
PHYSICAL REVIEW B 1 SEPTEMBER 2000-IVOLUME 62, NUMBER 9
Exchange coupling in transition-metal ferromagnets
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The interatomic exchange integralsJi j , associated with effective interactions between local magnetic mo-
ments at sitesi andj in bcc Fe, fcc Co, and fcc Ni are calculated using the real-space linear-muffin-tin method
within the atomic sphere approximation~LMTO-ASA!. Our results are in excellent agreement with those
obtained byk-space LMTO-ASA calculations.
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Well-defined atomic moments in itinerant systems such
Fe, Co, and Ni exist over a rather wide range of tempe
tures. The magnitudes of such moments are fairly consta
low temperatures, although their directions may fluctua
however slowly compared with typical hopping frequenci
In such a temperature range, the magnetic excitation
these systems can be described in terms of an effec
Heisenberg model with interatomic exchange integrals
are calculable from first-principles spin-density-function
theory.1–3 Exchange-coupled spin-fluctuation theories us
an adiabatic approximation for the spin orientations ha
been recently revived to study the spin dynamics of itiner
ferromagnets at finite temperatures.4,5 They develop original
ideas of the late 1970s and 1980s,6–10 expanding the appli-
cability of the local moment picture, by avoiding the use
mean field theory and assumptions on the degree of sh
range magnetic order.

Most of the first-principles methods for calculating inte
atomic exchange interactions in magnetic systems take
vantage of the existence of translation symmetry, and de
mine the electronic structure of the material in the recipro
space. However, there has been growing interest in magn
structures lacking translational symmetry such as interfa
with steps and terraces of variable sizes, nanoparticles de
ited on clean surfaces,11 granular materials,12 and nanoscopic
metallic magnetic clusters encapsulated by a nonmagn
material.13 In fact, recent advances in experimental tec
niques have allowed a refined application to the growth
those heterostructures, and it is important for magnetic te
nology to have information about the magnetic interactio
inside and between the constituent magnetic units. In
absence of translational symmetry it is much more con
nient to describe the electronic structure of the system in
space. The real-space linear-muffin-tin method within
atomic sphere approximation~RS-LMTO-ASA! method has
been devised to treat complex metallic structures with a la
number of inequivalent atoms. It has been previously e
ployed with success to examine substitutional and interst
impurities in metallic hosts, as well as other defects in me
and metallic surfaces.14 In the present work, we have use
PRB 620163-1829/2000/62~9!/5293~4!/$15.00
s
-
at
,
.
in
ve
at
l
g
e
t

f
rt-

d-
r-
l
tic
es
os-

tic
-
f
h-
s
e
-
al
e

e
-

al
ls

the theory developed in the literature,1,2 and adapted it to the
RS-LMTO-ASA method, in order to study the exchange co
pling in magnetic metallic systems. However, before
tempting to deal with composite structures, it is important
show that our approach produces results compatible w
other methods.

Here, we calculate interatomic exchange integralsJi j be-
tween local magnetic moments at various sitesi and j in bcc
Fe, fcc Co, and Ni using the RS-LMTO-ASA approach a
compare our results with those obtained by well establis
k-space LMTO-ASA calculations.15,16 The RS-LMTO-ASA
scheme follows the steps of the LMTO-ASA formalism, b
uses the recursion method17 to solve the eigenvalue problem
directly in real space. It is a linear method and the solutio
are accurate near a given energyEn , usually taken at the
center of gravity of the occupied bands. We work in t
orthogonal representation of the LMTO-ASA formalism, a
expand the Hamiltonian in terms of tight-binding~TB! pa-
rameters, neglecting terms of order (E2En)3 and higher.
The orthogonal Hamiltonian can then be written as18

H5En1h̄2h̄ōh̄, ~1!

where

h̄5C̄2En1D̄1/2S̄D̄1/2. ~2!

