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Method for tight-binding parametrization: Application to silicon nanostructures

Y. M. Niquet,* C. Delerue, G. Allan, and M. Lannoo
Institut d’Electronique et de Microe´lectronique du Nord, De´partement ISEN, Boıˆte Postale 69, F-59652 Villeneuve d’Ascq Cedex, Fran

~Received 18 February 2000!

We propose a method for tight-binding parametrization, designed to give accurate results in the calculation
of confined edge states in semiconductor nanostructures of any size. Indeed, this improved tight-binding
description accurately reproduces the bulk effective masses as well as the overall band structure. We apply it
to the specific case of silicon. The electronic states of silicon nanostructures~films, wires, and dots!, with
various shapes and orientations, are calculated over large range of sizes~1–12 nm!, including spin orbit.
Accurate analytical laws for the confinement energies, valid over the whole range of sizes, are derived.
Consistent comparison with the effective mass andk•p methods show that these are only of semiquantitative
value even for sizes as large as 8 nm. The reasons for the failure of these techniques is analyzed in detail.
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I. INTRODUCTION

Recent developments in the field of Si nanostructures1–3

have made possible devices with feature sizes below 10
These devices have shown exciting low-temperature tra
port properties4 with promising applications in microelec
tronics ~single-electron transistors and memories!. The most
appealing challenge is now to achieve reliable roo
temperature operation. In this context, simulation is one
the keys to a better understanding of the underlying phy
and optimization of these devices. An accurate and effic
description of the electronic properties of Si nanostructu
with arbitrary geometries in the range 1–10 nm is th
needed. However, such a description is still missing.

Indeed, ab initio, self-consistent methods such as t
local-density approximation~LDA ! can only be used for
small clusters (,1000 atoms! with high symmetry.5 They
are not suitable for the computation of transport propertie
realistic situations. Semiempirical, non self-consistent me
ods @such as pseudopotential6,7 ~PP’s!, tight-binding8–11

~TB!, or k•p ~Ref. 12!# can solve much larger problem
Semiempirical methods are designed to make the best
sible approximation to the self-consistent one-parti
Hamiltonian H0 in bulk material, either in the whole firs
Brillouin zone ~PP, TB! or around specifick points (k•p).
They involve adjustable parameters~e.g., effective masses
TB interaction parameters etc.! that are fitted to experimenta
data orab initio bulk band structures. These parameters
then transferred to the nanostructures~i.e., H5H0 inside the
nanostructure! with appropriate boundary conditions. Th
better the bulk description and boundary conditions, the b
ter the electronic structure we expect in nanostructures.

Our aim in this work is to present an improved TB d
scription designed to give accurate results over the wh
range of sizes. For this, we fit the TB parameters not only
bulk band energies in the first Brillouin zone but also
effective masses. This was not the case of previous TB tr
ments, but is essential if one wants to obtain accurate res
for large size nanostructures where the effective-mass
proximation~EMA! or k•p models become exact. We als
include spin-orbit coupling. From improved computer cod
we are able to apply the TB treatment to nanostructures w
PRB 620163-1829/2000/62~8!/5109~8!/$15.00
m.
s-

-
f
s

nt
s

s

in
-

s-
e

e

t-

le
n

t-
lts
p-

,
th

feature size in the range 1–12 nm, which to our knowled
has never been achieved previously. This extended rang
lows us to study precisely the overlap region where both
andk•p or EMA methods are accurate. We provide analy
fits to the confinement energies which are practically ex
over the whole range of sizes. We finally give the structu
of low-lying excited states and compare withk•p and EMA
methods.

We start by giving details about the TB parametrizatio
and compare the full results withk•p or EMA methods near
the band extrema. We then consider various nanostruct
establishing analytical laws for the confinement energies.
finally discuss the origins of the failure ofk•p and EMA
methods, as well as the critical size at which this occurs

