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Energy and angular momentum transfer in the excitation of electron-hole pairs by slow dimers
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We calculate the transfer of energy and angular momentum through electron-hole pair excitations for a slow
dimer in an electron gas. We show that the Kohn-Sham procedure can be used under the adiabatic conditions
that prevail in the shifted Fermi sphere approximation. We obtain the low-energy limit of the friction coeffi-
cient and average angular momentum transfer from a self-consistent calculation for the embedded dimer. We
apply our theory to H2 and LiH molecules. We use our results to evaluate the role of electron-hole pair
excitations when a molecule approaches a metal surface.
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I. INTRODUCTION

The study of adsorption and dissociation of molecules
surfaces is a field of great activity due to its implications
catalytic processes. In most cases, the molecule-surfac
teraction is described by an adiabatic potential-energy
face. The latter approach neglects inelastic processes d
the interaction with phonons and/or electron-hole pair c
ation. Phonons are of increasing importance when increa
the molecular mass. Many contributions have been devo
to its introduction into molecule-surface dynamics~see, e.g.,
Refs. 1 and 2 for a review!. Much more controversial is the
discussion on the contribution of electronic excitations~see
Refs. 1 and 3! in spite of experimental evidence.4,5 The fric-
tion caused by electron-hole pair creation is also relevan
energy dissipation by adsorbed species as in vibratio
damping6,7 and electromigration.8

Two main families of approaches can be used to evalu
electron-hole pair creation for a moving particle in an ele
tron gas. The first one7 starts with the conventional Born
Oppenheimer approximation in which the electronic mot
is determined in the field offixednuclei. As electronic exci-
tations of arbitrarily low energy are available in a metal, t
motion of the molecule provokes a breakdown of the Bo
Oppenheimer approximation. One then follows, as the m
ecule evolves in the medium, individual electronic exci
tions giving rise to a frictional and fluctuating force. Th
second approach, used in the present contribution, make
of a different adiabatic approximation: the shifted Fer
sphere approximation.9 It corresponds to a stationary ele
tronic statein the projectile frame, which means that the
electron gas adapts itself instantaneously to the positio
the projectile. However, in contrast with the Bor
Oppenheimer approximation, this stationary state acco
for the molecule motion~for example, in the case of a mov
ing atom, the stationary state does not have a sphe
symmetry10!. In this picture, individual electronic excitation
are averaged over by the rapid electronic motion~adiabatic
approximation! so that the resulting effect is a mere frictio
force. In other terms, one can view this approximation
corresponding to a ‘‘laminar flow’’ of electrons by the pro
jectile, the adiabatic character being related to the absenc
PRB 620163-1829/2000/62~8!/5207~9!/$15.00
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‘‘turbulence.’’ This form of the adiabatic approximatio
should be valid in the low-energy range. It has been u
extensively for atoms since the pioneering work
Echeniqueet al.11 In the low-velocity limit, the stopping
power of an electron gas varies linearly with the velocity
the moving particle and can be evaluated from the desc
tion of the particle at rest embedded in a jellium.12 More
recently, calculations have been performed10,13 that go be-
yond first order in atomic velocity. They have shown that t
linear dependence applies up to velocities close to the Fe
velocity. Results for a homogeneous electron gas can be
to evaluate the stopping of atoms or ions approaching a
face through the use of a local approximation.

In the present work we calculate the friction coefficie
for a dimer in a homogeneous electron gas. Until now, o
preliminary nonlinear calculations have been performed
the molecular case14–16 because the axial symmetry of th
problem complicates the calculation of~i! the static potential
of the embedded dimer, and~ii ! the scattering of the medium
electrons in the latter potential. The first of these two poi
has been addressed in Ref. 17, where the Kohn-Sham po
tial has been evaluated self-consistently. We show here
the theory of Ref. 17 provides the ground to calculate
energy loss and angular momentum transfer of slow dim
in a free-electron gas at low velocities. We use the lo
approximation to estimate the contribution of electronic e
citations to the energy dissipation of thermal molecules
proaching a metal surface.

Atomic units are used throughout unless otherwise sta

II. THEORY

A. Kohn-Sham theory for energy and angular momentum
transfer

Although Kohn-Sham theory has been used in many n
linear calculations of the stopping power of an electron g
to our knowledge no justification of its validity has bee
proposed. The starting point is a generalization of the pr
given in Appendix A of Ref. 10. We introduce the wav
function C(t) and HamiltonianĤ(t) describing the elec-
5207 ©2000 The American Physical Society
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tronic motion in the presence of the moving projectile~in the
present case the dimer!. The energy lost by the projectil
with velocity v per unit path length is10

dE

dR
52

1

v
^C~ t !u

dĤ~ t !

dt
uC~ t !&

52
1

vE dr n@r2R~ t !#
d

dt
V@r2R~ t !#. ~1!

