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A theory of bound magnetic polarofBMP) hopping, driven by thermodynamic fluctuations of the local
magnetization, has been developed. It is based on a two-site model of the BMP. The BMP hopping probability
rate was calculated in the framework of the “golden rule” approach by using the Ginzburg-Landau effective
Hamiltonian method. The theory explains the main features of the hopping resistivity observed in a variety of
experiments in dilute magnetic semiconductors and magnetic nanocomposites, rantaly,negative giant
magnetoresistance, the scale of which is governed by a magnetic polaron localization volunie), ted
low-magnetic-field positive magnetoresistance which usually precedes the negative magnetoresistance. It is
shown that the positive magnetoresistance is a signature of the fluctuation-driven bound magnetic polaron
hopping. This effect is related to the vector nature of the magnetic order parameter affected by the presence of
the localized-electron spin.

[. INTRODUCTION which the electron is transferred from an occupied site to an
empty one with frozen equilibrium local magnetizations at
Spin-polarized electronic transport in solids has attractedoth sites. For two identical sites this process is driven by
much interest mainly due to discovery of giant magnetore@bsorption of an acoustic phonon and requires an activation
sistancgGMR) and the development of new device applica-€nergy of 2V,.*>** Another mechanism takes into account
tions (high-speed magnetic sensors and memory e|ement§herm0dynamic fluctuations of the local magnetiza’[ions that
based on this phenomenbdrSeveral different mechanisms control the elementary hopping dt'* indeed, since the
have been proposed for the spin-dependent GMR. Thefplectron energy levels at both sites _foII_ow the fluctuations of
common feature is the exchange interaction of charge carrf@c@l magnetic order parameters, itis likely that the levels at

ers with the itinerant and/or localized magnetic moments of.he occupied a_nd gmpty sties will move in opposite direc-
transition- or rare-earth-metal atoms. tions, thus getting into resonance. For this to occur, the oc-

Three types of mecahnisms can be responsible for th8upied site should spontaneously decrease its local magneti-

spin-dependent GMR in nonsuperconducting magnetic Strucz_at|on while the empty one should increase it. The electron

tures: (1) noncoherent transport of carriers in extend dcan then tunnel from one site to another resonantly. This
ures- onconere ansport ot carriers in_extende process somewhat resembles the multiphonon mechanism of
energy-band states across metal magnetic multilgy&(g)

/ ZTUSS : small-polaron hopping>*® It requires an activation energy
tunneling through a junction of two magnetic eIect_rodest/Z (Ref. 13 which is 4 times smaller compared to that of
separated by an insulating laytand(3) electron hopping the “static” mechanism.
in a system in which a carrier strongly interacts with the  Tne gijant negative magnetoresistance observed in dilute
localized magnetic moments of either transition-metal atoMgnagnetic semiconductors was properly attributed by many
(e.g., in dilute magnetic semiconducfror of rare-earth  author&® to the BMP phenomenon. Indeed, the application
atoms(e.g., in ErAs/GaAs nanostructurgsn this paper, we  of a large magnetic field will quench magnetic polarons by
will restrict ourselves to cag@), the hopping conductivity in - reducing the magnetic part of their binding energy and there-
magnetic semiconductors and nanostructures. In these syfre the activation energy of the hopping conductivity. How-
tems, an electron or hole trapped by any kind of attractiveever, the presence of a significaftp to 300%) positive
potential of a defect, quantum dot, etc., can form a “cloud” magnetoresistance, which is typical for situations when the
of aligned spins of the surrounding magnetic atoms. The crecarriers are localizeliremains unclear. We will show that
ation of such a complefreferred to as a bound magnetic the latter is a signature of the fluctuation BMP hopping
polaron (BMP) (Refs. 8 and § will further lower the free  mechanism and ultimately reflects the fact that, in contrast to
energy of the system by a quantity, called a polaron shift. ~conventional lattice polarons, the BMPs are described by a
A consistent semiclassical analysis of BMP formation in di-vector order parameter. We will develop a unified and con-
lute magnetic semiconductors was given by Dietl andsistent semiclassical description of BMP hopping based on
Spatek® while its quantum-mechanical generalization wasthe Ginzburg-Landau effective Hamiltonian formalfSny
developed by Wolffet al. (for references see Ref. 1IThis  and Holstein’s occurrence probability approdetit will be
theory successfully described the spin-flip Raman scatteringhown that the fluctuation-driven BMP hopping may lead to
in magnetic semiconductofs. a nonmonotonic behavior of magnetoresistariBecently, a

In order to describe the BMP hopping conductivity, we simple two-site model of this kind has been applied to a
need, first, to specify the mechanism of an elementary hopdescription of the resistance, including the GMR, of the ErAs
ping event. Dietlet al®!? considered a “static” picture in islands in GaA<®) Our approach also allows us to take into
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account a single-phonon-assisted BMP hopping of the
Miller-Abrahams type"® This process plays a dominant role Hip=—t(rp) > (al,a,,+c.c) 5
. . . . o=*1
at high magnetic fields when the polaron s, is small
compared to the typical scatter of the nonmagnetic parts aé responsible for electronic hopping between the sites 1 and
the electron energy levels. 2. As a starting point, we assume that spin-flip processes are
The paper is organized in the following way. In Sec. Il, aforbidden. Due to an exponentially small hopping integral
two-site model of the BMP hopping will be considered. In
Sec. Ill it will be applied to the calculation of the BMP t=t(rp) =toexp(—ryp/a), (6)

hopping rate. The BMP hopping conductivity and magne-

toresistance are calculated in Secs. IV and V. Section VY\/herea is a localization radius of the electron at any of two

contains a comparison of our results with exprimental datacenters, we will treah; , as a small perturbation. In Eq$)

T . . e _
on GMR in magnetic semiconductors and nanocomposites.a.md (2), the operatoa,, (a".f) dgscrlpes creatioannihila
tion) of an electron at the sitewith spin parallel ¢=1) or

