni↓ . ~1!
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Here,ais
† (ais) creates~annihilates! an electron with spins

at sitei andnis is the number operator for an electron wi
spin s at sitei. The td is the hopping rate of electrons from
one site to a neighboring site~often nearest neighbors onl
are included, and we will adopt this model here!, anduUu is
the attractive coupling strength between electrons on
same site. As usual, this attraction is justified in terms of
electron-phonon coupling, where retardation effects are
important, as is the case with many conventional superc
ductors. The second term includes the chemical potentiam
and the impurity potential at sitei, e i . We assume that im-
purities act to raise or lower single site energy levels. It
worth noting that impurity effects can certainly enter in oth
ways. For example if an impurity occupies one of the sit
undoubtedly the hopping amplitude to and from that site w
also be altered, as will the interaction between two electr
occupying the same orbital on that site. In many studies~see,
for example, Ref. 6!, the e i are randomly distributed with
some probability distribution, and then the results are av
aged, to reflect the fact that we generally have no con
over the precise distribution of impurities in the bulk. How
ever, in systems where a single impurity can be added to
surface, for example~see, e.g., Refs. 7 and 8!, we would
want to study this model with only one impurity, at a pa
ticular site~in this case, on the surface!.

Equation~1! also allows us the freedom to choose pe
odic boundary conditions~PBC! ~to recover well-known re-
sults! or ‘‘open’’ boundary conditions~OBC!. The latter are
natural in a tight-binding context; they require no assum
tions about the order parameter, for example. ‘‘Open’’ he
simply means that electrons cannot hop beyond the surf
Here again more sophisticated boundary effects could
included—for example, in a real system the hopping integ
at the surface will no doubt differ from that in the bulk, b
we leave aside these finer points.

The BdG equations are obtained by defining an effect
Hamiltonian, with effective potentials.5 By diagonalizing this
effective Hamiltonian through the generalized Bogoliubo
Valatin transformation,5 one arrives at the two BdG
equations:9,10

Enun~ i !5(
i 8

Aii 8un~ i 8!1Viun~ i !1D ivn~ i !, ~2!
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Envn~ i !52(
i 8

Aii 8vn~ i 8!2Vivn~ i !1D i* un~ i !, ~3!

where

Aii 852t(
d

~d i 8,i 2d1d i 8,i 1d!2d i i 8~m2e i !. ~4!

The self-consistent potentials,Vi , andD i , are given by

D i5uUu(
n

un~ i !vn* ~ i !~122 f n!, ~5!

Vi52uUu(
n

@ uun~ i !u2f n1uvn~ i !u2~12 f n!#. ~6!

We use the indexn to label the eigenvalues~there are 2N of
them!, the indexi to label the sites~1 throughN), and the
composite eigenvector is given by (vn

un), of total length 2N.

The sums in Eqs.~5! and ~6! are over positive eigenvalue
only. The f n is the Fermi function, with argumentbEn ,
where b[1/kBT, with T the temperature. The single si
electron density,ni , is given, through Eq.~6!, by Vi
52uUuni /2.

Equations~5! and ~6! for the effective potentials were
determined through a variational principle so that the eff
tive Hamiltonian allows fluctuations in any number of me
fields.5 As written, there are two possible mean field pote
tials, theHartree potential, Vi , and thepair potential, D i ,
from which the ground state energy and other properties m
be obtained.

An alternate prescription was originally proposed
Anderson,1 whereby one first solves for the eigenvalues a
eigenstates of the ‘‘noninteracting’’ problem, i.e.,

En
0wn~ i !5(

i 8
Aii 8wn~ i 8!. ~7!

