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Method for tight-binding parametrization: Application to silicon nanostructures
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We propose a method for tight-binding parametrization, designed to give accurate results in the calculation
of confined edge states in semiconductor nanostructures of any size. Indeed, this improved tight-binding
description accurately reproduces the bulk effective masses as well as the overall band structure. We apply it
to the specific case of silicon. The electronic states of silicon nanostrudfilnes, wires, and dojs with
various shapes and orientations, are calculated over large range of(kizE3 nnj, including spin orbit.
Accurate analytical laws for the confinement energies, valid over the whole range of sizes, are derived.
Consistent comparison with the effective mass kng methods show that these are only of semiquantitative
value even for sizes as large as 8 nm. The reasons for the failure of these techniques is analyzed in detail.

[. INTRODUCTION feature size in the range 1-12 nm, which to our knowledge
has never been achieved previously. This extended range al-
Recent developments in the field of Si nanostructures lows us to study precisely the overlap region where both TB
have made possible devices with feature sizes below 10 nnandk-p or EMA methods are accurate. We provide analytic
These devices have shown exciting low-temperature trandits to the confinement energies which are practically exact
port propertie$ with promising applications in microelec- over the whole range of sizes. We finally give the structure
tronics (single-electron transistors and memoyiékhe most  of low-lying excited states and compare wkhp and EMA
appealing challenge is now to achieve reliable room-methods.
temperature operation. In this context, simulation is one of We start by giving details about the TB parametrization,
the keys to a better understanding of the underlying physicgnd compare the full results witt p or EMA methods near
and optimization of these devices. An accurate and efficienthe band extrema. We then consider various nanostructures
description of the electronic properties of Si nanostructuregstablishing analytical laws for the confinement energies. We
with arbitrary geometries in the range 1-10 nm is thusfinally discuss the origins of the failure ¢f-p and EMA
needed. However, such a description is still missing. methods, as well as the critical size at which this occurs.
Indeed, ab initio, self-consistent methods such as the
local-density approximatiofLDA) can only be used for
small clusters €1000 atomy with high symmetry’ They Il. sp® TIGHT-BINDING MODEL
are not suitable for the computation of transport properties in
realistic situations. Semiempirical, non self-consistent meth-
ods [such as pseudopotenfidl (PP’s, tight-binding** TB parameters are usually fitted on bulk band structures
(TB), or kp (Ref 13] can solve much |arger prob|ems‘ calculated withab initio methods(e.g. LDA, corrected of the
Semiempirical methods are designed to make the best poBand-gap problei or even with other semiempirical meth-
sible approximation to the self-consistent one-particleods like pseudopotential='® TB models can provide a
HamiltonianH, in bulk material, either in the whole first rather good description of the valence bafiB'’s) and low-
Brillouin zone (PP, TB or around specifik points - p). est conduction band€B’s), with a rms energy error distrib-
They involve adjustable parametefesg., effective masses, uted over the whole first Brillouin zone. However, no special
TB interaction parameters et¢hat are fitted to experimental attention is usually paid to the description of the neighbor-
data orab initio bulk band structures. These parameters ard0od of the valence-band maximuiviBM) atI' point in Si
then transferred to the nanostructufies., H=H, inside the ~ and conduction-band minimé&CBM) near X point in Si.
nanostructure with appropriate boundary conditions. The These points are of prime importance in calculation of con-
better the bulk description and boundary conditions, the betfined edge states, at least in large nanostructures. Indeed,
ter the electronic structure we expect in nanostructures. Most TB models do not reproduce the high anisotropy of
Our aim in this work is to present an improved TB de- both CB and VB effective masses. Although these models
scription designed to give accurate results over the wholdid prove to give satisfactory results in highly confined sys-
range of sizes. For this, we fit the TB parameters not only o€ms, they clearly do not extrapolate kep in large nano-
bulk band energies in the first Brillouin zone but also onstructures. As an example, the orthogonal third-nearest-
effective masses. This was not the case of previous TB treapeighborsp® TB model of Ref. 15 givey, = 1.233 andny
ments, but is essential if one wants to obtain accurate results 0.567, to be compared with the experimental vailies
for large size nanostructures where the effective-mass ap=0.320 andm/ =0.916.
proximation (EMA) or k-p models become exact. We also  Our way to cure this problem is to fit TB parameters on
include spin-orbit coupling. From improved computer codespulk band energies as well as CB/VB effective masses. The
we are able to apply the TB treatment to nanostructures withotal rms error is thus a weighted average of the rms error on