Il. TWO-SITE MODEL OF THE BMP antip_arqllel o=-—1) to the ext_ernal magnetic field. _
It is important to note that in the case of large semiclas-
Let us consider two centers, 1 and 2, separated by a disical atomic spins, as shown by Wolff and co-work€rthe
tancer ;,. We assume that each site can localize an electrosffective Hamiltonian(2) is equivalent to the standasid
even when no magnetic forces are involved. In the vicinity ofmodel given the fluctuations are GaussiéBee also Appen-
each center there is a finite concentration of localized magdix A.) For this effective Hamiltonian we chose taexis
netic moments that is described by the spatial distribution ofjirection to be along the external fieBl However, in this
the local magnetization vecto, ,(r) generated by a fluc- representation the local HamiltoniaRs andH, are not di-
tuating field of atomic spins. The effective Hamiltonian of agonal with respect to the electronic spin quantum numbers.
the problem is It is convenient to make the following spinor unitary trans-
formation to a new representation in which the spin quanti-

H=Hy+HotHipt Hepn, (1) zation axes are different and taken to be parallel to the local
where vectorsA, :
) A2(rdr al =exp(i ¢/2)[ cod 6,/2)b]. —sin(6,/2)b]|]
leflnl_i(ﬂAﬁ‘ZJ SMi(r)dr 2 I I 1

ol - t t
is the Hamiltonian of a bound magnetic polaron localized at 3, = exp— i ¢if2)[sin(0i/2)by; +cos f2)by ] (7)

a sitel (1=1,2). Heren|=EU::1afga,U is an occupation It gives
number of sitd (there is only one electron per two sites, i.e.,

n,+n,=1); ¢ is the “bare” energy of a bound electron at _ _ E ~ i S0 > >

the sitel. The second term in E¢2) describes the exchange H T4, 9N n'U'A'+2X oMi(rdr
interaction between the trapped electron and localized atomic

spins of the magnetic atoms within the region of electron . — +

localization together with the direct interaction with the mag- Y (t‘fl'fzbl"flbzﬂz+ C.c)*Hepn, (8

oq,00=%1

netic field B taken into account, where ) i .
where b,foi (b|,(,i) is an operator of the creatio@nnihila-

tion) of an electron at sitewith spin parallelor antiparallel

to the direction of the local exchange field ; the angles,

and ¢, define the direction of the vectdk, in the original
which is equal to the Zeeman splitting of the local electronc@0rdinate system. In the absence of spin-flip processes, the
state with the wave functiol, . The vectorA, as a rule, is Sduared moduli of the modified transfer integradre equal

not directed along the local average magnetic field inside thiP
localization region. Herd', is an exchange coupling con-
stant,ug is Bohr's magnetong andg* are the Lande factors

Iex
gue
is a vector of the local-exchange field, the magnitideof

A= fl\lf.(F)|2h7I|<F>dF+g*MBé 3)

|t0'1,02

?=1t1[ 85, ¢, COS(0122) + (1= 8, ) )SIP(0122)],

of the atomic spin and that of a free electron, aﬁtd ©
=(of,07,0%) with & being the conventional Pauli matri- Where 6, is the angle between the vectors of the local-

ces. The last term in Eq2) represents the lowest term in the exchange field§1 and&z. In Egs.(1) and(9), the termH g,
Ginzburg-Landau expansith'’ of the free energy of atomic describes the electron-phonon interaction.

spins. Withl\7|o being the equilibrium magnetization vector,
- .. T I1l. BMP HOPPING RATE
OMI(N=[M;(r) = Mo] @ Let us assume that initially the electron is localized at site
is a squared fluctuation of magnetization at the &ite&Ve  |=1 while sitel =2 is empty, i.e.n;=1, n,=0. In the final
assume that our medium is described by means of a macretate, after the hopy); =0 andn,=1. We treat the last two
scopic, scalar, and isotropic magnetic susceptibjif$3,T).  terms in the modified Hamiltonia(8) as a small perturba-
In the effective Hamiltoniarg1), the term tion. By applying the “Fermi golden rule”-?*° with subse-
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guent statistical averaging over initial states, one can calcudown to temperatures as low as 0.1 K. We will address this
late the BMP hopping rate in the so-called nonadiabatidssue in the end of Sec. IV where BMP hopping conductivity
regime'® when the small hopping integr&6) controls the is discussed.

probability of the hopping event: In performing the functional integration in Eq&l0) and
(13), it is convenient to replace it with an ordinary integra-
w12=2—77 > f f DM, DMt , |2 tion overA andA’ by means of the following obvious rep-
hZ; o1, 7172 resentation of the integrands in Eq&0) and (13):
Xexq_Eio.llT)f(Ei’o.l_Ef’a.z), (10) o L L ..
(8, K= | [ @(EE)8E- Ky,
where
X S(A' —A{Mo(r)})dA dA’. (14)
f(E)=8(E)+ 2 [Ag|NgS(E+fiwg)
q It finally yields
+(Ng+ 1) S(E-fiwg)]. (11
2 —
Here only single-phonon processes were taken into account. lezg 2 f f |tolo'2|
- . 0’1,0'2
In Eqg. (10), DM, means functional integration over all '
i i i izatiods( 1 o1A2—€ . N
possible cc_)nflguratlons_ 91_‘ the _Iocal inagnetlzat!dms(r). wexg - 1 PL(A)P,(A")
The energies of the initialn;=1,n,=0) and final €y T
=0,n,=1) statedsee Eq(2)] are functionals of magnetiza- ,
tion: o1A—0,5A .
X f €0 5 dA dA’, (15
1 1 - s s
Ei,(Tl: €1~ EolAl—’_ZJ [5M l(r)+ 5M Z(r)]drv Where€12: El_ Ez,
(123 .
. . z/=2 exp( - %)f Pl(ﬁ)cosr(A/zT)d&f P,(A")dA’
Ef,0'2:62_§0-2A2+§f [SMEZ(r)+ sM3(r)]dr, (16)

(12b) is the normalization factor, and
where 6M |2(F) is given by Eq.(4), and

Z= >, ffDMlDMZeX[<—%) (13

o==*1

P|<5)=f DM, 8(A— A {M(N)})

| . | - xexp(——f 6MF<F>dF) (17)
is the partition function of the initial state. In E¢L1) the & 2xT
fﬂgigzgsw?tiso(ﬂtlbaengnvsirt%ya%cégsretri\:;“g? g;?sns?ot:ifu;ggigg?s a distribution function of the spin-splitting vectors in the
Eal honons. the combined ind F:(e resents both the wave absence of a localized electron. The functional inte@td)

