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Localization in quasi-one-dimensional systems

Mattias Hjort and Sven Stafstro¨m
Department of Physics and Measurement Technology, IFM, Linko¨ping University, S-581 83, Linko¨ping, Sweden

~Received 13 March 2000!

A general method for obtaining transfer matrices in quasi-one-dimensional systems is presented. We used
the method to study Anderson localization intrans-polyacetylene, polyparaphenylene, polyparaphenylene-
vinylene, and polythiophene. The electron localization length for the polymers as a function of disorder was
calculated from the Lyapunov exponents. The polymers are shown to exhibit different sensitivity to disorder,
which could be explained in terms of different dimensionality of the polymeric systems. We also give an
explanation to the recently observed differences between electron and hole intrachain mobilities in alkoxy
derivatives of polyparaphenylene-vinylene, as being a result of the electron-donating nature of the alkoxy
substituents.
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I. INTRODUCTION

There has been a great interest in the problem of elec
localization ever since 1958 when Anderson1 predicted that
all states in a disordered solid should be exponentially lo
ized for a disorder large enough compared to the ene
bandwidth. The role of the dimensionality of a system w
respect to disorder induced localization is of particular int
est. The wave functions in one-dimensional~1D! and 2D
systems localize for any2 nonzero disorder concentration
while for moderate disorder in 3D there is a transition b
tween localized and extended states, where the states i
band tails are localized.3 Despite being localized, the state
in disordered low-dimensional systems are interesting
study in the context of nanoelectronics since the localiza
length in that case may exceed the size of the sample. S
samples will remain highly conducting even in the prese
of disorder.

Numerically, Anderson localization has been studied
systems of all dimensions with particular interest in the sc
ing behavior of the localization length and the existence o
metal-insulator transition.4–6 The basic tool in these invest
gations are the transfer matrices describing the evolutio
the wave function as a function of the length of the syste
From the transfer matrices the Lyapunov exponents, wh
render the localization length, can be calculated. Commo
all such calculations is that only very simple model syste
have been studied, since the construction of the transfer
trices is not straightforward. Typically as a model syste
one uses a rectangular or cubic array of atoms, which ca
subdivided into identical cells. Thenall atoms in a cell bond
to their equivalent atoms in the preceding and succeed
cells, always resulting in a nonsingular matrix describing
intercell interaction. The transfer matrices for systems hav
a tridiagonal block structure Hamiltonian with nonsingu
intercell matrices are readily derived. Using a Green
function technique a renormalization scheme has been de
oped to write the transfer matrices of quasi-1D polymers
a form equivalent to that of the simple 1D chain.7,8 The
transfer matrices obtained with this method do, however,
scribe the evolution of state for only one site per monom
The connection to the scattering problem has been gene
investigated by Molinari.9 The method of Molinari has re
cently been used to study transmission in achiral car
PRB 620163-1829/2000/62~8!/5245~6!/$15.00
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nanotubes, i.e., armchair and zigzag tubes.10

Given the transfer matrix many important properties c
thus be determined for systems that are too large for
wave functions to be explicitly calculated. There may, ho
ever, be restrictions on the type of transfer matrices that
be used, e.g., in calculating the localization length. As w
be seen, the transfer matrix for a specific system is m
often not uniquely determined though and a suitable ma
has to be constructed. We present in this paper a gen
method to construct transfer matrices for quasi-1D syste
The method is applied to some common conjugated po
mers for which the localization length as a function of ra
dom functionalization of a single side group per monome
calculated. The methodology is introduced and discusse
some detail in Sec. II followed by the presentation of t
result in Sec. III. We end the paper with a short discuss
concerning both the methodology and the results.

II. METHODOLOGY

A. Transfer matrices

The tight-binding model Hamiltonian can be written as

H5(
i

e i u i &^ i u1(
iÞ j

t i j u i &^ j u, ~1!

where e i is the on-site potential of atomi and t i j is the
hopping between atomsi andj. Transfer matrices are usuall
developed using only nearest-neighbor interaction but m
very well incorporate hopping between atoms that are furt
separated. The simplest case is the 1D chain which has
lowing secular equation relating the coefficientsai of the
wave functions,

t i 21ai 211~e i2E!ai1t iai 1150, ~2!

with the hoppingt i in the forward direction. The transfe
matrix Ti is readily derived,

S ai 11

ai
D5Ti S ai

ai 21
D , ~3!

where
5245 ©2000 The American Physical Society
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5246 PRB 62MATTIAS HJORT AND SVEN STAFSTRO¨ M
Ti5S ~E2e i !t i
21 2t i 21t i

21

1 0
D . ~4!