A. Tight-binding interaction parameters
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TABLE I. Third-nearest-neighbofNN) TB parameters for sili- TABLE II. Experimental and TB band-gap energy, effective
con and first NN TB parameters for Si-H. The notation is that ofmasses, and valence-band Luttinger parameters. A lattice parameter
Slater and Koster, Si-H parameters being given in terms of twoa=5.431 A was assumed in the calculation of TB effective
center integrals. Neighbor positions are given in unita/gf. A is masses.
the spin-orbit coupling parameter.

Experiment(Ref. 17 TB model

Si 3" NN TB parameters

Indirect band-gap energiat 0.832I'X):

E.J 000] —6.17334 eV E.J1117] —1.78516 eV Eq 1.170 eV 1.143 eV
E,,[000] 2.39585 eV E{117] 0.78088 eV

E,,[117] 0.35657 eV Conduction-band effective masses:
A 0.04500 eV E,[11]] 1.47649 eV my* 0.916m, 0.918m,
E<d 220] 0.23010 eV E.d311] —0.06857 eV my 0.191m, 0.191m,
E.[220] —~0.21608 eV  E.[311] 0.25209 eV
Es{022] —0.02496 eV Eg 113 —0.17098 eV Valence-band Luttinger parameters:
E,{ 220] 0.02286 eV E,311] 0.13968 eV - 4.270 4271
E [ 022] —0.24379 eV E,[113]  —0.04580 eV 4, 0.320 0.408
E,y[220] —0.05462 eV E,[311] —0.03625 eV Y3 1.458 1.432
E,,[022] ~0.12754 eV E,[113 0.06921 eV

Valence-band mean effective masses:
my, 0.537my 0.529m,
mit 0.157my 0.157mq

Si-H 15NN TB parameters:
En 0.17538 eV Vo, —4.12855 eV
Vepo 3.72296 eV

) . o To achieve better boundary conditions in nanostructures,
bulk band energies and on effective masses. It is minimize&j-H parameters have been fitted on the Setperimental

with a conjugate gradient algorithm. %l“k band energies argxcitonic gap® and charge transfer calculated within LDA.
selected from a GW band structufe’® which is the best 1y atoms are described by theis brbital. Si-H parameters

available at the moment. An orthogorsg® TB model with  gre also reported in Table I.
up to third-nearest-neighbor interactions and three-center
integrals® is considered here. The set of 20 TB parameters is
reported in Table I. TB bulk dispersion relations are plotted
in Fig. 1; TB effective masses and Luttinger parameters are In this section, the TB band structure near the VBM and
reported in Table Il. As can be seen from Fig. 1 and Table IIICBM is compared with &-p description of bulk Si with
the overall quality of the fit is excellent. In particular, the consistent parameters. Since Si is an indirect band-gap semi-
valence band anisotropy is well reproduced, the ratig ( conductor, we assume an uncoupled valence-band maximum
—v,)/ v, being close to the experimental value. We mayand conduction band minima. The six uppermost valence
therefore expect better hole wave functions in nanostruchbands(doubly degenerate heavy, light, and split-off bands
tures. This is, to our knowledge, the best description of there described with a six- barkd p model (Dresselhaus-Kip-
VBM and CBM obtained so far in Si with ap® TB model.  Kittel Hamiltoniarf?). It takes into account the large valence-
This TB band structure is close to the one of Ref. 15 in theéband anisotropy of Si, and spin-orbit coupling. In this model,
rest of the first Brillouin zone. the periodic partu, i(r) of valence Bloch wave functions
W, (r)=€*"u, «(r) is expanded in the basis of the six up-
permost valencé’ states{um'lzzd(F)}. The input parameters
for this model are the three Luttinger parametg;sy,, and
vs3, and the spin-orbit splittings. The six conduction-band
minima along I'X-like directions are assumed to be un-
coupled from each other, and described by a single-band
effective-mass approximation. The input parameters for the
EMA are the longitudinal and transverse effective masses
mi andm , and band-gap enerdy, .