P ' eeep . is of the Gaussian type. It was calculated by Dietl and Spatek
vector and the branch number of a phonon with the energYDS),lo
fiwg, and Ny is Planck’s distribution function. The matrix '
element of electron-phonon couplidy, is given in Appen- s oo
dix B. : (A~-40)

: . . . Pi(A)ocexp — —=—| (18)

The expressiofil0) is derived under the assumptions that 16w, T
(a) the spin of the electron follows an instantaneous configu- h
ration of the local atomic spins at the site where it is local-VNere
ized and(b) the electron hopping integrt < (W,T)"2 The r
last assumption is weII.knovyn in thg theory of small lattice 50=ﬂ|\7|0+g* Msé (19
polarons as the nonadiabatic hopping regim&aking W, gue
=10-100 K,|t|=0.1-1 eV, andT=1 K, one can find
that this assumption is valid if the typical hopping range
exc_e_eds severdfive to eigh} localization radiia, which _is W, was introduced:
definitely true for ErAs/GaAs nanostructures and lightly ™
doped d.|Iute magnetic sem!d'ongucto®MSs). For in- [ Te 2y(B,T) c e [ Te 23(B,T)
stance, ifa=10 A, the conditionr/a>8 means that the W= 20 > |W(r)[*dr= 2omal 200
impurity concentration in DMSs should not exceed B B '(20)
2x10"® cm™3. Our description of BMP hopping accounts
for the thermodynamic fluctuations and clearly ignores thewhich is half the electronic part of the polaron shéf
quantum fluctuations of the magnetizations. The latter will=2W, considered by D’ In Eq. (20), we defined an ef-
be shown not to be important for the materials in questiorfective volume(}, of a BMP as

is the equilibrium value of the Zeeman splitting vector in
absence of a localized electron. In Ef8), the polaron shift
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. - to Gaussian-type integrals in E@5). In this case the BMP
Q Ef | Wy (r)|*dr. (21)  hopping rate(15) can be calculated analytically, yielding
In calculating the hopping conductivity in Sec. IV we will \/;|t|2 (0) 4 ~(Ph+) o ~(ph—)
need the rate of BMP hopping between two almost identical lezﬁ( 12 TPz tP1 ), (22)

sites that belong to a percolation cluster. That is why in all
the further considerations we will assume tiht=Q,=Q  Where
andW, ;=W =W,

It is important to mention that our major resuylts) is p&%)=F(u,v;no>exr{—
more general than it appears at first sight. If the distribution
function (17) is defined as a quantum-statistical average ovegpq
the discrete atomic spins rather than a functional integral
over the classical magnetization fielsee Appendix A for
detaily, then formula(15) is still valid and goes beyond the pg%h’t):E |Aq|2
Gaussian approximation. In particular, as demonstrated in a
Appendix A, in the limit of zero magnetic field this formula (2W,— elz:ﬁwq)Z
reproduces the results of the Nagaev-Podel'schtk¢oMP) XeXF{— 8W.T
model. P

The Gaussian form of the distribution functi¢tB), leads where

(2W,— €19)?

8W,T @3

1 1 _
Ng+ 575 F(u,vins)

: (24)

(u?— 5%+ 2)coshu + 2( 5 sinhp— coshy)exp — v)

- +2v—
2(u sinhu+ v coshu) 2v-1

Flu,v;m)=(ur) (25

and the following dimensionless parameters were intro- The last two terms in Eq(22) describe the transitions
duced: u=A/2T, v:ASISWpT, 70=1A0€1J4W,T, and  with the absorption and emission of acoustical phonons, re-
7+ =A¢(e12+hwy) AW, T. HereAy is given by Eq.(19). spectively. They are analyzed in Appendix B where it is

The expressior{25) corresponds to the hopping integral shown that if the polaron shiftV, is much greater than the
given by Eq.(9) which, in turn, is derived assuming that scatter in the “bare” energies;,, the resonant tunneling
there are no spin-flip processes. If, however, the latter agerevails over the phonon-assisted one. Otherwise, the stan-
sumption is relaxede.g., the probabilities of spin-flip and dard Miller-Abraham¥ %! expression(B7) for the hopping
non-spin-flip processes are equahen the hopping integral rate can be obtained from E(2).

t, .~ does not depend on the angles. In this case, the prefac-

tor F in Eq. (23) should be replaced by IV. BMP HOPPING CONDUCTIVITY
- . Using the standard technique of the percolation thedry
F(u,v;0)=(u\v) and expressiol22) for the hopping probability one can cal-
(u2+2v)[coshu—exp — )] qulatge the' effective electrical hopping resistance between
: +2v|. sitesi andj:
2(m sinhu+ v coshu)
(26) . r 29

. ) i eZWijfi(l_fj),
In the general expressio22), the first term(23) repre-
sents the resonant transitions. In the case of sufficiently largehere f;={1+exd(e—Eg)/T]}"* is Fermi's distribution
magnetic fields B— ) the angular fluctuations of the mag- function of the localized electrons with the Fermi lew!.
netizations are effectively suppressed. That implies Wigt Therefore,
—0 (y—0 asB—x) while A, approaches its saturation ~
value Ag>|e;5. ThenF(B— )= (2T/W,)*? and therefore RijocFl(,u,v;O)exp<%+ i) (29

the resonant part of the BMP hopping rate T
\/_|t|2 wherer;; is the distance between the sites in question and
WED(B o) = —r - piP(B—=)

~ 1
Gij:§(|€i_EF|+|€j_EF|)

|t|2( v )1/2 4: (2Wp_612)2
= exp — ———
fi \2W,T

@D Wy/2+ (- €)2(BW,), |e—ej|<2W,,

which coincides with the basic result of the conventional i~ ell2, €= €| >2W,.