Here n is the density andV is the interaction potential be
tween the projectile~with position referred to byR) and
electron. In Eq.~1! we have used the fact that the latt
potential is a one-electron local operator. The express
thus obtained depends on the many-electron state
through the densityn. It was shown in Ref. 10 that the Kohn
Sham procedure provides the exact time-dependent de
in the adiabatic approximation, which is justified for low
projectile velocities. Therefore, Eq.~1! provides the required
justification of Kohn-Sham theory for energy-loss calcu
tions in the low velocity limit.

A similar justification of Kohn-Sham theory can be pr
vided for the average angular momentum transfer per
path length:

d^D Ĵ&
dR

52
1

v
d

dt
^C~ t !uĴuC~ t !&5

i

v
^C~ t !u@V~ t !,Ĵ#uC~ t !&.

~2!

The operatorĴ is a one-electron and first-order differenti
operator. Therefore, Eq.~2! can also be cast into a form
similar to that of Eq.~1!, i.e., depending on the many
electron state through the density only. This justifies ag
the use of Kohn-Sham theory.

Once we have shown the validity of the Kohn-Sham p
cedure, we are then led to solving a much simpler problem
which the projectile interacts with noninteracting electro
Within Kohn-Sham theory, it is equivalent to calculate t
energy loss through Eq.~1! or through the energy transfer b
electron scattering in the Kohn-Sham potential of the mov
dimer~see, e.g., Ref. 10!. A similar equivalence holds for the
evaluation of the angular momentum transfer.

In practice, the static Kohn-Sham potential has been
termined within the local-density approximation~LDA !. The
relevant methods have been described elsewhere17 and are
only summarized here. We expand the external and total
tentials, as well as the electronic density induced by
dimer in the medium, in terms of Legendre polynomials.
partial-wave expansion is used for the Kohn-Sham orbit
Consequently, the usual Kohn-Sham equations are tr
formed into a system of coupled equations for each value
the energy and the magnetic quantum numberm. The system
of coupled equations is solved after truncation of the part
wave expansion and potential multipolar expansion at cer
maximum values (l max andnmax, respectively!.

B. Energy transfer

Our starting point is the expression of the energy trans
for a projectile of mass much larger than the electron ma
To first order in the ratio of the electron to projectile ma
n
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the energy transfer may be associated with the momen
transfer to the electronsDk through the expression

DE5v•Dk. ~3!

Let k andk8 (k5k8) be the initial and final momenta of th
electron in an individual collision. The total energy lost b
the projectile per unit path lengthS is:

S5
dE

dR
5

1

4p3E
SFS

d3kk2v̂•str~k!, ~4!

wherev̂ is a unitary vector along the direction of the veloci
and the integration is performed over a shifted Fermi sph
~SFS!. As the Kohn-Sham potential does not have a spher
symmetry for the dimer case, the transport cross sec
str(k) is a vector quantity:

str~k!5E dVk8~ k̂2 k̂8!u f ~k,k8!u2. ~5!

Here k̂ and k̂8 are unitary vectors in thek andk8 directions
respectively, andf (k,k8) is the transition amplitude from
initial state k to final statek8. The transition amplitude is
obtained from

f ~k,k8!5
2p

ik (
l ,m

Alm~k!Yl
m~Vk8!, ~6!

with

Alm~k!5 (
l 8,m

tll 8
m

~k!@Yl 8
m

~Vk!#* ,

t l l 8
m

~k!5 i l 82 lSll 8
m

~k!2d l l 8 , ~7!

andYl
m(Vk8) are spherical harmonics. The scattering ma

ces Sll 8
m (k) are built using the asymptotic behavior of th

Kohn-Sham orbitals.10,17 For a spherically symmetric poten
tial, Sll 8

m (k) is a diagonal matrix with elementse2id l, d l being
the phase shifts, and the conventional expression is rega

For the evaluation of Eq.~4!, we use the geometry de
picted in Fig. 1. TheOZ axis is the dimer axis and point
from atomA towards atomB. The velocity lies in theXZ
plane. The angle between the velocity and the dimer axi
a and the angle between the velocity and thek vector isg.
The integral in Eq.~4! is easily performed to first order in th
velocity to obtain

S→v→0

1

4p3E dVkF
~12 cosg!kF

4v•str~kF!, ~8!

in which the transport cross section is calculated for a st
dimer. The expression for a spherically symmetric poten

FIG. 1. Geometry and notations. The dimer axis is alongOZ
and the velocityv lies in theXZ plane. We namea the polar angle
of v with respect toOZ andg the angle betweenk andv.
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can be easily recovered for cross-checking purposes:
str(kF) is a scalar quantity that only depends on the cosine
the angle betweenk andk8.