For consistent comparison, the TB Luttinger parameters
and CB effective masses are used in the six-dammodel
and the EMA. The six-banll- p model and TB bulk valence
bands are shown in Fig. 2, where we see that the six-band
k- p model fails to reproduce long-range dispersion. The va-
lence bands tend to acquire too much dispersion because
they miss couplings with other states, which are not included
in the six-bandk-p model?® The quality of the bulkk-p

FIG. 1. Band structure of bulk Si in the orthogonal third-nearest-valence bands strongly depends on the wave-vector direc-
neighbor TB and GW models. TB parameters are given in Table Ition. The mean difference between TB akdp valence

B. Comparison between TB andk-p band structures
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FIG. 2. Bulk Si valence-band structure within six-bang and ,' O  TB (Highest subband, I')
TB models. TB Luttinger parameters are used for a consistent com- ool © 1 LT kp (Highest subband, I")
parison. Spin-orbit coupling is taken into account. — . . . .
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bands is less than 10% in-a250 meV range. In the same
way, the lowest conduction band acquires too much disper- 300—— T
s?on a_round CBM's when cqmpgred to the TB model, espe- 250 g * O  TB (Lowest subband, T)
cially in transverse mass directions. Also, the mean differ- * i | + TB(Second subband, I')
ence between TB and EMA conduction bands is less than 5 559l | i *%: | * gf[g“?fw SUbb;gd’c?)l")
04 i ~ - @ i *: | owest subband,
10% in a~200-meV range. £ ! ] EMA (Lowest subband. A)
= 150F \4 -
lll. APPLICATION OF THE TB MODEL TO Si §
3

NANOSTRUCTURES

The TB model is applied here to the calculation of the
electronic structure of various free-standing Si nanostruc-
tures including Si100) and (110 films, [100]- and [110}-
oriented square-based Si wires and cylinders, and “spheri-

cal” (Tq symmetry and cubic Si dots. Surface dangling kG, 3. (a) Energy of the highest valence subband maximum at
bonds are saturated with hydrogen atoms. Spin-orbit cour i s (100) films.(b) Energy of the lowest and second conduction
pling is taken into account, which was not the case in most,pphand minima a” and energy of the other subband minima
previous calculatiorfs"° (details of the TB calculation can along[010] and[001] (A). Results are given vs film thickneks,

be found in Appendix A In all the cases, TB calculations within the TB and six-band-p or EMA models. Energy is mea-
are compared with six-barid p (VB) or EMA (CB) results  sured with respect to the bulk VBI&) and CBM(b). The solid line
(details of thek-p and EMA calculations can be found in is a fit to TB results. Spin-orbit coupling is taken into account.
Appendix B.

Because thék-p model is not an atomistic description, effective diameted; of the wire, which is the diameter of
there is no thorough way to providekap potential consis-  the cylinder with the same transverse section as the wire.
tent with TB boundary conditions. Thus an infinite barrier is  Results for spherical and cubid100)x (010)x (001)
assumed irk-p and EMA calculations, and its position is faceg Si dots are shown in Fig. 5. The energy of the highest
chosen in such a way that the volume of the system is equ@jccupied statéHOS) and lowest unoccupied stateUsS) are
to the total volume occupied by the Si atoisee Appendix  piotted versus the effective diamety of the dot, which is

Film thickness L; (nm)

B for explicit expressions of the size in each dase the diameter of the sphere with the same volume as the dot.
The energy of the TB highest valence subband maximum
A. Confinement energies versus size (or HOS and lowest conduction subband minimugar

LUS) is fitted in the whole 1-12 nm range with the follow-

Results for Si100) films are given in Fig. 3 versus film . o
ing expressions:

thicknessL;. The upper part of the figure shows the energy
of the highest valence subband maximumIat(in-plane
wave vectork;=0) within the TB and six-ban#- p models. v
The lower part shows the energy of the lowest and second E,(d)=—5——— (HO9), (1)
: - d“+a,d+b

conduction subband minima &t as well as the energy of v v
the other subband minima alofig10] and[001] directions.
Note that the lowest and second conduction subbands at
are degenerate in the EMA method, which is not the case in E.(d)= 2—C+ Ey (LUS). (2)
the TB method. They exhibit a large and pseudoperiodic d“+acd+Db,
splitting, due to intervalley coupling between oppo$e0]
bulk CB minimaZ? d is the characteristic dimension of the nanostructure;

