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Magnetophonon resonances in quasi-one-dimensional electronic systems in tilted magnetic field
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We have obtained the magnetoconductivity in quasi-one-dimensional electronic systems in tilted magnetic
fields, based on a simple model of parabolic confining potentials, and investigated the qualitative features of
the magnetophonon resonance~MPR! effects according to the strength of electrostatic potentials and the tilt
angle of the applied magnetic field in the quantum limit condition, in which\v6@kBT are satisfied. Herev1

andv2 are the effective cyclotron frequencies. In particular, the behaviors of the MPR line shape, such as the
appearance of subsidiary MPR peaks, the shift of these MPR peaks, and a change in MPR amplitude and width
are discussed in detail.
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I. INTRODUCTION

Over the past few decades, magnetophonon reson
~MPR! effects in low-dimensional electron-gas~EG! systems
have received much attention from both experimental
theoretical points of view since they can be used as an a
native magnetotransport tool for the measurement of the
fective mass of quasi-two-dimensional~Q2D! electrons1 and
for the determination of the energy difference between a
cent quasi-one-dimensional~Q1D! subbands.2 Many studies
of MPR effects in such low-dimensional electronic syste
have been reported.1–15 However, most of the MPR theorie
presented so far are mainly restricted to the case where
magnetic field is applied normal to the interface layer of
system. Less work has been done16 in the case where a mag
netic field is applied to the Q2D electronic plane at an ar
trary angle. In this case, it is known that a suitably direc
magnetic field serves to add an extra confining potentia
the initial electrostatic confinement and causes a dram
change in the energy spectrum, leading to so-calledhybrid
magnetoelectric quantization. As a consequence, one w
expect different behavior of the MPR effects in such syste
from the known MPR effects in three-dimensional EG s
tems.

Recently, Ryu, Hu, and O’Connell16 presented the MPR
conditions of Q1D systems in tilted magnetic fields, based
a simple model of parabolic confining potentials. In th
study, they neglected the coupling Hamiltonian te
;BxBzxz, since its contribution to the total electron ener
is minor. This is valid for the case where the initial electr
static confinements are stronger than the magnetic con
ment. More recently, Suzuki and Ogawa17 investigated in
detail qualitative features of the MPR effects, their physi
origin, and the dimensional crossover between Q2D
Q1D systems in tilted magnetic fields, based on the sa
model as Ryuet al.16 However, their studies are confined
the weak confinement case where the electrostatic confi
parameters are smaller than the cyclotron-resonance
quency. Therefore, a theory of MPR effects which is va
for the weak confinement case and the strong confinem
PRB 620163-1829/2000/62~8!/5045~10!/$15.00
ce

d
r-
f-

a-

s

he
e

i-
d
o
tic

ld
s
-

n
r

-
e-

l
d
e

ng
e-

nt

case is needed and it is necessary to investigate var
qualitative features of the MPR effects in Q1D systems,
cording to the strength of electrostatic potentials and the
angle of the applied magnetic field.

The purpose of the present work is to extend the previ
results16 by including the coupling Hamiltonian term
;BxBzxz, to understand various qualitative behaviors of t
MPR effects in Q1D electronic systems according to
strength of electrostatic potentials and the tilt angle of
applied magnetic field, and to compare our present res
with the results presented by other authors. For this purp
we shall review the conductivitysyy for Q1D electronic sys-
tems subjected to a tilted magnetic field, on the basis of
simple parabolic model for confinement potential, and
obtain MPR conditions as a function of the strength para
eters (v1 andv2) of the parabolic potentials, which chara
terize the strength of confinement of Q1DEG. We will inve
tigate how the MPR effects are affected by the tilt angle
applied magnetic fields and by the strengths of the confin
potentials.

The rest of the paper is organized as follows. In Sec.
we review an exactly solvable model for Q1D electronic s
tems. General formulas of the transverse magnetocondu
ity syy for the Q1D systems are presented in Sec. III, wh
the conductivity consists of the usual Drude term aris
from the drift motion of electrons and hopping terms asso
ated with MPR. The relaxation rate, which is closely relat
to the MPR, is evaluated for the quantum limit conditio
assuming that the interaction with a bulk longitudinal-optic
~LO! phonon is the dominant scattering mechanism. Num
cal results of magnetoconductivity for the Q1D systems
presented in Sec. IV. In particular, the MPR conditions
the model system are given explicitly and the effects of tilt
magnetic fields and the confining potential on the MPR
discussed. Here, special attention is given to the behavio
the MPR line shape, such as the appearance of subsid
MPR peaks, the shift of these MPR peaks, and a chang
MPR amplitude and width. Concluding remarks will b
given in the final section.
5045 ©2000 The American Physical Society
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II. MODEL FOR Q1D ELECTRONIC SYSTEMS IN
TILTED MAGNETIC FIELDS

We consider the transport of an electron gas in
quantum-wire structure as treated by Ihmet al.18 The Q2D
electron gas is assumed to be confined to thex-y plane by an
ideal parabolic potential12 m* v2

2z2, whereas the Q1D elec
tron gas is assumed to be further confined in thex direction
by an additional parabolic potential1

2 m* v1
2x2, thus restrict-

ing free motion to they axis alone. In the presence of
magnetic field, the one-particle Hamiltonian (he) for such
Q1D electrons is expressed in a unified manner by

he5
1

2m*
~p1eA!21

1

2
m* v1

2x21
1

2
m* v2

2z2, ~1!