In the more general case of a quasi-1-D system the c
consist ofM atoms. The restriction is that atoms in celli only
couple to atoms in cellsi 61. The Hamiltonian will then be
block tridiagonal. The secular equations can be written
block form, using the symmetry of the Hamiltonian,

T i 21
† A i 211~H i2EI !A i1T iA i 1150, ~5!

whereA i is a vector containingM coefficients. The on-site
potentials and hopping within celli is described by the sym
metric M3M matrix H i , and the coupling to the neighbo
ing cells byM3M matricesT i 21

† and T i . I is the identity
matrix. It is, however, not straightforward to obtain the tran
fer matrix from Eq.~5! since theT matrices in general are
singular. We show below how this apparent problem
many cases can be overcome. By multiplying two conse
tive secular matrix equations by theM3M matricesX i1 and
X i2, respectively, we get

X i1T i 21
† A i 211X i1Ĥ iA i1X i1T iA i 1150, ~6!

X i2T i
†A i1X i2Ĥ i 11A i 111X i2T i 11A i 1250 ~7!

with the notationĤ i5H i2EI . Combining Eqs.~6! and ~7!,
writing X i5(X i1 X i2) then gives

X i S T i 21
†

0 DA i 211X i S Ĥ i

T i
†DA i1X i S T i

Ĥ i 11
DA i 11

1X i S 0
T i 11

DA i 1250. ~8!

If X i is chosen so that

X iS T i 0

Ĥ i 11 T i 11
D 5~ I 0! , ~9!

then

A i 1152X i S Ĥ i

T i
†DA i2X i S T i 21

†

0 DA i 21 ~10!

and the transfer matrix can be constructed in the same wa
in Eq. ~3!. Note that the only assumption made about
system is the tridiagonal-block structure of its Hamiltonia
The internal structure of the cells may be varying as well
the hopping values. Equation~9! may be rewritten in the
more familiar formCX5D:

S T i
† Ĥ i 11

0 Ti 11
† D X i

†5S I
0D . ~11!

A unique solution to Eq.~11! exists only when the 2M
32M C matrix has a nonzero determinant. This is often n
the case and there may then be either no solution or infini
many. The criterion for the existence of a solution is th
every column inD is a linear combination of the columns i
C. This also implies that the transfer matrix in general is n
uniquely determined.
lls
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In general,C will be rank deficient and from the infinite
set of solutions~if they exist! to Eq.~11!, the minimum norm
solution (iCx5di25min; x andd are column vectors inX
andD) can be obtained from, e.g., singular value decom
sition ~SVD! or complete orthogonal factorization.11 Any
other solution can then be acquired from the null space v
tors of Eq.~11!. However, we emphasize that the existen
of a solution to Eq.~11! may depend on the choice of ce
structure.

B. Lyapunov exponents

The evolution of a state can be described by the prod
of transfer matricesTi ,

Qn5)
i 51

n

Ti . ~12!

If the determinant of everyTi is finite and nonzero it follows
from a theorem of Oseledec12 that the following limiting
matrix exists

G5 lim
n→`

~Qn
†Qn!1/2n. ~13!

G has eigenvalues exp(g j ), whereg j denotes the Lyapunov
characteristic exponents~LCE’s! of Q. The LCE’s may be
identified with the rate of exponential decay of the wa
functions, where the smallest13 exponent corresponds to th
longest decay length and hence the localization length of
system.6 The localization lengthl is then taken as the in
verse of the smallest LCE.4 Since the eigenvalues ofG may
differ by several orders of magnitude, numerical difficulti
often arise in determining the smallest LCE. This proble
can be overcome by using an orthogonalization process
gested by Benettin and Galgani.14

For the special case whenQn is symplectic the Lyapunov
exponents will occur in pairs whose elements are the inve
of each other and it is sufficient to determine only theposi-
tive half of the exponents. For a 232 matrix Q this holds if
detQ51, and the reciprocity of the Lyapunov exponents
then very helpful in estimating the numerical discrepanci
In the calculations presented in Sec. III the relative er
between the absolute values of the reciprocal exponents
used as a convergence criterion. A relative error of less t
1% indicated a satisfactory convergence and increasing
number of matrix products by a factor of 10 did not signi
cantly alter the result. Typically, 53107 matrix products
were used to calculate the largest localization lengths.

