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Bound magnetic polaron hopping and giant magnetoresistance in magnetic semiconductors
and nanostructures

A. G. Petukhov and M. Foygel
Department of Physics, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701

~Received 19 January 1999; revised manuscript received 5 May 1999!

A theory of bound magnetic polaron~BMP! hopping, driven by thermodynamic fluctuations of the local
magnetization, has been developed. It is based on a two-site model of the BMP. The BMP hopping probability
rate was calculated in the framework of the ‘‘golden rule’’ approach by using the Ginzburg-Landau effective
Hamiltonian method. The theory explains the main features of the hopping resistivity observed in a variety of
experiments in dilute magnetic semiconductors and magnetic nanocomposites, namely,~a! the negative giant
magnetoresistance, the scale of which is governed by a magnetic polaron localization volume, and~b! the
low-magnetic-field positive magnetoresistance which usually precedes the negative magnetoresistance. It is
shown that the positive magnetoresistance is a signature of the fluctuation-driven bound magnetic polaron
hopping. This effect is related to the vector nature of the magnetic order parameter affected by the presence of
the localized-electron spin.
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I. INTRODUCTION

Spin-polarized electronic transport in solids has attrac
much interest mainly due to discovery of giant magneto
sistance~GMR! and the development of new device applic
tions ~high-speed magnetic sensors and memory eleme!
based on this phenomenon.1 Several different mechanism
have been proposed for the spin-dependent GMR. T
common feature is the exchange interaction of charge c
ers with the itinerant and/or localized magnetic moments
transition- or rare-earth-metal atoms.

Three types of mecahnisms can be responsible for
spin-dependent GMR in nonsuperconducting magnetic st
tures: ~1! noncoherent transport of carriers in extend
energy-band states across metal magnetic multilayers,2,3 ~2!
tunneling through a junction of two magnetic electrod
separated by an insulating layer,4,5 and ~3! electron hopping
in a system in which a carrier strongly interacts with t
localized magnetic moments of either transition-metal ato
~e.g., in dilute magnetic semiconductors6! or of rare-earth
atoms~e.g., in ErAs/GaAs nanostructures.7! In this paper, we
will restrict ourselves to case~3!, the hopping conductivity in
magnetic semiconductors and nanostructures. In these
tems, an electron or hole trapped by any kind of attract
potential of a defect, quantum dot, etc., can form a ‘‘clou
of aligned spins of the surrounding magnetic atoms. The
ation of such a complex@referred to as a bound magnet
polaron ~BMP! ~Refs. 8 and 9!# will further lower the free
energy of the system by a quantityWp called a polaron shift.
A consistent semiclassical analysis of BMP formation in
lute magnetic semiconductors was given by Dietl a
Spałek,10 while its quantum-mechanical generalization w
developed by Wolffet al. ~for references see Ref. 11!. This
theory successfully described the spin-flip Raman scatte
in magnetic semiconductors.6

In order to describe the BMP hopping conductivity, w
need, first, to specify the mechanism of an elementary h
ping event. Dietlet al.6,12 considered a ‘‘static’’ picture in
PRB 620163-1829/2000/62~1!/520~12!/$15.00
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which the electron is transferred from an occupied site to
empty one with frozen equilibrium local magnetizations
both sites. For two identical sites this process is driven
absorption of an acoustic phonon and requires an activa
energy of 2Wp .12,13 Another mechanism takes into accou
thermodynamic fluctuations of the local magnetizations t
control the elementary hopping act.13,14 Indeed, since the
electron energy levels at both sites follow the fluctuations
local magnetic order parameters, it is likely that the levels
the occupied and empty sites will move in opposite dire
tions, thus getting into resonance. For this to occur, the
cupied site should spontaneously decrease its local mag
zation while the empty one should increase it. The elect
can then tunnel from one site to another resonantly. T
process somewhat resembles the multiphonon mechanis
small-polaron hopping.15,16 It requires an activation energ
Wp/2 ~Ref. 13! which is 4 times smaller compared to that
the ‘‘static’’ mechanism.

The giant negative magnetoresistance observed in d
magnetic semiconductors was properly attributed by m
authors6,8 to the BMP phenomenon. Indeed, the applicati
of a large magnetic field will quench magnetic polarons
reducing the magnetic part of their binding energy and the
fore the activation energy of the hopping conductivity. Ho
ever, the presence of a significant~up to 300%) positive
magnetoresistance, which is typical for situations when
carriers are localized,6 remains unclear. We will show tha
the latter is a signature of the fluctuation BMP hoppi
mechanism and ultimately reflects the fact that, in contras
conventional lattice polarons, the BMPs are described b
vector order parameter. We will develop a unified and co
sistent semiclassical description of BMP hopping based
the Ginzburg-Landau effective Hamiltonian formalism10,17

and Holstein’s occurrence probability approach.15 It will be
shown that the fluctuation-driven BMP hopping may lead
a nonmonotonic behavior of magnetoresistance.~Recently, a
simple two-site model of this kind has been applied to
description of the resistance, including the GMR, of the Er
islands in GaAs.18! Our approach also allows us to take in
520 ©2000 The American Physical Society
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PRB 62 521BOUND MAGNETIC POLARON HOPPING AND GIANT . . .
account a single-phonon-assisted BMP hopping of
Miller-Abrahams type.19 This process plays a dominant ro
at high magnetic fields when the polaron shiftWp is small
compared to the typical scatter of the nonmagnetic part
the electron energy levels.

The paper is organized in the following way. In Sec. II
two-site model of the BMP hopping will be considered.
Sec. III it will be applied to the calculation of the BMP
hopping rate. The BMP hopping conductivity and magn
toresistance are calculated in Secs. IV and V. Section
contains a comparison of our results with exprimental d
on GMR in magnetic semiconductors and nanocomposit

II. TWO-SITE MODEL OF THE BMP

Let us consider two centers, 1 and 2, separated by a
tancer 12. We assume that each site can localize an elec
even when no magnetic forces are involved. In the vicinity
each center there is a finite concentration of localized m
netic moments that is described by the spatial distribution
the local magnetization vectorsMW 1,2(rW) generated by a fluc
tuating field of atomic spins. The effective Hamiltonian
the problem is

H5H11H21H121He-ph , ~1!

where

Hl5e lnl2
1

2
sŴ lDW l1

1

2xE dMW l
2~rW !drW ~2!

is the Hamiltonian of a bound magnetic polaron localized
a site l ( l 51,2). Herenl5(s561als