whereA is a vector potential accounting for a constant ma
netic fieldB5“3A andm* is the effective mass. We ca
see the dimensional crossover between the Q2D and the
electronic systems~i.e., v1→0 or v2→0 for the Q2D elec-
tronic system! as well as the difference in the strength
each confinement by varying the confining potential para
eters (v1 andv2) in Eq. ~1! for the Q1D systems. We sha
consider the case where the magnetic fieldB is applied in the
transverse tilt direction to the wire of the system:B
5(Bx,0,Bz)5(B sinu,0,B cosu), with the Landau gaugeA
5(0,xBz2zBx,0). Here the angleu is measured from thez
axis in thex-z plane. Then, the one-particle Hamiltonian~1!
for those confined~Q1D! electrons subject to the transver
tilted magnetic field can be represented in the new Carte
coordinates (x8,y8,z8) as

he5
Px8

2

2m*
1

Pz8
2

2m*
1

1

2
m* V1

2x82

1
1

2
m* V2

2z822m* vxvzx8z81
Py8

2

2m̃*
, ~2!

which represents two coupled harmonic oscillators, wh
vx5vc sinu, vz5vc cosu, vc5eB/m* , m̃* 5m* (V1

2V2
2

2vx
2vz

2)/v1
2v2

2 , V1
25v1

21vz
2 , and V2

25v2
21vx

2 . To ob-
tain Eq.~2!, we performed the following unitary transforma
tion: xi85U1xiU1

21 and Px
i8
5U1Pxi

U1
21 for an arbitraryxi

(xi5x, y, andz for i 51, 2, and 3, respectively!. HereU1
5 exp@iG1 /\# is a unitary operator with G1

5vzPyPx /(m̃* v1
2)2vxPzPy /(m̃* v2

2).
For the purpose of diagonalizing the one-particle Ham

tonian given by Eq.~2!, we take into account another unita
transformation:Xi5U2xi8U2

21 and PXi
5U2Px

i8
U2

21 for an

arbitraryxi8 (xi85x8, y8, andz8 for i 51, 2, and 3, respec
tively!, whereU25 exp@iG2 /\# is a unitary operator having
G25$x8Pz82z8Px8%f with f5arctan$V2

22v2
2 /(V1

22v2
2 )%.

Herev2 is the effective cyclotron frequency in theZ direc-
tion. Then, Eq.~2! can be expressed in the simplified mann
as
a

-

1D

-

an

e

-

r

he5
1

2m*
PX

21
1

2m*
PZ

21
1

2m*
v1

2 X2

1
1

2m*
v2

2 Z21
1

2m̃*
PY

2 , ~3!

where v1
2 and v2

2 are, respectively, given byv6
2 5 1

2 @V1
2

1V2
26A(V1

22V2
2)214vx

2vz
2#. The Hamiltonian~3! repre-

sented in the new Cartesian coordinates is basically chan
into the Hamiltonian for two independent 1D simple ha
monic oscillators, one with the effective cyclotron frequen
v1 in theX direction and the other with the effective cyclo
tron frequencyv2 in theZ direction. The last term in Eq.~3!
denotes they-component kinetic energy of a confined ele
tron with a field-dependent renormalized massm̃* with re-
spect to the effective massm* . In particular, the effective
massm̃* is influenced by a factor (V1

2V2
22vx

2vz
2)/v1

2v2
2 ,

which depends on a tilt angleu, the cyclotron frequencyvc ,
and the confining potential parameters (v1 ,v2) characteriz-
ing the dimensionality of the system. The momentum co
ponentPy(5PY) is a constant of motion and can be writte
asPY5\kY , wherekY is the quasicontinuous wave vector
motion parallel to the interfaces@viz., wire in the y(5Y)
direction#.

The normalized eigenfunctions and eigenenergies of
one-electron Hamiltonian~3! are given by

^Rul&[^X,Y,Zun,l ,ky&

5S 1

Ly
D 1/2

Cn~X!C l~Z!exp~ ikyY! ~4!

and

El[En,l~ky!5~n11/2!\v11~ l 11/2!\v2

1
~\ky!2

2m̃*
, n,l 50,1,2, . . . , ~5!

respectively. In Eq.~4!, Cn(X) and C l(Z) denote 1D
simple-harmonic-oscillator wave functions. The state of
Q1D system is specified by two Landau-level indicesn,l, and
the wave function exp(ikyy) in Eq. ~4! expresses a free mo
tion in the y ~i.e., Y) direction. As shown in Eq.~5!, the
energy spectrum for the present Q1D system ishybrid-
quantized due to the presence of the tilted magnetic fi
The set of quantum numbers is designated by (n,l ,ky),
wheren and l denote the effective Landau~magnetic! level
indices. We note that the dimensional crossover can be s
in the energy spectrum by simply varying the confining p
tential parameters;v1 or v2→0 for the Q2DEG system and
v1 andv2→0 for the 3DEG system.

