
PHYSICAL REVIEW B 1 JULY 2000-IVOLUME 62, NUMBER 1
Ordering of dipolar Ising crystals
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We study Ising systems of spins with dipolar interactions. We find a simple approximate relation for the
interaction energy between pairs of parallel lattice columns of spins running along the Ising spin direction. This
relation provides insight into the relation between lattice geometry and the nature of the ordered state. It can be
used to calculate ground-state energies. We have also obtained ground-state energies and ordering temperatures
T0 from Monte Carlo simulations. Simple empirical relations, which giveT0 for simple and body-centered
tetragonal lattices in terms of lattice parameters, are also established. Finally, the nature of the ordered state
andT0 are determined for Fe8 clusters, which crystallize on a triclinic lattice.
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Dipolar interactions can lead to order at low temperat
in magnetic1 as well as in ferroelectric systems.2,3 Interacting
dipolar Ising systems~DIS! have recently become the subje
of special interest because spin quantum tunneling has
observed in them.4,5 It can take place at temperatures that a
well below their ordering temperatureT0 ~see below!. The
type of order that ensues andT0 are not trivially determined
owing to the long-range nature of dipolar interactions and
their sign changes. Luttinger and Tisza were able to sh
long ago that the type of ordering depends on the geom
of the lattice.6 The theory was later generalized by Niemei
and Blötte.7 It enables one to determine, through laborio
calculations, the ground-state energies and types of orde
simple Bravais lattices with up to two identical magne
dipoles per unit cell. Ordering temperatures are known fr
Monte Carlo ~MC! simulations for simple cubic lattices.8

Unfortunately, symmetry forbids the existence ofcubicdipo-
lar Ising systems in nature. There are, however, magn
systems, such as the so-called single-molecule magne
well as some rare-earth organic compounds,9 that crystallize
in other lattice structures and have sizable single-a
anisotropies, which leads to Ising-like behavior. In additio
magnetic dipolar interactions dominate all others. These
tems behave as DIS.9–11 Magnetic relaxation of some o
these single-molecule magnet crystals~such as Mn12 and
Fe8) have recently been simulated in connection with s
quantum tunneling experiments,11 but their thermal equilib-
rium properties have not, as far as we know, been stud
~Single-molecule magnets, such as Mn12 and Fe8 clusters,
relax to equilibrium extremely slowly via quantum tunnelin
at very low temperatures. Even then, their equilibrium b
havior can perhaps be studied experimentally, because
relaxation rate can be controlled by means of an app
transverse field.12!

The aim of this paper is twofold. First, we wish to poi
out that there is a simple approximate relation for the int
action energy between pairs of parallel lattice columns
spins running along the Ising spin direction, and that
nature of the ordered state follows from this relation. Seco
we report Monte Carlo results for the ordering temperatu
PRB 620163-1829/2000/62~1!/53~4!/$15.00
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of DIS on cubic lattices, simple, and body-centered tetra
nal lattices~which include Mn12 cluster crystals13!, as well as
on the lattice~triclinic! on which Fe8 crystallizes.14

We treat here systems of spins, on lattices to be spec
below, that are restricted to point along thez axis, and inter-
act among themselves only through magnetic dipole inte
tions. More specifically, letSi56S be a spin on thei th site
of a simple cubic or tetragonal lattice, with Hamiltonian

H52
v0

2 (
i j

Vi j sisj , ~1!

where si5Si /S, Vi j 5(az /r i j )
3(123zi j

2 /r i j
2 ), az is the

nearest-neighbor distance along thez axis, r i j is the distance
between sitesi and j,

v05
m0

4p
~gmBS!2/az

3 , ~2!

g is the gyromagnetic ratio,mB is the Bohr magneton, and
m054p31027 in SI units.

From here on, unless explicitly specified to be in Ke
vin, energies and temperatures are given in terms ofv0. It
may be helpful to keep in mind that (m0/4p)mB

2/(1 Å)3

.0.622 K.
We have used the standard Metropolis algorithm in o

Monte Carlo simulations.15 We have mostly used periodi
boundary conditions~PBC!. For PBC, a spin at sitei is al-
lowed to interact only with spins that lie within a system
sized box centered on sitei. We have also simulated som
systems with free boundaries, some shaped like a box,
some bounded by spherical surfaces. With free bounda
all spins in the system are allowed to interact. The res
obtained are in agreement with the expected behavior
follows from Griffiths’s theorem: that the thermodynam
limit is independent of boundary conditions and of syste
shape if no external field is applied.16