III. RESULTS

The transfer matrices oftrans-polyacetylene~PA!, poly-
paraphenylene~PPP!, polyparaphenylene-vinylene~PPV!,
and polythiophene~PT! have been constructed using th
tight-binding Hamiltonian. Equation~11! was solved analyti-
cally for computational efficiency as well as to avoid nume
cal divergence. The repeating cells were chosen accordin
Fig. 1. With this choice, for all polymers, a 232-transfer
matrix describing the evolution of state for the two last si
in each cell could be derived. All wave-function coefficien
in a cell were described by linear combinations of these t
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PRB 62 5247LOCALIZATION IN QUASI-ONE-DIMENSIONAL SYSTEMS
last sites of the preceding cell. Hence the exponential de
of any wave function of the above polymers is asses
through these transfer matrices. Moreover, their determin
are always equal to 1.

For the special case of PA a 232-transfer matrix with
determinant equal to 1 can also be constructed using a
consisting of only one atom. This follows from a factoriz
tion of Eq. ~3!:

Ti5S ~E2e i !t i
21 2t i 21t i

21

1 0
D

5S t i
21 0

0 1
D S E2e i 21

1 0 D S 1 0

0 t i 21
D . ~14!

Upon multiplying several such matrices the factors can
grouped together resulting in an effective transfer matrix15 Si
with the desired properties:

Si5S E2e i 21

1 0 D S 1 0

0 t i 21
D S t i 11

21 0

0 1
D

5S ~E2e i !t i 11
21 2t i 21

t i 11 0
D . ~15!

Such an approach has been used for studying the m
insulator transition in bulk PA taking interchain interactio
into account.16

We have studied Anderson localization arising from o
site disorder, keeping the hopping fixed. A comparison of

FIG. 1. The carbon backbones for PA, PPP, PPV, and PT, i
cating the chosen cell structures for the transfer matrices. The
tances referred to are listed in Table I.
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localization lengths in PA and PPP using random on-s
potentials with a rectangular distributionaP@2W,W# and
the hopping set equal to 1~no dimerization! was made. The
localization lengths were calculated for different energiesE,
and the maximum localization lengthlmax is shown in Fig. 2
as a function ofW for both polymers. The value ofl is
always given in units of the number of atom sites spanne
the direction of the polymer, e.g., with the cell choice of F
1, PPP has four such sites per cell and PPV six.

The maximum localization lengths are found close to
band gap for both polymers. From Fig. 2 we see that th
states are slightly more extended in PPP than in PA. E
though the energy bands of PPP are more narrow than
single band of undimerized PA, the former polymer seem
however, more insensitive to disorder than the latter from
delocalization point of view. This may be attributed to th
higher dimensionality of PPP compared to PA. With this w
mean that there are more alternate routes combining
transversely separated points, per unit length, in PPP
in PA.

The situation is changed when dimerization of the po
mers is considered. The difference in bond length within
polymers can be accounted for using the following relat
for the hopping parameters:

t52t0e2(r 2R0)/z ~16!

with r being the interatomic distance. Here the parame
t052.5 eV,R051.40 Å, andz50.284 Å21 were chosen to
give a total bandwidth of 10 eV and a band gap of 1.4 eV
a single dimerizedtrans-polyacetylene chain,16 at a bond-
length alternation of 0.8 Å. From now on all the energies w
be given in units oft0.

With this parametrization, the hopping corresponding
the different bond lengths in Fig. 1 were determined; s
Table I. The on-site potentials for undisturbed carbon ato
were set to zero and for sulfur20 21.33 t0. The maximum
localization length for dimerized PA and PPP with the re
angular disorder distribution is shown in Fig. 2. In this ca
PA has slightly longer localization length, which can be e
plained by the fact that the interring distance in PPP is c
siderably longer than any bond length in PA. This relative
weak bond in PPP leads to smaller bandwidths and a hig
sensitivity to disorder. One should be cautious comparing

i-
is-

FIG. 2. The maximum localization lengthlmax vs disorder
strengthW for both undimerized~filled symbols! and dimerized
~hollow symbols! PA ~triangles! and PPP~circles!. W is given in
units of the hopping.
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5248 PRB 62MATTIAS HJORT AND SVEN STAFSTRO¨ M
localization lengths of the dimerized and undimerized po
mers, because the relative disorder strengthW is not identical
in the two cases due to the paramterization of the hoppi