It is important to realize that a consistent calculation
first order in the velocity using the static Kohn-Sham pote
tial requires Eq.~8!. It has been shown10 already that the
direct use of Eq.~1! with a density determined from th
static potential leads to incorrect results. This can be veri
for the case of Ref. 6: we have checked that the error sh
in Table III of the latter reference is almost totally explain
by the use of the incorrect procedure.

The first term inside the integral in Eq.~8! gives a zero
contribution since18

f ~k,k8!5 f ~2k8,2k!. ~9!

If we decompose the transport cross section into compon
parallel and perpendicular to the dimer axis, the energy
can be written as

S~a!5F iv cos2a1F'v sin2 a, ~10!

with

F i52
kF

4

4p3E dVkF
s tr

i ~kF!cosuuF
~11!

and

F'52
kF

4

4p3E dVkF
s tr

'~kF!sinukF
coswuF

. ~12!

F i andF' represent the friction coefficient~i.e., the stopping
power per unit of velocity! of a dimer moving along a direc
tion parallel or perpendicular to its axis. Due to the ax
symmetry of the problem,F' accounts for the friction coef
ficient in both theOX and OY directions. For any othe
orientation of the dimer, the stopping power is a combinat
of the F i and F' components through Eq.~10!. The latter
expression shows that the energy lost by an asymme
dimer is identical fora50 and a5p to first order inv.
However, the linear momentum transferred by one elect
in a single collision is different~if the molecule is asymmet
ric! when the incident angle of the incoming electron isuk
50 and when it isuk5p. The identityS(0)5S(p) only
appears after performing the integral over the whole rang
initial and final angles, and is a consequence of the symm
properties of the transition amplitude@Eq. ~9!#.

In order to obtain the parallel and perpendicular com
nents ofS, let us calculate firsts tr

i ands tr
' :

s tr
i ~k!5E dVk8~cosuk2 cosuk8!u f ~k,k8!u2

5
4p2

k2 (
l ,m

S uAlm~k!u2 cosuk2
1

A3

3(
l 8

Alm* ~k!Al 8m~k!z~ l ,l 8,1;m,m,0!D , ~13!
en
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s tr
'~k!5E dVk8~sinuk coswk2 sinuk8 coswk8!u f ~k,k8!u2

5
4p2

k2 H (
l ,m

uAlm~k!u2 sinuk coswk2A2

3

3 (
l ,l 8,m

Re@Alm* ~k!Al 8m11~k!

3z~ l ,l 8,1;m,m11,21!#J , ~14!

where Re stands for real part and the angu
z( l 1 ,l 2 ,l 3 ;m1 ,m2 ,m3) coefficients are the result of compo
ing three spherical harmonics, and are defined in terms
Wigner 3j symbols:

z~ l 1 ,l 2 ,l 3 ;m1 ,m2 ,m3!

5~21!m1~2l 111!1/2~2l 211!1/2~2l 311!1/2

3S l 1 l 2 l 3

0 0 0D S l 1 l 2 l 3

2m1 m2 m3
D . ~15!

The sums overl in Eqs. ~13! and ~14! run from l 50 to l
5 l max. The allowed values ofl 8 and m are determined by
the properties of the angular coefficientsz. This is also true
for the sums appearing in the following equations and
which the limits are not explicitly written. Introducing thes
expressions in Eqs.~11! and~12! and performing the angula
integration, we obtain

F i52
kF

2

3p
(

l ,l 1 ,m
H ut l l 1

m u21
2

A5
(
l 2

z~ l 1 ,l 2,2;m,m,0!

3~ t l l 1

m !* t l l 2

m 2(
l 3

(
l 4

z~ l ,l 4,1;m,m,0!

3z~ l 1 ,l 3,1;m,m,0!~ t l l 1

m !* t l 4l 3
m J , ~16!

F'52
kF

2

3p
(

l ,l 1 ,m
H ut l l 1

m u22
1

A5
(
l 2

z~ l 1 ,l 2,2;m,m,0!

3~ t l l 1

m !* t l l 2

m 2ReS (
l 3

(
l 4

z~ l ,l 4,1,m,m11,21!

3z~ l 1 ,l 3,1;m,m11,21!~ t l l 1

m !* t l 4l 3
m11D J . ~17!

Notice that the calculation of the perpendicular frictio
coefficient involves the coupling of terms with differentm
symmetry. Up to this point, the formalism developed for t
calculation ofF i and F' is general and exact. It only re
quires the knowledge of the scattering amplitudef (k,k8) ~or,
equivalently, of the scattering matrix elementst l l 8

m from
which the scattering amplitude is obtained! for a given po-
tential of axial symmetry.
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5210 PRB 62R. DÍEZ MUIÑO AND A. SALIN
One keypoint in the energy lost per unit path lengthS is
the linear dependence on the velocity. As the kinetic ene
E of the projectile is proportional to the square of the velo
ity, the relative energy loss scales with the inverse of
velocity:

S

E
}v→0

1

v
~18!