Results for[100]-oriented wires with various shapes are K a, andb are adjustable constantE,=1.143 eV is the
shown in Fig. 4. Square wires with either (020)001) or  pulk band-gap energy. This expression is more accurate than
(011)x(011) faces and cylinders were considered. The enthe widely used fik/d“ when a large range of dimensions is
ergy of the highest valence and lowest conduction subbandnsidered. It correctly behaves liked1/in large structures,
atI' (longitudinal wave vectok,;=0) is plotted versus the so that it can be considered as valid over the whole range of
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FIG. 4. Energy of the highest valence subband maxinmiam FIG. 5. Energy of the highest occupied std& and lowest

and lowest conduction subband minimurtb) at I' for  unoccupied state(b) for spherical and cubic[(100)x (010)
[100Q]-oriented Si wires with various shapes. Results are given vs< (001) face$ Si dots. Results are given vs the effective dot diam-
the effective wire diameted; (see text within TB andk-p or  eterd, (see text, within TB andk - p or EMA models. Also see Fig.
EMA models. Also see Fig. 3 for more details. 3 for more details.

sizes. The fits are reported in Table Il for all nanostructuressersely, our fit provides accurate results for any Si nanostruc-
considered in this work. They are also reported in Figs. 3, 4ture, whatever its dimensionality.
and 5(solid lines. We now proceed to test our TB model against various
As shown in Fig. 4 fof100]-oriented wires and in Fig. 5 other descriptions such as PP, LDA, or other TB models in
for dots, the TB band-gap energy mainly depends on thehe case of small spherical Si dots. Our results are first com-
transverse section of the wires or volume of the dots as longared with those of Ref. 7 calculated with pseudopotentials
as their shape is not too proldidote, however, that this in the range 1-4 nm. As shown in Fig. 6, they are in good
result cannot be extended to higher excited states. agreement. Comparison with tlad initio LDA calculations
Spin-orbit coupling has little influence on the highest va-of Ref. 5 corrected for the bulk band-gap error of 0.65 eV,
lence subband maximum or HOS energy {180 films,  shows that our results are extremely good down to the small-
[100]-oriented wires, or spherical and cubic Si dots. Withoutest clusters, except for some oscillations in the LDA that do
spin-orbit coupling, the error ok, (d) is less than 10% in not exist in TB. Finally, the agreement with other more com-
the whole 1-12-nm range, but increases monotonically witlplex TB models with overall band structures of similar qual-
nanostructure size. Spin-orbit coupling has much more influity, such as thep3d®s* model of Ref. 16 or the nonorthogo-
ence on the energy of the highest valence subband maximunal TB model of Ref. 14, is also excellent for smatly(
of Si(110 films and[110]-oriented wires. It always signifi- <4 nm) crystallites. As a consequence, the results previ-
cantly affects higher excited hole states, whatever the nan@usly published by our grodp® for small spherical Si dots
structure. This will be discussed below for Si clusters. remain valid.
Our TB parameters provide considerable improvement
over previoussp® TB fits. This may be especially be shown
in Si films, where conduction- and valence-band anisotropies B. Density of states in Si clusters

must be accurately reproduced. Taking the example of Figure 7 shows the “valence'(filled state$ and “con-
Si(100 films, the third-nearest-neighbamp® TB model of  duction” (empty states densities of state(DOS’S) for a

Ref. 15 gives nearly a 60% higher confinement energy fospherical Si dot with diametet,=7.61 nm, within TB and
electrons (f =0.567M,), but only half the confinement en- k-p or EMA models. Spin-orbit coupling is not taken into
ergy for holes ,=1.233). This previousp® TB fit cannot  account in this figure. Energies are measured with respect to
therefore be safely applied to Si films, though it gives quitethe bulk VBM for filled states, and to the bulk CBM for
equivalent band-gap energies in small spherical dots. Corempty states. The states are labeled with the irreducible rep-
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TABLE Illl. Fits to the energy of the highest valence subband
maximum (or HOS and lowest conduction subband minimyor
LUS) for various Si nanostructures, using expressitsand (2)
(see text

K, a, b, K ac b.
(meV nnt) (nm  (nm?)  (meV nnf) (nm)  (nn?)
Si(100 films with thicknessd=L;:

—1326.2 1.418 0.296 3945 0.939 0.324
Si(110 films with thicknessd=L;:

—1019.3 10.371 —3.713 1123.2 0.535 1.481
[100]-oriented Si cylinders with diameter=d;:

—3448.4 2.194 1.386 2811.6 1.027 0.396
[100]-oriented Si wires with (010%(001) faces and widthd
=d,\m/2:

—2817.9 1.988 0.708 2378.6 0.883  0.400
[100]-oriented Si wires with (011} (011) faces and widthd
=d,\7/2:

—2981.7 2.386 1.087 2162.0 1.129 0.138
[110]-oriented Si cylinders with diameter=d;:

—2551.8 2.970 0.813 2860.8 1.330 2.650
[110]-oriented Si wires with (01)x(001) faces and widthd
=d,\7/2:

—2217.5 3.177 0.130 2684.3 2.237 1.408
Spherical Si dots with diameter=d,:

—6234.0 3.391 1.412 5844.5 1.274 0.905
Cubic Si dots with (100X (010)x(001) faces and sided
=do(7/6)Y3:

—3967.0 2.418 0.522 4401.0 1.138 0.889

resentations of th&, group. Figure 8 shows the valence TB
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FIG. 7. “Valence band” [filled states(a)] and ‘“conduction
band” [empty stategb)] DOS is for a spherical Si dot with diam-
eterdy=7.61 nm, within TB andk-p or EMA models. Energy is
measured with respect to the bulk VBMipper part and CBM
(lower par. Spin-orbit coupling is not taken into account. The
states are labeled with irreducible representations offthgroup.

T, and T, states can accommodate six electrgtiseefold
space and twofold spin degeneracyThese sixfold-
degenerate states are split by spin-orbit coupling into one
fourfold- and one twofold-degenerate states. Further cou-
pling between split states may strongly affect the DOS, de-
pending on the size of the cluster. Whanis much higher
than the splitting betweeii, and T, states o>5 nm in
spherical Si dofs the HOS and next occupied states remain
s andp like, but can now accommodate only four electrons
(see Fig. 8 The HOS confinement energy remains nearly
unchanged, but the higher excited spectrum is significantly
modified. WhenA is much lower than the splitting between
T, andT;, states ;<5 nm), the HOS is fourfold degener-

DOS in the same dot, with spin-orbit coupling taken intoate s like, followed by the other twofold-degenerasdike

account for comparison.

Without spin-orbit coupling, thel, HOS is s like (no
node$, with protrusions along{111%-like directions. The
next occupiedr, states are like, with a nodal plane. Both
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FIG. 6. Comparison of confinement energyE = E (dot)

—Egy(bulk) in spherical Si dots, between our TB model and pseudo-

potential(PP or LDA.

state, then by-like states. Although spin-orbit coupling has

a negligible influence on the HOS energy, it may thus affect
tunneling spectroscopy and Coulomb blockade experiments
in Si clusters.

The splitting betweernT, and T, states increases when
decreasingy, or y;. Again, a correct description of valence-
band anisotropy is needed in the computation of the hole
states. In particular, we do not observe any change in the
HOS symmetry T5) in the whole 1-12-nm rande.

The EMA LUS is sixfold degenerate, since the bulk CB
minima are assumed uncoupled. Their envelope functions
are elongated ellipsoids oriented along the longitudinal

il

.2 -0.15 0.1 -0.05 0
Energy (eV)