It is also interesting to compare the localization in t
closely related structures of PPP, PPV, and PT. We chos
study the disorder introduced by the substitution of s
chains to the phenyl and thiophene rings in the polyme
considering only the case of one side chain per ring, a
Fig. 3. A side chain, e.g., an alkyl chain, is with the sam
probability replacing any of the hydrogen atoms bonding t
ring. This means that there are four equivalent sites
monomer in PPP and PPV to which the side chain can bo
while PT only has two. The bonding was then simulated
changing the on-site potential by a fixed valuea on one of
the allowed sites, chosen randomly for every monomer.
refer to this type of disorder as the random substituent mo
~RSM!, in contrast to the random on-site box-distributio
distortion described above. Physically, the sign ofa is due to
the electron affinity of the side chains leading to either
enhanced or reduced electron concentration on the co
sponding carbon atom. The commonly used alkoxy subs
ents are electron donating which corresponds to a positiva.

The inverse ofl for RSM disordered PPP is shown
Fig. 4 for different values of the disorder strengtha. The

TABLE I. The interatomic distances and corresponding valu
of the hopping@from Eq. ~16!# for the polymer structures as ind
cated in Fig. 1. The energies are given in units oft0 ~5 2.5 eV!.

PA a : d151.36 Å : t1521.15
d251.44 Å : t2520.87

PPPb : d351.41 Å : t3520.97
d451.51 Å : t4520.68

PPVc : d351.41 Å : t3520.97
d451.51 Å : t4520.68
d551.35 Å : t4521.19

PT d : d651.36 Å : t6521.15
d751.43 Å : t7520.90
d851.48 Å : t8520.75
d951.75 Å : t9520.32

aFrom Ref. 17.
bFrom Ref. 18.
cFrom Ref. 19.
dFrom Ref. 20.

FIG. 3. The substitution of a side chain on one of four possi
carbon atoms in a PPP monomer.
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energy bands of undisturbed PPP (EP@22.20,21.75#,
@21.45,20.56#, @0.56,1.45# and@1.75,2.20#) are negligibly
affected, but the localization length for the states with
these bands is strongly reduced whena is increased.

Furthermore, the electron-hole symmetry is broken as
effect of the fixed value of the potential distortion. Changi
the sign ofa will result in a reflection of the curves in Fig. 4
through the zero energy point. In addition, there is a dip a
a peak in the curves close to energy61.0, which are not
present in the random on-site box-distribution disorder
sults. The peaks, corresponding to a short localization len
are attributed to a small splitting of the energy bands due
the change in on-site potential of the atoms bonding to a s
chain. The existence of the dips is more surprising. Actua
the states at the energies of the dips (60.97t0) are com-
pletely delocalized. This may be explained from an insp
tion of the corresponding wave functions of the undisturb
PPP, which are highly symmetric with zero coefficients
the atoms connecting the phenyl rings. Thus, from an en
getic point of view, the rings in the RSM disordered PPP
all identical, regardless of the positioning of the substituen
This implies a complete delocalization of the wave functio
One may argue that for such a wave function the trans
matrix used here fails to describe the evolution of state, si
it is based on coefficients of the atoms connecting the phe
rings, coefficients that obviously vanish. This failure is, ho
ever, restricted to a singular point and the continuity of t
calculated Lyapunov exponents for energies close to
point strongly support the existence of the delocalized st
Note that it is not possible to construct a nonsingular trans
matrix for PPP describing the evolution of coefficients
any other site of the monomer.

To include the varying crystal potential of the surroundi
chains, a weak random on-site box-distribution disorder
all sites was added to the RSM disorder. We shall refer
this additional disorder as noise. As shown in Fig. 5, t
localization length naturally decreases with the strength
the noise, and especially the states around the dip are
fected. The latter is a consequence of the small energy
ferences introduced between the phenyl rings, suppres
the delocalized state.

