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Exact kink-gas phenomenology of deformable systems at low temperatures
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The low-temperature thermodynamics of a class of one-dimensional nonlinear deformable Klein-Gordon
systems is studied by means of a simple soliton-gas picture. The lowest order correction to the free energy due
to the interaction between solitons is obtained. The result is in complete agreement with that of the transfer
integral method.
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The role played by the soliton~kink and antikink! ex-
citations in the thermodynamics of one-dimensional non
ear systems was discussed for the first time by Krumha
and Schrieffer~KS!.1 By using a phenomenological ca
culation ~in which each soliton is treated as a particle in
‘‘ideal gas’’ of solitons!, they showed that the tunne
splitting between wells in thef4 potential is due to the
solitons.1 The work of Currie, Krumhansl, Bishop, and Tru
linger ~CKBT! ~Ref. 2! has subsequently confirmed th
transfer-integral method discussed by Scalapino, Sears,
Ferrell3 and proved by KS as exact if the influence of kin
on the phonon density of states is explicitly taken into
count.

The analysis of CKBT was extended in two principal d
rections:~i! DeLeonardis and Trullinger4 have extended this
phenomenology to a general class of the nonlinear r
Klein-Gordon systems. More precisely, they have shown
explicit knowledge of phase-shift functions and intern
mode frequencies is not needed to put forward the exact
of the ideal soliton-gas phenomenology at low-temperatu
and a general formula for the soliton free energy was
tained.~ii ! Another important aspect which has been cons
ered by Sasaki,5,6 Tsuzuki and Sasaki7 is the effect of
soliton-soliton interactions on statistical mechanics. A g
eral formula for the second virial coefficient in the solito
free energy was derived.

However, these results concerning the sine-Gordon~SG!
and other rigid potentials are very encouraging, but they
main nevertheless limited in their applicability to real phy
cal systems. Since, in those systems, the shape of the
linear one-site potential may deviate considerably from t
attributed to the local potential.8,11 For example, in
hydrogen-bounded system, the large displacement of he
ions can significantly modify the barrier height of th
double-well potential associated with the light protons12

Also, in the adsorption systems, the shape of the subs
potential deviates from the SG potential.13 Hence the use o
the deformable systems in the present work is dictated by
effort to go beyond the mathematical problem and obt
results that may be useful for real materials that unde
structural changes such as shape distortion, variation
crystalline structures or conformational changes, in some
gions of their physical parameters. Such materials canno
satisfactorily described by substrate potentials with cons
parameters, for which much work has been already don
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the context of their thermodynamical behavior. As a con
quence the general formula derived by DeLeonardis
Trullinger4 and Sasaki6 for the free energy fails and may b
improved. It is then of interest to study this phenomenolo
for more general deformable systems.

Our aim in the present work is to derive, in the classic
limit, a general formula for the soliton contribution and fo
the second virial coefficient in the free energy for a class
deformable nonlinear Klein-Gordon family within th
soliton-gas phenomenology. The general soliton density
mula proposed by DeLeonardis and Trullinger4 for all rigid
potentials such asf4, double quadratic~DQ!, SG, double
sine-Gordon~DSG!, etc., is corrected and extended to d
formable models where soliton-soliton contribution is o
tained via a soliton gas picture by Sasaki.6 The exactness o
the low-temperature phenomenology is demonstrated for
deformable sine-Gordon system10 ~as an example! where the
soliton contribution to the free energy could be found a
compared to the transfer-integral result.14

The general class of one-dimensional nonlinear Kle
Gordon systems in the notation of CKBT is defined by t
Hamiltonian

H5AE
2`

`

dxF1

2 S ]u

]t D
2

1
1

2
C0

2S ]u

]xD 2

1v0
2V~u!G , ~1!

whereu(x,t) is the dimensionless field,C0 andv0 are char-
acteristic velocity and frequency, respectively. The ratiod0
5C0 /v0 determines the characteristics length scale
variation in u while the constant A sets the energy sca
V(u) is the dimensionless local potential which is assum
to have at least two degenerate absolute minima atu5u1 and
u5u2 with u1,u2 , separated by a barrier about the po
u12. For periodic potential,u1 andu2 denote any two adja-
cent absolute minima inV(u).

In the case of the periodic deformable sine-Gordon pot
tial of Remoissenet and Peyrard defined by10,14

V~u!5
~12r !2

2

12cosu

11r 212r cosu
, ur u,1 ~2!

we have u150, u252p, and u125p. The curvature at
minima are
5277 ©2000 The American Physical Society
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V9~u1!5V9~u2!5 Ha2 for r ,0,
1/a2 for r .0, ~3!

wherea5(12ur u)/(11ur u). The prime indicates the deriva
tives with respect tou. The shape of the potential is define
by the parameterr. For r .0 the potential~2! has flat bot-
toms separated by thin barriers, while forr ,0, it has the
shape of sharp wells separated by flat wide barriers. W
r 50, this potential reduces to a sinusoidal SG potent
Hereafter, we refer to the potential~2! as the Remoissene
Peyrard~RP! potential.

