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Localization in quasi-one-dimensional systems
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A general method for obtaining transfer matrices in quasi-one-dimensional systems is presented. We used
the method to study Anderson localization timns-polyacetylene, polyparaphenylene, polyparaphenylene-
vinylene, and polythiophene. The electron localization length for the polymers as a function of disorder was
calculated from the Lyapunov exponents. The polymers are shown to exhibit different sensitivity to disorder,
which could be explained in terms of different dimensionality of the polymeric systems. We also give an
explanation to the recently observed differences between electron and hole intrachain mobilities in alkoxy
derivatives of polyparaphenylene-vinylene, as being a result of the electron-donating nature of the alkoxy
substituents.

I. INTRODUCTION nanotubes, i.e., armchair and zigzag tulfes.

There has been a great interest in the problem of electron Given the transfer matrix many important properties can
localization ever since 1958 when AnderSgmedicted that thus be determined for systems that are too large for the
all states in a disordered solid should be exponentially localwave functions to be explicitly calculated. There may, how-
ized for a disorder large enough compared to the energ§Ver, be restrictions on the type of transfer matrices that can
bandwidth. The role of the dimensionality of a system withPe used, e.g., in calculating the localization length. As will
respect to disorder induced localization is of particular interP€ seen, the transfer matrix for a specific system is most
est. The wave functions in one-dimensior{aD) and 2D often not uniquely determined though and a suitable matrix
systems localize for afynonzero disorder concentration, has to be constructed. We present in this paper a general
while for moderate disorder in 3D there is a transition be-method to construct transfer matrices for quasi-1D systems.
tween localized and extended states, where the states in tA&€ method is applied to some common conjugated poly-
band tails are localizetiDespite being localized, the states Mers for which the localization length as a function of ran-
in disordered low-dimensional systems are interesting télom functionalization of a single side group per monomer is
study in the context of nanoelectronics since the localizatiorf@lculated. The methodology is introduced and discussed in
length in that case may exceed the size of the sample. Su&®me detail in Sec. Il followed by the presentation of the
samples will remain highly conducting even in the presencdesult in Sec. 1ll. We end the paper with a short discussion

of disorder. concerning both the methodology and the results.
Numerically, Anderson localization has been studied on

systems of all dimensions with particular interest in the scal- Il. METHODOLOGY

ing behavior of the localization length and the existence of a _

metal-insulator transitiofi-® The basic tool in these investi- A. Transfer matrices

gations are the transfer matrices describing the evolution of The tight-binding model Hamiltonian can be written as
the wave function as a function of the length of the system.

From the transfer matrices the Lyapunov exponents, which o .

render the localization length, can be calculated. Common to H :Ei €i|'><'|+; ty il 1)
all such calculations is that only very simple model systems .

have been studied, since the construction of the transfer mgyhere ¢, is the on-site potential of atorh and t;; is the

trices is not straightforward. Typically as a model systemhopping between atomisand]. Transfer matrices are usually

one uses a rectangular or cubic array of atoms, which can bgeveloped using only nearest-neighbor interaction but may
subdivided into identical cells. Theadl atoms in a cell bond very well incorporate hoppmg between atoms that are further
to their equivalent atoms in the preceding and succeedingeparated. The simplest case is the 1D chain which has fol-

cells, always resulting in a nonsingular matrix describing thgowing secular equation relating the coefficierts of the
intercell interaction. The transfer matrices for systems havingyave functions,

a tridiagonal block structure Hamiltonian with nonsingular

intercell matrices are readily derived. Using a Green’s- t_ja;_1+(—E)a+ta,,=0, 2)
function technique a renormalization scheme has been devel-

oped to write the transfer matrices of quasi-1D polymers orwith the hoppingt; in the forward direction. The transfer
a form equivalent to that of the simple 1D chdih.The  matrix 7 is readily derived,

transfer matrices obtained with this method do, however, de-
scribe the evolution of state for only one site per monomer.

The connection to the scattering problem has been generally
investigated by Molinarf. The method of Molinari has re-

cently been used to study transmission in achiral carbomwhere
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(E— fi)ti_l _ti_lti—l In general,C will be rank deficient and from the infinite

Ti= . (4)  set of solutiongif they exis) to Eq.(11), the minimum norm
1 0 solution (|Cx=d||,=min; x andd are column vectors iX

andD) can be obtained from, e.g., singular value decompo-
sition (SVD) or complete orthogonal factorizatidh.Any
other solution can then be acquired from the null space vec-
dors of Eq.(11). However, we emphasize that the existence
of a solution to Eq(11) may depend on the choice of cell
structure.