III. MAGNETOCONDUCTIVITY ASSOCIATED WITH
RELAXATION RATES

In this section, we want to evaluate an analytical expr
sion of the transverse magnetoconductivitysyy for the Q1D
systems previously described, by taking the real part o
general expression for the complex nonlinear dc conducti
s̃kl(E) (k,l 5x,y,z) given in Ref. 19 and the linear-respons
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limit, i.e., lim
E→0

Re$s̃kl(E)%[skl . The dc linear conduc-

tivity for weak electric fields is obtained by the sum of th
nonhopping partsyy

nh and the hopping partsyy
h , which are

syy
nh5

\3be2

m̃* 2V
(

n,l ,ky

ky
2f „Enl~ky!…

3@12 f „Enl~ky!…#/G̃~n,l ,ky ;n,l ,ky!, ~6!

syy
h 5

e2vz
2l 1

2

Vv1
(

n,l ,ky

~n11!@ f „Enl~ky!…2 f „En11l~ky!…#

3
G̃~n11,l ,ky ;n,l ,ky!

~\v1!21G̃2~n11,l ,ky ;n,l ,ky!

1
e2vx

2l 2
2

Vv2
(

n,l ,ky

~ l 11!@ f „Enl~ky!…2 f „Enl11~ky!…#

3
G̃~n,l 11,ky ;n,l ,ky!

~\v2!21G̃2~n,l 11,ky ;n,l ,ky!
, ~7!

for the shift zero in the spectral line shape, whereV
5LxLyLz is the volume of the system andb51/kBT with kB
being the Boltzmann constant andT temperature. Also,l 6

5A\/m* v6, \ is the Planck constant divided by 2p,
f „Enl(ky)… is a Fermi-Dirac distribution function for elec
trons with the eigenstateun,l ,ky& of Eq. ~4! and the energy
Enl(ky) of Eq. ~5!, and2e(,0) is the electron charge. Th
quantityG̃ given in Eqs.~6! and~7!, which appears in terms
of the collision broadening due to the electron-backgrou
~phonon or impurity! interaction, plays the role of the relax
ation rate in the spectral line shape. To obtain Eqs.~6! and
~7!, we used the matrix elementsz^ky ,l ,nu j Yuky8 ,l 8,n8& z2
given by
u-

re
d

z^ky ,l ,nu j Yuky8 ,l 8,n8& z2

5~e\ky /m̃* !2dnn8d l l 8dkyky8
1~evzl 1 /A2!2

3@ndn8n211~n11!dn8n11#d l l 8dkyky8

1~evxl 2 /A2!2@ ld l 8 l 211~ l 11!d l 8 l 11#dnn8dkyky8
,

~8!

where the Kronecker symbols (dn8n , d l 8l , dkyky8
) denote the

selection rules, which arise during the integration of the m
trix elements with respect to each direction. Equation~6!
expresses the Drude term arising from the drift~nonhopping!
motion of electrons within the localized states through
electron-phonon interaction. In contrast, Eq.~7! expresses
the hopping terms, which are associated with electron h
ping motion between the localized~effective Landau and/or
subband! states by absorbing and/or emitting a phonon w
an energy\vq in the scattering events. In fact, these term
are related to the oscillatory behavior of MPR effects. A
cordingly, hereafter we shall denote the transverse magn
conductivity associated with these hopping terms assyy

MPR.
As shown in Eq.~7!, the electronic transport properties~e.g.,
electronic relaxation processes, magnetophonon resona
etc.! in the Q1D systems can be studied by examining

behavior ofG̃ as a function of the relevant physical param
eters introduced in the theory.

An analytical expression of the relaxation rate in t
lowest-order approximation for the weak electron-phonon
teraction and in the limit of weak electric fields can be eva
ated from the general expression of the electric-fie
dependent relaxation rate given by Eq.~4.39! of Ref. 19. The
Q1D version of the relaxation rate associated with the e
tronic transition between the statesun1 ,l 1 ,k1y& and un,l ,ky&
is expressed by
G̃~n1 ,l 1 ,k1y ;n,l ,ky!5
D8

4p2l 1l 2

(
(n8,l 8)Þ(n1 ,l 1)

Fn1n8~Dn!Fl 1l 8~D l !E
2`

`

dqY$~N011!d@~n2n8!\v1

1~ l 2 l 8!\v21S~ky ,ky
8!2\vL#1N0d@~n2n8!\v11~ l 2 l 8!\v21S~ky ,ky

8!1\vL#%

1
D8

4p2l 1l 2

(
(n8,l 8)Þ(n,l )

Fn8n~Dn!Fl 8 l~D l !E
2`

`

dqY$~N011!d@~n82n1!\v11~ l 82 l 1!\v2

1S~ky8 ,k1y!1\vL#1N0d@~n82n1!\v11~ l 82 l 1!\v21S~ky8 ,k1y!2\vL#% ~9!
ons

in
with S(ky ,ky
8)5\2(ky

22ky8
2)/2m̃* and S(ky8 ,k1y)5\2(ky8

2

2k1y
2 )/2m̃* , where N0 is the optical-phonon distribution

function given by Nq5@exp(b\vq)21#21 with vq5vL ,
and n8 and l 8 indicate the intermediate localized Landa

level indices. In order to obtain the relaxation ratesG̃ of Eq.
~9! for a specific electron-phonon interaction, we conside
the Fourier component of the interaction potential8,16,17 for
d

optical-phonon scattering given byD8/V with D8
5\D2/2rvL'const, D being a constant andr being the
density, where the assumption was made that the phon
are dispersionless~i.e., \vqW'\vL'const, wherevL is the
optical-phonon frequency! and bulk~i.e., three-dimensional!.
We also took into account the following matrix element
the representation~4!:
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z^n,l ,kyuU exp~6 iqW •rW !U21un8,l 8,ky8& z2

5uJnn8~u1!u2uJll 8~u2!u2dk
y8 ,ky7qy

, ~10!

uJnn8~u!u25
n,!

n.!
e2uuDn@Ln.

