PHYSICAL REVIEW B VOLUME 62, NUMBER 9 1 SEPTEMBER 2000-

Anderson prescription for surfaces and impurities
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We test the Anderson prescription, a BCS formalism for describing superconductivity in inhomogeneous
systems, and compare results with those obtained from the Bogoliubov—de Gennes formalism, using the
attractive Hubbard model with surfaces and nonmagnetic impurities. The Anderson approach captures the
essential features of the spatial variation of the gap parameter and electron density around a surface or an
impurity over a wide range of parameters. It breaks down, however, in the strong-coupling regime for a weak
impurity potential.

In microscopic treatments of inhomogeneity effects in suHere,a/, (a;,) creategannihilate$ an electron with spinr
perconductors, impurities are often averaged over in somat sitei andn;,, is the number operator for an electron with
mannert? In the last decade, partly because of the increasedpin o at sitei. Thet is the hopping rate of electrons from
computational resources now available, and partly becausene site to a neighboring si{@ften nearest neighbors only
of the technical advances which allow small particle fabrica-are included, and we will adopt this model herand|U]| is
tion and single atom manipulatidnthe role of inhomoge- the attractive coupling strength between electrons on the
neous effects in superconductors has received more widéame site. As usual, this attraction is justified in terms of an
spread attentiof. One of the theoretical frameworks for €lectron-phonon coupling, where retardation effects are un-
addressing these questions is the Bogoliubov—de Gennd&portant, as is the case with many conventional supercon-
(BdG) formalism® This formalism allows one to answer ductors. The second term includes the chemical poteptial
questions regarding surfaces, interfaces, and impurity effec@nd the impurity potential at site ;. We assume that im-
at a level of detail not previously addressed. At present, howPurities act to raise or lower single site energy levels. It is
ever, the scope of problems for which one can compute reworth noting that impurity effects can certainly enter in other
sults accurately is limited by computer resources, since mavays. For example if an impurity occupies one of th? sites,
trices whose dimension grows with system size require fulindoubtedly the hopping amplitude to and from that site will
diagonalization and should be solved self-consistently. OISO be altered, as will the interaction between two electrons
the other hand, the Anderson prescriptidirst presented to  OcCUpying the same orbital on that site. In many stutes,
examine the impact of impurities on superconductivity, is afor example, Ref. § the ¢ are randomly distributed with
BCS formalism for an inhomogeneous System and requiregome probablllty diStribUtion, and then the results are aver-
one diagonalization of the single-particle problem. The pur-aged, to reflect the fact that we generally have no control
pose of this paper is to examine the limits of applicability of Over the precise distribution of impurities in the bulk. How-
the Anderson approach, as compared to the BdG formalisn€Ver, in systems where a single impurity can be added to the
We first summarize the two approaches, and then followsurface, for examplésee, e.g., Refs. 7 and,8we would
with some concrete examples, utilizing surfaces and impuriwant to study this model with only one impurity, at a par-
ties as sources of inhomogeneities' ticular Site(in this case, on the Surfa):e

We find that the Anderson prescription works very well ~Equation(1) also allows us the freedom to choose peri-
for surfaces and in some regimes for a single impurity. Thigodic boundary condition§PBC) (to recover well-known re-
is in some sense very surprising, since Anderson’s izk Sults or “open” boundary conditiongOBC). The latter are
often cited to emphasize that normal impurities have esserlatural in a tight-binding context; they require no assump-
tially no impact on superconducting properties. The procelions about the order parameter, for example. “Open” here
dure does break down for strong coupling with weak impu_simply means that electrons cannot hop beyond the surface.
rity scattering. Here again more sophisticated boundary effects could be

For our purposes we adopt a convenient model to describ@cluded—for example, in a real system the hopping integral
swave superconductivity, the attractive Hubbard Hamil-at the surface will no doubt differ from that in the bulk, but

tonian (the results of our study will presumably apply to We leave aside these finer points. N _
d-wave or other symmetry states The BdG equations are obtained by defining an effective

Hamiltonian, with effective potentiafsBy diagonalizing this
effective Hamiltonian through the generalized Bogoliubov-
Valatin transformatiori, one arrives at the two BdG
H— uNe= — Zstg(ailagaiﬁ H.c) equations**°
I,

o

_Z(M_Ei)ni(r—|ulznmnil. (1) Enun(i):ZAii'un(i,)+Viun(i)+Aivn(i)! (2)
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Enon()= =3 Aroy(i) = Viun() + AT Uy(i), (3 piriste oot 05

(a) BdG

where

Aii'z_tzﬁ(ﬁi’,i—ﬁ_"5i’,i+§)_5ii’(ﬂ_fi)- (4)

The self-consistent potentialg;, andA;, are given by

Ai=|U|§un<i>v:<i><1—zfn>, (5)

