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Exact kink-gas phenomenology of deformable systems at low temperatures

David Yeméée! and Timolen C. Kofané?
Laboratoire de Meanique, Faculteles Sciences, Universitee Yaounde, BP 812 YaoundeCameroun
2Laboratoire de Physique de 'Universite Bourgogne, Avenue Alain Savary, BP 400, 21011 Dijon, France
(Received 30 December 1999; revised manuscript received 30 March 2000

The low-temperature thermodynamics of a class of one-dimensional nonlinear deformable Klein-Gordon
systems is studied by means of a simple soliton-gas picture. The lowest order correction to the free energy due
to the interaction between solitons is obtained. The result is in complete agreement with that of the transfer
integral method.

The role played by the solitofkink and antikink ex-  the context of their thermodynamical behavior. As a conse-
citations in the thermodynamics of one-dimensional nonlinquence the general formula derived by Deleonardis and
ear systems was discussed for the first time by KrumhansTrullinger* and Sasakifor the free energy fails and may be
and Schrieffer(KS)_l By using a phenomenological cal- improved. It is then of interest to study this phenomenology
culation (in which each soliton is treated as a particle in anfor more general deformable systems.

“ideal gas” of solitong, they showed that the tunnel Our aim in the present work is to derive, in the classical
splitting between wells in thep* potential is due to the limit, @ general formula for the soliton contribution and for
solitons® The work of Currie, Krumhansl, Bishop, and Trul- the second virial coefficient in the free energy for a class of
linger (CKBT) (Ref. 2 has subsequently confirmed the deformable nonlinear Klein-Gordon family within the
transfer-integral method discussed by Scalapino, Sears, as@liton-gas phenomenology. The general soliton density for-
Ferrelf and proved by KS as exact if the influence of kinks mula proposed by DeLeonardis and Trulliréor all rigid

on the phonon density of states is explicitly taken into acPotentials such ag*, double quadrati¢DQ), SG, double
count. sine-Gordon(DSG), etc., is corrected and extended to de-

The analysis of CKBT was extended in two principal di- formable models where soliton-soliton contribution is ob-
rections:(i) DeLeonardis and Trullingéhave extended this tained via a soliton gas picture by SasaRihe exactness of
phenomenology to a general class of the nonlinear rigidhe low-temperature phenomenology is demonstrated for the
Klein-Gordon systems. More precisely, they have shown tha@ieformable sine-Gordon systéhtas an examplewhere the
explicit knowledge of phase-shift functions and internalsoliton contribution to the free energy could be found and
mode frequencies is not needed to put forward the exactne§empared to the transfer-integral restit.
of the ideal soliton-gas phenomenology at low-temperature, The general class of one-dimensional nonlinear Klein-
and a general formula for the soliton free energy was obGordon systems in the notation of CKBT is defined by the
tained.(ii) Another important aspect which has been consid-Hamiltonian
ered by Sasaki® Tsuzuki and Sasakiis the effect of
soliton-soliton interactions on statistical mechanics. A gen- x 1/96\2 1 EY:
eral formula for the second virial coefficient in the soliton HzAf dx > E) + 505(5
free energy was derived. m

However, these results concerning the sine-Gor®®)
and other rigid potentials are very encouraging, but they rewhere(x,t) is the dimensionless fiel@, andw, are char-
main nevertheless limited in their applicability to real physi- acteristic velocity and frequency, respectively. The raijo
cal systems. Since, in those systems, the shape of the nor-Cy/w, determines the characteristics length scale for
linear one-site potential may deviate considerably from thavariation in # while the constant A sets the energy scale.
attributed to the local potenti! For example, in V(6) is the dimensionless local potential which is assumed
hydrogen-bounded system, the large displacement of heawp have at least two degenerate absolute minints=at; and
ions can significantly modify the barrier height of the 8= 6, with 6,<6,, separated by a barrier about the point
double-well potential associated with the light protdfs. 6;,. For periodic potentialg, and 6, denote any two adja-
Also, in the adsorption systems, the shape of the substratent absolute minima iV (6).
potential deviates from the SG potentialHence the use of In the case of the periodic deformable sine-Gordon poten-
the deformable systems in the present work is dictated by ouial of Remoissenet and Peyrard defined®%
effort to go beyond the mathematical problem and obtain
results that may be useful for real materials that undergo 2