theory of small lattice polarons. (30
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With the exception of a very important magnetic-field- measurement$?* show that, for instance, in Gd,Mn,Te
dependent factdF ~1, expressior(29) coincides with that of  the BMP formation rate aT=1-2 K is Tglzo_l K, ie.,
Ref. 13. This factor, which is specific for BMP hopping, ;.~400 ps. This means that the characteristic pseudomag-
takes into account the vector nature of the magentic ordefion frequencies are of the order of 0.1 K, and therefore, the

parameter. We will show that it is responsible for ffesitive  contribution from quantum fluctuations to the BMP hopping
magnetoresistance observed at small and intermediate magge is negligibly small iﬂ'>r§1.13

netic fields in different magnetic semiconductors and
nanostructure® The interpolation formulg29) takes into
account two limiting cases dfi) large polaron shifts @/,
><|eij |}, which is appropriate for the BMP with an appre-  To analyze the field dependence of the magnetoresistance
ciable polaron shift when the magnetic field is not strong,(32), one should specify the magnetic susceptibijyB, T).

and (i) small polaron shifts W,<(|e;;|) when it is strong  Usually, for dilute magnetic semiconductors in the paramag-
(see Appendix B for details Here(|e;;[)=(|e;—¢j|) is an  netic phas&,'®™*it can be expressed in terms of a modified
average scatter of the “bare” electron energies. Brillouin function B;(z):®

While evaluating the hopping resistiviy we will con-
(2J+1)z z
(2J+1)cot s —cot 5]

V. MAGNETORESISTANCE

sider the case oé; conductivity’! when the typical disper-
sion of the activation energigsj is small compared to that

1
By(2)= 53

of the intersite distances;, namely,(~eij>/T< 2(ri;)a. In (34)
this case the connectivity criterion can be written as The magnetic susceptibility can then be written as
~ ~ M 3

2rij € 2re (&) _Mo_ 3 o,

?4— ?Sfcz?ﬁ- T (31) X(B,T) JB J+1BJ(Z)X(01T)1 (35)
where r, is a percolation threshold for the random-site where
r-percolation problemd* (Usually r. is of the order of the (gus)?ngd(I+1)
average distance between sitds.yields the following ex- x(0,T)= 3(T+Ty) (36)

0

pression for the resistivity:
is a zero-field susceptibility that obeys a modified Curie’'s
law andng is the concentration of magnetic atoms. Here
=gueB/(T+Ty) and the parametely>0 is associated
with the possible antiferromagnetic interaction of magnetic
where atoms with the total angular momentuirand Lande factor

g. Then the average Zeeman splittifid) in the absence of

63=egﬂA+ %f(a). (33 a localized electron is

Ao(B)=nol'exdBy(2) =AsBy(2), (37

€3

(B)OCFfl( V'O)eX[(ﬁ-‘r— (32
P KV a T/

Here ey ” is the activation energy for the Miller-Abrahams
hopping conductivity in the absence of the BMP effeet,
=2W,/é where§ is a'typical scattgr of electron energies, A=A(B—0)=nylg,J (38)
and f(«) is a dimensionless function such thifa)—0
when a<1 andf(a)—1 whena>1. Both Eg/'A and f(a) is the splitting at saturation fields. In deriving E¢437) and
are evaluated in Appendix C for a simple rectangular distri-(38) we have ignored the direct input from the external mag-
bution function of electron energies It should be noted that Netic field because it is usually several orders of magnitude
driven by the fluctuations of local magnetization, is one-Can be rewritten as
fourth the value obtained for the static BMP st&té&There- «(B) 3
fore, the fluctuation-driven mechanism of hopping will al- W, (B) = ——=W,(0)= ——B/(2)W,(0). (39
ways dominate over the static ohe. P x(0) P J+17? P

Thus, we have established that the fluctuation-driven scey clearly tends to zero as the magnetic field approaches its
nario of BMP hopping _Ieads to t_he exponent_lal dependencgatyration value, and
(32) of the magnetoresistance with an activation endB&§y
;chat strﬁ.r;tg\llz degends on the !'tnha?hnetic fielq thr?ulgg E[hef po- W.(0) Iy \2x(0,T) rganJ(J+1)
aron shiftW,. Comparison wi e experimental data for (D=5 20 24T+T 0
DMS'’s and Er-based nanostructures supports this conclusion 9re A o)
(see Sec. VI for detaijsContrary to this statement, quantum is the polaron shift at zero magnetic field. From here it fol-
fluctuations of magnetizations would manifest themself inlows [see Eq.(33)] that when the typical scatter of electron
the field-independent activation energy of the magnetoresisnergiesd<W,(0) the magnetic part of the activation en-
tance, which obviously contradicts the experimental data irergy of hopping resistivity is close t@/,(0)/2. If the anti-
question. This fact was explained by loselevitvho men-  ferromagnetic interaction is negligibly small{=0), this
tioned that disordered magnets are characterized by exesult also can be obtained from the formula derived by NP
tremely slow relaxation of the magnetizatith.Direct  (Ref. 14 (see Appendix A

where

(40)
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') V. EQA(\
: Zeeman  splitting
0.0 FIG. 2. Distributions of Zeeman splitting vectors at a site
0.0 05 1.0 15 occupied by a BMP(solid lineg and an “empty” site (dashed
Magnetic field (Tesla) lines) for the four magnetic fields, directed to the right, indicated by

arrows in Fig. 1. For(@ and (b) A;=300 K; for (c) A;=10 K
whereAg is the saturated splitting. The distributions are given along
the lines crossing the origin in the direction of the magnetic field
[(a@) and(c)] and at 45° with respect to the magnetic figi). The
shaded areas represent the overlap of the distributions greatly in-
greased in magnitude to make it visible.

FIG. 1. Field dependence of the BMP hopping magnetoresis
tance, Eq.(32), for the following set of parametersw,(0)
=242 K,J=3/2,9=2,Ty=4 K, T=15 K, §=0, and different
values of the saturation splittings; [Eq. (38)].