† als is an occupation
number of sitel ~there is only one electron per two sites, i.
n11n251); e l is the ‘‘bare’’ energy of a bound electron a
the sitel. The second term in Eq.~2! describes the exchang
interaction between the trapped electron and localized ato
spins of the magnetic atoms within the region of electr
localization together with the direct interaction with the ma
netic fieldBW taken into account, where

DW l5
Gex

gmB
E uC l~rW !u2MW l~rW !drW1g* mBBW ~3!

is a vector of the local-exchange field, the magnitudeD l of
which is equal to the Zeeman splitting of the local electr
state with the wave functionC l . The vectorDW , as a rule, is
not directed along the local average magnetic field inside
localization region. HereGex is an exchange coupling con
stant,mB is Bohr’s magneton,g andg* are the Lande factors

of the atomic spin and that of a free electron, andsŴ l

5(ŝ l
x ,ŝ l

y ,ŝ l
z) with ŝ l

a being the conventional Pauli matr
ces. The last term in Eq.~2! represents the lowest term in th
Ginzburg-Landau expansion10,17of the free energy of atomic
spins. WithMW 0 being the equilibrium magnetization vecto

dMW l
2~rW ![@MW l~rW !2MW 0#2 ~4!

is a squared fluctuation of magnetization at the sitel. We
assume that our medium is described by means of a ma
scopic, scalar, and isotropic magnetic susceptibilityx(B,T).
In the effective Hamiltonian~1!, the term
e
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H1252t~r 12! (
s561

~a1s
† a2s1c.c.! ~5!

is responsible for electronic hopping between the sites 1
2. As a starting point, we assume that spin-flip processes
forbidden. Due to an exponentially small hopping integra

t5t~r 12!5t0 exp~2r 12/a!, ~6!

wherea is a localization radius of the electron at any of tw
centers, we will treatH12 as a small perturbation. In Eqs.~5!
and ~2!, the operatorals

† (als) describes creation~annihila-
tion! of an electron at the sitel with spin parallel (s51) or
antiparallel (s521) to the external magnetic fieldBW .

It is important to note that in the case of large semicl
sical atomic spins, as shown by Wolff and co-workers,11 the
effective Hamiltonian~2! is equivalent to the standards-d
model given the fluctuations are Gaussian.~See also Appen-
dix A.! For this effective Hamiltonian we chose thez-axis
direction to be along the external fieldBW . However, in this
representation the local HamiltoniansH1 andH2 are not di-
agonal with respect to the electronic spin quantum numb
It is convenient to make the following spinor unitary tran
formation to a new representation in which the spin qua
zation axes are different and taken to be parallel to the lo
vectorsDW l :

al↑
† 5exp~ if l /2!@cos~u l /2!bl↑

† 2sin~u l /2!bl↓
† #,

al↓
† 5exp~2 if l /2!@sin~u l /2!bl↑

† 1cos~u l /2!bl↓
† #. ~7!

It gives

H5 (
l 51,2

S e lnl2
1

2
nl ŝ l

zD l1
1

2xE dMW l
2~rW !drW D

2 (
s1 ,s2561

~ t̄ s1s2
b1,s1

† b2,s2
1c.c.!1He-ph , ~8!

wherebl ,s i

† (bl ,s i
) is an operator of the creation~annihila-

tion! of an electron at sitei with spin parallel~or antiparallel!
to the direction of the local exchange fieldDW l ; the anglesu l

and f l define the direction of the vectorDW l in the original
coordinate system. In the absence of spin-flip processes
squared moduli of the modified transfer integralt̄ are equal
to

u t̄ s1 ,s2
u25utu2@ds1 ,s2

cos2~u12/2!1~12ds1 ,s2
!sin2~u12/2!#,

~9!

where u12 is the angle between the vectors of the loc
exchange fieldDW 1 andDW 2. In Eqs.~1! and~9!, the termHe-ph
describes the electron-phonon interaction.

III. BMP HOPPING RATE

Let us assume that initially the electron is localized at s
l 51 while sitel 52 is empty, i.e.,n151, n250. In the final
state, after the hop,n150 andn251. We treat the last two
terms in the modified Hamiltonian~8! as a small perturba
tion. By applying the ‘‘Fermi golden rule’’17,20 with subse-
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522 PRB 62A. G. PETUKHOV AND M. FOYGEL
quent statistical averaging over initial states, one can ca
late the BMP hopping rate in the so-called nonadiaba
regime,15 when the small hopping integral~6! controls the
probability of the hopping event:

w125
2p

\Zi
(

s1 ,s2

E E DMW 1 DMW 2u t̄ s1s2
u2

3exp~2Eis1
/T! f ~Ei ,s1

2Ef ,s2
!, ~10!

where

f ~E!5d~E!1(
q

uLqu2@Nqd~E1\vq!

1~Nq11!d~E2\vq!#. ~11!

Here only single-phonon processes were taken into acco
In Eq. ~10!, DMW l means functional integration over a

possible configurations of the local magnetizationsMW l(rW).
The energies of the initial (n151,n250) and final (n1
50,n251) states@see Eq.~2!# are functionals of magnetiza
tion:

Ei ,s1
5e12

1

2
s1D11

1

2xE @dMW 1
2~rW !1dMW 2

2~rW !#drW,

~12a!

Ef ,s2
5e22

1

2
s2D21

1

2xE @dMW 1
2~rW !1dMW 2

2~rW !#drW,

~12b!

wheredMl
2(rW) is given by Eq.~4!, and

Zi5 (
s561

E E DMW 1 DMW 2 expS 2
Eis

T D ~13!

is the partition function of the initial state. In Eq.~11! the d
functions describe energy conservation during the tunne
process without and with absorption or emission of acou
cal phonons, the combined indexq represents both the wav
vector and the branch number of a phonon with the ene
\vq , and Nq is Planck’s distribution function. The matri
element of electron-phonon couplingLq is given in Appen-
dix B.

The expression~10! is derived under the assumptions th
~a! the spin of the electron follows an instantaneous confi
ration of the local atomic spins at the site where it is loc
ized and~b! the electron hopping integralutu!(WpT)1/2. The
last assumption is well known in the theory of small latti
polarons as the nonadiabatic hopping regime.15 Taking Wp
510–100 K, ut0u50.1–1 eV, andT51 K, one can find
that this assumption is valid if the typical hopping ranger̄
exceeds several~five to eight! localization radiia, which is
definitely true for ErAs/GaAs nanostructures and ligh
doped dilute magnetic semidonductors~DMSs!. For in-
stance, ifa.10 Å, the conditionr̄ /a.8 means that the
impurity concentration in DMSs should not exce
231018 cm23. Our description of BMP hopping accoun
for the thermodynamic fluctuations and clearly ignores
quantum fluctuations of the magnetizations. The latter w
be shown not to be important for the materials in quest
u-
c
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down to temperatures as low as 0.1 K. We will address
issue in the end of Sec. IV where BMP hopping conductiv
is discussed.