In the more general case of a quasi-1-D system the cell
consist ofM atoms. The restriction is that atoms in dedinly
couple to atoms in cells=1. The Hamiltonian will then be
block tridiagonal. The secular equations can be written i
block form, using the symmetry of the Hamiltonian,

T/ A1+ (Hi—EDA+TA 1 1=0, (5)

. . .. . B. L n nen
whereA; is a vector containingVl coefficients. The on-site yapunov exponents

potentials and hopping within céllis described by the sym- The evolution of a state can be described by the product
metric M X M matrix H;, and the coupling to the neighbor- of transfer matriced;,
ing cells byM XM matricesTiJr_1 andT;. | is the identity

matrix. It is, however, not straightforward to obtain the trans-

fer matrix from Eq.(5) since theT matrices in general are Qn:H % (12)
singular. We show below how this apparent problem in

many cases can be overcome. By multiplying two consecuH the determinant of ever; is finite and nonzero it follows
tive secular matrix equations by théx M matricesX;; and  from a theorem of Oseled&cthat the following limiting
Xi,, respectively, we get matrix exists

im (Q/Qy) Y. (13)

—

Xig Tl 1A 1+ X A+ X1 TiA =0, (6) r=1
n

XiZTiTAi+Xi2Hi+1Ai+1+Xi2Ti+lAi+2:O (7 I has eigenvalues exp(), wherey; denotes the Lyapunov
with the notationH;=H;— EI. Combining Eqgs(6) and (7), Phar"?“?te”S“_C exponentb CE's) of Q._The LCE’s may be
writing X, = (X;; Xj,) then gives |dent!f|ed with the rate of exponential decay of the wave

| I |

functions, where the smallédtexponent corresponds to the
i longest decay length and hence the localization length of the
A )Aiﬂ systeme. The localization length\ is then taken as the in-
i1 verse of the smallest LCESince the eigenvalues & may
differ by several orders of magnitude, numerical difficulties
Ai-,=0. (8) often arise in determining the smallest LCE. This problem
can be overcome by using an orthogonalization process sug-
If X, is chosen so that gested by Benettin and Galgdfii.
For the special case whe&}y, is symplectic the Lyapunov
T, 0 exponents will occur in pairs whose elements are the inverse
a1 (1 0), (9 of each other and it is sufficient to determine only thesi-
i+l il tive half of the exponents. For ax22 matrix Q this holds if
then detQ=1, and the reciprocity of the Lyapunov exponents is
then very helpful in estimating the numerical discrepancies.
i i1 In the calculations presented in Sec. Il the relative error
Air1= =X Ti‘r Ai— X 0 Ai-1 (10 between the absolute values of the reciprocal exponents was
used as a convergence criterion. A relative error of less than
and the transfer matrix can be constructed in the same way asy, indicated a satisfactory convergence and increasing the
in Eg. (3). Note that the only assumption made about thenumber of matrix products by a factor of 10 did not signifi-
SyStem is the tridiagonal'block structure of its Hamiltonian.canﬂy alter the result. Typ|ca”y, g107 matrix products

The internal structure of the cells may be varying as well agyere used to calculate the largest localization lengths.
the hopping values. Equatiof® may be rewritten in the

more familiar formCX=D:

T A
Xi( IO 1)Ai1+xi Tflr
I

A+ X

¥ 0
X Titq

X

+

IIl. RESULTS
T! Hivs p (] The transfer matrices dfans-polyacetyleng(PA), poly-
o T, i—\o/ 11 paraphenylene(PPB, polyparaphenylene-vinylenéPPV),

and polythiophengPT) have been constructed using the
A unique solution to Eq.(11) exists only when the tight-binding Hamiltonian. Equatiofi1) was solved analyti-
X2M C matrix has a nonzero determinant. This is often notcally for computational efficiency as well as to avoid numeri-
the case and there may then be either no solution or infinitelgal divergence. The repeating cells were chosen according to
many. The criterion for the existence of a solution is thatFig. 1. With this choice, for all polymers, ax22-transfer
every column inD is a linear combination of the columns in matrix describing the evolution of state for the two last sites
C. This also implies that the transfer matrix in general is notin each cell could be derived. All wave-function coefficients
uniquely determined. in a cell were described by linear combinations of these two
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FIG. 2. The maximum localization length,,,x vs disorder
strengthW for both undimerized(filled symbolg and dimerized
(hollow symbolsg PA (triangles and PPP(circles. W is given in
units of the hopping.