We next find the fieldBl that an infinitely long column of
spins pointing up, as in Fig. 1, produces a distanceax away
from it. First note that, as can be easy checked,Bl would
53 ©2000 The American Physical Society
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54 PRB 62BRIEF REPORTS
vanish if the moment density wereuniformly distributed
rather than on a lattice. An exact expression, as an expan
in powers of modified Bessel functions, can be obtained
Bl by writing the magnetic dipole linear density along
column as a Fourier series with period and phase that dep
on az and dz , respectively~see Fig. 1!. The zeroth-order
term ~which corresponds to a constant magnetic dipole d
sity! does not contribute. The leading term is of the fo
(ax /az)

21/2exp(22pax /az)cos(2pdz/az). We have checked
numerically that

FIG. 2. ~a! Semilogarithmic plot of the thermal equilibrium or
dering temperatureT0 and of the ground-state energy«0 versus
ax /az of the magnetic dipole model on a tetragonal lattice, wh
ax andaz are the nearest-neighbor distances along the basal p
andc axis, respectively.s andd stand for temperature and energ
respectively. The continuous line for energy follows from Eq.~5!.
The straight line through the temperature data points is a fit;
equation for it is Eq.~6!. The results forax /az51.4 are obtained
from columns of 32332 spins on the basal plane by 128 spi
along thec axis; the result forax /ay51.5 is from a column of 8
383512 spins. All values of« and T are given in terms ofv0,
defined in Eq. 2.~b! Same as in part~a! but for a dipole model on
a BC tetragonal lattice. The straight line through the tempera
data points is a fit; the equation for it is 5.8(az /ax)

2.0.

FIG. 1. ~a! Parallel lines of spins, showing distancesaz , ax , and
dz . ~b! Antiferromagnetic order in simple cubic lattice.
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Bl.2S 0.1357

Aax /az

B0D exp@2p~12ax /az!#cos~2pdz /az!,

~3!

where

B0[
m0

4p

gmBS

az
3 , ~4!

is within 1% of exactness forax /az.0.8. ~Deviations from
exactness increase asax /az decreases, up to 11% forax /az
50.5.! A Bl,0 value means that a column of spins u
produces a field that points down.

On the other hand, the fieldBs of an infinite column of
spins, all pointing up, at one of its own sites is easily fou
to beBs54.808 . . .B0. This is much larger thanBl for any
reasonable distance between columns, and, therefore, g
rise to ferromagnetic order within each column of spins.
shown below, this picture holds for tetragonal lattices
ax /az*0.6, but may break down for smaller values
ax /az .

One therefore expects the ordered state on simple c
and primitive tetragonal lattices, for whichdz50 in Eq. ~3!,
to be a two-dimensionalantiferromagneticarray of ferro-
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FIG. 3. ~a! The thermal equilibrium staggered magnetizationms

versus temperature.s and d stand for systems of 838316 and
16316316 spins, respectively, on a SC lattice with PBC.L and
j stand for spherically shaped systems of 2109 and 4169 sp
respectively, with free end boundary conditions.~b! Same as in part
~a! but for the staggered susceptibilityxs . ~c! Same as in parts~a!
and ~b!, but for the specific heat.
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PRB 62 55BRIEF REPORTS
magnetically ordered column spins as shown in Fig. 1~b!. On
the other hand, body-centered cubic and tetragonal latti
in which dz5az/2 for nearest-neighbor columns, are e
pected to order ferromagnetically. This is as originally p
dicted by Luttinger and Tisza.6

Making use of Eq.~3! and the value ofBs , the ground-
state energy«052(1/2)(gmBS)(Bl1Bs) can be easily cal-
culated for a simple cubic or tetragonal lattice. It is

«0.22.404v021.8gmBSBl . ~5!

This result is shown in Fig. 2, with data points obtained fro
Monte Carlo simulations, as a function of the basal pla
lattice constantax . For ferromagnets, the calculation of«0 is
somewhat more involved and is not attempted here. Thi
because for lines offinite length Lz , Eq. ~3! is applicable
only if ln(Lz/az)@ax /az. For ln(Lz/az)&ax /az, Bl,0, inde-
pendently ofdz , which gives rise to magnetic domains
ferromagnets. Equation~3! can be used to obtain the ‘‘wa
energy’’ that counterbalances ‘‘magnetostatic’’ energies
domain size and ground-state energy calculations.17

Data points obtained from MC simulations for the orde
ing temperature of DIS on primitive tetragonal lattices a
also shown in Fig. 2~a!. The equation

T0.2.5v0~az /ax!
1.7 ~6!

provides the fit shown in Fig. 2~a!.
For body-centered tetragonal lattices, ferromagnetic or

ensues, as expected from the fact thatdz5az/2 then. The
ground-state energy is not simply obtained then, since th
are long-range contributions. Data points exhibited in F
2~b!, show that the ordering temperature follows a sligh
different rule from Eq.~6!. As shown in the table, the best fi
to T0 is thenT0.5.8v0(az /ax)

2.0.
Thermal equilibrium results obtained by MC simulatio

of DIS on simple cubic lattices of~1! up to 16316316 spins
with PBC and~2! 2109 and 4169 spins on spherical syste
with free boundary conditions are shown in Figs. 3~a!, 3~b!,
and 3~c!. These results, together with results~not shown! for
smaller systems, as well as for box-shaped systems with
boundary conditions of different sizes, lead to ordering te
peratures and ground-state energies that are, within statis
errors, independent of shape and boundary conditions. S
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lar results have been obtained for simple and body-cente
tetragonal lattices, from which the data points forT0 shown
in Figs. 2~a! and 2~b!, respectively, were obtained.