@the latter expression holds as long as Eq.~3! is valid, which
is not the case for extremely low energies#. In other words,
the relative importance of the energy lost by the parti
through excitations of electron-hole pairs is enhanced
small velocities and will be especially important in the ran
of thermal energies.

C. Angular momentum transfer

As for the calculation of energy transfer, the Kohn-Sha
formalism allows us to calculate angular momentum trans
from the angular momentum change of the electrons w
scattered by the dimer. The equivalent of Eq.~4! for the
average angular momentum transfer^D Ĵ& per unit path
length is

d^D Ĵ&
dR

52
1

4p3vESFS
d3kksD Ĵ~k!, ~19!

wheresD Ĵ(k) is the angular momentum transfer cross s
tion. The latter measures the average change ofD Ĵ for elec-
trons with momentumk scattered by the projectile. Usin
considerations similar to those of the preceding paragra
one obtains the low-velocity limit of the average angu
momentum transfer per unit path length:

d^D Ĵ&
dR

→v→02
kF

3

4p3E dVuF
~12 cosg!sD Ĵ~kF!, ~20!

wheresD Ĵ(k) is now calculated for a static dimer. Therefor
the angular momentum change~20! is independent of the
velocity. To evaluate the angular momentum transfer cr
section, we make use of the density operator formalism.19 As
continuum wave functions are not normalizable, we us
generalization of the latter formalism which accounts for
fact that we only carry out angular averages outside the ra
of the potential. Then, the density operatorr̂ for the scattered
electrons may be written in theuk̂& representation as

r̂5CE dk̂8E dk̂9F~k,k8!uk̂8&^k̂9uF* ~k,k9!,

~21!

F~k,k8!5 f ~k,k8!1
2p

ik
d~ k̂82 k̂!,

where C is a normalization constant. We namer̂0

5(4p2C/k2)uk̂&^k̂u the density operator in the absence o
potential. The average change, due to the potential, in
mean value of an observableÔ is
y
-
e

e
r

r
n

-

h,
r

s

a
e
ge

e

^DÔ&5Tr@ r̂Ô2 r̂0Ô#

5CE dk̂8dk̂9 f ~k,k8! f * ~k,k9!^k̂9uÔuk̂8&

2C
4p

k E dk̂8 Im@^k̂uÔuk̂8& f ~k,k8!#, ~22!

where Tr stands for the trace and Im for the imaginary p
The constantC may be determined by calculating the chan
in the average momentum~the observableÔ being then the
momentum operator! and using Eq. ~5!. One gets C
5@sT(k)#21 with

sT~k!5E dVk8u f ~k,k8!u2. ~23!

Switching to theu l ,m& representation, one gets the expre
sion of the angular momentum transfer cross section:

sD Ĵ~k!5sT~k!^D Ĵ&

5
4p2

k2 H(l ,m (
l 8m8

Alm~k!Al 8m8
* ~k!^ l 8,m8uĴu l ,m&

22(
l ,m

(
l 8m8

Im@^k̂u l 8,m8&^ l 8,m8uĴu l ,m&Al ,m~k!#J .

~24!

Due to the symmetry of the problem~see Fig. 1! only the Ĵy

component of the vector operatorĴ gives a nonzero contri-
bution after averaging over angles as in Eq.~19!. This can be
checked analytically through Eq.~24! after some elementary
algebra. The final result may be obtained from Eqs.~20! and
~24!:

d^D Ĵy&
dR

5A 1

6p2 kF sina(
l ,l 8

(
m

@ l ~ l 11!2m~m11!#1/2

3ImH(
l 9

z~ l 8,l 9,1;m,m11,21!t l ,l 8
m

~ t l ,l 9
m11

!*

12z~ l 8,l ,1;m11,m,1!t l ,l 8
m11J , ~25!

where the sums overl 8, l 9, andm are restricted by the value
of the angularz coefficients. The dependence on (sina) in
Eq. ~25! ensures the absence of angular momentum tran
when the molecule moves along a direction parallel to
axis.

For the sake of simplicity, we will denote in the followin

L5
1

sina

d^D Ĵy&
dR

. ~26!

D. Independent-atom approximation

Former theoretical studies of the energy loss of a dim
inside a free-electron gas made use of the independent-a
~IA ! approximation. In this work, we will use it as a check
our calculations in some limit cases. In the IA approxim
tion, one assumes that the atoms travel independe
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through the electron gas. First, this means that the Ko
Sham potential may be split into two nonoverlapping pa
(V5VA1VB) where the potentialsVA,B are those of isolated
atoms embedded in the electron gas. Second, the trans
amplitude is calculated through the expression20

f IA~k,k8!5e2 ikd(cosuk2cosuk8)/2f A~k,k8!