. . . (1-r) 1—cosé
structural changes such as shape distortion, variations of V(0)= 5 ’
crystalline structures or conformational changes, in some re- 2 1+4r°+2rcosd
gions of their physical parameters. Such materials cannot be
satisfactorily described by substrate potentials with constanwve have #,=0, 6,=2, and 6,,=. The curvature at
parameters, for which much work has been already done iminima are

2

+awfV( o)}, 1)

Irl<1 @
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, . a? for r<o, For the deformable sine-Gordon potential defined by Eq.
V'(0,)=V"(0;)= 1/a? for r>0, ©)) (2), we have
wherea=(1—|r|)/(1+]|r|). The prime indicates the deriva- (P=(1-a®) 2tan [(1-a®) ¥ a],
tives with respect t@. The shape of the potential is defined o1
by the parameter. For r>0 the potential2) has flat bot- w_ 4, L=a) PSP
toms separated by thin barriers, while for0, it has the 7=l — |+ tan '[(1-a*™] (73

shape of sharp wells separated by flat wide barriers. When
r=0, this potential reduces to a sinusoidal SG potential@nd
Hereafter, we refer to the potentié?) as the Remoissenet-
Peyrard(RP) potential.

The nonsinusoidal RP potential has been used to calculate
the pinning energy of kinks due to the discreteness of sub- <2)=In(i
strate lattices>!® as a model for reconstructive surface K Ta

growth!® and to describe the complicated exchange- _
mediated diffusion mechanish.It has been also used to where the upper scrip@l) and(2) stand for the case<0

calculate the diffusion coefficient of adsorbates in metallicandr>0’ respectively. Hence, from Eq§), the quantityv

substrates® the nucleation rate of kink-antikink pairs at low takes the following value:

temperatures and in the limit of strong dampifidinally, (1— a?)2

the deformable spin hamiltonian has been recently v(1)=a(1—a2)1’2exp[2—tan1

introduced® and two classes of topological soliton have been @

calculated in the model of long-range interatomic interac-

tions with RP potentiat® Periodic and chaotic behaviors in ><[(1—a2)1/2/a]] / tan [ (1—-a®) Y% a],

several models of driven nonlinear oscillators have been dis-

cussed in great detdit:>®> However little is known about (8a)

thermodynamical behavior in the RP potential. Only the

work by the present authors where the free energy at low v<2)=(1—az)l’zexp{—Z(l—az)l’ztanh‘l

temperatures has been calculated exactly by means of the

transfer-integral methotf. The use of the deformable RP X[(1=a®) ]} la®tanh '[(1-a?)*?].  (8b)

potential is finally dictated by the fact that the exactness o )

between this integral-operator result and the exact kink-gas I the limit r—0, we recorved the sine-Gordon casé:

phenomenology result outlined here may be viewed as 4=1. 7=In4/m, v=1. For potentials with more than one

prove of this phenomenology. type of barrier, there is a constant{ andv of the form Egs.
We shall have the occasion to use the following improved4)—(6) for each type.

temperature-independent numerical constants constructed The system described by the Hamiltoniél) possesses
from the potentidt®’ stable small amplitude solutiori® the bottom of each po-

tential wel) with the dispersion relation

{P=a(1-a?) Ytanh [(1-a?)?,

+(1-a?®YP2tanh [(1—a®)¥?], (7h)

(%
{= JO 2d0[2V(.9)]1/2, (4) wE:wijLC(Z)kz, wf=w§V”(02), ©)
1

wherew, is a frequency of oscillations of an isolated particle
b [[V"(6,)]Y2 1 at the bottomd, of the substrate potential and to the wave
ﬂ:f [[2\/(0)]1/2_ 9.— 0. |’ (5 vector. In the continuum soliton limit, the system admits
2 soliton solutiongkink and antikink of velocity u<C, (Ref.
10) with energy