localization lengths in PA and PPP using random on-site
potentials with a rectangular distributiane [ —W,W] and
the hopping set equal to (ho dimerization was made. The
localization lengths were calculated for different enerdtes
and the maximum localization lengih, .« is shown in Fig. 2
as a function ofW for both polymers. The value of is
always given in units of the number of atom sites spanned in
the direction of the polymer, e.g., with the cell choice of Fig.
1, PPP has four such sites per cell and PPV six.
The maximum localization lengths are found close to the
FIG. 1. The carbon backbones for PA, PPP, PPV, and PT, indiband gap for both polymers. From Fig. 2 we see that these
cating the chosen cell structures for the transfer matrices. The disstates are slightly more extended in PPP than in PA. Even
tances referred to are listed in Table I. though the energy bands of PPP are more narrow than the
single band of undimerized PA, the former polymer seems,
last sites of the preceding cell. Hence the exponential decalyowever, more insensitive to disorder than the latter from a
of any wave function of the above polymers is assessedelocalization point of view. This may be attributed to the
through these transfer matrices. Moreover, their determinantsigher dimensionality of PPP compared to PA. With this we
are always equal to 1. mean that there are more alternate routes combining two
For the special case of PA ax2-transfer matrix with  transversely separated points, per unit length, in PPP than
determinant equal to 1 can also be constructed using a cah PA.
consisting of only one atom. This follows from a factoriza-  The situation is changed when dimerization of the poly-

tion of Eq. (3): mers is considered. The difference in bond length within the
. . polymers can be accounted for using the following relation
._ (E—elti © —tigt for the hopping parameters:
' 1 0
t=—toe (""Ro/¢ (16)

t7t 0\/E—¢ -1\(1
o 1)( 1 0 (O t ) (14 with r being the interatomic distance. Here the parameters
-1 to=2.5eV,Ry=1.40 A, and;=0.284 A~! were chosen to
Upon multiplying several such matrices the factors can beayive a total bandwidth of 10 eV and a band gap of 1.4 eV for
grouped together resulting in an effective transfer m&t$  a single dimerizedrans-polyacetylene chaiff, at a bond-

with the desired properties: length alternation of 0.8 A. From now on all the energies will
be given in units ot
E-e —1\(1 0\[t54 O With this parametrization, the hopping corresponding to
S= 1 o/lo t_,/l o 1 the different bond lengths in Fig. 1 were determined; see

Table I. The on-site potentials for undisturbed carbon atoms
(E—ei)ti]ll -t were set to zero and for sulfifr—1.33 t,. The maximum

= t 0 (19  |ocalization length for dimerized PA and PPP with the rect-
il angular disorder distribution is shown in Fig. 2. In this case

Such an approach has been used for studying the metdPA has slightly longer localization length, which can be ex-
insulator transition in bulk PA taking interchain interactions plained by the fact that the interring distance in PPP is con-

into account® siderably longer than any bond length in PA. This relatively
We have studied Anderson localization arising from on-weak bond in PPP leads to smaller bandwidths and a higher
site disorder, keeping the hopping fixed. A comparison of thesensitivity to disorder. One should be cautious comparing the
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TABLE |. The interatomic distances and corresponding values 10°
of the hopping[from Eg. (16)] for the polymer structures as indi- —
cated in Fig. 1. The energies are given in unitgpf= 2.5 e\). i
[
H102
PA?: d;=1.36 A : t;=—1.15 w
d,=1.44 A : t,=—0.87 s K
107 -
PPP°: d;=1.41 A : t;=—0.97 T,
d,=151A : t,=—0.68
10° - . .
80 20 -10 00 10 20 30
PPV®: d;=1.41 A : tz=—0.97 Energy (to)
d,=151A : t,=—0.68
ds=1.35 A : t,=—1.19 FIG. 4. The inverse of the localization length for dimerized PPP
with a RSM disorder as a function of energy, plotted for different
pTd- de=1.36 A : te=—1.15 d!sorder stren_gthsazo.l (A), a_=0.2 (B), and a=0.5 (Q). The
) highest occupied molecular orbital and lowest unoccupied molecu-
d,=1.43 A : t,=—0.90 . -
lar orbital levels are-0.56 and 0.56t,, respectively.
dg=1.75 A : tg=—0.32 energy bands of undisturbed PPE[—2.20-1.75],
[—1.45~0.56], [0.56,1.45 and[1.75,2.2Q) are negligibly
ZFrom Ref. 17. affected, but the localization length for the states within
CFrom Ref. 18. these bands is strongly reduced whetis increased.
From Ref. 19. Furthermore, the electron-hole symmetry is broken as an