1eikd(cosuk2cosuk8)/2f B~k,k8!, ~27!

where f A,B is the scattering amplitude for the potentialVA,B
alone. Multiple scattering events of the electron in the t
potentials are thus neglected. Equation~27! is valid when
kd@1. In the IA approximation, the only effect due to th
simultaneous presence of two atoms is the interference
bedded in Eq.~27!. The IA approximation is accurate i
certain limits, the most obvious one being that of large int
nuclear distancesd. It is also exact in the perturbative lim
because of the linear dependence of the scattering ampl
on the potential.

III. ENERGY LOSS

We first consider the energy loss of H2 in a free-electron
gas~FEG!. This problem has already a long history becau
of its relation with measurements of the so-calledvicinage
effect. The vicinage effect has been observed experiment
as a difference between the energy loss of two protons
that of a dimer.21,22 Until recently, all calculations on the
vicinage effect were done in the IA approximation. Ea
contributions by Basbas and Ritchie23 were based on linear
response theory. More recently, the IA approximation h
been used together with a nonlinear evaluation of the
dium response~i.e., using the atomic Kohn-Sham potentia
for the evaluation off A,B) to study the stopping of H2

1

molecular ions.15

The only previous contribution going beyond the IA a
proximation is that of Urbasseket al.,16 which focused on
the H2

1 ion as well. The latter authors calculate exactly t
scattering amplitude for a two-center potential. However,
form of their potential is restricted by the method used in
solution of the scattering problem. In particular, it does n
go to the correct limit for increasingd. Furthermore, this
potential is determineda priori. In the present work, we
determine the two-center potential self-consistently and
scattering on this potential is evaluated exactly.

Our calculations have been done with typical valu
nmax5 8–10 andl max510–12~Ref. 17!. In Fig. 2 we show
the friction coefficientsF i and F' for H2 in a FEG as a
function of r s (1/no54pr s

3/3) over the range of metallic
electronic densities. The internuclear distance between
two nuclei is kept fixed at the H2 equilibrium distance in
vacuum (deq51.4 a.u.!. The difference betweenF i andF' is
significant. For the highest densities shown in the plot,F' is
twice as large asF i , while F i.F' for r s.3.2. The orien-
tation effect cannot be explained by simple terms. Scatte
by the two-center potential is a complex process16 depending
both on Fermi energy and internuclear distance which p
cludes any simple prediction of the orientation effect. It
related essentially to interference effects in two-center s
tering since one has alsoF'.F i for the IA approximation at
the equilibrium distance.
n-
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We also plot in Fig. 2 the friction coefficient for He an
twice that of H, which corresponds to the limitsd50 and
d5`, respectively. For increasingr s , the Fermi wavelength
increases and the two-center character of the potential is
so important. Accordingly, the dimer friction gets closer
that of He. For large densities, the opposite situation wo
hold and the dimer friction would go to twice that of H. Th
orientation effect is therefore at maximum forkFd;1, which
corresponds to metallic densities (r s51.4 for kFd51).

In Fig. 3, we plot the friction coefficients for H2 as a
function of the internuclear distanced and for various
electron-gas densities. The zero internuclear distance l
agrees~as it should! with the energy loss of the He atom. Fo
large distances,F i and F' should merge to twice the stop
ping of a H atom. The latter value is indicated by sma
arrows on the right side of Fig. 3. Ford57 a.u. the
asymptotic limit is still not reached, the difference bein
larger for small electronic densities, as expected from con
tion kFd@1 for the validity of the IA approximation.

FIG. 2. Friction coefficients~stopping power per unit of veloc
ity! for H2 as a function of electronic density parameterr s . Solid
line: H2 moving parallel to its axis (F i). Dashed line: H2 moving
perpendicular to its axis (F'). Dotted line: twice the friction coef-
ficient of H. Dash-dotted line: results for He.

FIG. 3. Parallel (F i , solid line! and perpendicular (F' , dash-
dotted line! friction coefficients for H2 in a free electron gas as
function of internuclear distanced and forr s52,3,4. The arrows at
the right side of the plot represent twice the friction coefficient
H.
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5212 PRB 62R. DÍEZ MUIÑO AND A. SALIN
The most obvious feature of Fig. 3 is the oscillation of t
friction coefficient as a function ofd. The period of the os-
cillations is different forF i andF' . F i has a deep minimum
that moves towards larger distances asr s increases. These
oscillations are related to an interference effect for scatte
on the two-center potential of the same nature as the
found in the IA expression~27!. This interference affects in a
different way the perpendicular and parallel cross secti
and, therefore, the oscillation period is different fors tr

i and
s tr

' .
Our results include nonlinear effects both in the medi

response to the dimer potential and in the calculation of
scattering amplitude. Consequently, they can be taken
reference to check the accuracy of other approximations u
in the literature. In Fig. 4, we give results forF i andF' as a
function of the internuclear distance using four differe
models. Two of the calculations are done within the IA a
proximation: ~i! with a Yukawa potential with Thomas
Fermi screening and~ii ! with the self-consistent potential fo
an embedded atom. The other two calculations make use