II. sp3 TIGHT-BINDING MODEL

A. Tight-binding interaction parameters

TB parameters are usually fitted on bulk band structu
calculated withab initio methods~e.g. LDA, corrected of the
band-gap problem!, or even with other semiempirical meth
ods like pseudopotentials.13–16 TB models can provide a
rather good description of the valence bands~VB’s! and low-
est conduction bands~CB’s!, with a rms energy error distrib
uted over the whole first Brillouin zone. However, no spec
attention is usually paid to the description of the neighb
hood of the valence-band maximum~VBM ! at G point in Si
and conduction-band minima~CBM! near X point in Si.
These points are of prime importance in calculation of co
fined edge states, at least in large nanostructures. Ind
most TB models do not reproduce the high anisotropy
both CB and VB effective masses. Although these mod
did prove to give satisfactory results in highly confined sy
tems, they clearly do not extrapolate tok•p in large nano-
structures. As an example, the orthogonal third-near
neighborsp3 TB model of Ref. 15 givesg2 5 1.233 andml*
5 0.567, to be compared with the experimental values17 g2

50.320 andml* 50.916.
Our way to cure this problem is to fit TB parameters

bulk band energies as well as CB/VB effective masses.
total rms error is thus a weighted average of the rms erro
5109 ©2000 The American Physical Society
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5110 PRB 62Y. M. NIQUET, C. DELERUE, G. ALLAN, AND M. LANNOO
bulk band energies and on effective masses. It is minimi
with a conjugate gradient algorithm. Bulk band energies
selected from a GW band structure,18,19 which is the best
available at the moment. An orthogonalsp3 TB model with
up to third-nearest-neighbor interactions and three-ce
integrals15 is considered here. The set of 20 TB parameter
reported in Table I. TB bulk dispersion relations are plott
in Fig. 1; TB effective masses and Luttinger parameters
reported in Table II. As can be seen from Fig. 1 and Table
the overall quality of the fit is excellent. In particular, th
valence band anisotropy is well reproduced, the ratiog3
2g2)/g1 being close to the experimental value. We m
therefore expect better hole wave functions in nanostr
tures. This is, to our knowledge, the best description of
VBM and CBM obtained so far in Si with asp3 TB model.
This TB band structure is close to the one of Ref. 15 in
rest of the first Brillouin zone.

TABLE I. Third-nearest-neighbor~NN! TB parameters for sili-
con and first NN TB parameters for Si-H. The notation is that
Slater and Koster, Si-H parameters being given in terms of t
center integrals. Neighbor positions are given in units ofa/4. D is
the spin-orbit coupling parameter.

Si 3rd NN TB parameters

Ess@000# 26.17334 eV Ess@111# 21.78516 eV
Epp@000# 2.39585 eV Esx@111# 0.78088 eV

Exx@111# 0.35657 eV
D 0.04500 eV Exy@111# 1.47649 eV
Ess@220# 0.23010 eV Ess@311# 20.06857 eV
Esx@220# 20.21608 eV Esx@311# 0.25209 eV
Esx@022# 20.02496 eV Esx@113# 20.17098 eV
Exx@220# 0.02286 eV Exx@311# 0.13968 eV
Exx@022# 20.24379 eV Exx@113# 20.04580 eV
Exy@220# 20.05462 eV Exy@311# 20.03625 eV
Exy@022# 20.12754 eV Exy@113# 0.06921 eV

Si-H 1st NN TB parameters:
EH 0.17538 eV Vsss 24.12855 eV

Vsps 3.72296 eV

FIG. 1. Band structure of bulk Si in the orthogonal third-neare
neighbor TB and GW models. TB parameters are given in Tab
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To achieve better boundary conditions in nanostructu
Si-H parameters have been fitted on the SiH4 experimental
excitonic gap20 and charge transfer calculated within LDA
H atoms are described by their 1s orbital. Si-H parameters
are also reported in Table I.

B. Comparison between TB andk"p band structures

In this section, the TB band structure near the VBM a
CBM is compared with ak•p description of bulk Si with
consistent parameters. Since Si is an indirect band-gap s
conductor, we assume an uncoupled valence-band maxim
and conduction band minima. The six uppermost vale
bands~doubly degenerate heavy, light, and split-off band!
are described with a six- bandk•p model~Dresselhaus-Kip-
Kittel Hamiltonian21!. It takes into account the large valenc
band anisotropy of Si, and spin-orbit coupling. In this mod
the periodic partun,kW(rW) of valence Bloch wave functions
Cn,kW(rW)5eikW rWun,kW(rW) is expanded in the basis of the six u
permost valenceG states$um,kW50W(rW)%. The input parameters
for this model are the three Luttinger parametersg1 ,g2, and
g3, and the spin-orbit splittingD. The six conduction-band
minima along GX-like directions are assumed to be u
coupled from each other, and described by a single-b
effective-mass approximation. The input parameters for
EMA are the longitudinal and transverse effective mas
ml* andmt* , and band-gap energyEg .