Dn~u!#2, ~11!

where n,5min$n,n8%, n.5max$n,n8%, u15 l 1
2 qX

2/2, u2

5 l 2
2 qZ

2/2, and Ln,
Dn (u) is an associated Laguerr

polynomial20 with Dn5n.2n, . In addition, we utilized the
following relation in doing the integral overqX andqZ :

Fn8n~Dn![E
0

` 1

Au
uJn8n~u!u2du

5
n,!

n.!

~11Dn!n
,

~2Dn1 3
2 !n

,

G~Dn1 1
2 !

~n,! !2

3 3F2~2n, ,Dn1 1
2 , 1

2 ;Dn11,1
2 2n, ;1!.

~12!

Here 3F2(a,b,c;d,e;x) is the hypergeometric function20

3F2~a,b,c;d,e;x!5 (
n50

`
~a!n~b!n~c!n

~d!n~e!n

xn

n!
~13!

with Pochhammer’s symbol (a)n defined by (a)n5a(a
11)•••(a1n21)5G(a1n)/G(a). It should be noted tha
the Landau-level indicesn1 and l 1 given in Eq.~9! are, re-
spectively, replaced byn11 and l or n and l 11 for the
electron hopping motion, de pending on the type of the tr
sitions associated with the Landau-level index, and that
summations of Eq.~9! over the Landau level can be, respe
tively, divided into two possible cases:~i! (n8Þn1

( l 8 and

(n8Þn , ( l 8 , and~ii ! (n8( l 8Þ l 1
and(n8( l 8Þ l since the con-

dition (n8,l 8)Þ(n1 ,l 1) in the summation of Eq.~9! contains
three types of contributions:~i! n8Þn1 , l 8Þ l 1; ~ii ! n8
Þn1 , l 85 l 1; and~iii ! n85n1 , l 8Þ l 1. Thed functions in Eq.
~9! express the law of energy conservation in one-pho
collision ~absorption and emission! processes. The stric
energy-conservingd functions in Eq.~9! imply that when the
electron undergoes a collision by absorbing energy from
field, its energy can only change by an amount equal to
energy of a phonon involved in the transitions. This in fa
leads to magnetophonon resonance effects due to the La
levels.

Now, let us consider the case where the nondegene
limit and the quantum limit (\v1 ,\v2@kBT) are satisfied
so that the electrons can be in the lowest Landau levels~viz.,
n50 and l 50). Then, the transverse magnetoconductiv
of Eq. ~7! for the electron hopping motion due to th
Landau-level indicesn and l can be expressed by
-
e

-

n

e
e
t
au

te

syy
MPR'nee

2A b3\6

2m̃* 3p

vz
2l 1

2

v1
$12 exp~2b\v1!%E dky

3expF2b
~\ky!2

2m̃*
G G̃~1,0,ky ;0,0,ky!

~\v1!21G̃2~1,0,ky ;0,0,ky!

1nee
2A b3\6

2m̃* 3p

vx
2l 2

2

v2
$12 exp@2b\v2#%

3E dky expS 2b
~\ky!2

2m̃*
D

3
G̃~0,1,ky ;0,0,ky!

~\v2!21G̃2~0,1,ky ;0,0,ky!
, ~14!

where ne5Ne /V is the electron density with Ne

5A2m̃* Ly
2/bp\2 exp@b$EF2\(v11v2)/2%#. To obtain the

dc magnetoconductivity of Eq.~14! in simpler form, we
assumed that thef ’s in Eq. ~7! are replaced by the Boltz
mann distribution function for nondegenera
semiconductors,12,14,16,17 i.e., f „En,l(ky)…' exp$b @EF
2Enl(ky)#%, where EF denotes the Fermi energy. We als
replaced one summation with respect toky in (n,l ,ky

by the following relation:12,14,16,17 (ky
(•••)→(Ly/

2p)*2`
` dky(•••). In the case where the quantum lim

(\v1 ,\v2@kBT) is satisfied, only one or two Landau lev
els are customarily occupied. Accordingly, it may be su
cient for us to consider the electronic transitions between
states specified byni50,1 andl i50,1 (i 51,2) in Eq.~9! for
the fundamental MPR. Then, the relaxation rates of Eq.~9!
for the electron hopping motion due to the Landau-level
dicesn andl are, respectively, given, after theqY integration,
by

G̃~1,0,ky ;0,0,ky!5N0LH 1

Au2m̃* $\v22\vL%/\22ky
2u

1
~3/4!

Au2m̃* $\v11\v22\vL%/\22ky
2u

1
1

Au2m̃* $\v22\v12\vL%/\22ky
2u
J ,

~15!

G̃~0,1,ky ;0,0,ky!5N0LH 1

Au2m̃* $\v12\vL%/\22ky
2u

1
~3/4!