FIG. 4. Friction coefficients for a H2 molecule moving parallel
~a! and perpendicular~b! to its axis in a free-electron gas ofr s52
as a function of internuclear distanced. Results of four different
calculations are plotted:~i! IA approximation with Yukawa atomic
potentials ~dash-dotted line!, ~ii ! IA approximation with Kohn-
Sham atomic potentials~dashed line!, ~iii ! two-center calculation
for a superposition of two Yukawa potentials~dotted line!, ~iv!
calculation for the dimer Kohn-Sham potential~solid line!.
g
ne
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e
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ed
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two-center potential. One of them~iii ! is the sum of two
Yukawa potentials

V~r!5
e2lur2d/2u

ur2d/2u
1

e2lur1d/2u

ur1d/2u
~28!

~wherel is the Thomas-Fermi screeening constant! and the
other ~iv! is our self-consistent potential for the embedd
H2 molecule. The Yukawa potential corresponds to a lin
description of the screening around each nucleus of
dimer.

Calculation ~ii ! is equivalent to that of Ref. 15~except
that only thel 50 phase shift was included in the latter!.
Calculation~iii ! slightly improves that of Ref. 16. As can b
seen in Fig. 4, calculations~i! and~ii ! or ~iii ! and~iv! do not
differ considerably. However, there is a large discrepan
between calculations performed with the full two-center p
tential @~iii ! and ~iv!# and those using the IA@~i! and ~ii !#.
The IA approximation, therefore, breaks down completely
the most important range ofd values. The use of a two
center potential~rather than the IA approximation! is much
more important than the particular form of potential used
the calculation. It should be noted that when we use Yuka
potentials arising from a linear theory of screening, we p
form exact nonlinear calculations of the scattering amplitu
The error involved in using linear theory for the amplitud
also ~first Born approximation! is large, as already demon
strated for embedded atoms, which gives information on
d50 limit of our calculations.

We have used our results to estimate the energy
through electron-hole pair excitation by a H2 molecule with
thermal translation energyEi approaching a metal surface
To do so, we describe the electronic density of the surface
a density profilen(z), wherez is the distance to the surface
The energy loss at a given distancez from the surface is
approximated by the energy that would lose the molecule
a jellium with electronic densityn(z) ~local approximation!.
The energy lost by the molecule up to a distancez0 from the
surface can be calculated by

e~zo!5 Èz0
dz S@a,n~z!#, ~29!

wherea is the angle between the axis of the molecule a
the velocity. Although a rough approximation, the local a
proximation should give at least an order of magnitude e
mate. We use two different descriptions of the surface e
tronic density profile:~i! a phenomenological one, in whic

n(z)5n0e2A2fz, where n0 is the bulk valence-band elec
tronic density andf is the experimental work function;~ii !
the DFT electronic density profile calculated by Lang a
Kohn.24 In this description,z represents the distance to th
jellium edge. We have chosen Al as a test case, because
a free-electron-like metal. We plot in Fig. 5 the relative e
ergy losse(z0)/Ei for a molecule approaching the surfac
along the surface normal for two different molecular orie
tations ~parallel and perpendicular to the surface!. Further-
more, we plot in Fig. 5 twice the relative energy loss of a
atom approaching the surface. The results are fairly sens
to the choice of density profile. In the following, we on
discuss Fig. 5~b!, which we consider more realistic. Sever
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conclusions can be extracted from the plot, namely,~i! the
energy loss has a slight dependence on the molecule o
tation,~ii ! the relative energy loss can be as much as 10%
Ei5100 meV, and~iii ! the vicinage effect causes an impo
tant reduction of the energy loss. It is important to notice
this point that the value of the energy loss plotted in Fig. 5
a lower limit: When the adsorption of H2 is dissociative, the
energy lost by excitation of electron-hole pairs through
dissociative adsorption process should be somewhere in
tween results for the equilibrium distance and those fod
infinite, thus increasing its value. Furthermore, if the incide
angle of the impinging molecule deviates from the surfa
normal, the path length over which the molecule intera
with the surface electronic density is larger and, sub
quently, the energy lost by the molecule is enhanced.