d
From Ref. 20. effect of the fixed value of the potential distortion. Changing

the sign ofa will result in a reflection of the curves in Fig. 4
localization lengths of the dimerized and undimerized poly-through the zero energy point. In addition, there is a dip and
mers, because the relative disorder streMygils not identical a peak in the curves close to energyl.0, which are not
in the two cases due to the paramterization of the hoppingpresent in the random on-site box-distribution disorder re-

It is also interesting to compare the localization in thesults. The peaks, corresponding to a short localization length,
closely related structures of PPP, PPV, and PT. We chose tare attributed to a small splitting of the energy bands due to
study the disorder introduced by the substitution of sidethe change in on-site potential of the atoms bonding to a side
chains to the phenyl and thiophene rings in the polymerschain. The existence of the dips is more surprising. Actually,
considering only the case of one side chain per ring, as ithe states at the energies of the dips0(9%,) are com-
Fig. 3. A side chain, e.g., an alkyl chain, is with the samepletely delocalized. This may be explained from an inspec-
probability replacing any of the hydrogen atoms bonding to &ion of the corresponding wave functions of the undisturbed
ring. This means that there are four equivalent sites pePPP, which are highly symmetric with zero coefficients at
monomer in PPP and PPV to which the side chain can bondhe atoms connecting the phenyl rings. Thus, from an ener-
while PT only has two. The bonding was then simulated bygetic point of view, the rings in the RSM disordered PPP are
changing the on-site potential by a fixed valweon one of all identical, regardless of the positioning of the substituents.
the allowed sites, chosen randomly for every monomer. W& his implies a complete delocalization of the wave function.
refer to this type of disorder as the random substituent modeDne may argue that for such a wave function the transfer
(RSM), in contrast to the random on-site box-distribution matrix used here fails to describe the evolution of state, since
distortion described above. Physically, the sigrvaé due to it is based on coefficients of the atoms connecting the phenyl
the electron affinity of the side chains leading to either arrings, coefficients that obviously vanish. This failure is, how-
enhanced or reduced electron concentration on the correver, restricted to a singular point and the continuity of the
sponding carbon atom. The commonly used alkoxy substituealculated Lyapunov exponents for energies close to this
ents are electron donating which corresponds to a positive point strongly support the existence of the delocalized state.

The inverse ofA for RSM disordered PPP is shown in Note that it is not possible to construct a nonsingular transfer
Fig. 4 for different values of the disorder strength The  matrix for PPP describing the evolution of coefficients on
any other site of the monomer.

To include the varying crystal potential of the surrounding
chains, a weak random on-site box-distribution disorder on
all sites was added to the RSM disorder. We shall refer to
this additional disorder as noise. As shown in Fig. 5, the
localization length naturally decreases with the strength of
the noise, and especially the states around the dip are af-
fected. The latter is a consequence of the small energy dif-
ferences introduced between the phenyl rings, suppressing
the delocalized state.

The localization length was calculated for PPP, PPV, and

FIG. 3. The substitution of a side chain on one of four possiblePT, using a RSM disorder with an additional noise of
carbon atoms in a PPP monomer. strengthW=0.03. In Fig. 6 the resulting localization lengths
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and is attributed to the breaking of the electron-hole symme-
T try caused by the RSM and the strong influence of the delo-
n calized singular points, as can be seen for PPP in Figs. 4 and
%104 [ 5. Because of the electron-hole symmetry of pristine PPP
% and PPV, the application of a negative RSM disorder
] u strengtha the results in Fig. 6 for occupied or the unoccu-
HV‘°4 1 \ pied states will be interchanged. Thus the electron affinity of
L the side chains determines which states that will be the most
10° | extended, the occupied or the unoccupied. The hole and elec-
- tron mobilities are expected to change in the same way. This