Au2m̃* $\v11\v22\vL%/\22ky
2u

1
1

Au2m̃* $\v12\v22\vL%/\22ky
2u
J ,

~16!
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whereL5D8m̃* /4p l 1l 2\2. Note that we considered onl
the phonon absorption process since we are interested in
physical properties of MPR in a specific process. As can
seen from Eqs.~14!–~16!, the relaxation rates play an impo
tant role to determine the height and width of the MPR pe
as well as their peak positions. Equation~14!, supplemented
by Eqs. ~15! and ~16!, is the basic equation for the MPR
spectral line shape arising from the electron hopping mo
between the effective Landau states by absorbing a pho
with an energy\vq in the scattering events, which enabl
us to analyze MPR effects in the Q1D electronic syste
under tilted magnetic fields.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section we present the numerical results of
magnetoconductivity formulasyy

MPR in Eq. ~14!, which is re-
lated to the MPR for the Q1D electronic systems based
the model described in Sec. II. Here, special attention
given to the behavior of the MPR line shape, such as
appearance of subsidiary MPR peaks, the shift of these M
peaks, and a change in MPR amplitude and width. For
numerical results of Eq.~14!, we consider the Q1D elec
tronic systems with effective massm* 50.067m0 with m0
being the electron rest mass and LO-phonon energy\vL
536.6 meV as an example. The sample temperature is
sumed to be 50 K in this calculation. The quantityD8 in Eq.
~16! is taken by 4.11310268 kg2 m7 s24.21,22 Figure 1
shows the spectral line shapes ofsyy

MPR for the Q1D system
as a function of magnetic fieldB for various tilt anglesu of
the transverse tilted magnetic fieldB5(B sinu,0,cosu) ap-
plied to the electronic wire, where we considered three ca
for confinement frequenciesv1 andv2 in the x andz direc-
tion: ~a! v15 0.2vL and v250.5vL , ~b! v15 0.5vL and
v250.2vL , and~c! v15v250.2vL , as an example, in or
der to see the effect of tilted magnetic fields, viz.,u depen-
dency of MPR depending on the condition of the confini
potential parameters. Moreover, to understand the effec
electrostatic confining potentials~characterized byv1 , v2)
on MPR, we plotted the spectral line shapes ofsyy

MPR for the
Q1D system in Fig. 2, as a function of magnetic fieldB for
various confining potential parameters at a fixed anglesu,
where the tilt angle was taken as 30° as a matter of con
nience. In these figures, we can see the following features
the Q1D system:~i! there are three peaks in thesyy

MPR under
the magnetic field up to 40 Tesla;~ii ! the shift of the resonan
peaks in the conductivity forv1Þv2 corresponding to an
asymmetric quantum wire is very sensitive to the tilt angleu
of applied magnetic field and the relative strength of
confining potential parametersv1 and v2 in the x and z
direction, while forv15v2 corresponding to a symmetri
quantum wire, it does not depend on the tilt angle; and~iii !
the height of these peaks and their resonance widths
closely related to the tilt angleu and the confining potentia
parametersv1 andv2.

Let us first examine feature~i!. Since MPR is a phenom
enon which occurs in the electronic system subjected
quantizing magnetic fields, the resonant transition in
Q1D electronic structure under tilted magnetic fields ta
place in terms of the Landau-level indicesn and l, whereby
the
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\v1 ,\v2@G̃ are satisfied. In this case, the abrupt chan
of the relaxation time~and hence magnetoconductivity! is
expected to occur at the resonant magnetic field when
vary the strength and/or the tilt angleu of the applied mag-
netic field. As can be seen from Eqs.~14!–~16!, there are

four possible cases which changeG̃ abruptly under the con-
dition that the density of states is maximum~i.e., atk50):
\v25\vL , \v11\v25\vL , \v15\vL , and \v1

2\v25\vL , which are the conditions for MPR giving th
peak positions~i.e., resonant magnetic fields! in the spectral
line shape, because the condition\v22\v15\vL is ob-
viously impossible from the definition of the effective fre
quenciesv1 andv2 . It is to be noted that the MPR cond
tions are sensitive to the confining potential parametersv1
andv2). For givenv1 andv2 in Figs. 1 and 2, the resonan
behaviors are actually given by the following three cases

\v11\v25\vL , \v15\vL , \v12\v25\vL
~17!

under the magnetic field up to 40 Tesla. In the course
scattering events, the electrons in the effective Landau
subband levels specified by the level indices (n,l ) could
make transitions to one of the effective Landau and subb
levels (n8,l 8) by absorbing a LO-phonon energy\vL when

FIG. 1. Magnetic field~B! dependence of the magnetocondu
tivity ( syy

MPR) for different tilt angles (u ’s!: ~a! v150.2vL , v2

50.5vL , ~b! v150.5vL , v250.2vL , and~c! v15v250.2vL .
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the conditions~17! are satisfied. The first condition indicate
a process corresponding to the electronic transition fr
(n,l )5(0,0) to (1,1), where quasielectrons having resp
tive energy of\v1 and\v2 are created by absorbing a L
phonon with energy\vL . The second condition indicates
process corresponding to the electronic transition either f
(0,0) to (1,0) or from (0,1) to (1,1), where only a quasiele
tron with energy\v1 is created by absorbing the same ph
non energy. The third condition indicates a process co
sponding to the electronic transition from (0,1) to (1,0
where, by absorbing a LO phonon with the same energ
quasielectron with\v1 is created and a quasielectron wi
energy\v2 is, however, annihilated. It is shown from E
~17! that additional MPR conditions~subsidiary peaks! ap-
pear at\v16\v25\vL on both sides of the MPR peaks
\v15\vL . The origin of the appearance of the subsidia
peaks in the Q1D systems is mainly due to the presenc
the effective confining potentialmv2