Figure 1 shows the magnetic-field dependence of th
BMP hopping resistivity calculated by means of E82) for  equally available for hopping. Then, after a magnetic field is
different values of saturation splittings. It displays the applied, in the case wheﬁhﬁlwp(O)Tzl, the fluctuations of
overall drop in the resistivity with the magnetic field that the magnetization at the occupied sites, which are directed
clearly reflects the decrease in the polaron shift and in theénainly against the field, cease to contribute to the conduc-
typical hopping barrietW,(B,T)/2= x(B,T). The scale of tivity. [The left-hand maxima of the corresponding distribu-
this effect exponentially dependsee Eq.(32)] on the ratio tions shown in setéa) and(b) tend to collapse with increas-
of W,(0)/T and can easily reach several orders of magnitudéng  field] Meanwhile, the fluctuations with the
at low temperatures in materials with appreciable po|arormagnetizations directed along the field play an increasingly
shifts810:18 greater role. If the field is small enougiB£0.15 T) and

However, at relatively small fields the resistivity can sig- AZ/W,(0)T=1, the first process prevails over the second
nificantly increasgup to several timeswith the field. Our  one, thusdecreasinghe hopping probability41) and, there-
calculations(Fig. 1) show that this giant positive magnetore- fore, increasing the resistivity. In other words, if the BMPs
sistance can be observed WhAé/Wp(o)Tzl_ It is gov- have S|zable self-induced magne.tlc momen'gs that are ran-
erned by a sharp decrease in the field dependence of factor domly onenteo_l al zero magnetic f'eld’ a r_elatlvely_ small ex-
Eq. (25), that controls the number of states available for reso:[emal magnet[c f|e]d W'” aImo;t |mmed|gtely align them

mainly along its direction provided thahg/W,(0)T=1.

nant tunneling. In other words, the effect in question is Con}_ater on, at higher fields, the hopping probability begins to

nected with a field-induced suppression of the fluctuations of: ith the field due to | ) fth | hooDi
the angles between the local magnetization, mainly on th%zsriévrl € field due fo lowering of the polaron hopping
occupied site, and the applle_d magnetic field. ... So the appearance of the maximum in the field depen-
In order to demonstrate this, we have evaluated the dIStrIaence of resistivity can be seen as a signature of the
butions g,=a;P(A)cosh@/2T) and go=a,P(A) of the flyctuation-driven BMP hopping connected with the vector
Zeeman splitting vectord, respectively, at sites with and nature of the fluctuating order parameter. The application of
without BMP and displayed them in Fig. 2. HeR{A) is @ relatively small magnetic field suppresses the fluctuations
given by Eq.(18), anda, anda, are normalization factors. of the local magnetizations both in magnitude and direction.

For the sake of simplicity, let us ignore the angular depen-The maximum results from the interplay of these two factors.
dence of the transfer integré®) as it is not essential here. T_he first f?]ctor always Iﬁadsl to th?. glgant negatl\?e &nagﬁ_clatorﬁ-
We also suppose that,=0. Then the resonant BMP hop- sistance that occurs when large fields are applied, while the
) 2 . N " second one, under certain conditions, may be responsible for
ping rate between_ the occupied and empty sites in question I3 quite sizable positive magnetoresistance. In the following
obviously proportional to an overlap integral of the above-geciion, we will show that these effects are indeed seen in

mentioned distributions: some dilute magnetic semiconductors and magnetic nano-
structures.
(0) a.(A)gn(A
Wiz ocj 440:(4)0o(4), 4D VI. COMPARISON WITH EXPERIMENT
represented by the shaded areas in Fig. 2. It can be seen that A. Dilute magnetic semiconductors

initially, at zero field, the fluctuations at both sites with all  Bgth positive and negative magnetoresistance have been
possible directions of local magnetizationgectorsA) are  experimentally observed in the insulating region in several
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[I-VI semiconductors, such as CdSe, HgTe, CdHgTe, and 10
ZnSe, doped to higkup to several atomic percentoncen-
trations with transition metals, mainly, with Mn. Fprtype
materials, several, sometimes controversial, explanations o
these phenomena were put forwaiske Ref. 6 and refer-
ences thereinthat are based on the complex nature of local-

ized acceptor states involvéd.o avoid unnecessary compli-
cations, we will restrict ourselves to a case mfloped 107
Cdy 9gMng osSe, where donors, on which the magnetic po-
larons reside, can be described by means of a simple hydrc
genlike model.[A detailed and consistent theory of the
BMPs in this material was developed by Dietl and Sptek
who successfully applied it to a description of the experi-
ments on spin-flip Raman scatteriigee also Ref. 11
Later on, the BMP hopping conduction was studied experi-
mentally in these material$.However, the theoretical inter-
pretation of these experiments given in Ref. 12 was based ol
a static model that grossly overestimates the magnetoresis
tance. We will analyze these experiments in terms of the
above-developed fluctuation-driven hopping model.

We start our analysis from the experimental dd&ay. 1
from Ref. 12 on the temperature dependence of the resistiv-
ity (measured at zero magnetic field and at the magnetic fielc
B=6 T that is close to saturatiprof two Cd, 9gMng gsSe
samplega) and(b) with different donor concentrations equal
to 6x10% cm 3 and 1.2 10 cm3, respectively. It
should be noted that these dependences are of the activatic
type with the activation energy decreasing with magnetic
field. This fact clearly indicates that BMP hopping is driven
by the thermodynamic rather than quantum fluctutations o

magnetization. Then, by means of our basic for , \ ) .
9 y (a3 at T=1.7 and 4.2 K, respectively. The solid and dashed lines rep-

Ekoe]n v?éBe:(t?a;Z%EifTe} O:/aﬁ\l;vgser:)ftthhee Zzllir-?ir;|§h[;f:|\£pr(08n) Shiftresent the theoretical results obtained with and without spin-flip
W (d) from these data to be close to 16.4 and 9.0 K forprocesses taken into account, respectively, with the following set of
sapmples(a) and (b), respectively. These shifts together with 5\7 rfon)witg.rg.(z) 5\/:\/"4(_2) Klgf:gjg 5K_3'6 K Ee=34 K 0
A,=180 and the parametefgp=1.2 K, g=2, andJ=5/2 P ' ’

(Ref. 10 for the modified Brilluoin function34) were used ) ) ) )

to plot the calculated magnetoresistaiidg) of DMSs (Fig. ~ involved in the hopping conduction belong to the peak in the
3) for T=1.7 and 4.2 K where it is compared with the ex- energy distributionn(e) that describes the impurity band.

perimental data from Ref. 12. In calculating the magnetoreThese states originate from the donors that are quite well