The nonsinusoidal RP potential has been used to calcu
the pinning energy of kinks due to the discreteness of s
strate lattices,13,15 as a model for reconstructive surfac
growth,16 and to describe the complicated exchang
mediated diffusion mechanism.17 It has been also used t
calculate the diffusion coefficient of adsorbates in meta
substrates,18 the nucleation rate of kink-antikink pairs at lo
temperatures and in the limit of strong damping.19 Finally,
the deformable spin hamiltonian has been recen
introduced20 and two classes of topological soliton have be
calculated in the model of long-range interatomic inter
tions with RP potential.21 Periodic and chaotic behaviors i
several models of driven nonlinear oscillators have been
cussed in great detail.22,23 However little is known about
thermodynamical behavior in the RP potential. Only t
work by the present authors where the free energy at
temperatures has been calculated exactly by means o
transfer-integral method.14 The use of the deformable R
potential is finally dictated by the fact that the exactne
between this integral-operator result and the exact kink-
phenomenology result outlined here may be viewed a
prove of this phenomenology.

We shall have the occasion to use the following improv
temperature-independent numerical constants constru
from the potential4,6,7

z5E
u1

u2
du@2V~u!#1/2, ~4!

h5E
u12

u2
duF @V9~u2!#1/2

@2V~u!#1/22
1

u22u1
G , ~5!

v5
1

8
~u12u2!2z21 exp~2h!. ~6!

The parameterz follows from the calculation of the soliton
rest energy whileh results from the calculation of the solito
contribution in the free energy. Note the change in the d
nition of the parameterh, which in the case of deformabl
systems, has been renormalized by the factorV9(u2)1/2.
Also, the last parameterv depends onz andh, and follows
from the phase shift associated with kink-phonon interact
which of course depends on the particular potential at ha
This phase shift contains all of the information concern
kink-phonon interaction that one need to construct the p
nomenological free-energy density of soliton. All the thr
parameters are essentials in the derivation of this sol
free-energy without knowledge of the soliton wave form a
its small oscillations.
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For the deformable sine-Gordon potential defined by E
~2!, we have

z~1!5~12a2!21/2 tan21@~12a2!1/2/a#,

h~1!5 lnS 4a

p D1
~12a2!1/2

a
tan21@~12a2!1/2# ~7a!

and

z~2!5a~12a2!21/2 tanh21@~12a2!1/2#,

h~2!5 lnS 4

pa D1~12a2!1/2 tanh21@~12a2!1/2#, ~7b!

where the upper scripts~1! and ~2! stand for the caser a0
and r s0, respectively. Hence, from Eqs.~7!, the quantityv
takes the following value:

v ~1!5a~12a2!1/2expH 2
~12a2!1/2

a
tan21

3@~12a2!1/2/a#J Y tan21@~12a2!1/2/a#,

~8a!

v ~2!5~12a2!1/2exp$22~12a2!1/2 tanh21

3@~12a2!1/2#% /a2 tanh21@~12a2!1/2#. ~8b!

In the limit r→0, we recorved the sine-Gordon case:9,10

z51, h5 ln 4/p, v51. For potentials with more than on
type of barrier, there is a constanth, z andv of the form Eqs.
~4!–~6! for each type.

The system described by the Hamiltonian~1! possesses
stable small amplitude solutions~in the bottom of each po-
tential well! with the dispersion relation

vk
25v r

21C0
2k2, v r

25v0
2V9~u2!, ~9!

wherev r is a frequency of oscillations of an isolated partic
at the bottomu2 of the substrate potential and to the wa
vector. In the continuum soliton limit, the system adm
soliton solutions~kink and antikink! of velocity m,C0 ~Ref.
10! with energy

Ek5C0v0Azg ~10!

and with pseudokink width

ds5d0/V9~u2!1/2, ~11!

where g5(12m2/C0
2)1/2, and z defined by Eq.~4!. The

static kink energy is then given by

Es5MsC0
2, Ms5Av0z/C0 , ~12!

whereMs is the kink rest mass
From a phenomenological point of view, CKBT showe

that the low-temperature free-energy density of an ideal
of slowly moving kinks~and antikinks! has the form2

f s
id52kBTns

id , ~13!



s
.
tio
io
a

nt
d
n

m

ab

r

r-

h

la

e

f
sily

ant
e

an
ge

in

tly,
s

to

-
cay
is-

ions
ms,
of
ow
os-
nd
y.
t of
not

ap-
he

in

on-

low
nd

be
en-

PRB 62 5279BRIEF REPORTS
wherens
id is the total density of soliton kinks plus antikink

while kB is the Boltzmann constant andT the temperature
Here, the density of solitons are so small that the interac
between solitons can be neglected in the first approximat
By making use of the collective coordination of the ideal-g
approximation,ns

id is given by the relation

ns
id5CE dp

2p\
e2bDE~p! ~14!

where

DE~p!5MsC0
21

p2

2Ms
1Sk ~15!

represents the difference between the free energies
the presence and absence of a soliton with momentumP, in
the nonrelativistic limit (m!C0). The last term of Eq.~15!
is the self-free energy~see Ref. 2! of a static soliton, which
represents the change in phonon free energy due to the i
action with soliton. It can be obtained without detaile
knowledge of the kink wave form or the small oscillatio
about the kink:

Sk52kBT ln~v1/2b\v r ! ~16!

whereb51/kBT, and v is the constant defined in Eq.~6!,
while v r , is given by Eq.~9!. In Eq. ~16! the characteristic
frequency of the system has been replaced by the renor
ized frequencyv r @see Eq.~9!#. The constantC in Eq. ~14! is
the model-dependent numerical constant.6,7 C51 for sys-
tems with double-well potentials such as thef4, the param-
etrized double-well potentials,8,9 andC52 for systems with
periodic potentials such as the sine-Gordon, the deform
sine-Gordon defined in Eq.~2!. Substitution of Eqs.~15! and
~16! into Eq.~14! and integration of Eq.~14! yields a general
formula for low-temperature density of solitons~kinks plus
antikinks! of a given type

ns
id5

2C

ds
S bEs

2p D 1/2

v1/2e2bEs. ~17!

By substituting Eq.~16! into Eq. ~13!, we obtain the free-
energy density

f s
id52

2C

bds
S bEs

2p D 1/2

v1/2e2bEs. ~18!

Substituting Eqs.~8! and~12! into Eqs.~17! and~18!, one
finds that Eqs.~17! agree with the transfer-integral result fo
the deformable sine-Gordon potentials@see Eq.~3.21! of Ref.
14#. Note also that, in Eqs.~17! and ~18!, the characteristic
length scale of the systemd0 has been replaced by the reno
malized length scaleds which is the pseudokink width.

We now come to the interaction between solitons. For t
aim, let us consider a classical gas of solitons~kink and
antikink! with massMs and energyEs . The potential energy
or the two solitons interaction energy evaluated by calcu
ing energy of periodic solutions~soliton lattices! is given in
a general form by

U~x!5s1s2Esve2uxu/ds, ~19!
n
n.
s

in

er-

al-

le

is

t-

for uxu@ds , where x is the distance between th
two interacting solitons,s1 and s2 are the polarities of
these solitons labeled by 1 and 2, andv the numerical con-
stant defined in Eq.~6!. The spatial shift in the trajectory o
particles caused by an elastic collision can be ea
evaluated:7

D~p12p2!52ds ln~2v1/2MsC0 /up12p2u!, ~20!

in the limit p1 ,p2!MsC0 , where p1 and p2 are the
asymptotic moments of the two solitons which is a const
of motion. The position shiftsD is responsible for the chang
in the momentum space due to the interaction.6 In the ther-
modynamics of a soliton gas, it may be interpreted as
effective size of the soliton in collision. Hence, the avera
size of solitons is then given by

B5E dp1dp2D~p12p2!p~p1!p~p2!5ds ln~4GvbEs!,

~21!

whereG51,7810, . . . , is theEuler constant, and

P~p1!5S 2pMs

b D 1/2

expS 2
bpi

2

2Ms
D , i 51,2 ~22!

is the momentum distribution of probability of solitons
the ideal-gas approximation. The quantityB designates the
second virial coefficient in the free energy. Consequen
the free energy densityf sc and the total density of soliton
are

f sc52kBTns
id~12Bns

id!, nsc5ns
id~122Bns

id!, ~23!

in the second virial approximation. Substitution ofv by his
expression~8! for the deformable sine-Gordon potential in
Eqs.~17! and~21! yields the transfer-integral result@see Eqs.
~3.19! and ~3.20! of Ref. 14#.

The second virial coefficientB is the logarithmic tempera
ture dependence which is attributed to the exponential de
of the interaction potential between solitons at large d
tances. To evaluate it, we have assumed elastic collis
between solitons. This is true only in the integrable syste
similar to SG systems. However numerical integrations
the equation of motion in the nonintegrable systems sh
that, solitons dissipated part of their energies into small
cillations or phonons. For some initial conditions soliton a
antisoliton annihilate in pair leaving small oscillations onl
Thus, the result obtained here suggests that the effec
emission and absorption of phonons by solitons does
appears in the second virial term. It could be probably
pears in higher order term in the virial development of t
free energy, as pointed out by Sasaki.6

From Eq.~23! it appears that, all the quantities entering
these formulas~Es , ds , v, andh! can be obtained directly
from the particular one-site deformable potential, as dem
strated by DeLeonardis and Trullinger4 in the case of the
rigid potential. This has the practical consequence that at
temperature, explicit knowledge of the kink wave form a
its small oscillations~or internal modes! are not needed and
the free energy of a particular deformable potential could
found easily by means of a simple integrals over the pot
tial.
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To conclude this report, note that phenomenological c
culations for very low-temperature soliton statistical m
chanics have reached a stage such that they agree wit
analytic transfer-integral results. However, the phenome
logical approach has still restricted to the rigid potentials
scaled potentials. For this purpose, we have extended
er
l-
-
the
o-
r
he

soliton-gas theory, which gives accurate values for the sca
potential such asf4. sine-Gordon, to both the deformab
f4 and deformable sine-Gordon potentials. This general
tion may be viewed as a first step toward the thermodyna
ics of the quantum deformable systems which is now
progress.
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