In performing the functional integration in Eqs.~10! and
~13!, it is convenient to replace it with an ordinary integr
tion overDW andDW 8 by means of the following obvious rep
resentation of the integrands in Eqs.~10! and ~13!:

F~DW 1 ,DW 2!5E E F~DW ,DW 8!d~DW 2DW 1$MW 1~rW !%!

3d~DW 82DW 2$MW 2~rW !%!dDW dDW 8. ~14!

It finally yields

w125
2p

\Zi8
(

s1 ,s2

E E u t̄ s1s2
u2

3expS s1D/22e1

T D P1~DW !P2~DW 8!

3 f S e122
s1D2s2D8

2 DdDW dDW 8, ~15!

wheree125e12e2,

Zi852 expS 2
e1

T D E P1~DW !cosh~D/2T!dDW E P2~DW 8!dDW 8

~16!

is the normalization factor, and

Pl~DW !5E DMW ld~DW 2DW l$MW l~rW !%!

3expS 2
1

2xTE dMW l
2~rW !drW D ~17!

is a distribution function of the spin-splitting vectors in th
absence of a localized electron. The functional integral~17!
is of the Gaussian type. It was calculated by Dietl and Spa
~DS!:10

Pl~DW !}expF2
~DW 2DW 0!2

16Wp,lT
G , ~18!

where

DW 05
Gex

gmB
MW 01g* mBBW ~19!

is the equilibrium value of the Zeeman splitting vector
absence of a localized electron. In Eq.~18!, the polaron shift
Wp,l was introduced:

Wp,l5S Gex

2gmB
D 2 x~B,T!

2 E uC l~rW !u4 drW[S Gex

2gmB
D 2 x~B,T!

2V l
,

~20!

which is half the electronic part of the polaron shiftep
52Wp considered by DS.10 In Eq. ~20!, we defined an ef-
fective volumeV l of a BMP as
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V l
21[E uC l~rW !u4 drW. ~21!

In calculating the hopping conductivity in Sec. IV we wi
need the rate of BMP hopping between two almost ident
sites that belong to a percolation cluster. That is why in
the further considerations we will assume thatV1.V2.V
andWp,1.Wp,2.Wp .

It is important to mention that our major result~15! is
more general than it appears at first sight. If the distribut
function ~17! is defined as a quantum-statistical average o
the discrete atomic spins rather than a functional integ
over the classical magnetization field~see Appendix A for
details!, then formula~15! is still valid and goes beyond th
Gaussian approximation. In particular, as demonstrated
Appendix A, in the limit of zero magnetic field this formul
reproduces the results of the Nagaev-Podel’schikov14 ~NP!
model.

The Gaussian form of the distribution function~18!, leads
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to Gaussian-type integrals in Eq.~15!. In this case the BMP
hopping rate~15! can be calculated analytically, yielding

w125
Aputu2

2\T
~p12

(0)1p12
(ph,1)1p12

(ph,2)!, ~22!

where

p12
(0)5F~m,n;h0!expF2

~2Wp2e12!
2

8WpT G ~23!

and

p12
(ph,6)5(

q
uLqu2S Nq1

1

2
7

1

2DF~m,n;h6!

3expF2
~2Wp2e127\vq!2

8WpT G , ~24!

where
F~m,n;h!5~mAn!21F ~m22h212!coshm12~h sinhh2coshh!exp~2n!

2~m sinhm1n coshm!
12n21G ~25!
re-
is

tan-

l-
een

d

and the following dimensionless parameters were in
duced: m5D0/2T, n5D0

2/8WpT, h05D0e12/4WpT, and
h65D0(e126\vq)/4WpT. HereD0 is given by Eq.~19!.

The expression~25! corresponds to the hopping integr
given by Eq.~9! which, in turn, is derived assuming tha
there are no spin-flip processes. If, however, the latter
sumption is relaxed~e.g., the probabilities of spin-flip an
non-spin-flip processes are equal!, then the hopping integra
t̄ s,s8 does not depend on the angles. In this case, the pre
tor F in Eq. ~23! should be replaced by

F̃~m,n;0!5~mAn!21

3F ~m212n!@coshm2exp~2n!#

2~m sinhm1n coshm!
12nG .

~26!

In the general expression~22!, the first term~23! repre-
sents the resonant transitions. In the case of sufficiently la
magnetic fields (B→`) the angular fluctuations of the mag
netizations are effectively suppressed. That implies thatWp
→0 (x→0 as B→`) while D0 approaches its saturatio
valueDs@ue12u. ThenF(B→`)5(2T/Wp)1/2 and therefore
the resonant part of the BMP hopping rate

w12
(0)~B→`!5

Aputu2

2\T
p12

(0)~B→`!

5
utu2

\ S p

2WpTD 1/2

expF2
~2Wp2e12!

2

8WpT G , ~27!

which coincides with the basic result of the convention
theory of small lattice polarons.15
-

s-

c-

ge

l

The last two terms in Eq.~22! describe the transitions
with the absorption and emission of acoustical phonons,
spectively. They are analyzed in Appendix B where it
shown that if the polaron shiftWp is much greater than the
scatter in the ‘‘bare’’ energiese12, the resonant tunneling
prevails over the phonon-assisted one. Otherwise, the s
dard Miller-Abrahams19,21 expression~B7! for the hopping
rate can be obtained from Eq.~22!.

IV. BMP HOPPING CONDUCTIVITY

Using the standard technique of the percolation theory19,21

and expression~22! for the hopping probability one can ca
culate the effective electrical hopping resistance betw
sitesi and j:

Ri j 5
T

e2wi j f i~12 f j !
, ~28!

where f i5$11exp@(ei2EF)/T#%21 is Fermi’s distribution
function of the localized electrons with the Fermi levelEF .
Therefore,

Ri j }F21~m,n;0!expS 2r i j

a
1

ẽ i j

T
D , ~29!

wherer i j is the distance between the sites in question an

ẽ i j 5
1

2
~ ue i2EFu1ue j2EFu!

1H Wp/21~e i2e j !
2/~8Wp!, ue i2e j u<2Wp ,

ue i2e j u/2, ue i2e j u.2Wp .