10

/p(0)

= 10 () b

p(H

1 0'2 I I

0.0 4.0

Magnetic Field (Tesla)

6.0

FIG. 3. Magnetoresistance of ggMn ,sSe for various donor
goncentrationsn: (a) 6 10 cm™3, (b) 1.2x10Y cm 3. The
circles and squares represent the experimental ((eh 12 taken

sistance(32) we used the expression25) (spin flips are
forbidden and (26) (spin-flip processes are allowedt can

separated from each other with comparatively small localiza-
tion radii and, therefore, with rather large polaron shift2).

be seen that the latter one leads to a better agreement wifn the other hand, the states involved in optical absorption

the experiment.

are close to the Fermi level, which lies in the band tail of the

A few comments should be made as to possible sources dhpurity band. These states originate from large-scale fluc-
discrepancies between the theory and experiment as well agation of the impurity potential; i.e., they are associated
between the optictl and electricaf® data. The samples un- with aggregations of several dondfsTherefore, the local-
der consideration are close to the metal-insulator transitiofyed electron function is spread over somewttat7 times
(MIT) point'? where the spatial fluctuations of the donor greater volume than that of the isolated donors: i.e., its ef-
concentration are large enough. First of all, it explains Whysetive localization radius is from 1.5 to 2 times greater. As a
the above-obtained zero-field polaron shifts6 and 9 K, regylt, the polaron shift is correspondingly lower than that
which for a simple hydrogenlike modidee Ref. 10 and Eq. typical for the resistivity measurements.

(20)], whereQ)=167a® with a being the localization radius Moreover, with its higher donor concentration, sam{ble

of the BMP), are equal to is closer to the MIT point where the spatial fluctuations of
the impurity potential are large. Here, in accordance with the
percolation theory® even the states that are in the vicinity of
the energy-distribution peak reveal the tendency to coalesce.
The donors will often form di- or tri-atomic “molecules,”
are several times greater than thatZ K) extracted from thus increasing the effective localization radius. This ex-
the optical experiment®. Indeed, for thees-percolation  plains(i) why the polaron shift of samplg) is smaller than
model?* which seems to work here, the states effectivelythat of samplg(a) (see Fig. 3 and (ii) why our simple iso-

W,(0)= ( (42)

1—‘ex )2 X(O)
2gus/ 327ad’
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10° : experimental data. Here, like that of DMSs, the activation
g energy of the magnetoresistance is a decreasing function of
magnetic field. This again is a direct signature of BMP hop-
ping driven by thermodynamic fluctuations of magnetization.
We used the following values of the zero-field polaron shifts,
W,(0)=24.2 K and 17.4 K, and of the scatters of the elec-
tron energies,6=15.0 K and 22.2 K, respectively, for
samples B and A to fit the theoretical temperature depen-
dences of the zero-field resistivity to the experimental dfies.
The data shown in this figure correspond to samples A and B
grown at the same 2-ML ErAs depositions and at different
temperatures. Sample Bee Fig. 4 with islands of smaller
lateral sized than that of sample A has a smaller average

distancer between them. The observed crossover results
from competition between the activation energy témhich
increases as the islands’ size decrenaeas the hopping in-
tegral term(which decreases as the separation between the
islands decreasgdn expression(32). At low temperatures
the activation term prevails, while at high temperatures the
conductivity is governed by activationlesshopping. (This
crossover can be reversed at low temperatures by applying
magnetic field that quenches the activation endspe Fig.
4(b)]. The theoretical curves in Fig. 4 were calculated for a
typical lateral size of the islandg=50 A (Wp=17.4 K)
and 40 A W,=24.2 K), for samples A and B, respec-
5 ‘ ‘ ‘ tively, which is consistent with transmission electron micro-
0.0 1.0 20 3.0 40  scope(TEM) observation® We used the Zeeman splitting
Magnetic Field (Tesla) at saturation, A;(=50 meV. Relatively small €20%)

FIG. 4. Resistivity of the ErAs/GaAs nanostructures as a func.changes ird have a dramatic effect not only on the zero-field
tion of (a) temperature anéb) magnetic field perpendicular to the re€sistivity but also on the scale of the negative magnetoresis-
direction of growth atT=1.7 K (Ref. 18. Diamonds reperesent tance. Inaccordance with our model, the latter definitely cor-
sample A; circles represent sample B. Solid lines are theoreticdlelates with the islands’ sizel and volumeV=(), and,
results. therefore, with the magnitude of the zero-field polaron shift

(40), W,(0)~ 1N [see Fig. 4b)].) At intermediate fields, the

tropic model fails to describe all the details in the field de-resistivity as a function of magnetic field may reveal a

pendence of the BMP hopping resistivity in &zgVingosSe.  maximum the origin of which has been explained in Sec. V.
The experimental curvé$® clearly display a dependence

of the magnetoresistance on the orientation of magnetic field
that cannot be explained in the framework of our simple
Recently, the molecular beam epitafylBE) technique isotropic model. A few factors may contribute to this effect,
has been used to grow self-assembled nanometer-sized Er&sch as the anisotropy of the magnetization and the anisot-
magnetic islands(quantum dots embedded in a semi- ropy in the shape and size of the islands that can interplay
insulating GaAs matrix when the amount of material deposwith the complex nature of the confined electronic states to
ited in the ErAs layers ranged from 0.5 to 2.5 molecularcause an anisotropy of the exchange coupliag was ob-
layers (ML ).*® Precise control of the deposition conditions served for the hole states in ErAs quantum wétfg.
made it possible to control not only the concentration of A comment is in order as to a possible role of the charg-
these islands and interisland distance but their size, whiclng energy in the description of the hopping conductivity in
ranged from 4 to 80 nm. Analysis of the temperature depenErAs/GaAs nanocomposites. For islands with dimensions of
dence of the zero-field resistivity together with the data or40-50 A, this energy is of the order of 200 K. That is much
the magnetoresistance for different samples clearly showlarger than all the characteristic energies involved including
that the low-temperature conductivity in these materials cam residual high-magnetic-field activation energy which is of
be explained in the framework of fluctuation-driven BMP the order of|[Eg|+ 8/6=2-3 K. A possible explanation for
hopping’18 this is that the conductivity is due to the carriers moving in
In the analysis of the data on magnetoresistdhee used an almost unoccupied uppéfor electrong or lower (for
the modified Brillouin function(34) to fit the experimental holeg Hubbard band. These carriers might be supplied by a
data on magnetization and susceptibili8b) with the spin  small uncontrolled concentration of dopants in the GaAs ma-
andg factor of the Er ions)=3/2 (Ref. 25 andg=7.4, and trix. However, it is more likely that the Fermi levél; is
with the effective temperature describing antiferromagnetiqinned by overlapping density of statd30S) of the band
interaction, To,=4 K. One can see that formulg2) de- tails that originate from the electron and holelike localized
scribes the temperature dependence of the zero-field resististates of the semimetallic ErAs islands. If it is true, then it
ity [Fig. 4@)] well in the temperature range relevant to thecan be shown that, due to a significant difference in the ef-