012

1

Uzg(gl_ez)zéﬁlexqzﬂ)- (6) E=CowoAly (10)
The parametet follows from the calculation of the soliton @"d With pseudokink width
rest energy whilep results from the calculation of the soliton A= do/ V" ( 0,) 12 (11)
contribution in the free energy. Note the change in the defi- s~ o 2
nition of the parameter, Which in the case of deformable \here y=(1—,u2/CS)1’2, and ¢ defined by Eq.(4). The
systems, has been renormalized by the faot6(6,)"”.  static kink energy is then given by
Also, the last parameter depends orf and #, and follows
from the phase shift associated with kink-phonon interaction E= MSCZ, M =Awyl/Cy, (12)
which of course depends on the particular potential at hand.
This phase shift contains all of the information concerningwhereMg is the kink rest mass
kink-phonon interaction that one need to construct the phe- From a phenomenological point of view, CKBT showed
nomenological free-energy density of soliton. All the threethat the low-temperature free-energy density of an ideal gas
parameters are essentials in the derivation of this solito®f slowly moving kinks(and antikink$ has the forrf
free-energy without knowledge of the soliton wave form and id d
its small oscillations. fs=—ksTng, (13
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wheren!d is the total density of soliton kinks plus antikinks for |x|>ds, where x is the distance between the
while kg is the Boltzmann constant andthe temperature. two interacting solitonso; and o, are the polarities of
Here, the density of solitons are so small that the interactiothese solitons labeled by 1 and 2, andhe numerical con-
between solitons can be neglected in the first approximatiorstant defined in Eq(6). The spatial shift in the trajectory of
By making use of the collective coordination of the ideal-gasparticles caused by an elastic collision can be easily

approximationnl is given by the relation evaluated"
A(p1—p2)=2dsIn(2vY°MCo/|p1—pal), (20
n‘sdch 4P e 10 (P1=P2)=2dsIn(20"*MCo/|p1—p2]), (20
27h in the limit p,;,p,<M,C,, where p; and p, are the

asymptotic moments of the two solitons which is a constant

where of motion. The position shiftd is responsible for the change
p2 in the momentum space due to the interacfion.the ther-
AE(p):Mng+W+zk (15  modynamics of a soliton gas, it may be interpreted as an
S

effective size of the soliton in collision. Hence, the average
represents the difference between the free energies #iZ€ Of solitons is then given by
the presence and absence of a soliton with momerRuim

the nonrelativistic limit #<C;). The last term of Eq(15) BZJ dp;dp,A(pr—p2)P(P1)P(P,) =dsIn(4Tv BE,),
is the self-free energysee Ref. 2of a static soliton, which

represents the change in phonon free energy due to the inter- (21)
action with soliton. It can be obtained without detailed wherel'=1,7810Q. .., is theEuler constant, and
knowledge of the kink wave form or the small oscillation
about the kink: 27M | 2 Bp? .
P(pl)=( ) exp(— oM ) i=1,2 (22
S = — kT IN(0 2% ;) (16) B s

is the momentum distribution of probability of solitons in
the ideal-gas approximation. The quantBydesignates the
econd virial coefficient in the free energy. Consequently,
ne free energy densitf. and the total density of solitons
are

where 8=1/kgT, andv is the constant defined in E¢),
while w,, is given by Eq.(9). In Eq. (16) the characteristic
frequency of the system has been replaced by the renormg
ized frequencyw, [see Eq(9)]. The constan€ in Eq. (14) is
the model-dependent numerical constahiC=1 for sys-
tems with double-well potgntials such as #& the param- foo=— kBTniSd(l— Bnisd), Nee= nisd(l— ZBniSd), (23)
etrized double-well potentiafs’ andC=2 for systems with

periodic potentials such as the sine-Gordon, the deformablie the second virial approximation. Substitutionwoty his
sine-Gordon defined in Eq2). Substitution of Eqs(15) and  expression(8) for the deformable sine-Gordon potential into
(16) into Eq.(14) and integration of Eq(14) yields a general Egs.(17) and(21) yields the transfer-integral resiitee Egs.
formula for low-temperature density of solitofisinks plus  (3.19 and(3.20 of Ref. 14.

antikinkg of a given type The second virial coefficier® is the logarithmic tempera-
ture dependence which is attributed to the exponential decay
iq 2C [ BEs 12 12— BE of the interaction potential between solitons at large dis-
Ns :d_s o. Ve (17 tances. To evaluate it, we have assumed elastic collisions

o _ _ between solitons. This is true only in the integrable systems,
By substituting Eq.(16) into Eq. (13), we obtain the free- similar to SG systems. However numerical integrations of

energy density the equation of motion in the nonintegrable systems show
1 that,_solitons dissipated part of fch_e_ir energ_igs into s_mall 0s-

fd__ 2C (B_Es) 120 BEs (19) cillations or phonons. For some initial conditions soliton and

s Bds | 27 ' antisoliton annihilate in pair leaving small oscillations only.