For consistent comparison, the TB Luttinger paramet
and CB effective masses are used in the six-bandk•p model
and the EMA. The six-bandk•p model and TB bulk valence
bands are shown in Fig. 2, where we see that the six-b
k•p model fails to reproduce long-range dispersion. The
lence bands tend to acquire too much dispersion beca
they miss couplings with other states, which are not includ
in the six-bandk•p model.25 The quality of the bulkk•p
valence bands strongly depends on the wave-vector di
tion. The mean difference between TB andk•p valence

f
-

-
I.

TABLE II. Experimental and TB band-gap energy, effectiv
masses, and valence-band Luttinger parameters. A lattice param
a55.431 Å was assumed in the calculation of TB effecti
masses.

Experiment~Ref. 17! TB model

Indirect band-gap energy~at 0.832GX):
Eg 1.170 eV 1.143 eV

Conduction-band effective masses:
ml* 0.916m0 0.918m0

mt* 0.191m0 0.191m0

Valence-band Luttinger parameters:
g1 4.270 4.271
g2 0.320 0.408
g3 1.458 1.432

Valence-band mean effective masses:
mhh* 0.537m0 0.529m0

mlh* 0.157m0 0.157m0
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PRB 62 5111METHOD FOR TIGHT-BINDING . . .
bands is less than 10% in a;250 meV range. In the sam
way, the lowest conduction band acquires too much disp
sion around CBM’s when compared to the TB model, es
cially in transverse mass directions. Also, the mean diff
ence between TB and EMA conduction bands is less t
10% in a;200-meV range.

III. APPLICATION OF THE TB MODEL TO Si
NANOSTRUCTURES

The TB model is applied here to the calculation of t
electronic structure of various free-standing Si nanostr
tures including Si~100! and ~110! films, @100#- and @110#-
oriented square-based Si wires and cylinders, and ‘‘sph
cal’’ ( Td symmetry! and cubic Si dots. Surface danglin
bonds are saturated with hydrogen atoms. Spin-orbit c
pling is taken into account, which was not the case in m
previous calculations7,9,10 ~details of the TB calculation can
be found in Appendix A!. In all the cases, TB calculation
are compared with six-bandk•p ~VB! or EMA ~CB! results
~details of thek•p and EMA calculations can be found i
Appendix B!.

Because thek•p model is not an atomistic description
there is no thorough way to provide ak•p potential consis-
tent with TB boundary conditions. Thus an infinite barrier
assumed ink•p and EMA calculations, and its position i
chosen in such a way that the volume of the system is e
to the total volume occupied by the Si atoms~see Appendix
B for explicit expressions of the size in each case!.

A. Confinement energies versus size

Results for Si~100! films are given in Fig. 3 versus film
thicknessL f . The upper part of the figure shows the ener
of the highest valence subband maximum atG ~in-plane
wave vectorki50) within the TB and six-bandk•p models.
The lower part shows the energy of the lowest and sec
conduction subband minima atG, as well as the energy o
the other subband minima along@010# and @001# directions.
Note that the lowest and second conduction subbandsG
are degenerate in the EMA method, which is not the cas
the TB method. They exhibit a large and pseudoperio
splitting, due to intervalley coupling between opposite@100#
bulk CB minima.22

Results for@100#-oriented wires with various shapes a
shown in Fig. 4. Square wires with either (010)3(001) or
(011)3(01̄1) faces and cylinders were considered. The
ergy of the highest valence and lowest conduction subba
at G ~longitudinal wave vectorkl50) is plotted versus the

FIG. 2. Bulk Si valence-band structure within six-bandk•p and
TB models. TB Luttinger parameters are used for a consistent c
parison. Spin-orbit coupling is taken into account.
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effective diameterd1 of the wire, which is the diameter o
the cylinder with the same transverse section as the wire

Results for spherical and cubic@(100)3(010)3(001)
faces# Si dots are shown in Fig. 5. The energy of the high
occupied state~HOS! and lowest unoccupied state~LUS! are
plotted versus the effective diameterd0 of the dot, which is
the diameter of the sphere with the same volume as the

The energy of the TB highest valence subband maxim
~or HOS! and lowest conduction subband minimum~or
LUS! is fitted in the whole 1–12 nm range with the follow
ing expressions:

Ev~d!5
Kv

d21avd1bv

~HOS!, ~1!