Here h̄ is a Hermitian matrix,C̄, D̄ and ō are potential
parameters of the tight-binding LMTO-ASA representatio
and S̄ is the structure constant in this representation. T
matrix S̄ connecting different sites decays exponentially w
intersite distance, andh̄ has a TB form. To solve the eigen
value problem in real space, we consider a large cluste
simulate the system, and use the recursion method17 with the
Beer-Pettifor terminator19 to complete the recursion chain
The method is rather general and may be employed to
culate any desired one-electron property. It yields on-site
intersite Green’s functions; two recursion calculations are
quired to determine the intersite propagators. A more
5293 ©2000 The American Physical Society
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tailed description of the procedure in the context of R
LMTO-ASA calculations can be found elsewhere.20

Under appropriate conditions, spin fluctuations in itine
ant electron ferromagnets can be described in te
of a classical effective Heisenberg HamiltonianH
52( i j8 Ji j êi•êj , whereêi is a unit vector indicating the di
rection of the moment at sitei. The magnitudes of the mo
ments have been folded into the pair interactions. In t
context, the pair interactionsJi j may be obtained from the
energy necessary to perform infinitesimal rotations of op
site angles in the directions of the local magnetic moment
sites i and j, respectively. Using the force theorem a
Lloyd’s formula, expressions forJi j can be derived in terms
of scattering path operators and matrices,1,2 which are suit-
able for use in first-principle calculations based on sp
density-functional theory. A similar approach has been
cently developed in the framework of thek-space TB-LMTO
method.16 Within the RS-LMTO-ASA scheme, it is more
convenient to expressJi j in terms of the true Green’s func
tions, which have dimensions of the inverse of energy. Us
the relation between true and auxiliary Green’s functions3,21

in the orthogonal representation, where the second deriva
of the potential function is zero, we obtain

Ji j 5
Im Tr

4p E
2`

EF
dE@d i~E!Gi j

↑↑~E!d j~E!Gji
↓↓~E!#, ~3!

where the trace is over orbital indices,Gi j
ss is the propagator

for electrons with spins between sitesi and j in the ferro-
magnetic configuration, andd i is a diagonal matrix in orbita
indices whose elements are

d l i ~E!5
Cli

↓ D l i
↑ 2Cli

↑ D l i
↓ 1~D l i

↓ 2D l i
↑ !E

~D l i
↑ D l i

↓ !
1
2

. ~4!

Here, Cli
s and D l i

s are potential parameters at sitei of the
orthogonal LMTO-ASA representation,18 and l 50, 1, and 2,
are associated withs, p, andd electrons.

The quantityd i(E) has units of energy and may be ass
ciated with an energy-dependent local exchange splittin
site i. We note that whenD i

↑5D i
↓ , the energy dependence o

d i(E) disappears, and it reduces tod i5Ci
↓2Ci

↑ , which is the
difference between the centers of the up-spin and down-
bands. Such energy-independent exchange splittings are
quently used in parametrized TB calculations. Usually, it
assumed that thed-band exchange splittingddi satisfies the
Stoner relationddi5miI di , wheremi is the local magnetic
moment at sitei, and I di is associated with the effectiv
Coulomb interaction betweend electrons at the same site.18

Because the spin splitting ofs- andp-like states is very smal
compared to that of thed-like states,dspi is often set equal to
zero.10,22

Using well established relations,3,16,21 we can write the
effective exchange interaction of the local moment at sit
with all other momentsJ05( j Þ0J0 j as

J052
Im Tr

4p E
2`

EF
dEHd0~E!G00

↑↑~E!d0~E!G00
↓↓~E!1d0~E!

3FD0
↓21/2D0

↑1/2G00
↑↑~E!2D

0

↑2
1
2D

0

↓ 1
2G00

↓↓~E!G J . ~5!
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With Eqs.~3! and~5!, one can obtainJi j andJ0 from first
principles. All Green’s functions and potential paramete
involved are determined by the RS-LMTO-ASA metho
The procedure described here is formulated entirely in r
space and does not require the system to have translat
symmetry. Therefore, it is suitable for determining exchan
interactions in complex metallic structures such as cluster
magnetic atoms in metals and metallic surfaces.