Thus, the result obtained here suggests that the effect of
Substituting Eqs(8) and(12) into Egs.(17) and(18), one  emission and absorption of phonons by solitons does not
finds that Eqs(17) agree with the transfer-integral result for appears in the second virial term. It could be probably ap-
the deformable sine-Gordon potentipdee Eq(3.21) of Ref.  pears in higher order term in the virial development of the
14]. Note also that, in Eq¥17) and (18), the characteristic free energy, as pointed out by Sasaki.
length scale of the systedh has been replaced by the renor-  From EQq.(23) it appears that, all the quantities entering in
malized length scaldg which is the pseudokink width. these formulagEs, ds, v, and z) can be obtained directly
We now come to the interaction between solitons. For thigrom the particular one-site deformable potential, as demon-
aim, let us consider a classical gas of solitdkink and strated by DelLeonardis and Trullindein the case of the
antikink) with massM and energyEs. The potential energy rigid potential. This has the practical consequence that at low
or the two solitons interaction energy evaluated by calculattemperature, explicit knowledge of the kink wave form and
ing energy of periodic solutionoliton latticeg is given in  its small oscillationgor internal modesare not needed and
a general form by the free energy of a particular deformable potential could be
found easily by means of a simple integrals over the poten-
U(X)=oy0,Ee X, (19 tial.
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To conclude this report, note that phenomenological calsoliton-gas theory, which gives accurate values for the scaled

culations for very low-temperature soliton statistical me-

potential such asp*. sine-Gordon, to both the deformable

chanics have reached a stage such that they agree with tg¢ and deformable sine-Gordon potentials. This generaliza-
analytic transfer-integral results. However, the phenomenction may be viewed as a first step toward the thermodynam-
logical approach has still restricted to the rigid potentials orics of the quantum deformable systems which is now in
scaled potentials. For this purpose, we have extended thgrogress.

1J. A. Krumhansl and J. R. Schrieffer, Phys. Rev.1B 3535
(1975.

23. F. Currie, J. A. Krumhansl|, A. R. Bishop, and S. E. Trullinger,
Phys. Rev. B22, 477 (1980.

3D. J. Scalapino, M. Sears, and R. A. Ferell, Phys. Re6, 8409
(1972.

4R. M. Deleonardis and S. E. Trullinger, Phys. Rev28 4558
(1980.

5K. Sasaki, Prog. Theor. Phy80, 593 (1983; 71, 1169(1984.

K. Sasaki, Phys. Rev. B3, 7743(1986.

"T. Tsuzuki and K. Sasaki, Prog. Theor. Ph94, 73 (1989.

83. N. Behera and A. Khare, J. Phy®arig, Collog. 42, C6314
(1981); E. Magyari, Z. Phys. B13, 345(1981).

9A. M. Dikande and T. C. KofanePhys. Lett. A115 403(1997);
T. C. Kofaneand A. M. Dikande Solid State Commur86, 749
(1993; P. Tchofo Dinda, Phys. Rev. B6, 12 012(1992.

0M. Remoissenet and M. Peyrard, J. Physl4; L481 (1981).

1M, Peyrard and M. Remoissenet, Phys. Re\2a3 2886 (1992.

12A. V. Zolotariuk and St Pnevmatikos, Phys. Lett. 143 233
(1990.

130. M. Braun, Y. S. Kivshar, and I. I. Zelenskaya, Phys. Rev. B
41, 7118(1990.

14D. Yemdé and T. C. KofanePhys. Rev. B56, 3353(1997).

15y, Ishibshi and 1. J. Suzuki, J. Phys. Soc. Jp8, 4250(1984).

180. M. Braun and M. Peyrard, Phys. Rev.5R, 17 158(1995.

170. M. Braun, T. Dauxois, and M. Peyrard, Phys. Re\68 313
(1996.

18p_Woafo, T. C. Kofaneand A. S. Bokosah, Phys. S&6, 655
(1997.

19D, Yemdeé and T. C. KofanePhys. Rev. 56, 1037(1997.

207 C. Kofane J. Phys.: Condens. Mattéd, 2481(1999.

21D. Yemdé and T. C. KofaneJ. Phys.: Condens. Mattétl, 75
(1999.

22M. Imada, J. Phys. Soc. Jpb2, 1946(1983.

23|, Nana, T. C. KofangE. Coquet, and P. Tchofo-Dinda, Phys.
Scr. (to be published