Ec~d!5
Kc

d21acd1bc

1Eg ~LUS!. ~2!

d is the characteristic dimension of the nanostructu
K,a, and b are adjustable constants;Eg51.143 eV is the
bulk band-gap energy. This expression is more accurate
the widely used fitK/da when a large range of dimensions
considered. It correctly behaves like 1/d2 in large structures,
so that it can be considered as valid over the whole rang

-

FIG. 3. ~a! Energy of the highest valence subband maximum
G in Si (100) films.~b! Energy of the lowest and second conducti
subband minima atG and energy of the other subband minim
along@010# and@001# (D). Results are given vs film thicknessL f ,
within the TB and six-bandk•p or EMA models. Energy is mea
sured with respect to the bulk VBM~a! and CBM~b!. The solid line
is a fit to TB results. Spin-orbit coupling is taken into account.



re
, 4

th
on

a

u

it
flu
u

n

en
n
ie

fo
-

it
o

uc-

us
in

om-
ials
od

V,
all-
do
m-
al-
-

evi-

o
ct to
r
rep-

v m-
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sizes. The fits are reported in Table III for all nanostructu
considered in this work. They are also reported in Figs. 3
and 5~solid lines!.

As shown in Fig. 4 for@100#-oriented wires and in Fig. 5
for dots, the TB band-gap energy mainly depends on
transverse section of the wires or volume of the dots as l
as their shape is not too prolate.7 Note, however, that this
result cannot be extended to higher excited states.

Spin-orbit coupling has little influence on the highest v
lence subband maximum or HOS energy in Si~100! films,
@100#-oriented wires, or spherical and cubic Si dots. Witho
spin-orbit coupling, the error onEv(d) is less than 10% in
the whole 1–12-nm range, but increases monotonically w
nanostructure size. Spin-orbit coupling has much more in
ence on the energy of the highest valence subband maxim
of Si~110! films and@110#-oriented wires. It always signifi-
cantly affects higher excited hole states, whatever the na
structure. This will be discussed below for Si clusters.

Our TB parameters provide considerable improvem
over previoussp3 TB fits. This may be especially be show
in Si films, where conduction- and valence-band anisotrop
must be accurately reproduced. Taking the example
Si~100! films, the third-nearest-neighborsp3 TB model of
Ref. 15 gives nearly a 60% higher confinement energy
electrons (mt* 50.567m0), but only half the confinement en
ergy for holes (g251.233). This previoussp3 TB fit cannot
therefore be safely applied to Si films, though it gives qu
equivalent band-gap energies in small spherical dots. C

FIG. 4. Energy of the highest valence subband maximum~a!
and lowest conduction subband minimum~b! at G for
@100#-oriented Si wires with various shapes. Results are given
the effective wire diameterd1 ~see text!, within TB and k•p or
EMA models. Also see Fig. 3 for more details.
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versely, our fit provides accurate results for any Si nanostr
ture, whatever its dimensionality.

We now proceed to test our TB model against vario
other descriptions such as PP, LDA, or other TB models
the case of small spherical Si dots. Our results are first c
pared with those of Ref. 7 calculated with pseudopotent
in the range 1–4 nm. As shown in Fig. 6, they are in go
agreement. Comparison with theab initio LDA calculations
of Ref. 5 corrected for the bulk band-gap error of 0.65 e
shows that our results are extremely good down to the sm
est clusters, except for some oscillations in the LDA that
not exist in TB. Finally, the agreement with other more co
plex TB models with overall band structures of similar qu
ity, such as thesp3d5s* model of Ref. 16 or the nonorthogo
nal TB model of Ref. 14, is also excellent for small (d0

,4 nm) crystallites. As a consequence, the results pr
ously published by our group9,10 for small spherical Si dots
remain valid.

B. Density of states in Si clusters

Figure 7 shows the ‘‘valence’’~filled states! and ‘‘con-
duction’’ ~empty states! densities of state,~DOS’s! for a
spherical Si dot with diameterd057.61 nm, within TB and
k•p or EMA models. Spin-orbit coupling is not taken int
account in this figure. Energies are measured with respe
the bulk VBM for filled states, and to the bulk CBM fo
empty states. The states are labeled with the irreducible

s

FIG. 5. Energy of the highest occupied state~a! and lowest
unoccupied state~b! for spherical and cubic@(100)3(010)
3(001) faces# Si dots. Results are given vs the effective dot dia
eterd0 ~see text!, within TB andk•p or EMA models. Also see Fig.
3 for more details.
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PRB 62 5113METHOD FOR TIGHT-BINDING . . .
resentations of theTd group. Figure 8 shows the valence T
DOS in the same dot, with spin-orbit coupling taken in
account for comparison.