10

Vi=—[U| X[ un(D)2f 0+ |vn(D]22—- )] (6) (b) Anderson

We use the index to label the eigenvalugshere are X of
them), the indexi to label the siteg1 throughN), and the

composite eigenvector is given by, of total length .
p g g xn g

The sums in Eqgs(5) and (6) are over positive eigenvalues
only. The f,, is the Fermi function, with argumergE,,
where B=1/kgT, with T the temperature. The single site
electron density,n;, is given, through Eq.(6), by V;
=—|U|n;/2. =
Equations(5) and (6) for the effective potentials were site i
determined through a variational principle so that the effec-
tive Hamiltonian allows fluctuations in any number of mean FIG. 1. Gap parametes; as a function of site numberand
fields® As written, there are two possible mean field poten-€lectron density, for N=64 with OBC and|U|=1.8. The BdG
tials, theHartree potential V;, and thepair potential A, and Anderson results are shown(a and (b), respectively.

f hich th h i
ggrgg;/ailﬁe;_ € ground state energy and other properties ma%e BdG formalism. The interesting result is that this differ-

An alternate prescription was originally proposed byence is always slight; moreover, site-dependent quantities

Andersont whereby one first solves for the eigenvalues ano('cor example, order paramejemimic quite well the BdG

eigenstates of the “noninteracting” problem, i.e., results, as will be ;hown beloyv. o
The simplest origin of gap inhomogeneity in a supercon-

o . ductor is the surface. The presence of surfaces beyond which
Eown(i) =2 A Wi(i"). (7)  electrons are unable to move yields a gap paramg@er,
i’ pair potential which can exhibit a variety of behavior near
Using the unitary matrixJ;, , for a basis which diagonalizes the surface. Traditionally in Ginzburg-Landau treatments the
this single-particle Hamiltonian, one can determine the transgap function is givera priori a boundary conditioRthere the
formed electron-electron interaction: behavior near a boundatgr impurity) is a derived quantity,
i.e., as the solution to the Bd@r Anderson equations.
The advantagéfor the Anderson approatiof examining
the impact of surfaces on the gap parameter is that an ana-
lytical solution exists for a simple tight-binding mod@IThe
which now mediates thégenerally off-diagonal electron-  ejgenstates for a chdihof length N, with lattice spacingga
electron interaction. Application of the BCS variational pro- and nearest-neighbor hoppitgare
cedure to this problem results in a modified BCS gap equa-
tion

Vnm,n’m’:_|U|Eiui*nurmuin/uim’a 8

2 .
=\ 71 SNkR) aig, (10
m

Anz_% Revnn,mmz_Emy 9

and the eigenenergies are

along with the corresponding number equatibtiere, the mn

label is not the wave vectdk, but rather some quantum E(Y=—2tcogka), ka=g 7 (13)
number n, which simply enumerates the single particle

eigenstates. Thus, the order parameigr, has encoded init wheren=1,2, ... N. We use these analytical results in the
information about the inhomogeneity, and so the order paAnderson approackmaking it not significantly more diffi-
rameter that results in real space can be expected to haeelt than BCS theory while in the BAG approach these ana-
knowledge of the surface or impurity. From the solution, onelytical solutions are not particularly helpful.

can obtain the ground state energy, which, as emphasized by In Fig. 1 we show the gap paramet&y as a function of
de Gennes,is generally higher than that obtained throughsite numbei, for electron density ranging from half-filling
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FIG. 2. Cross sections af; shown in Fig. 1 at densitya) n FIG. 3. Gap parametek; as a function of site numbey for a

=0.2 and(b) n=1.0. The BdG and Anderson results are now plot- chain of N=32 with PBC and an impurity at site 16 with varying
ted together, with solid and dashed curves, respectively. It can bpotential energy, from théa) BdG and(b) Anderson equations.
clearly seen that the Anderson prescription reproduces the Bd®lote that in(b) the scale of the gap is twice the scale(an.

results very well.

Boint. However, the presence of an impurity tilts the balance

to zero. The chain length is 64 sites, and we have used OBm favor of the charge density wave, and the BdG equations