~30!
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With the exception of a very important magnetic-fiel
dependent factorF21, expression~29! coincides with that of
Ref. 13. This factor, which is specific for BMP hoppin
takes into account the vector nature of the magentic o
parameter. We will show that it is responsible for thepositive
magnetoresistance observed at small and intermediate
netic fields in different magnetic semiconductors a
nanostructures.6,18 The interpolation formula~29! takes into
account two limiting cases of~i! large polaron shifts 2Wp
.^ue i j u&, which is appropriate for the BMP with an appr
ciable polaron shift when the magnetic field is not stron
and ~ii ! small polaron shifts 2Wp,^ue i j u& when it is strong
~see Appendix B for details!. Here ^ue i j u&5^ue i2e j u& is an
average scatter of the ‘‘bare’’ electron energies.

While evaluating the hopping resistivityr we will con-
sider the case ofe3 conductivity21 when the typical disper-
sion of the activation energiesẽ i j is small compared to tha
of the intersite distancesr i j , namely,^ẽ i j &/T!2^r i j &/a. In
this case the connectivity criterion can be written as

2r i j

a
1

ẽ i j

T
<jc5

2r c

a
1

^ẽ i j &
T

, ~31!

where r c is a percolation threshold for the random-s
r-percolation problem.21 ~Usually r c is of the order of the
average distance between sites.! It yields the following ex-
pression for the resistivity:

r~B!}F21~m,n;0!expS 2r c

a
1

e3

T D , ~32!

where

e35e3
MA1

Wp

2
f ~a!. ~33!

Here e3
MA is the activation energy for the Miller-Abraham

hopping conductivity in the absence of the BMP effect,a
52Wp /d whered is a typical scatter of electron energie
and f (a) is a dimensionless function such thatf (a)→0
when a!1 and f (a)→1 whena@1. Both e3

MA and f (a)
are evaluated in Appendix C for a simple rectangular dis
bution function of electron energiese. It should be noted tha
the activation energy for the magnetoresistance, Eq.~32!,
driven by the fluctuations of local magnetization, is on
fourth the value obtained for the static BMP states.6,12 There-
fore, the fluctuation-driven mechanism of hopping will a
ways dominate over the static one.13

Thus, we have established that the fluctuation-driven s
nario of BMP hopping leads to the exponential depende
~32! of the magnetoresistance with an activation energy~33!
that strongly depends on the magnetic field through the
laron shift Wp . Comparison with the experimental data f
DMS’s and Er-based nanostructures supports this conclu
~see Sec. VI for details!. Contrary to this statement, quantu
fluctuations of magnetizations would manifest themself
the field-independent activation energy of the magnetore
tance, which obviously contradicts the experimental data
question. This fact was explained by Ioselevich13 who men-
tioned that disordered magnets are characterized by
tremely slow relaxation of the magnetization.22 Direct
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measurements23,24 show that, for instance, in Cd12xMnxTe
the BMP formation rate atT51 –2 K is tR

21.0.1 K, i.e.,
tR.400 ps. This means that the characteristic pseudom
non frequencies are of the order of 0.1 K, and therefore,
contribution from quantum fluctuations to the BMP hoppi
rate is negligibly small ifT.tR

21 .13

V. MAGNETORESISTANCE

To analyze the field dependence of the magnetoresista
~32!, one should specify the magnetic susceptibilityx(B,T).
Usually, for dilute magnetic semiconductors in the param
netic phase,6,10,11 it can be expressed in terms of a modifie
Brillouin function BJ(z):6

BJ~z!5
1

2J F ~2J11!cothS ~2J11!z

2 D2cothS z

2D G .
~34!

The magnetic susceptibility can then be written as

x~B,T!5
]M0

]B
5

3

J11
BJ8~z!x~0,T!, ~35!

where

x~0,T!5
~gmB!2n0J~J11!

3~T1T0!
~36!

is a zero-field susceptibility that obeys a modified Curie
law andn0 is the concentration of magnetic atoms. Herez
5gmBB/(T1T0) and the parameterT0.0 is associated
with the possible antiferromagnetic interaction of magne
atoms with the total angular momentumJ and Lande factor
g. Then the average Zeeman splitting~19! in the absence of
a localized electron is

D0~B!5n0GexJBJ~z!5DsBJ~z!, ~37!

where

Ds5D~B→`!5n0GexJ ~38!

is the splitting at saturation fields. In deriving Eqs.~37! and
~38! we have ignored the direct input from the external ma
netic field because it is usually several orders of magnit
smaller than that of the exchange field. Now the polaron s
can be rewritten as

Wp~B!5
x~B!

x~0!
Wp~0!5

3

J11
BJ8~z!Wp~0!. ~39!

It clearly tends to zero as the magnetic field approaches
saturation value, and

Wp~0!5S Gex

2gmB
D 2 x~0,T!

2V
5

Gex
2 n0J~J11!

24~T1T0!V
~40!

is the polaron shift at zero magnetic field. From here it f
lows @see Eq.~33!# that when the typical scatter of electro
energiesd!Wp(0) the magnetic part of the activation en
ergy of hopping resistivity is close toWp(0)/2. If the anti-
ferromagnetic interaction is negligibly small (T050), this
result also can be obtained from the formula derived by
~Ref. 14! ~see Appendix A!.



th

at
th

ud
ro

g-

e-

or
so
on
s o
th

st

d

.
en
.
-
n
e

t
ll

is

ted
uc-
u-
-

gly

nd

s
ran-
x-

m

to
g

en-
the

tor
of

ons
on.
rs.

ore-
the
for

ing
n in
no-

een
ral

si

by

ng
eld

y in-
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Figure 1 shows the magnetic-field dependence of
BMP hopping resistivity calculated by means of Eq.~32! for
different values of saturation splittingDs . It displays the
overall drop in the resistivity with the magnetic field th
clearly reflects the decrease in the polaron shift and in
typical hopping barrierWp(B,T)/2}x(B,T). The scale of
this effect exponentially depends@see Eq.~32!# on the ratio
of Wp(0)/T and can easily reach several orders of magnit
at low temperatures in materials with appreciable pola
shifts.8,10,18

However, at relatively small fields the resistivity can si
nificantly increase~up to several times! with the field. Our
calculations~Fig. 1! show that this giant positive magnetor
sistance can be observed whenDs

2/Wp(0)T*1. It is gov-
erned by a sharp decrease in the field dependence of factF,
Eq. ~25!, that controls the number of states available for re
nant tunneling. In other words, the effect in question is c
nected with a field-induced suppression of the fluctuation
the angles between the local magnetization, mainly on
occupied site, and the applied magnetic field.