Without spin-orbit coupling, theT2 HOS is s like ~no
nodes!, with protrusions along$111%-like directions. The
next occupiedT1 states arep like, with a nodal plane. Both

TABLE III. Fits to the energy of the highest valence subba
maximum~or HOS! and lowest conduction subband minimum~or
LUS! for various Si nanostructures, using expressions~1! and ~2!
~see text!.

Kv
~meV nm2)

av
~nm!

bv
(nm2)

Kc

~meV nm2)
ac

~nm!
bc

(nm2)

Si~100! films with thicknessd5L f :
21326.2 1.418 0.296 394.5 0.939 0.32
Si~110! films with thicknessd5L f :
21019.3 10.371 23.713 1123.2 0.535 1.481

@100#-oriented Si cylinders with diameterd5d1:
23448.4 2.194 1.386 2811.6 1.027 0.39
@100#-oriented Si wires with (010)3(001) faces and widthd
5d1Ap/2:
22817.9 1.988 0.708 2378.6 0.883 0.40

@100#-oriented Si wires with (011)3(01̄1) faces and widthd
5d1Ap/2:
22981.7 2.386 1.087 2162.0 1.129 0.13

@110#-oriented Si cylinders with diameterd5d1:
22551.8 2.970 0.813 2860.8 1.330 2.65

@110#-oriented Si wires with (01̄1)3(001) faces and widthd
5d1Ap/2:
22217.5 3.177 0.130 2684.3 2.237 1.40

Spherical Si dots with diameterd5d0:
26234.0 3.391 1.412 5844.5 1.274 0.90
Cubic Si dots with (100)3(010)3(001) faces and sided
5d0(p/6)1/3:
23967.0 2.418 0.522 4401.0 1.138 0.88

FIG. 6. Comparison of confinement energyDEg5Eg(dot)
2Eg(bulk) in spherical Si dots, between our TB model and pseu
potential~PP! or LDA.
T2 and T1 states can accommodate six electrons~threefold
space and twofold spin degeneracy!. These sixfold-
degenerate states are split by spin-orbit coupling into
fourfold- and one twofold-degenerate states. Further c
pling between split states may strongly affect the DOS,
pending on the size of the cluster. WhenD is much higher
than the splitting betweenT2 and T1 states (d0.5 nm in
spherical Si dots!, the HOS and next occupied states rema
s andp like, but can now accommodate only four electro
~see Fig. 8!. The HOS confinement energy remains nea
unchanged, but the higher excited spectrum is significa
modified. WhenD is much lower than the splitting betwee
T2 andT1 states (d0,5 nm), the HOS is fourfold degener
ate s like, followed by the other twofold-degenerates-like
state, then byp-like states. Although spin-orbit coupling ha
a negligible influence on the HOS energy, it may thus aff
tunneling spectroscopy and Coulomb blockade experime
in Si clusters.

The splitting betweenT2 and T1 states increases whe
decreasingg2 or g3. Again, a correct description of valence
band anisotropy is needed in the computation of the h
states. In particular, we do not observe any change in
HOS symmetry (T2) in the whole 1–12-nm range.11

The EMA LUS is sixfold degenerate, since the bulk C
minima are assumed uncoupled. Their envelope functi
are elongated ellipsoids oriented along the longitudi

-

FIG. 7. ‘‘Valence band’’ @filled states~a!# and ‘‘conduction
band’’ @empty states~b!# DOS is for a spherical Si dot with diam
eterd057.61 nm, within TB andk•p or EMA models. Energy is
measured with respect to the bulk VBM~upper part! and CBM
~lower part!. Spin-orbit coupling is not taken into account. Th
states are labeled with irreducible representations of theTd group.

FIG. 8. ‘‘Valence-band’’ DOS for the same spherical Si dot
in Fig. 7 (d057.61 nm). Spin-orbit coupling is taken into accoun
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~heavy! mass direction of each of the six bulk CB minim
These sixfold-degenerate EMA states are split into group
one A1 state, one twofold-degenerateE state, and one
threefold-degenerateT2 state in the TB model by intervalle
couplings. The ordering of these states in each group is
the same from dot to dot. The splittings of the lowest-lyi
group in spherical Si dots range from 0.1 meV for diame
d0 5 10.32 nm up to 68 meV for diameterd051.85 nm.