and the coupling strengtfy|=1.%. Here A; is shown for A : : o
half the chain lengtlifrom i =1 to 32): the gap parameter is converge o a SOIUUOD in-which the pair potentia,, is
symmetric about the middle. In Fig(@ we plot the result identically zero qt all sites. The Ha_rtree potgntw, on the
from the BAG equations, while in Fig.() we show the other hand, osm_lla_tes as a function of site po;mon. The
corresponding results from the Anderson prescription. Thé\nderson prescription is unable to reproduce ttusrrec)
first thing to note is that in either case the behavior near théeature at half filling, and gives a superconducting solution
surface is markedly different as a function of electron denWith nonzero gap parameters. Also if the self-consistency of
sity. At half-filling the gap parameter actually peaks at thethe Hartree potential is neglected in the BdG equations, this
surface, with several “Friedel-like” oscillatiod$ ensuing ~ physics is missed, and the ensuing BdG result is similar to
towards the center of the sample, while at low fillings thethe Anderson solution.
gap parameter is much smoother by comparison. A compari- Returning to Fig. 3 we have plotted the BdG results in
son of the two figures shows quantitative differences, bufFig. 3a), while in Fig. 3b) we show the results from the
overall, qualitatively they are very similar. It is evident that Anderson equations. The gap is suppressed at the site with a
the Anderson prescription captures the essence of the Bdositive impurity potentialas is the site density;) and ex-
results remarkably well. hibits “Friedel-like” oscillations around it. The Anderson
The accuracy of the Anderson results can be seen morngrescription captures this behavior qualitatively, while it
closely in Fig. 2, where the cross sectionsAgfversusi in ~ tends to underestimate the amplitudes of the oscillations
Fig. 1 for(a) n=0.2 and(b) n=1.0 are shown. Itis clear that [compare the solid curves in Figs(aB and 3b) for e
the essential features of the BdG results are reproduced in the0.5, and note the magnified scale in the latter giafime
Anderson approach. Anderson results become better for stronger impurity poten-
To examine the effect of impurities, we show in FigA3  tials and for electron densityfurther away from half-filling.
as a function of, for N=32 with an impurity at the central For a negative impurity potential, when the potential strength
site with varying energy(both negative and positiyeWe s very weak,A; (andn;) has a peak at the impurity site, as
have used PBC and an intermediate coupling strefjgth, can be seen in Fig.(8) for €;4=—0.1t (the dotted curve
=2t, at electron densityn=0.9. We have intentionally Though smaller in scale, the Anderson result in Figp) Bias
stayed away from half-filling, at which the ground state issimilar behavior. As the potential strength increases, how-
not a superconducting state, but a charge density wave. Omever, an attractive impurity tends to break the pairing, and
may recall that with periodic boundary conditions and with suppresses the gap not only at the impurity site but also at
no impurities, the ground state for the attractive Hubbardsurrounding site§see the dashed curve fefg=—0.5 in
model at half-filling is doubly degenerate: both supercon-Fig. 3(a)]. In such cases, the Anderson method overestimates
ducting and charge density wave solutions coexist at thishe gap parameter around the impurity site. This can be seen
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N=32 n=08 PBC &4=-05t weak strength. The gap is more suppressed around the impu-
01 : : : rity, and the density distribution exhibits “Friedel-like” os-
_ @) M7e=10 cillations more enhanced. This can be seen|tdf=3t in
F Fig. 4(b) (solid curve$. On the other hand, the Anderson
method yields a gap parameter that is more uniform as a
0.0 5 p~ " function of site position, and does not reproduce the correct
20 ' ' ' oscillations in the site densities.
A In conclusion, we have formulated the BdG equations for
= 1oL g a tight-binding model with an on-site attractive interaction.
We have retained the self-consistent Hartree potential in the
0o p 2 20 BdG equations, and found that a single impurity breaks the
1.0 ————— . . superconducting/charge density wave degeneracy which
would otherwise exist at half-filling in this model. We have
3 o5t ® Ul/t80 - _also f(_)rmulated _the prescription set out by Anc_ierson, without
' impurity-averaging, and found good qualitative agreement
00 : : : with the BdG results.
20 10 2 3 To our knowledge, the spatial dependence of the order
parameter and the electron density has not been previously
= 10k V/\ [\ A /\ /\v . explored in detail within the Anderson prescription. We have
v v found, somewhat to our surprise, good agreement with re-
0.0 - L - sults from the BdG formalism, for surfaces and single impu-

rities (aside from the weak scattering limifThroughout this
study, it is important to note that in the vicinity of surfaces or
FIG. 4. TheA; as a function of, for a chain oN=32 with PBC  impurities, “charge ordered” states and superconductivity in
and ;6= — 0.8, for (@ |U[=1t and (b) [U|=3t. The BdG and general coexistat the mean field levil In future work we
Anderson results are plotted in solid and dashed curves, respegi|| examine various correlation functions and the local den-
tively. sity of states, the latter of which has bé&and will continue

in Fig. 3(b), where the gap has the correct oscillating pattern:[0 be measured using scanning tunneling microscopy.

but with much smaller amplitudes. We thank Jorge Hirsch for suggesting the weak impurity

We study the attractive impurity case further in Fig. 4, potential regime as one in which the Anderson prescription
where we showA; andn; versusi for N=32 with PBC and  should break down. We also thank Kamran Kaveh for stimu-
€16= — 0.5, for (a) [U|=1t and(b) |U|=3t. When the cou- lating discussions. Calculations were performed on the 64-
pling is weaker than or comparable to the impurity potential,node SGI parallel processor at the University of Alberta.
the Anderson approach captures the main features of the gdjhis research was supported by the Avadh Bhatia Founda-
parameter around the impurity. This is the case|&b= 1t tion and by the Natural Sciences and Engineering Research
in Fig. 4(a), and indeed the Anderson results show excellenCouncil of Canada and the Canadian Institute for Advanced
agreement with the BdG results. As the coupling becomefesearch. One of u$.M.) acknowledges the hospitality of
stronger compared to the impurity potential, the impact ofthe Aspen Center for Physics, where some of this work was
the impurity becomes more drastic, even with relativelyperformed.
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