The present results are relevant to the extraction of a
vation barriers from experimental threshold positions. Wh
the experimental threshold is of the order of 0.1 eV, we h
to take into account the fact that the slowing down of t

FIG. 5. Relative energy loss@e(z0)/Ei # for a H2 molecule ap-
proaching an Al surface. The molecule is incident perpendicula
the surface with energyEi5100 meV. The molecular axis is para
lel ~solid line! or perpendicular~dashed line! to the surface. The
dotted line corresponds to twice the results for H. The right a
refers to the value of the electronic density parameterr s ~dash-
dotted line! as a function of the distance to the surface.~a! Density

profile n(z)5n0e2A2fz; ~b! density profile of Lang and Kohn.~Ref.
24!.
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molecule induces a shift in the threshold apparent position
10–20 % at least toward larger energies. In fact, the erro
certainly larger since the barrier slows down the molec
with a correlative increase in the relative energy loss@cf. Eq.
~18!#. Another situation for which the error will be signifi
cant is in using microreversibility to calculate adsorpti
probabilities from desorption ones.25

IV. ANGULAR MOMENTUM TRANSFER

Our evaluation of the angular momentum transfer to
nuclei assumes that the molecule has a fixed internuc
distance. The problem is more involved if vibrational motio
is taken into account. A more accurate evaluation would
quire us to work out the full molecular dynamics.

The quantity obtained in Sec. II C is the angular mome
tum lost by the electrons. The angular momentum transfe
to the molecule must be equal in absolute value and oppo
in sign, due to the angular momentum conservation law. T
results that we present in this section are calculated in
reference frame used for the determination of the electro
wave function, which we assume from now on to be cente
at the internuclear axis midpoint. Under this condition, t
calculated angular momentum transfer is zero for a symm
ric molecule like H2. The transformation from this frame t
one centered at the nuclei center of mass can be easily d
The change in angular momentum transferDL when the
origin is shifted byx along the internuclear axisAB involves
only the perpendicular friction coefficientF':

DL5xF' . ~30!

Therefore, the knowledge ofF' allows us to calculate the
angular momentum transfer for a molecule like HD which
electronically symmetric but whose center of mass is no
the internuclear midpoint.

The transfer of angular momentum from the electron g
to the moving molecule can be intuitively understood usin
simple classical picture. If the molecule is viewed as tw
atoms moving independently inside a fluid with differe
friction coefficients, the difference in friction gives rise to a
angular momentum transfer, with respect to a fixed orig
according to the classical law

L5S d

2D @FA~r s!2FB~r s!#. ~31!

HereFA(r s) andFB(r s) are the friction coefficients of par
ticlesA andB when moving independently in the fluid andL
measures the angular momentum transfer with respect to
internuclear midpoint.

The latter expression neglects the interference term in
IA approximation. It is exact when one nuclear charge ten
to zero. This allows us to check the procedure of Sec. II C
calculating self-consistently the potential of a hydrogen at
in a FEG with the atom set at a distancea5d/2 from the
origin. The latter potential has axial~not spherical! symmetry
and therefore requires the procedure of Sec. II C to calcu
L. The results plotted in Fig. 6 show thatL depends linearly
on a, as expected from Eq.~31!. The slope of the curves in
Fig. 6 (FH50.254, 0.164, and 0.098 forr s52, 3, and 4,
respectively! agrees within less than 1% with the frictio
coefficients of H in a FEG~see Fig. 2!.
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In order to estimate the importance of the electron-h
pair excitation in the rotation of the molecule, we have ch
sen LiH as a model system. We place the H nucleus atA and
the Li nucleus atB ~Fig. 1!. We plot in Fig. 7 the angula
momentum transferL for LiH moving inside a FEG as a
function of electronic density. As a reference we also plo
Fig. 7 the value ofL calculated using the classical law of E
~31!, with FLi(r s) andFH(r s) being the friction coefficients
of Li and H moving independently inside a FEG. Figure
shows that the sign ofL changes when going from low t
high values ofr s , the crossing point being atr s'2.9. In
other words, the sense of rotation switches depending on
medium electronic density. This behavior can be explain
by comparison with Eq.~31! ~dashed line of Fig. 7!: for large
values ofr s the stopping of H is larger than that of Li, but th
opposite is true for small values ofr s . Our results follow
roughly the same trend.

FIG. 6. Angular momentum transferL for a hydrogen atom
moving inside a free-electron gas, as a function of the distance f
the origin of coordinates. The results are plotted for three differ
values of the electronic density of the medium:r s52 ~solid line!,
r s53 ~dashed line!, andr s54 ~dash-dotted line!.

FIG. 7. Angular momentum transferL for LiH moving inside a
free-electron gas, as a function of the electronic density param
r s . The internuclear distance is the equilibrium distance in
vacuum. The solid line is the result of the full calculation and t
dashed line is obtained using Eq.~31!. The zero is shown with a
dotted line.
e
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We have also calculated the transfer of angular mom
tum between LiH and a FEG as a function of internucle
distance. Results are plotted in Fig. 8 for three different v
ues ofr s , along with the values obtained using Eq.~31!. The
results of both calculations follow a similar trend, althou
the classical one is, of course, unable to reproduce the o
lations created by the interference effects between the
molecular centers in the scattering of the electrons. The se
of rotation depends on electronic density as explained ab
As a general rule, the absolute value ofL increases for larger
internuclear distances as expected from the classical lin
dependence.