IV. COMPARISON BETWEEN TB AND k "p MODELS
IN SI NANOSTRUCTURES

Detailed comparisons betweenk•p and pseudopotentia
models have been performed in III-V~InP! and II-VI ~CdSe!
free-standing quantum dots,23–25 GaAs/AlAs quantum
wells,26 and strained InAs dots embedded in GaAs.27 In par-
ticular, these studies have shown the failure of the six-b
k•p model in free-standing InP dots, leading to the int
change ofs- andp-like valence states. Althoughk•p models
are known to overestimate confinement in small
nanostructures,7 no comparison betweenk•p and TB or
pseudopotential methods has been made in large, f
standing Si clusters.

There is striking evidence for the overconfinement
k•p and EMA models with respect to the model TB in Fig
3, 4, and 5, even in large nanostructures, as evidence
Fig. 7. k•p predictions obviously become worse from film
to wires and dots. In spherical Si dots, the error on thek•p
confinement energyDEg5Eg(dot)2Eg(bulk) is larger than
25% for d0,8.5 nm, and 50% ford0,4.5 nm. It is still
15% for d0.12 nm. The use of a multiband semiempiric
method such as TB is therefore to be recommended in
5–12-nm range for Si clusters. Indeed, thesp3 TB model is
not more difficult to solve than the six-bandk•p model in
this range, when valence-band anisotropy and spin-orbit c
pling are taken into account.

Despite this clear quantitative disagreement between
andk•p models, there is however qualitative corresponde
in the density of states and wave-function ordering in
clusters, as evidenced by Fig. 7. The few highest occup
and lowest emptyk•p states can be associated with a T
state with consistent wave-function symmetry. However,
splitting between successive states is not consistent with
calculations, the energy of higher excited states being fur
and further overestimated. The same conclusions may
drawn in large films and wires: thek•p models’s highest
valence and lowest conduction subband ordering is con
tent with TB calculations, but they suffer from increasin
overconfinement.

We now discuss the reasons why thek•p ~EMA! method
overestimates confinement energies in Si nanostructures
will focus on spherical Si dots. For the sake of simplici
spin-orbit coupling is not taken into account in the followin
discussion. However, we have checked that our conclus
did not change if spin-orbit coupling was included. We w
relatek•p errors in nanostructures tok•p errors in bulk de-
scription and boundary conditions. We thus introduce
‘‘Bloch decomposition’’ of any nanostructure stateF, which
is the projectionF̄n,kW of F on bulk Bloch wavefunctions
Cn,kW :11,25
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F̄n,kW5^Cn,kWuF&. ~3!

Cn,kW(rW)5eikW rWun,kW(rW) is the Bloch wave function with
wave vectork and band indexn. This Bloch decomposition
is performed on the restriction of the TB wave functionsF
to the Si part of the cluster, thus excluding H atoms.

There are three reasons whyk•p and EMA methods over-
estimate confinement energies with respect to TB. The m
reason is the poor bulk description within thek•p model.25

This was discussed in Sec. II B: valence and conduct
bands tend to acquire too much dispersion far from the VB
and CBM. k•p and EMA methods will thus overestimat
confinement energies in nanostructures. Overconfinem
becomes worse in small nanostructures that couple Bl
states farther and farther away from the VBM and CBM, a
for higher excited states. As an example,uF̄n,kWu is shown in
Fig. 9 for the three lowest emptyA1 states of a spherical S
dot with diameterd054.89 nm. The decomposition is pe
formed alongGX on the lowest two conduction bands~left
part of Fig. 9!. For clarity, uF̄n,kWu is shown in an extended
zone scheme, the first conduction band being on the lef
the X point, and the second one on the right.uF̄n,kWu is also
calculated on the first conduction band only in the transve
mass direction~right part of Fig. 9!. The full width at half
maximum of the main peak of theA1 LUS is proportional to
1/d0, and extends in the whole Brillouin zone in the smalle
nanostructures. Higher excited states, that have nodal pl
in the wave function, thus exhibit multiple peaks that exte
farther in reciprocal space, beyond the range of validity
bulk k•p and EMA descriptions.