We have employed such a procedure to obtainJi j andJ0

for Fe, Co, and Ni. Our calculations were performed us
large clusters of'8000 atoms built for the appropriate stru
ture with the corresponding experimental lattice paramet
We have considered a basis with 9 orbitals per site~corre-
sponding tos, p, andd electrons! and have used 30 levels o
recursion. We performed scalar relativistic calculatio
within the local spin-density approximation~LSDA!, with
the exchange and correlation potential of von Barth a
Hedin.23 We have takenh̄ to connect the first 12 neighbor
of the fcc structure, and the 14 first and second neighbor
the bcc structure. Since in the second-order termh̄ is applied
twice, the HamiltonianH in Eq. ~1! connects many more
sites. To test our numerical accuracy, we first conside
cluster of 13 Co atoms embedded in a nonpolarized Cu
trix. Values of Ji j between all Co sites were calculated
well as the effective exchange interactionJ0 for the central
Co atom and its 12 neighbors at the Co-Cu interface. T
nonpolarized Cu atoms do not explicitly contribute toJ0, and
the sum ruleJ05( j Þ0J0 j was verified both for the centra
Co and for its neighbors.

In Table I, we present results for the interatomic exchan
interactionsJi j in fcc Ni and Co. We fix a sitei and consider
different sitesj along the directions indicated in the first co
umn of the table. Results obtained by two different grou
usingk-space LMTO-ASA formalism15,16are also shown for
comparison. Calculated values of the effective exchange
teractionJ0 are given in the last line. In Table II, we prese
our results forJi j andJ0 in bcc Fe. Previous results obtaine
by k-space LMTO-ASA calculations are given in the last tw
columns of Table II. Thes-d, p-d, andd-d contributions to
Ji j are also shown. Clearly, our calculated values ofJi j and
J0 using the RS-LMTO-ASA method are in excellent agre
ment with those obtained usingk-space approaches wit
similar LMTO-ASA Hamiltonians.15,16They are also consis
tent with plots ofJi j as a function of intersite distancesRi j
published recently for these elements.3 As expected by pre-
vious model calculations,24 we have found that the decreas
of uJi j u as a function ofRi j is faster in fcc Ni and Co than in
bcc Fe, where it exhibits a long-range oscillatory behav
In the first columns of Table II, we show thes-d, p-d, and
d-d contributions toJi j in bcc Fe. The other contribution
are extremely small and are not shown. The exchange in
actions in ferromagnetic transition metals are expected to
dominated byd electrons and the contributions ofs and p
orbitals are often neglected. Our results forJi j confirm such
expectations. Thes-d and p-d contributions are not com
pletely negligible, but thed-d contributions toJi j are domi-
nant and account for most of the effect.

In spite of the good agreement with previousk-space
LMTO-ASA calculations, our results forJi j in bcc Fe differ
from those obtained in real space by Spis˘ák and Hafner.25
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TABLE I. Results~in mRy! of real space andk-space~Refs. 15 and 16! LMTO-ASA calculations ofJi j

between the 10 first neighbors in ferromagnetic Ni and Co. Values ofJ0 are also shown.

fcc Ni fcc Co
Site RS Ref. 15 Ref. 16 RS Ref. 15 Ref. 16

(110) 0.206 0.210 0.204 1.00 1.02 1.07
(200) 0.014 0.000 0.003 0.091 0.084 0.110
(211) 0.032 0.026 0.025 0.126 0.118 0.116
(220) 0.012 0.011 0.010 -0.118 -0.110 -0.086
(310) 0.005 0.036 0.004 0.026 0.027 0.027
(222) -0.001 0.000 -0.004 0.041 0.047 0.048
(321) 0.007 0.007 0.007 -0.021 -0.022 -0.022
(400) -0.001 0.000 -0.001 0.016 0.015 0.013
(330) -0.012 -0.011 0.028 0.028
(411) 0.000 0.001 0.004 0.008
J0 3.31 3.82 3.73 14.51 14.88 15.63
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There is a factor of two difference between our definitions
Ji j , but this is a trivial factor that can easily be taken in
account when comparing the results. One of the major
ferences is the relative importance of thep-d contributions to
Ji j compared to thed-d ones. Our calculations~see Table II!
show that the former are, roughly, one order of magnitu
smaller than the latter, whereas Spis˘ák and Hafner report
them as being of the same order. The reason for this disc
ancy may be partially due to the approximate expression
they have used to calculateJi j . Equation~7! in their paper,
holds when the exchange splittingd i is constant, i.e., both
energy and orbital independent. Then it can be taken out
both the integral in energy and the trace over orbitals t
occur in Eq.~3!. Their expression also holds when the e
change splitting is assumed constant for alld orbitals, and
zero fors andp ones. However, in such a case, the trace
Eq. ~3! is restricted tod orbitals only, and no explicitsp-d
contributions toJi j are expected. The use of a constant e
change splittingd i5miI di when calculating contributions o
sp orbitals enhance their values considerably and may
plain the largesp-d contributions they have reported.25
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Finally, it is interesting to examine the effect of the e
plicit energy dependence ofd i(E) in the calculations ofJi j .
To investigate this effect, we splitd i(E) into energy-
independent and energy-dependent terms and evaluate
contributions separately. Using~4!, we divide the integrand
of ~3! into three parts according to the energy dependenc
the terms multiplying the Green’s functions: the first is co
stant in energy and only involves the energy-independ
term of the exchange splittingd i , while the second and third
parts are, respectively, linear and quadratic in energy
involve the energy-dependent term ofd i . In Table III, we
show those contributions, together with the full values
Ji j , for some pairs of sitesi j in fcc Ni, fcc Co, and bcc Fe.
The quadratic contribution is clearly negligible. The line
one is usually small, but may be important in some cas
such as forJi j between nearest neighbors in bcc Fe. T
explicit energy dependence ofd i in this case accounts fo
approximately one-third of theJi j value.