In order to demonstrate this, we have evaluated the di
butions g15a1P(DW )cosh(D/2T) and g05a0P(DW ) of the
Zeeman splitting vectorsDW , respectively, at sites with an
without BMP and displayed them in Fig. 2. HereP(DW ) is
given by Eq.~18!, anda1 anda0 are normalization factors
For the sake of simplicity, let us ignore the angular dep
dence of the transfer integral~9! as it is not essential here
We also suppose thate1250. Then the resonant BMP hop
ping rate between the occupied and empty sites in questio
obviously proportional to an overlap integral of the abov
mentioned distributions:

w12
(0)}E dDW g1~DW !g0~DW !, ~41!

represented by the shaded areas in Fig. 2. It can be seen
initially, at zero field, the fluctuations at both sites with a
possible directions of local magnetizations~vectorsDW ) are

FIG. 1. Field dependence of the BMP hopping magnetore
tance, Eq. ~32!, for the following set of parameters:Wp(0)
524.2 K, J53/2, g52, T054 K, T51.5 K, d50, and different
values of the saturation splittingsDs @Eq. ~38!#.
e

e

e
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-
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-
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hat

equally available for hopping. Then, after a magnetic field
applied, in the case whenDs

2/Wp(0)T*1, the fluctuations of
the magnetization at the occupied sites, which are direc
mainly against the field, cease to contribute to the cond
tivity. @The left-hand maxima of the corresponding distrib
tions shown in sets~a! and~b! tend to collapse with increas
ing field.# Meanwhile, the fluctuations with the
magnetizations directed along the field play an increasin
greater role. If the field is small enough (B<0.15 T) and
Ds

2/Wp(0)T*1, the first process prevails over the seco
one, thusdecreasingthe hopping probability~41! and, there-
fore, increasing the resistivity. In other words, if the BMP
have sizable self-induced magnetic moments that are
domly oriented at zero magnetic field, a relatively small e
ternal magnetic field will almost immediately align the
mainly along its direction provided thatDs

2/Wp(0)T*1.
Later on, at higher fields, the hopping probability begins
rise with the field due to lowering of the polaron hoppin
barrier.

So the appearance of the maximum in the field dep
dence of resistivity can be seen as a signature of
fluctuation-driven BMP hopping connected with the vec
nature of the fluctuating order parameter. The application
a relatively small magnetic field suppresses the fluctuati
of the local magnetizations both in magnitude and directi
The maximum results from the interplay of these two facto
The first factor always leads to the giant negative magnet
sistance that occurs when large fields are applied, while
second one, under certain conditions, may be responsible
a quite sizable positive magnetoresistance. In the follow
section, we will show that these effects are indeed see
some dilute magnetic semiconductors and magnetic na
structures.

VI. COMPARISON WITH EXPERIMENT

A. Dilute magnetic semiconductors

Both positive and negative magnetoresistance have b
experimentally observed in the insulating region in seve

s-

FIG. 2. Distributions of Zeeman splitting vectorsDW at a site
occupied by a BMP~solid lines! and an ‘‘empty’’ site ~dashed
lines! for the four magnetic fields, directed to the right, indicated
arrows in Fig. 1. For~a! and ~b! Ds5300 K; for ~c! Ds510 K
whereDs is the saturated splitting. The distributions are given alo
the lines crossing the origin in the direction of the magnetic fi
@~a! and ~c!# and at 45° with respect to the magnetic field~b!. The
shaded areas represent the overlap of the distributions greatl
creased in magnitude to make it visible.
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526 PRB 62A. G. PETUKHOV AND M. FOYGEL
II-VI semiconductors, such as CdSe, HgTe, CdHgTe, a
ZnSe, doped to high~up to several atomic percent! concen-
trations with transition metals, mainly, with Mn. Forp-type
materials, several, sometimes controversial, explanation
these phenomena were put forward~see Ref. 6 and refer
ences therein! that are based on the complex nature of loc
ized acceptor states involved.6 To avoid unnecessary compl
cations, we will restrict ourselves to a case ofn-doped
Cd0.95Mn0.05Se, where donors, on which the magnetic p
larons reside, can be described by means of a simple hy
genlike model. @A detailed and consistent theory of th
BMPs in this material was developed by Dietl and Spałe10

who successfully applied it to a description of the expe
ments on spin-flip Raman scattering~see also Ref. 11!.#
Later on, the BMP hopping conduction was studied exp
mentally in these materials.12 However, the theoretical inter
pretation of these experiments given in Ref. 12 was base
a static model that grossly overestimates the magnetor
tance. We will analyze these experiments in terms of
above-developed fluctuation-driven hopping model.

We start our analysis from the experimental data~Fig. 1
from Ref. 12! on the temperature dependence of the resis
ity ~measured at zero magnetic field and at the magnetic
B56 T that is close to saturation! of two Cd0.95Mn0.05Se
samples~a! and~b! with different donor concentrations equ
to 631016 cm23 and 1.231017 cm23, respectively. It
should be noted that these dependences are of the activ
type with the activation energy decreasing with magne
field. This fact clearly indicates that BMP hopping is drive
by the thermodynamic rather than quantum fluctutations
magnetization. Then, by means of our basic formula~32!,
taken atB50 and B→` @when the polaron shiftWp(B)
→0#, we extracted the values of the zero-field polaron s
Wp(0) from these data to be close to 16.4 and 9.0 K
samples~a! and ~b!, respectively. These shifts together wi
Ds5180 and the parametersT051.2 K, g52, andJ55/2
~Ref. 10! for the modified Brilluoin function~34! were used
to plot the calculated magnetoresistance~32! of DMSs ~Fig.
3! for T51.7 and 4.2 K where it is compared with the e
perimental data from Ref. 12. In calculating the magneto
sistance~32! we used the expressions~25! ~spin flips are
forbidden! and ~26! ~spin-flip processes are allowed!. It can
be seen that the latter one leads to a better agreement
the experiment.

A few comments should be made as to possible source
discrepancies between the theory and experiment as we
between the optical10 and electrical12 data. The samples un
der consideration are close to the metal-insulator transi
~MIT ! point12 where the spatial fluctuations of the don
concentration are large enough. First of all, it explains w
the above-obtained zero-field polaron shifts (.16 and 9 K!,
which for a simple hydrogenlike model@see Ref. 10 and Eq
~20!#, whereV.16pa3 with a being the localization radius
of the BMP!, are equal to

Wp~0!5S Gex

2gmB
D 2 x~0!