Using the unitary matrix,Uin , for a basis which diagonalize
this single-particle Hamiltonian, one can determine the tra
formed electron-electron interaction:

Vnm,n8m852uUu(
i

Uin* Uim* Uin8Uim8 , ~8!

which now mediates the~generally off-diagonal! electron-
electron interaction. Application of the BCS variational pr
cedure to this problem results in a modified BCS gap eq
tion

Dn52(
m

ReVnn,mm

Dm

2Em
, ~9!

along with the corresponding number equation.11 Here, the
label is not the wave vectork, but rather some quantum
number n, which simply enumerates the single partic
eigenstates. Thus, the order parameter,Dn , has encoded in it
information about the inhomogeneity, and so the order
rameter that results in real space can be expected to
knowledge of the surface or impurity. From the solution, o
can obtain the ground state energy, which, as emphasize
de Gennes,5 is generally higher than that obtained throu
-
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the BdG formalism. The interesting result is that this diffe
ence is always slight; moreover, site-dependent quant
~for example, order parameter! mimic quite well the BdG
results, as will be shown below.

The simplest origin of gap inhomogeneity in a superco
ductor is the surface. The presence of surfaces beyond w
electrons are unable to move yields a gap parameter~i.e.,
pair potential! which can exhibit a variety of behavior nea
the surface. Traditionally in Ginzburg-Landau treatments
gap function is givena priori a boundary condition;5 here the
behavior near a boundary~or impurity! is a derived quantity,
i.e., as the solution to the BdG~or Anderson! equations.

The advantage~for the Anderson approach! of examining
the impact of surfaces on the gap parameter is that an
lytical solution exists for a simple tight-binding model.12 The
eigenstates for a chain13 of length N, with lattice spacinga
and nearest-neighbor hoppingt, are

aks5A 2

N11(i
sin~kRi ! ais , ~10!

and the eigenenergies are

Ek
(0)522t cos~ka!, ka5

pn

N11
, ~11!

wheren51,2, . . . ,N. We use these analytical results in th
Anderson approach~making it not significantly more diffi-
cult than BCS theory!, while in the BdG approach these an
lytical solutions are not particularly helpful.

In Fig. 1 we show the gap parameterD i as a function of
site numberi, for electron densityn ranging from half-filling

FIG. 1. Gap parameterD i as a function of site numberi and
electron densityn, for N564 with OBC anduUu51.5t. The BdG
and Anderson results are shown in~a! and ~b!, respectively.
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to zero. The chain length is 64 sites, and we have used O
and the coupling strengthuUu51.5t. Here D i is shown for
half the chain length~from i 51 to 32): the gap parameter
symmetric about the middle. In Fig. 1~a! we plot the result
from the BdG equations, while in Fig. 1~b! we show the
corresponding results from the Anderson prescription. T
first thing to note is that in either case the behavior near
surface is markedly different as a function of electron d
sity. At half-filling the gap parameter actually peaks at t
surface, with several ‘‘Friedel-like’’ oscillations10 ensuing
towards the center of the sample, while at low fillings t
gap parameter is much smoother by comparison. A comp
son of the two figures shows quantitative differences,
overall, qualitatively they are very similar. It is evident th
the Anderson prescription captures the essence of the
results remarkably well.

The accuracy of the Anderson results can be seen m
closely in Fig. 2, where the cross sections ofD i versusi in
Fig. 1 for ~a! n50.2 and~b! n51.0 are shown. It is clear tha
the essential features of the BdG results are reproduced in
Anderson approach.

To examine the effect of impurities, we show in Fig. 3D i
as a function ofi, for N532 with an impurity at the centra
site with varying energy~both negative and positive!. We
have used PBC and an intermediate coupling strength,uUu
52t, at electron densityn50.9. We have intentionally
stayed away from half-filling, at which the ground state
not a superconducting state, but a charge density wave.
may recall that with periodic boundary conditions and w
no impurities, the ground state for the attractive Hubb
model at half-filling is doubly degenerate: both superco
ducting and charge density wave solutions coexist at

FIG. 2. Cross sections ofD i shown in Fig. 1 at density~a! n
50.2 and~b! n51.0. The BdG and Anderson results are now pl
ted together, with solid and dashed curves, respectively. It ca
clearly seen that the Anderson prescription reproduces the
results very well.
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point. However, the presence of an impurity tilts the balan
in favor of the charge density wave, and the BdG equati
converge to a solution in which the pair potential,D i , is
identically zero at all sites. The Hartree potential,Vi , on the
other hand, oscillates as a function of site position. T
Anderson prescription is unable to reproduce this~correct!
feature at half filling, and gives a superconducting solut
with nonzero gap parameters. Also if the self-consistency
the Hartree potential is neglected in the BdG equations,
physics is missed, and the ensuing BdG result is simila
the Anderson solution.