~
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fective masses of electrons and holes, the Fermi level can be The assumptior{A2) allows us to calculate the matrix
shifted from the center of a charging-energy gap towards &lements of the operatét;, [Eq. (5)] between the initial and
subband with larger DOS, thus leading to a residual activafinal states. As a result, Fermi’s golden rule can be presented
tion energy that is much smaller than the charging energyn the following form:
and that does not depend on the concentration of the uncon-
trolled dopants. 2m .

Wi=7= IZ |(i|H 1l f)|? exp( — BE;) 8(E;—E;)
VII. CONCLUSIONS

2 _

A simple theory of the bound magnetic polaron hopping “hz 02; E Ers |t<r1o2|zeXF{_ﬁ(51+ E%‘i)ol
driven by the fluctuations of local magnetizations gives a 172 vy P
reasonably good explanation, both qualitative and quantita-
tive, of the experimental data on giant negative and positive
magnetoresistance in dilute magnetic semiconductors and
nanostructures. Future refinements of the theory of the BMP
hopping presented in this paper should incorporate magnetic- - :
fielrszor?e%tation effects tr?atpare believed tg be conngected"here B=1IT, indices p,q.r,s enumerate corresponding
with the shape anisotropy of magnetic nanostructures.  eigenstates, anft,, . |* is given by Eq.(9) with 6y, being

the angle betweeﬁl and 172; ES o andE, are eigenvalues

+E(1o 11929 o0 281 T,

+ES-E)), ~EP), (A3)
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) ! 2w — © d\ )
APPENDIX A: COMPARISON WITH THE = s-d MODEL Wi > > |t0102|2f S Trexd —BH,— (B—i))
9192 vy, *

Let us start from the standasdd spin Hamiltoniafn>*
X(€—o101T1/2)]

HED = en+Hi ({3 ) —s| T W(R)|2J +gusB . -+
k et Hi({Iih) — s« ex§|: | W (R)[* I+ 9ue KTrextl — BHy— N (eg— 0ramol o/2)]. (A4)
= e N+ He—s L, (A1)  As a next step we define two Zeeman splitting vectars

) ) L =A-v; andA’=A" v, and use the approximation, first in-
where[l', is the exchange coupling constant affdR|) is  troduced in Ref. 11,
the electron wave function at the atomic dit€quation(Al)
describes the exchange interaction of an electron, localized at

the BMP sitek (k=1,2), with atomic sping,, in the vicin- g(F)=J o(A-T)g(A)dA, (AS)
ity of this electron; i.e.§k and fk are operators of the elec-

tron spin and atomic exchange field, respectively. Thevhereg(l') is an arbitrary function of the operatdt. It
HamiltoniansH, describe interactions of the atomic spins finally yields

with each other and with the external magnetic fiBldThe

explicit form of H is not important for further derivation. In W :2_77 s f J' T, |2

order to calculate the hopping probability by means of Fer- 12 hZ! 010, 7192

mi’s golden rule, we assume that in the initidil}) and final

(|f)) states of the system the electron is fully spin polarized ex o1A2— € BL(A)BL(A")

and forms BMPs on sites 1 and 2, respectively. Introducing T 1 2

initial (»,) and final (,) spin-quantization axes we can rep- A A

resent|i) and|f) as X 8| €15~ %)d& dA’ (AB)
N2 T
|'>—|V101>|2>b101|0>, (A2a) Equation(A6) coincides with formula15) except that here

we omitted the acoustic phonon contribution. Also we re-

|f)=v202)[1)b}, |0). (A2b)  placedPy(A), Eqg.(17), with

Here o=+ 1, |1oy) and |k) are the eigenvectors of the Pu(8)=Trexp( — BHy) 5(5—fk)]{jk}, (A7)

operatorsH,— oy /2 and Hy, respectively,|0) is the

vacuum state, and operatdvﬁgk are given by Eq(7) with which are defined as quantum-mechanical expectation val-

R ues, rather than the functional integrals over the classical
the angles pertaining to the unit vectarg. magnetization fields.
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The approximatiorfA5) is valid if the number of atomic APPENDIX B: PHONON-ASSISTED HOPPING

spins, N, within the localization volume&) of the BMP is o t step is t luate the oh ist R
large enough)¥2>1) 1 Under the same circumstances and _, >0 N€Xt SI€P 1S 10 evaluate the phonon-assis _ecupfg
of the hopping rat€22) by replacing the summation over

when the magnetization is far from saturation, the distribu- . 4 ) . .
. =S . . by an integration. We will also use the standard dispersion
tion functions P, (A) are Gaussian and are given by Eq