32pa3
, ~42!

are several times greater than that (.2 K) extracted from
the optical experiments.10 Indeed, for thee3-percolation
model,21 which seems to work here, the states effectiv
d
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involved in the hopping conduction belong to the peak in
energy distributionn(e) that describes the impurity band
These states originate from the donors that are quite w
separated from each other with comparatively small locali
tion radii and, therefore, with rather large polaron shifts~42!.
On the other hand, the states involved in optical absorp
are close to the Fermi level, which lies in the band tail of t
impurity band. These states originate from large-scale fl
tuation of the impurity potential; i.e., they are associat
with aggregations of several donors.21 Therefore, the local-
ized electron function is spread over somewhat~4–7 times!
greater volume than that of the isolated donors; i.e., its
fective localization radius is from 1.5 to 2 times greater. A
result, the polaron shift is correspondingly lower than th
typical for the resistivity measurements.

Moreover, with its higher donor concentration, sample~b!
is closer to the MIT point where the spatial fluctuations
the impurity potential are large. Here, in accordance with
percolation theory,21 even the states that are in the vicinity
the energy-distribution peak reveal the tendency to coale
The donors will often form di- or tri-atomic ‘‘molecules,’
thus increasing the effective localization radius. This e
plains~i! why the polaron shift of sample~b! is smaller than
that of sample~a! ~see Fig. 3! and ~ii ! why our simple iso-

FIG. 3. Magnetoresistance of Cd0.95Mn0.05Se for various donor
concentrationsn: ~a! 631016 cm23, ~b! 1.231017 cm23. The
circles and squares represent the experimental data~Ref. 12! taken
at T51.7 and 4.2 K, respectively. The solid and dashed lines r
resent the theoretical results obtained with and without spin-
processes taken into account, respectively, with the following se
parameters: ~a! Wp(0)516.4 K, d53.6 K, EF53.4 K; ~b!
Wp(0)59.0 K, d54.2 K, EF50.9 K.
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PRB 62 527BOUND MAGNETIC POLARON HOPPING AND GIANT . . .
tropic model fails to describe all the details in the field d
pendence of the BMP hopping resistivity in Cd0.95Mn0.05Se.

B. ErAsÕGaAs magnetic nanostructures

Recently, the molecular beam epitaxy~MBE! technique
has been used to grow self-assembled nanometer-sized
magnetic islands~quantum dots! embedded in a semi
insulating GaAs matrix when the amount of material dep
ited in the ErAs layers ranged from 0.5 to 2.5 molecu
layers ~ML !.18 Precise control of the deposition condition
made it possible to control not only the concentration
these islands and interisland distance but their size, wh
ranged from 4 to 80 nm. Analysis of the temperature dep
dence of the zero-field resistivity together with the data
the magnetoresistance for different samples clearly sh
that the low-temperature conductivity in these materials
be explained in the framework of fluctuation-driven BM
hopping.7,18

In the analysis of the data on magnetoresistance18 we used
the modified Brillouin function~34! to fit the experimental
data on magnetization and susceptibility~35! with the spin
andg factor of the Er ionsJ53/2 ~Ref. 25! andg57.4, and
with the effective temperature describing antiferromagne
interaction, T054 K. One can see that formula~32! de-
scribes the temperature dependence of the zero-field res
ity @Fig. 4~a!# well in the temperature range relevant to t

FIG. 4. Resistivity of the ErAs/GaAs nanostructures as a fu
tion of ~a! temperature and~b! magnetic field perpendicular to th
direction of growth atT51.7 K ~Ref. 18!. Diamonds reperesen
sample A; circles represent sample B. Solid lines are theore
results.
-

rAs
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experimental data. Here, like that of DMSs, the activati
energy of the magnetoresistance is a decreasing functio
magnetic field.7 This again is a direct signature of BMP hop
ping driven by thermodynamic fluctuations of magnetizatio
We used the following values of the zero-field polaron shif
Wp(0)524.2 K and 17.4 K, and of the scatters of the ele
tron energies,d515.0 K and 22.2 K, respectively, fo
samples B and A to fit the theoretical temperature dep
dences of the zero-field resistivity to the experimental one18

The data shown in this figure correspond to samples A an
grown at the same 2-ML ErAs depositions and at differe
temperatures. Sample B~see Fig. 4! with islands of smaller
lateral sized than that of sample A has a smaller avera
distance r̄ between them. The observed crossover res
from competition between the activation energy term~which
increases as the islands’ size decreases! and the hopping in-
tegral term~which decreases as the separation between
islands decreases! in expression~32!. At low temperatures
the activation term prevails, while at high temperatures
conductivity is governed by activationlessr hopping.„This
crossover can be reversed at low temperatures by appl
magnetic field that quenches the activation energy@see Fig.
4~b!#. The theoretical curves in Fig. 4 were calculated fo
typical lateral size of the islands,d.50 Å (Wp517.4 K)
and 40 Å (Wp524.2 K), for samples A and B, respec
tively, which is consistent with transmission electron micr
scope~TEM! observations.18 We used the Zeeman splittin
at saturation, Ds550 meV. Relatively small (,20%)
changes ind have a dramatic effect not only on the zero-fie
resistivity but also on the scale of the negative magnetore
tance. In accordance with our model, the latter definitely c
relates with the islands’ sized and volumeV.V0 and,
therefore, with the magnitude of the zero-field polaron sh
~40!, Wp(0);1/V @see Fig. 4~b!#.… At intermediate fields, the
resistivity as a function of magnetic fieldB may reveal a
maximum the origin of which has been explained in Sec.

The experimental curves7,18 clearly display a dependenc
of the magnetoresistance on the orientation of magnetic fi
that cannot be explained in the framework of our simp
isotropic model. A few factors may contribute to this effe
such as the anisotropy of the magnetization and the an
ropy in the shape and size of the islands that can interp
with the complex nature of the confined electronic states
cause an anisotropy of the exchange coupling~as was ob-
served for the hole states in ErAs quantum wells26,27!.