Returning to Fig. 3 we have plotted the BdG results
Fig. 3~a!, while in Fig. 3~b! we show the results from the
Anderson equations. The gap is suppressed at the site w
positive impurity potential~as is the site densityni! and ex-
hibits ‘‘Friedel-like’’ oscillations around it. The Anderson
prescription captures this behavior qualitatively, while
tends to underestimate the amplitudes of the oscillati
@compare the solid curves in Figs. 3~a! and 3~b! for e16
50.5t, and note the magnified scale in the latter graph#. The
Anderson results become better for stronger impurity pot
tials and for electron densityn further away from half-filling.
For a negative impurity potential, when the potential stren
is very weak,D i ~andni) has a peak at the impurity site, a
can be seen in Fig. 3~a! for e16520.1t ~the dotted curve!.
Though smaller in scale, the Anderson result in Fig. 3~b! has
similar behavior. As the potential strength increases, ho
ever, an attractive impurity tends to break the pairing, a
suppresses the gap not only at the impurity site but als
surrounding sites@see the dashed curve fore16520.5t in
Fig. 3~a!#. In such cases, the Anderson method overestim
the gap parameter around the impurity site. This can be s

-
be
G

FIG. 3. Gap parameterD i as a function of site numberi, for a
chain ofN532 with PBC and an impurity at site 16 with varyin
potential energy, from the~a! BdG and ~b! Anderson equations
Note that in~b! the scale of the gap is twice the scale in~a!.
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in Fig. 3~b!, where the gap has the correct oscillating patte
but with much smaller amplitudes.

We study the attractive impurity case further in Fig.
where we showD i andni versusi for N532 with PBC and
e16520.5t, for ~a! uUu51t and~b! uUu53t. When the cou-
pling is weaker than or comparable to the impurity potent
the Anderson approach captures the main features of the
parameter around the impurity. This is the case foruUu51t
in Fig. 4~a!, and indeed the Anderson results show excell
agreement with the BdG results. As the coupling becom
stronger compared to the impurity potential, the impact
the impurity becomes more drastic, even with relative

FIG. 4. TheD i as a function ofi, for a chain ofN532 with PBC
and e16520.5t, for ~a! uUu51t and ~b! uUu53t. The BdG and
Anderson results are plotted in solid and dashed curves, res
tively.
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weak strength. The gap is more suppressed around the im
rity, and the density distribution exhibits ‘‘Friedel-like’’ os
cillations more enhanced. This can be seen foruUu53t in
Fig. 4~b! ~solid curves!. On the other hand, the Anderso
method yields a gap parameter that is more uniform a
function of site position, and does not reproduce the corr
oscillations in the site densities.

In conclusion, we have formulated the BdG equations
a tight-binding model with an on-site attractive interactio
We have retained the self-consistent Hartree potential in
BdG equations, and found that a single impurity breaks
superconducting/charge density wave degeneracy w
would otherwise exist at half-filling in this model. We hav
also formulated the prescription set out by Anderson, with
impurity-averaging, and found good qualitative agreem
with the BdG results.

To our knowledge, the spatial dependence of the or
parameter and the electron density has not been previo
explored in detail within the Anderson prescription. We ha
found, somewhat to our surprise, good agreement with
sults from the BdG formalism, for surfaces and single imp
rities ~aside from the weak scattering limit!. Throughout this
study, it is important to note that in the vicinity of surfaces
impurities, ‘‘charge ordered’’ states and superconductivity
general coexist~at the mean field level!. In future work we
will examine various correlation functions and the local de
sity of states, the latter of which has been7,8 and will continue
to be measured using scanning tunneling microscopy.
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potential regime as one in which the Anderson prescript
should break down. We also thank Kamran Kaveh for stim
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