B

[
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FIG. 8. “Valence-band” DOS for the same spherical Si dot as
in Fig. 7 (do=7.61 nm). Spin-orbit coupling is taken into account.
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— AILUS 1
~~~~~ Second Al state
-------- Third Al state

(heavy mass direction of each of the six bulk CB minima. :
These sixfold-degenerate EMA states are split into groups of ~ 1.2f i
one A, state, one twofold-degeneraté state, and one :

threefold-degeneraf€, state in the TB model by intervalley — 1f
couplings. The ordering of these states in each group is nog
the same from dot to dot. The splittings of the lowest-lying : o8t
group in spherical Si dots range from 0.1 meV for diameterg
do = 10.32 nm up to 68 meV for diametep=1.85 nm. :A' .
4 06 :
-y 04} :
IV. COMPARISON BETWEEN TB AND k -p MODELS y
IN SI NANOSTRUCTURES
0.2f :
Detailed comparisons betwednp and pseudopotential [
models have been performed in ll1I4hP) and 11-VI (CdSe 0 Sy E ROy
free-standing quantum dot¥;?® GaAs/AlAs quantum r 1001 ko X

wells 2% and strained InAs dots embedded in G&An par- =

ticular, these studies have shown the failure of the six-band_F!C: 9 Bloch decomposition of the three lowest empiystates

k-p model in free-standing InP dots, leading to the inter_of a spherical dot with diametet;=4.89 nm. The decomposition
' is performedl"X on the lowest two conduction bands. For clarity,

change ofs- andp-like valence states. Although- p models ML ) ” i
are known to overestimate confinement in small Si|<1>n,|;| is shown in an extended zone scheme, the first conduction

nanostructured, no comparison betweek-p and TB or band being on trE left on th¥ point, and the second one on the
pseudopotential methods has been made in large, fredight (left parl). |®, il is also calcu!ated on the first conduction
standing Si clusters. band only in the transverse mass directiaght par).

There is striking evidence for the overconfinement of
k-p and EMA models with respect to the model TB in Figs. D g=(V, D). 3
3, 4, and 5, even in large nanostructures, as evidenced by
Fig. 7. k- p predictions obviously become worse from films
to wires and dots. In spherical Si dots, the error onkhp
confinement energd E = Eg(dot)— E,(bulk) is larger than
25% for dg<<8.5 nm, and 50% fody<4.5 nm. It is still

15% fordy=12 nm. The use of a multiband semiempirical to Ephe Si partﬂc])f the cIuster,\A;:us exgléﬂ/'&g H ?hto(rjns.
method such as TB is therefore to be recommended in the ere are three reasons wkiyp an methods over-

5—12-nm range for Si clusters. Indeed, #18 TB model is estimate confinement energies with respect to TB. The main
not more difficult to solve than the six'—bamdp model in ~ €ason is the poor bulk description within thep model”®

this range, when valence-band anisotropy and spin-orbit co%gf d;NtzSn ddif)cgcsss;:el?oc?acﬁcu (;‘D:S \/earls,(eigfﬁa??g)ni()tﬂzu\sgiﬂr]
pling are taken into account. d P

Despite this clear quantitative disagreement between T§md CBM. k-p and EMA methods will thus overestimate

andk-p models, there is however qualitative correspondenc%(ézgﬂqege\?vtoéze{g'ifm'lﬂ ::gg;?&;tﬁrf:' thareggsnrén%%i?]t
in the density of states and wave-function ordering in Si P

clusters, as evidenced by Fig. 7. The few highest occupieatates farther and farther away from the VBM and CBM, and

and lowest emptyk-p states can be associated with a TBfor higher excited states. As an examgi,, | is shown in -
state with consistent wave-function symmetry. However, thd"ig- 9 for the three lowest emp#, states of a spherical Si
splitting between successive states is not consistent with TH0t with diameterd,=4.89 nm. The decomposition is per-
calculations, the energy of higher excited states being furthdiermed alongI’X on the lowest two conduction bandsft
and further overestimated. The same conclusions may beart of Fig. 9. For clarity, |®, ¢| is shown in an extended
drawn in large films and wires: thk-p models’'s highest zone scheme, the first conduction band being on the left on
valence and lowest conduction subband ordering is consighe X point, and the second one on the righin,d is also
tent with TB calculations, but they suffer from increasing calculated on the first conduction band only in the transverse
overconfinement. mass direction(right part of Fig. 9. The full width at half

We now discuss the reasons why thep (EMA) method  maximum of the main peak of the, LUS is proportional to
overestimates confinement energies in Si nanostructures. \Mgq, and extends in the whole Brillouin zone in the smallest
will focus on spherical Si dots. For the sake of simplicity, nanostructures. Higher excited states, that have nodal planes