The next reason is the coupling between bulk bands
nanostructures.25 Indeed, the six-bandk•p model assumes
that filled states can be decomposed on the six highest
valence bands. TB calculations, however, show that the h
est occupied states have nonzero projections on bulk con

FIG. 9. Bloch decomposition of the three lowest emptyA1 states
of a spherical dot with diameterd054.89 nm. The decomposition
is performedGX on the lowest two conduction bands. For clarit

uF̄n,kWu is shown in an extended zone scheme, the first conduc
band being on the left on theX point, and the second one on th

right ~left part!. uF̄n,kWu is also calculated on the first conductio
band only in the transverse mass direction~right part!.
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tion bands~see below!. In the same way, the lowest emp
states have nonzero projections on bulk valence bands
higher conduction bands. The details of interband coup
in nanostructures depend on boundary conditions. The tre
are, however, universal: interband coupling increases w
decreasing nanostructure size.

The last reason is the lack of correct boundary conditi
in free-standingk•p nanostructures. Indeed, thek•p model
cannot handle atomisticlike boundary conditions~e.g., a Si-H
bond!. However, the HOS and LUS wave functions may
partly delocalized over H atoms in small dots~see below!.
Therefore, hydrogen atoms will contribute to the confin
ment energy.

Results regarding interband coupling and boundary c
ditions are reported in Table IV. The total squared project
on bulk valence bandsPv , bulk conduction bandsPc , and
hydrogen atomsPH(Pv1Pc1PH51) is given for the HOS
and LUS of spherical Si dots with diametersd052.44 and
7.61 nm. The corresponding contributionsEv ,Ec , andEH to
the HOS and LUS energyE are also given (Ev1Ec1EH
5E). The coupling of the HOS with bulk conduction ban
and hydrogen atoms is very important in the smallest
(d052.44 nm). AlthoughPc is only 4.47%, the energy dis
tributed over bulk conduction bands is as large asEc5
1237 meV (E52414 meV). The coupling of the HOS
with conduction bands remains significant ford057.61 nm,
where stillEc5124 meV (E5286 meV). The coupling of
the LUS with bulk valence bands is less significant, but c
not be neglected either.

The only way to improve the bulkk•p description and
allow interband coupling is to increase the number of ba
in the k•p model.28 However, such a procedure is not rea
efficient, especially in indirect band-gap materials. Althou
the deficiencies of thek•p models are much more sensitiv
in free-standing nanostructures than in heterostructures,
will be important each time silicon nanostructures are hig
confined, as for Si nanocristallites embedded in SiO2. In the

TABLE IV. Total projection on bulk valence bandsPv , con-
duction bandsPc , and hydrogensPH for the HOS and LUS of
spherical Si dots with diametersd052.44 nm and 7.61 nm. The
corresponding contributionsEv ,Ec , andEH to the HOS and LUS
energyE are also given.

d052.44 nm d057.61 nm

HOS E ~eV! 20.414 20.086
Pv ~%! 88.44 98.89
Ev ~eV! 20.580 20.108
Pc ~%! 4.47 0.44
Ec ~eV! 0.237 0.024
PH ~%! 7.09 0.66
EH ~eV! 20.071 20.002

LUS E ~eV! 1.738 1.228
Pc ~%! 95.94 99.71
Ec ~eV! 1.740 1.230
Pv ~%! 1.69 0.11
Ev ~eV! 20.080 20.006
PH ~%! 2.37 0.18
EH ~eV! 0.078 0.004
nd
g
ds
th

s

-

-
n

t

-

s

ey
y

latter case, only TB or PP models can properly handle S
bonding, and should clearly be preferred tok•p models.

V. CONCLUSION

We have introduced an orthogonal third-nearest-neigh
TB model for silicon. Special emphasis was given in t
description of the valence-band maximum and conducti
band minima, including conduction- and valence-band eff
tive masses in the TB fit. This model was applied to t
calculation of the edge states of various Si nanostructu
~films, wires, and dots!, including spin-orbit coupling, over
the whole 1–12-nm range. Analytical laws for the confin
ment energies were given for the purpose of comparison w
experiment or with other models. The comparison with t
LDA, pseudopotential andsp3d5s* models was performed
to test the accuracy of this TB fit. We showed improveme
in the electronic structure of Si nanostructures with respec
previoussp3 TB models. The deficiencies ofk•p and EMA
models in free-standing Si nanostructures were discussed
quantified with the TB model. We showed that thek•p
makes substantial errors even in large zero-dimensio
nanostructures, due to a poor bulk description and lack
interband coupling. The use of this efficient and accurate
model in the calculation of transport properties of Si nan
structures should allow a comprehensive study of the phy
of these devices.
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APPENDIX A: TB CALCULATION OF THE ELECTRONIC
STRUCTURE OF Si NANOSTRUCTURES