2 Z2/2, i.e., v2 in Eq.
~17!, which is unlike the MPR in a 3D electronic syste
~where only one resonant peak appears at\v15\vc
5\vL whenP51; hereP is the difference of Landau-leve
index!.23–26 Thus, the appearance of these subsidiary pe
in the MPR line shape seems to be a characteristic featu
Q1D electronic systems. If the frequenciesv1 and v2 in
Eq. ~17! are replaced byV1 andV2, respectively, Eq.~17! is
reduced to our previous result16 for a Q1D quantum-wire

FIG. 2. Magnetic field~B! dependence of the magnetocondu
tivity ( syy

MPR) for ~a! the change of the confining potential streng
v2 in the z direction and~b! the change of the confining potentia
strengthv1 in the x direction.
-

m
-
-
e-
,
a

of

ks
in

structure modeled by the same potential wells, which is va
for the strong confinement potentials with respect to
cyclotron-resonance frequency. Moreover, if the frequenc
v1 and v2 in Eq. ~17! are replaced by
Av1

2 cos2 u1v2
2 sin2 u1vc

2 andAv1
2 sin2 u1v2

2 cos2 u, respec-
tively, Eq. ~17! is reduced to the result of Suzukiet al.17 for
a Q1D quantum-wire structure modeled by the same po
tial wells, which is valid for weak confinement potentials.

Next, let us pay attention to the shift of the resonant pe
in the conductivity seen in Figs. 1 and 2, which is related
feature~ii !. Their shift in the conductivity can be understoo
in terms of the behaviors of\v1 and \v16\v2 in Eq.
~17! since the quantities\v1 and\v16\v2 intercept\vL
at the resonant magnetic-field values. The quantities\v1

and \v16\v2 are mainly influenced by the tilt angle o
the applied magnetic field and the strength of the confin
potential parameters (v1 ,v2). Therefore, we will concen-
trate on how MPR peaks change according to these fac
Figure 3 shows the shift of resonant peaks in the conduc
ity seen in Fig. 1 as a function of tilt angleu depending on
the confinement conditions given in Fig. 1. As can be se
from the figure, in the case ofv1, v2 , the resonant point
for the subsidiary peak in the low field side determined fro
the condition\v11\v25\vL shifts to the corresponding
point in the higher field side. Those resonant points for
central peak given by\v15\vL and for the subsidiary
peak in the high field side given by\v12\v25\vL shift
to the corresponding points in the lower field side, resp
tively, as the tilt angle is increased, which has an identi
behavior to that reported by Suzukiet al.17 However, the
shift of the resonant peaks forv1.v2 is contrary to that for
v1,v2. In other words, forv1.v2, the peak in the low
field side of the magnetic field shifts to the lower field si
whereas the peaks in the middle and the high field side of
field shift to the higher field side, as the tilt angleu of the
applied magnetic field is increased. It is noted that o
present results do not agree with the experimental result
Brummell et al.6 for Q2D electronic systems, indicating tha
all of the MPR peaks shift to the higherB side. As mentioned
by Suzukiet al.,17 this disagreement may be due to the fa
that their experiment was performed under the magn

FIG. 3. Tilt angle dependence of the resonant magnetic fie
(Bpeak), viz., the MPR peak positions forv150.2vL , v250.5vL

and v150.5vL , v250.2vL . The solid, dashed, and dotted line
correspond to\v15\vL , \v12\v25\vL , and \v11\v2

5\vL , respectively.
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fields up to 10 Tesla whereas our calculations were car
out for the magnetic fields in the region more than 15 Te
taking into account two different effective Landau statesn
50,1 andl 50,1 only. Since the MPR peak on the lowerB
side shifts to the highern or l side even in the present ca
culations, we might expect the present theory to reprod
their experimental results qualitatively if we take into a
count the electronic transitions up to the second excited
els and obtain the MPR conditions valid under the magn
fields up to 10 Tesla. The shift of the MPR peaks in t
conductivity seen in Fig. 2 is represented in Fig. 4, a
function of the relative strength of the confining potent
parameters for a fixed tilt angleu. It is shown in the figure
that, for a fixed value ofv1 at a specific angle, the peaks
the low field and the middle field side of the magnetic fie
shift to the lower field side whereas the peak in the high fi
side of the magnetic field shifts to the higher field side, as
relative confining potential parameterv2 /v1 is increased,
while for a fixed value ofv2, all three MPR peaks shift to
the low field side of the magnetic field as the relative co
fining potential parameterv1 /v2 is increased. Our presen
results for the latter case agree qualitatively with those
Suzukiet al.17

Other interesting features of the shift of the MPR pea
are expected according to the relative strength of the elec
confinement due to the electrostatic potentials with respec

FIG. 4. Relative confining potential strength dependence of
resonant magnetic fields (Bpeak) at a fixed angleu530°: ~a! v1