spin-orbit coupling is not taken into account in the following in the wave function, thus exhibit multiple peaks that extend
discussion. However, we have checked that our COI’]C'USiOﬂ’:‘arther in reciproca| space, beyond the range of Va||d|ty of
did not change if spin-orbit coupling was included. We will py|k k-p and EMA descriptions.
relatek - p errors in nanostructures to p errors in bulk de- The next reason is the coupling between bulk bands in
scription and boundary conditions. We thus introduce thenanostructure® Indeed, the six-band-p model assumes
“Bloch decomposition” of any nanostructure stabg which  that filled states can be decomposed on the six highest bulk
is the projection®,, ¢ of & on bulk Bloch wavefunctions valence bands. TB calculations, however, show that the high-
Yk 11,25 est occupied states have nonzero projections on bulk conduc-

\Pn,g(F)zei'ZFun,lg(F) is the Bloch wave function with
wave vectork and band index. This Bloch decomposition
is performed on the restriction of the TB wave functichs
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TABLE IV. Total projection on bulk valence band®,, con-  latter case, only TB or PP models can properly handle Si-O
duction bandsP., and hydrogendy for the HOS and LUS of ponding, and should clearly be preferredktq models.
spherical Si dots with diametedy=2.44 nm and 7.61 nm. The
corresponding contributions, ,E., andEy to the HOS and LUS V. CONCLUSION
energyE are also given.

We have introduced an orthogonal third-nearest-neighbor
do=2.44 nm do=7.61 nm TB model for silicon. Special emphasis was given in the
description of the valence-band maximum and conduction-

HOS E (e;/) ~0.414 —0.086 band minima, including conduction- and valence-band effec-
P (%) 88.44 98.89 tive masses in the TB fit. This model was applied to the
E, (V) —0.580 —0.108 calculation of the edge states of various Si nanostructures
P (%) 4.47 0.44 (films, wires, and dofs including spin-orbit coupling, over
Ec (eV) 0.237 0.024 the whole 1-12-nm range. Analytical laws for the confine-
P (%) 7.09 0.66 ment energies were given for the purpose of comparison with
En (eV) —0.071 —0.002 experiment or with other models. The comparison with the
LUS E (eV) 1.738 1.228 LDA, pseudopotential andp®d®s* models was performed
Pc (%) 95.94 99.71 to test the accuracy of this TB fit. We showed improvement
Ec (eV) 1.740 1.230 in the electronic structure of Si nanostructures with respect to
P, (%) 1.69 0.11 previoussp® TB models. The deficiencies &f p and EMA
E, (eV) —0.080 —0.006 models in free-standing Si hanostructures were discussed and
Py (%) 2.37 0.18 quantified with the TB model. We showed that tkep
Ey (eV) 0.078 0.004 makes substantial errors even in large zero-dimensional

nanostructures, due to a poor bulk description and lack of
interband coupling. The use of this efficient and accurate TB
model in the calculation of transport properties of Si nano-

ructures should allow a comprehensive study of the physics
these devices.

tion bands(see below. In the same way, the lowest empty
states have nonzero projections on bulk valence bands a
higher conduction bands. The details of interband couplind)
in nanostructures depend on boundary conditions. The trends
are, however, universal: interband coupling increases with ACKNOWLEDGMENTS

decrﬁasling nanostr_uctrL]JreI S'ie'f bound diti We thank Lucia Reining for providing an accurate GW
The last reason is the lack of correct boundary conditiong,, g yrycture of silicon. The Institut d’Electronique et de

in free-standingk- p nanostructures. Indeed, thep model Microdlectronique du Nord is UMR 8520 of CNRS
cannot handle atomisticlike boundary conditid¢esy., a Si-H '

bond. However, the HOS and LUS wave functions may be
partly delocalized over H atoms in small ddtsee below.
Therefore, hydrogen atoms will contribute to the confine-
ment energy. The tight-binding model introduced in Sec. Il can be ap-
Results regarding interband coupling and boundary conplied to any Si nanostructure, once given the atomic posi-
ditions are reported in Table IV. The total squared projectionjons. To avoid surface states in the gap, all dangling bonds
on bulk valence bandB, , bulk conduction band®., and  are saturated with hydrogen atoms. Spin-orbit coupling is
hydrogen atom®,(P,+ P.+Py=1) is given for the HOS  directly taken into account in Si films and wires using a
and LUS of spherical Si dots with diametetg=2.44 and  spin-augmentedsp® basis. However, spin-orbit coupling
7.61 nm. The corresponding contributids,E., andE; o doubles the dimension of the Hamiltonian, and makes it