-15 -10 -05 0.0 0.5 1.0 1.5

Energy (to) is a very interesting finding and fully explains the controver-

sial experimental result of Hoofmaet al.?* in which the
FIG. 5. The inverse of the localization length for dimerized PPPintrachain mobility of electrons and holes in a dialkoxy de-
with a RSM disorder strengtle=0.1, plus additional noise of rivative of PPV(MEH-PPV) was measured. Hoofman deter-
strengthW on all sites. The localization length increases with ~ mined the mobility of the electrons to be roughly three times
and the curves from the bottom and up correspondite0, W the hole mobility, in sharp contrast to bulk measurenfénts
=0.01, W=0.02, andw=0.03. in which the hole mobility was shown to be an order of
magnitude higher than the electron mobility. The alkoxy sub-
of states close to the band gap, for both the valence and thituents are electron donatfigvhich corresponds to using
conduction band, is presented. The chosen states were takgfpositivea in our calculations. As can be seen in Fig. 6, the
at a distance 0.1, from the band gap. It is clear that for this calculations agree very well with the findings of Hoofman,
type of disorder the states in PPV will be more extended thaand the higher intrachain electron mobility can be under-
in PPP. This is to be expected since the major disorder onlgtood as an effect of the particular electron affinity of the
affects the phenyl rings. The states in PPP and PPV are thefialkoxy side chains. In the case of a bulk material, inter-
supposed to be extended over approximately the same nurghain interactions determine the overall mobility which may
ber of monomers. For weak RSM disorder, however, thehen be very different from that in the single chain. In the
situation is changed and the higher dimensionality of the PPRase of PT, no electron-hole symmetry exists, and a change
structure becomes important when the strength of the noiseéf sign on« has a negligible effect on the PT localization
relative to the RSM disorder becomes substantial. length. In the presence of alkoxy substituents both PPP and
In the case of PT, the hopping to the sulfur atom is smallPT are expected to have a higher electron than hole intra-
which implies a lower dimensionality of this polymer com- chain mobility, just as in PPV. This effect should be seen in
pared to both PPP and PPV. The correlation between locakxperiments on PPP and PT utilizing the technique of Hoof-
ization length and dimensionality is seen clearly in Fig. 6.man.
Moreover, the unoccupied states of PT are more extended
than the occupied states. This is due to the inclusion of the IV. CONCLUSIONS
sulfur atom in the wave functions of the unoccupied states, .
resulting in an increase of the dimensionality compared tq . To _conclud_e, a general method for obtaining transfe_r ma-
the wave functions of the occupied states, in which the sulfu rices in quasi-1D systems hgs been developed. The simplic-
is excluded. ity of th_e method make_s it sunaple for pomplex systems. The
restrictions on the choice of unit cell is not clear though, a

A large difference in localization length between occu- " .
ge diner : 1zl 9 W u Watter that calls for additional studies. The method was used

pied and unoccupied states is also present in PPP and PPf ‘ugated bol 10 studv And
The origin of this effect is, however, different to that of PT or some common conjugated polymers 1o study Anderson

" localization, especially the role of dimension on a molecular
level was investigated. By applying two different types of

disorder we showed that it is certainly meaningful to speak
6000 T of different dimensionality of quasi-1D systems, and that this
_ is an important concept for understanding Anderson localiza-
2 tion in such systems. Due to the importance of interchain
gg 4000 - ] interactions for transport in polymer systems, experiments
S 4 concerning isolated chains are very hard to perform. Recent
R technigues however have been used to determine the intrac-
~< 20004 hain electron and hole mobilities in a single chain of MEH-
PPV. We explain the observed higher electron mobility com-
pared to the hole mobility as being an effect of the strong
0 , . influence of some delocalized states, for which the electron-
0.10 020 a°'(3t‘(’)) 0.40 0.50 hole symmetry is broken because of the side chains.
FIG. 6. The localization length for states close to the band gap ACKNOWLEDGMENTS
of PPP(circles, PPV (squarey and PT(triangles, as a function of
RSM disorder strengthe. An additional noise of strengtW Financial support from the Swedish Research Council for

=0.03 was used for all polymers. The filled symbols represent thd=ngineering Scienc€lFR) and the Swedish Natural Science
occupied states and the hollow the unoccupied states. Research CouncilNFR) is gratefully acknowledged.
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