50.2vL and ~b! v250.2vL . The solid, dashed, and dotted line
indicate \v15\vL , \v12\v25\vL , and \v11\v2

5\vL , respectively.
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the magnetic confinement by an applied magnetic field. Th
shifts for strong and weak confinement potentials are plo
in Fig. 5, as a function of tilt angleu, using the MPR con-
ditions given by Eq.~17!. It is clearly seen in this figure tha
the resonant peaks for strong confinement appear in the
field side and their angle dependence is small whereas t
for weak confinement appear in the high field side and th
angle dependence is larger than that for strong confinem
Moreover, the MPR peaks exhibit a similar angle depe
dence of the shift, as in Fig. 3. Note that, in addtion to t
MPR conditions in Fig. 3, the shift of resonant peaks giv
by \v25\vL appears in terms of given confining potenti
parametersv1 and v2. For direct comparison of the MPR
conditions presented by some authors, the shift of reson
peaks given by\v15\vL as an example is represented
Fig. 6 as a function of tilt angle according to the confineme
strength, where the confining potential parameters were,
spectively, taken as 0.1vc and 0.5vc for weak confinement
and 2vc and 5vc for strong confinement as a matter of co
venience. As shown in Fig. 6, the present results of the an
dependence of the MPR peaks for weak confinement a
well with those of Suzukiet al.17 for a Q1D quantum-wire
structure modeled by the same potential wells, but they
not agree with our previous results,16 whereas the presen
results for strong confinement agree qualitatively with tho
of our previous results, but they do not agree with that

e
FIG. 5. Tilt angle dependence of the resonant magnetic fie

(Bpeak): ~a! v1 ,v2,vc and ~b! v1 ,v2.vc , where v1 and v2

have been taken as 0.1vc or 0.5vc for weak confinements and a
2vc or 5vc for strong confinements. The solid, dashed, dotted,
dashed-dotted lines correspond to\v15\vL , \v12\v2

5\vL , \v11\v25\vL , and\v25\vL , respectively.
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5052 PRB 62LEE, RYU, KIM, AND TING
Suzuki et al. The difference between the present result a
their results16,17 is due to the neglect of the coupling Ham
tonian term;BxBzxz in Eq. ~1! or Eq. ~2!.

Let us turn to feature~iii ! for the height and width of the
MPR peaks seen in Figs. 1 and 2. The height and width
the MPR peaks seen in Figs. 1 and 2 can be explained by
~14!. The height of MPR peaks is influenced by amplitu

factors (Am* v2 /m̃* v1vz
2/v1

3 $12 exp@2b\v1#% and/or
Am* v1 /m̃* v2vx

2/v2
3 $12 exp@2b\v2#%), in addition to

the Lorentzian spectrum function. Figure 7 shows the va
tion of the heights of MPR peaks in Fig. 1 as a function
the tilt angle of applied magnetic field. It is seen clearly
this figure that their heights increase as the tilt angle
creases. The increase is given in terms of the amplitude
tors and it is understood that the spikes on the curve a
from the Lorentzian spectrum function. The variation of t
heights of MPR peaks in Fig. 2 is presented in Fig. 8 a
function of the relative strength of confining potential para
eters. The changes of their heights in this figure can be
derstood by the amplitude factors, as in Fig. 7. When
relative strengths of the confining potential parameters
crease, the heights of all three MPR peaks decrease, w
agrees qualitatively with the experimental results of Bru
mell et al.6 for Q2D electronic systems and with the theor
ical results of Suzukiet al.17 The width of MPR peaks is
mainly determined by the Lorentzian spectrum function
Eq. ~14! through the behavior ofG̃, which appears in terms
of the collision broadening due to the electron-phonon in
action and plays the role of the width in the spectral li
shape.27 Therefore, the width broadening of MPR pea
shown in Figs. 1 and 2 can be understood by the terms
cluding (\v6)2 in Eq. ~14!. Figure 9 shows the variation o
the width of MPR peaks as a function of tilt angle. It can
seen from the figure that, as the tilt angle increases,
widths increase forv1,v2, but they decrease forv1.v2,

FIG. 6. Comparison with the existing theories for the tilt ang
dependence of the resonant magnetic fields (Bpeak), wherev1 and
v2 have been taken as 0.1vc or 0.5vc for weak confinements and
as 2vc or 5vc for strong confinements. The solid, dashed, a
dotted lines indicate the present result for\v15\vL , Ryu et al.’s
theoretical results, and Suzukiet al.’s theoretical results, respec
tively.
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This means that, as the tilt angle increases, the effective
finements forv1,v2 are tighter and electrons are furth
confined in the narrow region, while forv1.v2 the effec-
tive confinements are looser and electrons are confined in
wide region. As a result, forv1,v2, the frequency of col-
lisions between electrons and LO phonons increases and
relaxation time becomes shorter due to the collision~scatter-
ing!, while for v1.v2, the frequency of collisions decrease
and the relaxation time becomes longer. Our theoretical
sults for the angle dependence of MPR width forv1,v2
agree qualitatively with the experimental results of Bru
mell et al.6 for Q2D electronic systems and with the theore
ical results of Suzukiet al.,17 which is unlike the case o
v1.v2. The variation of the widths of MPR peaks in Fig.
is presented in Fig. 10 as a function of the relative strength
confining potential parameters. In this figure, we can see
the width broadening is increasing with increasing one of
confining potential parameters. This means that, as one o
confining potentials increases, the effective confinements
tighter and electrons are further confined in the narrow
gion, as in the angle dependence of width forv1,v2. Our
theoretical results for the strength dependence of confin
potential parameters of MPR width agree qualitatively w
the experimental results of Brummellet al.6 for Q2D elec-
tronic systems and with the theoretical results of Suzuket
al.17 for Q1D systems.