Summarizing, we have calculated from first-principles t
effective exchange interactionsJi j andJ0 for ferromagnetic
fcc Co and Ni and bcc Fe within the RS-LMTO-ASA
TABLE II. Real-space results~in mRy! for the s-p, p-d, and d-d contributions, and the totalJi j in
bcc Fe. In the last two columns,k-space results forJi j are shown for comparison. Values ofJ0 are shown in
the last line.

bcc Fe Real space~RS! k space
Site s-d p-d d-d Total Ref. 15 Ref. 16

(111) -0.047 -0.089 1.33 1.20 1.24 1.45
(200) -0.001 -0.064 0.760 0.692 0.646 0.793
(220) 0.001 -0.007 -0.024 -0.030 0.007 -0.023
(311) -0.003 -0.004 -0.091 -0.100 -0.108 -0.109
(222) -0.001 0.007 -0.077 -0.068 -0.071 -0.136
(400) -0.003 -0.004 0.049 0.042 0.035 0.053
(331) 0.000 -0.001 -0.001 -0.001 0.002 0.000
(420) 0.000 0.000 0.014 0.014 0.014 0.014
(422) 0.000 0.000 -0.020 -0.020 -0.031
(333) 0.001 -0.002 0.139 0.138 0.157 0.172
(511) 0.000 0.000 0.023 0.023 0.013
J0 11.03 12.38 13.58
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TABLE III. Real-space results~in mRy! for Ji j ~total! in ferromagnetic Fe, Ni, and Co. Contribution
coming from the constant~const.!, linear term~linear!, and quadratic term~quadr.! are also shown.

Site Quadr. Linear Const. Total

~111! 0.011 0.422 0.763 1.20
Fe ~200! 0.002 -0.064 0.754 0.692

~220! -0.002 0.020 -0.048 -0.030
~110! 0.002 0.044 -0.248 -0.206

Ni ~200! 0.001 -0.009 0.022 0.014
~211! 0.000 -0.009 0.041 0.032
~110! 0.000 -0.032 1.03 1.00

Co ~200! 0.001 -0.042 0.131 0.091
~211! 0.000 -0.012 0.139 0.126
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scheme. The procedure is entirely formulated in real sp
and since it does not require the system to be periodic, it
be employed to study complex structures. Our results ar
excellent agreement with those obtained usingk-space
LMTO-ASA formalism. The exchange splittingd i that ap-
pears in the expression ofJi j is energy dependent. Howeve
when the spin dependence of the potential parameterD i ,
associated with hopping, is neglected,d i becomes energy
independent. Then ford orbitals the relationddi5miI di , fre-
quently used in parametrized calculations, is retrieved.
have also examined the effect of the explicit energy dep
dence ofd i(E) in the calculations ofJi j . This effect is usu-
ally small, but may be important in some cases and negl
ing the energy dependence ofd i could lead to inaccurate
values ofJi j . In contrast with previous orbital resolved ca
:
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n
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n-
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culation for bcc Fe,25 we found that the contribution ofsp
orbitals toJi j is roughly one order of magnitude smaller tha
that of d orbitals. The largesp-d contributions reported in
Ref. 25 are probably due to the use of a simplified express
to calculateJi j .
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