The tight-binding model introduced in Sec. II can be a
plied to any Si nanostructure, once given the atomic po
tions. To avoid surface states in the gap, all dangling bo
are saturated with hydrogen atoms. Spin-orbit coupling
directly taken into account in Si films and wires using
spin-augmentedsp3 basis. However, spin-orbit couplin
doubles the dimension of the Hamiltonian, and makes
complex Hermitian, rather than real symmetric in dots. B
ing small in Si, it is calculateda posteriori in dots in the
basis of the few highest occupied states of the spin-o
free-dot Hamiltonian. About ten states are usually enough
ensure convergence of the hole ground-state energy. S
orbit coupling has negligible influence on the lowest cond
tion states.

In quantum dots, where no translationnal symmetries
help reduce the size of the problem, a basis is first c
structed for each of the five irreducible representations of
Td group. According to Wigner’s theorem,33 this leads to a
block-diagonal Hamiltonian with oneA1 block, one A2
block, two equivalentE blocks, three equivalentT1 blocks,
and three equivalentT2 blocks. One block is then processe
separately for each representation, the eigenstates of
other degenerate equivalent blocks being computed from
latter. Hundreds of valence or conduction states can then
computed in a reasonable time.
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According to the dimensiond of the Hamiltonian or its
blocks, either all eigenpairs are computed using a stand
QR algorithm,30 or only a few near the gap using a bloc
Lanczos algorithm30,31 on (H2sI )21 or a conjugate gradi-
ents algorithm32 on (H2sI )2 ~folded spectrum method6!.
The folding energys is set in the gap just above the bu
valence-band maximum or below the bulk conduction-ba
minimum to directly catch the highest valence or lowest c
duction states. Jacobi~diagonal! or incomplete Cholesky
factorizations30 (LL†) of (H2sI )2 were used as precond
tioners for the conjugate gradients. In the latter case,
incomplete Cholesky factorization was performed on the p
of (H2sI )2 having the sparsity pattern ofH. Although
crude, this preconditionner can save up to 75% of the ite
tions needed to reach convergence depending on the p
lem.

APPENDIX B: k "p AND EMA CALCULATIONS OF THE
ELECTRONIC STRUCTURE OF Si NANOSTRUCTURES

Tight-binding calculations are compared with effectiv
mass ork•p approximations.29 A full six-band k•p model,
including spin-orbit coupling, is used in the valence ba
~Dresselhaus-Kip-Kittel Hamiltonian.21! The six conduction-
band minima are assumed to be uncoupled, and treated i
single-band anisotropic effective-mass approximation. En
s

l

e

B

.

rd

d
-

e
rt

a-
ob-

-

d

the
e-

lope functions are expanded on a finite-elements,34 tensor
product mesh with linear interpolation functions. The gen
alized eigenvalue problem is then solved with a conjug
gradients algorithm35 preconditionned with an incomplet
Cholesky (LDL†) factorization with zero fill.

An infinite barrier is assumed ink•p ~EMA! calculations.
Its position is chosen in such a way that the volume of
system is equal to the total volume occupied by theNSi Si
atoms. Furthermore, to allow comparison between clus
with different shapes, an effective diameterd0 is defined for
any cluster as the diameter of the sphere with the same
ume as the cluster. Thus we obtain

d05aS 3

4p
NSiD 1/3

50.33691NSi
1/3~nm!. ~B1!

In the same way, an effective diameterd1 is defined for
any wire as the diameter of the cylinder with the same tra
verse section as the wire. In@100#- and @110#- oriented Si
wires we get d150.21667NSi

1/2 (nm) and d1

50.25766NSi
1/2 (nm) whereNSi is the number of Si atoms in

thea@100# andaA2/2@110# supercells. Finally, the thicknes
of Si(100) and~110! films is L f5N(100)a/450.13578N(100)

andL f5N(110)a/(2A2)50.19201N(110) , respectively, where
N(100) andN(110) are the number of Si planes in the film.
.
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