FIG. 7. Tilt angle dependence of the MPR peak heights:~a!
v150.2vL , v250.5vL and ~b! v150.5vL , v250.2vL . The
solid, dashed, and dotted lines indicate\v15\vL , \v12\v2

5\vL , and\v11\v25\vL , respectively.
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Through all figures presented here, we can summarize
physical characteristics of the MPR line shape as follows:
the symmetric quantum wire, there are no shifts in MP
peaks as the tilt angle is increased, while for the asymme
quantum wire, the shift of MPR peaks and the change
their amplitude and width are sensitive to the tilt angle. T

FIG. 8. Relative confining potential strength dependence of
MPR peak heights at a fixed angleu530°: ~a! v150.2vL and ~b!
v250.2vL . The solid, dashed, and dotted lines indicate\v1

5\vL , \v12\v25\vL , and\v11\v25\vL , respectively.

FIG. 9. Tilt angle dependence of the MPR widths forv1

50.2vL , v250.5vL and v150.5vL , v250.2vL . The solid,
dashed, and dotted lines indicate\v15\vL , \v12\v2

5\vL , and\v11\v25\vL , respectively.
he
r

ic
f

e

angular dependences of the shift of MPR peaks and of
change of their width forv1.v2 are contrary to those fo
v1,v2. As one of the confining potential parameters (v1
andv2) is increased, the MPR peaks in the low field and t
middle field side of the magnetic field shift to the lower fie
side, whereas the peak in the high field side of the magn
field shifts to the higher field side or the lower field sid
depending on the conditionv1,v2 or v1.v2. In addition,
the widths of MPR peaks are increased, but their pe
heights decrease.

V. CONCLUSIONS

In conclusion, we have derived the conductivitysyy for
Q1D electronic systems subjected to crossed electric (Euu ŷ)
and magnetic fieldsB5(Bx,0,Bz), based on a simple mode
of parabolic confining potentials, and we obtained the M
conditions in the quantum limit condition, as a function
the strength~B! and tilt angle (u) of the applied magnetic
field (B) as well as the strength of the parabolic potent
parameters (v1 and/or v2). With the MPR conditions, we
have investigated the physical characteristics of the M
effects, according to the tilt angle of the applied magne
field and the relative strength of the confining potential p
rameters, in such Q1D systems. In particular, we have s
ied the qualitative features of the MPR effects and th
physical origin, and we compared with the existing theor

e
FIG. 10. Relative confining potential strength dependence of

MPR widths at a fixed angleu530°: ~a! v150.2vL and ~b! v2

50.2vL . The solid, dashed, and dotted lines indicate\v1

5\vL , \v12\v25\vL , and\v11\v25\vL , respectively.
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5054 PRB 62LEE, RYU, KIM, AND TING
ical results because we are not aware of any relevant ex
mental work on MPR on the dependence of the tilted m
netic field on thesyy for Q1D electronic systems. Som
comments related to this work should be made as follows~i!
Our theoretical results are based on a model of parab
confining potential. For usual heterostructures it is w
known that the confinement potential in thez direction is far
from being parabolic and is often approximated by a tria
gular potential.12,14 For direct comparison with experiment
realistic modeling with the correct confinement potent
should be required. We believe, however, that utilizing
model with a parabolic confinement is good enough to
tract the essential physics of MPR effects in Q1D electro
systems in tilted magnetic fields.~ii ! The single-particle pic-
ture has been used throughout this work, and thus
electron-electron interactions have been ignored. The ef
of electron-electron interaction can be taken into account
proximately by replacing the electron-phonon interaction
cluded in Eq.~9! by a screened electron-phonon interacti
iD\1/2/(2rvLV)1/2@11l2(q)/q2#,17 since the inverse
screening lengthl(q) depends on the electron densityne ,
which in general depends on temperatureT and the magnetic
field B . Therefore, we would expect the screening to
significant only if the electron densityne exceeds a critica
valuencr(T,B). In this case, the effects of electron-electr
scattering would be significant, and the relaxation rate w
be changed and the MPR line shape as well as the M
ev
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linewidth would be affected by electron-electron scatterin
~iii ! Any modification of the electron-phonon interactio
brought about by the confinement of phonons~we used the
interaction for bulk phonons! has not been taken into consid
eration. A possible influence of the modification can
included28 in the electron-phonon interaction in Eq.~9!. Al-
though such modifications would be expected to affect
MPR line shape considerably, as in the electron-elect
scattering case, they are not expected to change the phy
characteristics of MPR effects, such as the appearanc
subsidiary MPR peaks and the shift of these MPR peaks

Despite the above shortcomings of the theory, we beli
that the simple model we present captures qualitatively
essential physics on MPR in Q1D electronic systems brou
about by the electron confinement due to the electrost
potentials and the magnetic confinement by tilting a m
netic field. We hope that new experiments will test the v
lidity of our prediction.
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