A comment is in order as to a possible role of the cha
ing energy in the description of the hopping conductivity
ErAs/GaAs nanocomposites. For islands with dimensions
40–50 Å, this energy is of the order of 200 K. That is mu
larger than all the characteristic energies involved includ
a residual high-magnetic-field activation energy which is
the order ofuEFu1d/6.2 –3 K. A possible explanation fo
this is that the conductivity is due to the carriers moving
an almost unoccupied upper~for electrons! or lower ~for
holes! Hubbard band. These carriers might be supplied b
small uncontrolled concentration of dopants in the GaAs m
trix. However, it is more likely that the Fermi levelEF is
pinned by overlapping density of states~DOS! of the band
tails that originate from the electron and holelike localiz
states of the semimetallic ErAs islands. If it is true, then
can be shown that, due to a significant difference in the
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528 PRB 62A. G. PETUKHOV AND M. FOYGEL
fective masses of electrons and holes, the Fermi level ca
shifted from the center of a charging-energy gap toward
subband with larger DOS, thus leading to a residual act
tion energy that is much smaller than the charging ene
and that does not depend on the concentration of the un
trolled dopants.

VII. CONCLUSIONS

A simple theory of the bound magnetic polaron hoppi
driven by the fluctuations of local magnetizations gives
reasonably good explanation, both qualitative and quan
tive, of the experimental data on giant negative and posi
magnetoresistance in dilute magnetic semiconductors
nanostructures. Future refinements of the theory of the B
hopping presented in this paper should incorporate magn
field orientation effects that are believed to be connec
with the shape anisotropy of magnetic nanostructures.
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APPENDIX A: COMPARISON WITH THE s-d MODEL

Let us start from the standards-d spin Hamiltonian11,14

Hk
(s-d)5eknk1Hk~$JW k%!2sWkS Gex(

l
uC~RW l !u2JW k,l1gmBBW D

[eknk1Hk2sWkGW k , ~A1!

whereGex is the exchange coupling constant andC(RW l) is
the electron wave function at the atomic sitel. Equation~A1!
describes the exchange interaction of an electron, localize
the BMP sitek (k51,2), with atomic spinsJW k,l in the vicin-
ity of this electron; i.e.,sWk andGW k are operators of the elec
tron spin and atomic exchange field, respectively. T
HamiltoniansHk describe interactions of the atomic spi
with each other and with the external magnetic fieldBW . The
explicit form of Hk is not important for further derivation. In
order to calculate the hopping probability by means of F
mi’s golden rule, we assume that in the initial (u i &) and final
(u f &) states of the system the electron is fully spin polariz
and forms BMPs on sites 1 and 2, respectively. Introduc
initial (nW 1) and final (nW 2) spin-quantization axes we can re
resentu i & and u f & as

u i &5unW 1s1&u2&b1s1

† u0&, ~A2a!

u f &5unW 2s2&u1&b2s2

† u0&. ~A2b!

Here sk561, unW ksk& and uk& are the eigenvectors of th
operatorsHk2sknW kGW k/2 and Hk , respectively,u0& is the
vacuum state, and operatorsbksk

† are given by Eq.~7! with

the angles pertaining to the unit vectorsnW k .
be
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The assumption~A2! allows us to calculate the matri
elements of the operatorH12 @Eq. ~5!# between the initial and
final states. As a result, Fermi’s golden rule can be prese
in the following form:

w125
2p

\Z (
i , f

u^ i uH12u f &u2 exp~2bEi !d~Ef2Ei !

5
2p

\Z (
s1s2

(
nW 1nW 2

(
pqrs

u t̄ s1s2
u2 exp@2b~e11EnW 1s1

(p)

1E2
(q)!#u^nW 1s1

(p)u1(s)&^2(q)unW 2s2
(r )&u2d~e121EnW 1s1

(p)

1E2
(q)2EnW 2s2

(r )
2E1

(s)!, ~A3!

where b51/T, indices p,q,r ,s enumerate correspondin
eigenstates, andu t̄ s1s2

u2 is given by Eq.~9! with u12 being

the angle betweennW 1 andnW 2 ; EnW k ,sk
andEk are eigenvalues

of the operatorsHk2sknW kGW k/2 and Hk , respectively;e12
5e12e2. Here, for the sake of simplicity we neglected d
rect contributions from single-phonon processes. Using co
pleteness of the statesunW 2s2&u1& and the Fourier representa
tion of thed function in Eq.~A3!, we obtain

w125
2p

\Z (
s1s2

(
nW 1nW 2

u t̄ s1s2
u2E

2`

` dl

2p
Tr exp@2bH12~b2 il!

3~e12s1nW 1GW 1/2!#

3Tr exp@2bH22 il~e22s2nW 2GW 2/2!#. ~A4!

As a next step we define two Zeeman splitting vectorsDW

5D•nW 1 andDW 85D8•nW 2 and use the approximation, first in
troduced in Ref. 11,

g~GW !5E d~DW 2GW !g~DW !dDW , ~A5!

where g(GW ) is an arbitrary function of the operatorGW . It
finally yields

w125
2p

\Zi8
(

s1 ,s2

E E u t̄ s1s2
u2

3expS s1D/22e1

T D P̃1~DW !P̃2~DW 8!

3dS e122
s1D2s2D8

2 DdDW dDW 8. ~A6!

Equation~A6! coincides with formula~15! except that here
we omitted the acoustic phonon contribution. Also we
placedPk(DW ), Eq. ~17!, with

P̃k~DW !5Tr@exp~2bHk!d~DW 2GW k!#$JWk% , ~A7!

which are defined as quantum-mechanical expectation
ues, rather than the functional integrals over the class
magnetization fields.
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The approximation~A5! is valid if the number of atomic
spins,N, within the localization volumeV of the BMP is
large enough (N1/2@1).11 Under the same circumstances a
when the magnetization is far from saturation, the distrib
tion functions P̃k(DW ) are Gaussian and are given by E
~18!.11 They remain Gaussian~but temperature independen!
even if Hk50, i.e., when Eq.~18! is evaluated with the
Curie-Weiss magnetic succeptibilty.

In order to match our results with those of NP,14 we set
t̄ s1s2

5t0 , e1250, BW 50, andHk50. We will also neglect
direct contributions from acoustic phonons~considered by
us! and from lattice polarons~considered by NP!. If accord-
ing to NP we further assume that

GW k52A1(
j

JW j[2A1LW , ~A8!

then according to Eq.~A7!

P̃k~DW !5 (
L50

NJ

F~L !d~D22A1L !, ~A9!

where F(L)/(2L11) is the number of ways in whichN
moments each equal toJ can combine to give the total spi
L.14 With these simplifications the hopping probability~A6!
can be evaluated as

w12}

(
L50

NJ

F2~L !cosh~A1L/T!

(
L,L850

NJ

F~L !F~L8!cosh~A1L8/T!

.
(
L50

NJ

F2~L !exp~A1L/T!