The most noticeable feature of Fig. 7 is that the mag
tude of L ranges between21.0 and 0.25 a.u. for the equ
librium internuclear distance. The same order of magnitu
is obtained for molecules other than LiH when calculatingL
through Eq.~31!, which is a reasonable estimate of the ord
of magnitude of the effect, as Fig. 7 shows. This means
the excitation of electron-hole pairs can play a role in mo
fying the rotational state of a molecule of thermal ener
approaching a surface. We can roughly estimate the ef
using again the local approximation to describe the surf
density profile. We discard the angular dependence
d^D Ĵy&/dR ~i.e., we consider the molecular axis parallel
the surface! and takeL50.1 a.u. as a typical value sinceL
varies little with density forr s larger than 3.5~see Fig. 7!. In
order to obtain the angular momentum transfer with resp
to the center of mass of the molecule~which is shifted a
distancex53d/8 from the internuclear midpoint towards th
Li atom! Lcm, we make use of Eq.~30!. The friction coef-
ficient F' of LiH in a FEG can be calculated following th
same procedure used in the preceding section for H2, and
takes values betweenF'50.05 a.u. ~for r s55) and F'

50.37 a.u. ~for r s52.5). Hence, the angular momentu
transfer with respect to the center of mass is the sum of
terms, both of them of the same order of magnitude. We
estimateLcm'0.2 a.u. Furthermore, we consider that t
typical path length over which the molecule interacts w

m
t

ter
e

FIG. 8. Angular momentum transferL for LiH moving inside a
free-electron gas, as a function of the internuclear distance.
results are plotted for three different values of the electronic den
of the medium:r s52 ~solid line!, r s53 ~dashed line!, and r s54
~dash-dotted line!. The thick lines show the results of the full ca
culation and the thin straight lines are obtained using Eq. 31.
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the electronic density of the surface is of the order of 1 a
This yields a value of 0.2 a.u. for the transfer of angu
momentum^D Ĵy&. In a real experiment, the latter numb
means that roughly 20% of the impinging molecules can
excited/deexcited due to electronic excitations in the surfa
Notice that the latter estimate is independent of the molec
velocity ~to first order inv) and only depends on the inte
action path.

V. CONCLUSIONS

In this work we have studied the energy dissipation o
slow dimer traveling inside a free-electron gas, as well as
transfer of angular momentum to the dimer, due to the e
tation of low-energy electron-hole pairs. Kohn-Sham the
allows us to describe these processes in terms of the sca
ing properties of one-electron orbitals in the self-consist
potential of the dimer. We are thus including nonlinear
fects both in the response of the medium to the dimer an
the calculation of the scattering amplitude. We have sho
in Sec. III that, both of them being important, the latter
crucial to obtain an accurate description of the energy l
for this range of velocities. The single scattering approa
implicit in the independent-atom~IA ! approximation is un-
able to describe in a proper way the scattering propertie
the Fermi electrons in realistic dimer potentials. Nevert
less, IA can be used to estimate the order of magnitude o
angular momentum transfer.

Our results are relevant to the ongoing discussion on
effects of inelastic processes in the adsorption of molec
on surfaces. Electronic excitations like the ones stud
modify the values of, for example, adsorption energies
activation barriers in the adsorption process. We have sh
in this work that the excitation of electron-hole pairs c
play a role in reducing the kinetic energy of the molecu
id
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approaching the surface, as well as in its outgoing way a
desorption. For instance, we have estimated the effect to
of the order of 10% of the incident molecule kinetic ener
for H2 molecules approaching an Al surface at 100 meV. T
friction coefficient calculated in Sec. III can be used as
friction force in the description of the dynamics of the mo
ecule. The evaluation of the adsorption threshold energ
from experimental data has to include the effect of the
inelastic processes.

Rotational excitation of the molecule due to the creat
of electron-hole pairs has been addressed as well. The
adiabatic friction of molecules with the electronic density
a surface can provoke rotational excitation or quenching.
remark here that the transfer of angular momentum is clos
related to the friction coefficient of the molecule when
velocity is perpendicular to the molecular axis. Hence,
angular momentum transfer will be different for molecul
with identical electronic structure but different dynamic
properties~such as H2 and HD, for example!, due to the
different position of the center of mass of the molecule.
other words, an isotope effect should arise in some of
physical properties that govern the adsorption process, s
as the sticking coefficient or the kinetic energy threshold
adsorption.
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