Triclinic crystals of Fe8 clusters provide an interestin
example.14 Their lattice geometry is exhibited in Fig. 4. Not
that lattice sites on columns marked with a diamond, circ
square, etc. are displaced along thez axis a distancedz
'az/4 with respect to sites on columns marked with a circ
square, triangle, etc., respectively. Thus, while all colum
on the same row on the right-hand side of Fig. 4 inter
antiferromagnetically, two columns on adjacent rows do
interact, and two rows on alternate rows~e.g., on rows
marked with circles and triangles! interact ferromagnetically.
This implies that any given row of columns in Fig. 4 orde
antiferromagnetically, but there is near degeneracy~if only
next-nearest-neighbor interactions are taken into accoun! as
to how adjacent rows order with respect to each other. H
rows order with respect to each other is quite likely det
mined by longer range interactions, but this question is
yond the scope of this paper. To find out how the syst
actually orders, we turn to MC simulations. The ordered st
is depicted in Fig. 4 as follows:l, d, j, m, and. stand

FIG. 4. Lattice constants of Fe8 cluster crystals are shown on th
left-hand side. The lattice parameters are taken from Ref. 14. On
right-hand side, the lattice as seen looking down theb axis. Anisot-
ropy constrains all spins to be either up or down along theb axis for
T,1 K in this system. Theb axis is therefore ourz axis.
TABLE I. Type of ordered state, ordering temperatureT0, and ground-state energy«0 for dipolar
Ising systems on various lattices. All energies and temperatures are given in terms ofv0, where v0

5(m0/4p)(gmBS)2/az
3 , and (m0/4p)mB

2/(1 Å)3.0.622 K.

Lattice Order T0 «0 Validity

sca,b AF c 2.50~5! -2.68~1!

bcca F 5.8~2! -4.0~1!

fcc a F 11.3~3! -7.5~1!

Primitive tetragonal AFc 2.5(az /ax)
1.7 Eqs.~3!–~5! ax /az*0.6

BC tetragonald F 5.8(az /ax)
2.0 Fig. 2~b! ax /az*0.6

Fe8 ~triclinic! AF e 1.9~1! -2.73~3!

aType of order and«0 ~but notT0) first given in Ref. 6.
bT0, from MC simulations, given in Ref. 8.
cAF order depicted in Fig. 1.
dT0, from MC simulations, given in Ref. 18 forax /az50.5.
eAF order depicted in Fig. 4.
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56 PRB 62BRIEF REPORTS
for columns with spin up, whileL, s, h, n, and, stand
for columns with spins down. This system orders at a te
perature given in Table I.

It is worth remarking that Eq.~3! is expected to be appli
cable whether dipoles are pointlike or extended, or whet
they are magnetic or electric, except that the cons
0.1357B0 is different in each case. Its validity only require
that the wave number of the leading Fourier componen
the dipolar density along the relevant columns be equa
the smallest reciprocal lattice vector for the columns. F
thermore, Eq.~3! is applicable to crystal structures, such
hexagonal, not explicitly treated here. It follows, for in
stance, that DIS, whether magnetic or electric, order anti
romagnetically in a primitive hexagonal structure, but ord
ferromagnetically in a hexagonal closed packed structure

In summary, we have shown that Eqs.~3! and~5! provide
simple approximate relations for the interaction energy
tween pairs of parallel lattice columns of spins running alo
the Ising spin direction, and that the nature of the orde
state follows from this relation. From this simple relation, w
have obtained ground-state energies. We have also obta
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ground-state energies and ordering temperatures from M
Carlo simulations. A simple empirical relation, Eq.~6!, gives
results for the ordering temperatures of DIS on simple a
body-centered tetragonal lattices. These results, as we
results for Fe8 clusters that crystallize on a triclinic lattice
are summarized in Table I.@Substitutingg.2.0, S510, and
lattice constants~see Fig. 4! of Fe8 cluster crystals, gives
T0.170 mK. Similarly,T0.430 mK is obtained for Mn12

acetate, which crystallizes in a primitive tetragonal latti
with az512.39 Å andax517.32 Å.13#
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