the HOS and LUS energi are also givenE,+E.+Ey  complex Hermitian, rather than real symmetric in dots. Be-
=E). The coupling of the HOS with bulk conduction bandsing small in Si, it is calculatech posterioriin dots in the
and hydrogen atoms is very important in the smallest dobasis of the few highest occupied states of the spin-orbit
(dp=2.44 nm). AlthoughP, is only 4.47%, the energy dis- free-dot Hamiltonian. About ten states are usually enough to
tributed over bulk conduction bands is as large BBs= ensure convergence of the hole ground-state energy. Spin-
+237 meV E=—414 meV). The coupling of the HOS orbit coupling has negligible influence on the lowest conduc-
with conduction bands remains significant ty=7.61 nm, tion states.

APPENDIX A: TB CALCULATION OF THE ELECTRONIC
STRUCTURE OF Si NANOSTRUCTURES

where stillE.= +24 meV (E= —86 meV). The coupling of In quantum dots, where no translationnal symmetries can
the LUS with bulk valence bands is less significant, but canhelp reduce the size of the problem, a basis is first con-
not be neglected either. structed for each of the five irreducible representations of the

The only way to improve the bulk-p description and T4 group. According to Wigner's theorefi this leads to a
allow interband coupling is to increase the number of band$lock-diagonal Hamiltonian with one\; block, one A,
in the k- p model?® However, such a procedure is not really block, two equivalenE blocks, three equivalert; blocks,
efficient, especially in indirect band-gap materials. Althoughand three equivaleri, blocks. One block is then processed
the deficiencies of th&-p models are much more sensitive separately for each representation, the eigenstates of the
in free-standing nanostructures than in heterostructures, theyther degenerate equivalent blocks being computed from the
will be important each time silicon nanostructures are highlylatter. Hundreds of valence or conduction states can then be
confined, as for Si nanocristallites embedded in,Si@ the  computed in a reasonable time.
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According to the dimension of the Hamiltonian or its lope functions are expanded on a finite-eleméhtsnsor
blocks, either all eigenpairs are computed using a standangroduct mesh with linear interpolation functions. The gener-
QR algorithm® or only a few near the gap using a block alized eigenvalue problem is then solved with a conjugate
Lanczos algorithri? on (H—o1)~* or a conjugate gradi- gradients algorithi? preconditionned with an incomplete
ents algorithr? on (H—ol)? (folded spectrum meth8d  Cholesky (DL") factorization with zero fill.

The folding energyo is set in the gap just above the bulk  An infinite barrier is assumed ik- p (EMA) calculations.
valence-band maximum or below the bulk conduction-bandts position is chosen in such a way that the volume of the
minimum to directly catch the highest valence or lowest consystem is equal to the total volume occupied by thg Si
duction states. Jacolidiagonal or incomplete Cholesky atoms. Furthermore, to allow comparison between clusters
factorization&® (LL") of (H—o1)? were used as precondi- with different shapes, an effective diametkyis defined for
tioners for the conjugate gradients. In the latter case, thany cluster as the diameter of the sphere with the same vol-
incomplete Cholesky factorization was performed on the partime as the cluster. Thus we obtain

of (H—ol)? having the sparsity pattern dfl. Although

crude, this preconditionner can save up to 75% of the itera- 3 13 3
tions needed to reach convergence depending on the prob- do=a| 7-Nsi| =0.3369Ngi(nm). (B1)
lem.

In the same way, an effective diametdy is defined for
any wire as the diameter of the cylinder with the same trans-
verse section as the wire. [A00]- and[110]- oriented Si

i _ 1/2
Tight-binding calculations are compared with effective-Wires ~we get d;=0.2166Ng" (nm) and d,
mass ork imation<® ix- =0.25768Y2 (nm) whereNg; is the number of Si atoms in
-p approximations” A full six-band k-p model, Si Si _ :
including spin-orbit coupling, is used in the valence bandthea[100] anda/2/2/110] supercells. Finally, the thickness
(Dresselhaus-Kip-Kittel Hamiltoniaff) The six conduction-  of Si(100) and(110) films is L= N;gpa/4=0.1357& 100
band minima are assumed to be uncoupled, and treated in tl@dL = N0/ (2 \/§)=O.19201\l(110), respectively, where

single-band anisotropic effective-mass approximation. EnveN ;o0 andN 1) are the number of Si planes in the film.

APPENDIX B: k-p AND EMA CALCULATIONS OF THE
ELECTRONIC STRUCTURE OF Si NANOSTRUCTURES
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