: ; . "law for acoustical phononsy,=sgq, together with the fol-
11 m m q
(18).™ They remain Gaussiafbut temperature independgnt lowing expression for the electron-phonon coupling matrix

even if H,=0, i.e., when Eq.(18) is evaluated with the element®21

Curie-Weiss magnetic succeptibilty. '
In order to match our results with those of Mbwe set E2

t, ,.=ty, €,=0, B=0, andH,=0. We will also neglect Agl?=———(1—c0sq-T12)pq, (B1)
10, Loy €12 k g | Aql Y 0-T12)pg

direct contributions from acoustic phonofsonsidered by
us) and from lattice polaronéconsidered by NP If accord-  \hereE, is the deformation potential/ is the total volume

ing to NP we further assume that of the systemd is its density,s is the speed of sound, and
F=2A,> J=2A.L, (A8) pazif W Ped T o B2
) Wolv
then according to EqA7) is the Fourier transform of the localized-electron density. It
gives
NJ
Pud)= 3 F(L)SA—2AL), (A9) o VI one on)
=0 Wip ' = (P12 '+ P12 )
2hT
where F(L)/(2L+1) is the numb_er of ways in whiciN _ E2VE2 rqp singr,
moments each equal thcan combine to give the total spin =Wo—————| dqagog| 1—
L.** With these simplifications the hopping probabil{46) 2m%ds’hi Jo ariz
can be evaluated as
| N ex _(2Wp_612_ﬁq5)2
NJ q 8W,T
2
LZO F2(L)CosiAL/T) (2Wy— 1t hgs)?
Wi12% —3 +(Ngt1l)expg — BW,T , (B3)
L §:=o F(L)F(L")coshALL"/T) whereqp is the radius of the Debye’s sphere and
NJ \/;t 2
> F2(L)exp(ALIT) WO:JF(MJAO)- (B4)
=0 2hT
S - A0 In derivi iorB3), the integrals containing t
. , n deriving expressio , the integrals containing terms
) Lz,zo F(L)F(L")exp(A.L"/T) With 7. = Ag(€rz* hwg) AW, T#0 [see Egs.(22~(25)]

were omitted. They are negligibly small compared to those
retained in Eq(B3) either due to a small factore(Z/ZWp)2
<1 when|e;) <W, or because the corresponding integrands
reach their sharp maximums &tw,=*e€;, (i.e., 7.<1)
3r 2 When|€1?|>wp' . . N
) (2L+ 1)exp< B 3L ) We will analyze expressiofB3) in the two limiting cases
2J(J+1)N)’ of (a) large polaron shifts (@/,>|e;;]), which may take
(A11)  place at relatively small magnetic fields, and (bj small
polaron shifts (2V,<|e;,|), which may be relevant for large
which can be justified for #L<JN, i.e., when the magnetic fields when the BMPs are almost frozen out.
magnteization is relatively far from saturatigeee Ref. 11 (@ In this case the integrands in E¢B3) have sharp
for detailg. Substituting Eq(A11) into Eq.(A10) and evalu- maxima atiqos=T<W,. This has the consequence that the
ating the sums by means of the steepest descent methogtimal hopping path goes through the point where the elec-
yields tronic energies at both sites are close to each other, so that
the hopping event is accompanied by absorption or emission
wyxexd —Wy(0)/2T], (A12)  of a low-energy phonon the energy of which is closeTto
Then the integral in EqB5) can be evaluated by means of
whereW,(0) is given by Eq(40) with To=0, i.e., with the  the steepest descent method which gives
Curie-Weiss magnetic susceptibility. This is also in clear 5
agreement with the numerical results of Kéee NP, Fig. L WED =w,Z ex _(ZWp_ElZ)
as well as with our analytical resulfsee Sec. Y. 12 0 8W,T

This formula coincides with the NP formul(d5) if in the
latter the lattice polaron enerdy,— 0. Moreover,

1
F(L):\/_;(ZJ(JJrl)N

: (BS)
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where

E2rZn%3 T)“
~ i) B6
I rcra¥e (B6)

Heren is the concentration of atoms in the crystal ands

T/®=102, E;=1 eV,s=5%x10° m/s,d=5x%x10° kg/n®,
r;,=50 A, and the parametef=10 °-10°. Therefore,

for this regime the contribution from the phonon-assistedVhich is much smaller than the:{))
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=(67?n)3r ,T/®<1. By the same tokergpa<1, where
a is the localization radius of the BMP. Therefore, here we
usedpq, =1V, for evaluations.

(b) In the opposite case ofV,<|e;,|, the integrands in
Eq. (B3) reach their sharp maxima &tjos=|e;,—2W,|. In
pwis situation, the phonon-assisted tunneling prevails over the
resonant one because it either goes without activatign (
>¢€,) or, whene; < e,, it requires an activation energy, |
2/8W, that is needed for

transitions can be neglected compared to the resonant on@sPurely resonant hopping.

[see Egs(22) and(23)] even though both are characterized
by the same activation energy\(g,— 612)2/8Wp. In making
those estimates we took into account the fact that,

|

1/2
Vo Pqq

mds*h?

E§|€1_€2|

N,

wherep, is given by Eq.(B2) with go=|e€17/%is and
ﬁQOS) B 1} -t

ol

is Planck’s distribution function. Expressi@B7) is nothing
but the well-known Miller-Abrahams’ formut&?! for the
phonon-assisted hopping rate.

N (B8)

qO:

APPENDIX C: €3 CONDUCTIVITY

Here we will evaluate the activation energy of the BMP
hopping conductivityf*

63:(&”):f:cdein(ej)J'iodein(ei);ij , (Cl)

Na,.

For the sake of certainty, suppose now thgt;,>1 and
W,<|e1 . Then, by using Eq(B3) with w, equal to the
preexponential factor from E@27) one can easily show that

€,<e€, (phonon absorption
(B7)

+1, €,>¢€, (phononemission

(We count the energiesand the Fermi leveEg with respect
to the middle of the “impurity” band which width is equal
to 8.) After substitutinge;;, Eq. (30), into Eq.(C2) the in-
tegration yields formuld33), where

SI6+|Es|,  |Ee|>a12,
S T\ o2+ EYs, |Ef<6l2, €3
and
f a?(2—al2)l3, a<1,
(=) o(3a)+1U6a?), a>1. €4

Here ey is the Miller-Abrahams part of the activation en-
ergy that does not depend on magnetic field. It reaches its

by means of a rectangular distribution function of the elec-minimum value of %/12 when the Fermi level lies in the

tron energies:

1/6,
0;

le|< 612,

2
|e|=612. €2

n(e)Z[

middle of the band E-=0). The functionf(«) depends on
a dimensionless polaron shift=2W,/é. The shape of this
function depends on the distribution functinge), but in all
casesf(a)—0 asa—0 andf(a)—1 asa— .
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