The localization length was calculated for PPP, PPV, a
PT, using a RSM disorder with an additional noise
strengthW50.03. In Fig. 6 the resulting localization length

s

e

FIG. 4. The inverse of the localization length for dimerized P
with a RSM disorder as a function of energy, plotted for differe
disorder strengths:a50.1 ~A!, a50.2 ~B!, and a50.5 ~C!. The
highest occupied molecular orbital and lowest unoccupied mole
lar orbital levels are20.56 and 0.56t0, respectively.
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PRB 62 5249LOCALIZATION IN QUASI-ONE-DIMENSIONAL SYSTEMS
of states close to the band gap, for both the valence and
conduction band, is presented. The chosen states were
at a distance 0.1t0 from the band gap. It is clear that for th
type of disorder the states in PPV will be more extended t
in PPP. This is to be expected since the major disorder o
affects the phenyl rings. The states in PPP and PPV are
supposed to be extended over approximately the same n
ber of monomers. For weak RSM disorder, however,
situation is changed and the higher dimensionality of the P
structure becomes important when the strength of the n
relative to the RSM disorder becomes substantial.

In the case of PT, the hopping to the sulfur atom is sm
which implies a lower dimensionality of this polymer com
pared to both PPP and PPV. The correlation between lo
ization length and dimensionality is seen clearly in Fig.
Moreover, the unoccupied states of PT are more exten
than the occupied states. This is due to the inclusion of
sulfur atom in the wave functions of the unoccupied sta
resulting in an increase of the dimensionality compared
the wave functions of the occupied states, in which the su
is excluded.

A large difference in localization length between occ
pied and unoccupied states is also present in PPP and
The origin of this effect is, however, different to that of P

FIG. 5. The inverse of the localization length for dimerized P
with a RSM disorder strengtha50.1, plus additional noise o
strengthW on all sites. The localization length increases withW,
and the curves from the bottom and up correspond toW50, W
50.01, W50.02, andW50.03.

FIG. 6. The localization length for states close to the band
of PPP~circles!, PPV~squares!, and PT~triangles!, as a function of
RSM disorder strengtha. An additional noise of strengthW
50.03 was used for all polymers. The filled symbols represent
occupied states and the hollow the unoccupied states.
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and is attributed to the breaking of the electron-hole symm
try caused by the RSM and the strong influence of the de
calized singular points, as can be seen for PPP in Figs. 4
5. Because of the electron-hole symmetry of pristine P
and PPV, the application of a negative RSM disord
strengtha the results in Fig. 6 for occupied or the unocc
pied states will be interchanged. Thus the electron affinity
the side chains determines which states that will be the m
extended, the occupied or the unoccupied. The hole and e
tron mobilities are expected to change in the same way. T
is a very interesting finding and fully explains the controve
sial experimental result of Hoofmanet al.,21 in which the
intrachain mobility of electrons and holes in a dialkoxy d
rivative of PPV~MEH-PPV! was measured. Hoofman dete
mined the mobility of the electrons to be roughly three tim
the hole mobility, in sharp contrast to bulk measuremen22

in which the hole mobility was shown to be an order
magnitude higher than the electron mobility. The alkoxy su
stituents are electron donating23 which corresponds to using
a positivea in our calculations. As can be seen in Fig. 6, t
calculations agree very well with the findings of Hoofma
and the higher intrachain electron mobility can be und
stood as an effect of the particular electron affinity of t
dialkoxy side chains. In the case of a bulk material, int
chain interactions determine the overall mobility which m
then be very different from that in the single chain. In t
case of PT, no electron-hole symmetry exists, and a cha
of sign ona has a negligible effect on the PT localizatio
length. In the presence of alkoxy substituents both PPP
PT are expected to have a higher electron than hole in
chain mobility, just as in PPV. This effect should be seen
experiments on PPP and PT utilizing the technique of Ho
man.

IV. CONCLUSIONS

To conclude, a general method for obtaining transfer m
trices in quasi-1D systems has been developed. The sim
ity of the method makes it suitable for complex systems. T
restrictions on the choice of unit cell is not clear though
matter that calls for additional studies. The method was u
for some common conjugated polymers to study Ander
localization, especially the role of dimension on a molecu
level was investigated. By applying two different types
disorder we showed that it is certainly meaningful to spe
of different dimensionality of quasi-1D systems, and that t
is an important concept for understanding Anderson local
tion in such systems. Due to the importance of interch
interactions for transport in polymer systems, experime
concerning isolated chains are very hard to perform. Rec
techniques however have been used to determine the in
hain electron and hole mobilities in a single chain of ME
PPV. We explain the observed higher electron mobility co
pared to the hole mobility as being an effect of the stro
influence of some delocalized states, for which the electr
hole symmetry is broken because of the side chains.
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