(
L,L850

NJ

F~L !F~L8!exp~A1L8/T!

. ~A10!

This formula coincides with the NP formula~15! if in the
latter the lattice polaron energyEa→0. Moreover,

F~L !.
1

Ap
S 3

2J~J11!ND 3/2

~2L11!expS 2
3L2

2J~J11!ND ,

~A11!

which can be justified for 1!L!JN, i.e., when the
magnteization is relatively far from saturation~see Ref. 11
for details!. Substituting Eq.~A11! into Eq.~A10! and evalu-
ating the sums by means of the steepest descent me
yields

w12}exp@2Wp~0!/2T#, ~A12!

whereWp(0) is given by Eq.~40! with T050, i.e., with the
Curie-Weiss magnetic susceptibility. This is also in cle
agreement with the numerical results of NP~see NP, Fig. 1!
as well as with our analytical results~see Sec. V!.
-
.

od

r

APPENDIX B: PHONON-ASSISTED HOPPING

Our next step is to evaluate the phonon-assisted partw12
(ph)

of the hopping rate~22! by replacing the summation overq
by an integration. We will also use the standard dispers
law for acoustical phonons,vq5sq, together with the fol-
lowing expression for the electron-phonon coupling mat
element:19,21

uLqu25
E1

2

ds3V0
1/2\q

~12cosqW •rW12!rqW , ~B1!

whereE1 is the deformation potential,V0 is the total volume
of the system,d is its density,s is the speed of sound, and

rqW5
1

AV0
E

V0

uCu2eiqW •rW drW ~B2!

is the Fourier transform of the localized-electron density
gives

w12
(ph)5

Aputu2

2\T
~p12

(ph,1)1p12
(ph,2)!

.w0

E1
2V0

1/2

2p2ds3\
E

0

qD
dq qrqS 12

sinqr12

qr12
D

3FNq expS 2
~2Wp2e122\qs!2

8WpT D
1~Nq11!expS 2

~2Wp2e121\qs!2

8WpT D G , ~B3!

whereqD is the radius of the Debye’s sphere and

w05
Aputu2

2\T
F~m,n;0!. ~B4!

In deriving expression~B3!, the integrals containing term
with h65D0(e126\vq)/4WpTÞ0 @see Eqs. ~22!–~25!#
were omitted. They are negligibly small compared to tho
retained in Eq.~B3! either due to a small factor (e12/2Wp)2

!1 whenue12u!Wp or because the corresponding integran
reach their sharp maximums at\vq.6e12 ~i.e., h6!1)
when ue12u@Wp .

We will analyze expression~B3! in the two limiting cases
of ~a! large polaron shifts (2Wp@ue12u), which may take
place at relatively small magnetic fields, and of~b! small
polaron shifts (2Wp!ue12u), which may be relevant for large
magnetic fields when the BMPs are almost frozen out.

~a! In this case the integrands in Eq.~B3! have sharp
maxima at\q0s.T!Wp . This has the consequence that t
optimal hopping path goes through the point where the e
tronic energies at both sites are close to each other, so
the hopping event is accompanied by absorption or emis
of a low-energy phonon the energy of which is close toT.
Then the integral in Eq.~B5! can be evaluated by means
the steepest descent method which gives

w12
(ph)5w0z expF2

~2Wp2e12!
2

8WpT G , ~B5!
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where

z.
E1

2r 12
2 n4/3

ds3\
S T

Q D 4

. ~B6!

Heren is the concentration of atoms in the crystal andQ is
the Debye temperature. A simple evaluation shows that
T/Q.1022, E1.1 eV, s.53103 m/s, d.53103 kg/m3

,

r 12.50 Å, and the parameterz.1025–1026. Therefore,
for this regime the contribution from the phonon-assis
transitions can be neglected compared to the resonant
@see Eqs.~22! and ~23!# even though both are characteriz
by the same activation energy (2Wp2e12)

2/8Wp . In making
those estimates we took into account the fact thatqr12
P

ec

e

r

d
es

.(6p2n)1/3r 12T/Q!1. By the same token,q0a!1, where
a is the localization radius of the BMP. Therefore, here
usedrq0

.1/AV0 for evaluations.

~b! In the opposite case of 2Wp!ue12u, the integrands in
Eq. ~B3! reach their sharp maxima at\q0s5ue1222Wpu. In
this situation, the phonon-assisted tunneling prevails over
resonant one because it either goes without activatione1

.e2) or, whene1,e2, it requires an activation energyue12u
which is much smaller than the (e12)

2/8Wp that is needed for
a purely resonant hopping.

For the sake of certainty, suppose now thatq0r 12@1 and
Wp!ue12u. Then, by using Eq.~B3! with w0 equal to the
preexponential factor from Eq.~27! one can easily show tha
w12.w12
(ph)5

V0
1/2rq0

E1
2ue12e2u

pds5\4 H Nq0
, e1,e2 ~phonon absorption!,

Nq0
11, e1.e2 ~phonon emission!,

~B7!
l

-
its
whererq0
is given by Eq.~B2! with q05ue12u/\s and

Nq0
5FexpS \q0s

T D21G21

~B8!

is Planck’s distribution function. Expression~B7! is nothing
but the well-known Miller-Abrahams’ formula19,21 for the
phonon-assisted hopping rate.

APPENDIX C: e3 CONDUCTIVITY

Here we will evaluate the activation energy of the BM
hopping conductivity,21

e35^ẽ i j &5E
2`

`

de jn~e j !E
2`

`

de in~e i !ẽ i j , ~C1!

by means of a rectangular distribution function of the el
tron energies:

n~e!5H 1/d, ueu,d/2,

0, ueu>d/2.
~C2!
-

~We count the energiese and the Fermi levelEF with respect
to the middle of the ‘‘impurity’’ band which width is equa
to d.! After substitutingẽ i j , Eq. ~30!, into Eq. ~C1! the in-
tegration yields formula~33!, where

e3
MA5H d/61uEFu, uEFu.d/2,

5d/121EF
2/d, uEFu<d/2,

~C3!

and

f ~a!5H a2~22a/2!/3, a<1,

122/~3a!11/~6a2!, a.1.
~C4!

Here e3
MA is the Miller-Abrahams part of the activation en

ergy that does not depend on magnetic field. It reaches
minimum value of 5d/12 when the Fermi level lies in the
middle of the band (EF50). The functionf (a) depends on
a dimensionless polaron shifta52Wp /d. The shape of this
function depends on the distribution functionn(e), but in all
casesf (a)→0 asa→0 and f (a)→1 asa→`.
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