PHYSICAL REVIEW B VOLUME 62, NUMBER 8 15 AUGUST 2000-II

Spin-glass ordering in diluted magnetic semiconductors: A Monte Carlo study
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We study the temperature-dilution phase diagram of a site-diluted Heisenberg antiferromagnet on a face-
certered-cubic lattice, with and without the Dzyaloshinskii-Moriya anisotropic term, fixed to realistic micro-
scopic parameters for IIB,Mn,Te(lIB=Cd,Hg,Zn). We show that the dipolar Dzyaloshinskii-Moriya an-
isotropy induces a finite-temperature phase transition to a spin-glass phase, at dilutions larger than 80%. The
resulting probability distribution of the order parameRq) is similar to the one found in the cubic lattice
Edwards-Anderson-Ising model. The critical exponents undergo large finite-size corrections, but tend to values
similar to the ones of the Edwards-Anderson-Ising model.

Although most theoretical investigations on spin-glass We have taken here the point of view of trying to be as
(SO system$ have focused on models based on Ising spinstealistic as possible, analyzing a model as close as possible
systems that have been investigated in the recent period, like the experimental samples. We show that nonrandom DM
the diluted magnetic semiconductors [IB Mn Te series, |IBterms(selecting a realistic value for the anisotroye able
=Cd, Hg, Zn, ie., C¢ ,MnTe?® Hg,_Mn,Te and to induce a SG phase transition in a 3D Heisenberg spin
Zn,_ Mn,Te* (and somehow even typical experimental 9/ass on a fcc lattice. We analyze and discuss in detail the
sampled like CuMn, AgMn, EySr,_,S), are closer in na- values of critical exponents: the experimental results for the

. 4 . .
ture to continuous Heisenberg spins. Early computer simulal!B1-xMnxTe material$* are in good agreement with the

tions suggested that in three spatial dimensions neither sygjost accurate calculations for the Edwards-Anderson model

tems with local interactions and Heisentefgor XY®?° with Ising spins(IEA) on the cubic Iatt_ic%] (v=1.8+0.2),
spins, nor systems with long-range Ruderman-Kittel” = —0.26+0.04), but the numerical simulations of Ref. 16

(-Kasuya-Yosida interaction¥ undergo a finite-temperature and.of Ref. 15,.y|elded/~ 10 We will show that the nu-
SG phase transition. This fact could be potentially annoyin merical calculation of the critical exponents on the accessible

f h logical point of vi but it b Yattice sizes suffer from serious finite-size corrections, and
rom a phenomenological point of VIEW, DUl It DECOMES aCyy, oy 5 systematic analysis of the numerical data establishes a
ceptable after noticing that a small anisotropic interaction

. . ; - "'clear trend towards values oflarger than the ones found in
neglected in the above calculations, could induce a f'”'teRefs. 15 and 16, and close to the experimental values.
temperature SG phase transition. The site-diluted antiferromagneti€éAFM) Heisenberg
Still the situation is not crystal clear: the work of Ref. 11 odel on the fcc lattice, with and without DM anisotropy, is
claimed that the most important anisotropic coupling in 1B 53 model for the IIB_ Mn,Te series, where the Mn atoms
Mn Te materials? the Dyalozhinskii-Moriya(DM) interac-  form a fcc lattice with localizedHeisenberyspins interact-
tion, is not able to induce a SG phase. On the contrary ghg through short-rangésuperexchangeAFM terms, while
theoretical analysts of experimental data on the I1IB Mn Te the magnetically inert 1IB atoms randomly replaces the Mn
series was used to suggest the presence of SG ordering @ver the lattice. An AFM interaction on the fcc lattice is
three-dimensional3D) Heisenberg spin glasséfor finite  frustrated, and gives rise to some interesting order-disorder
temperature and no anisotropies recent numerical phenomena® both with Heisenber and Ising sping® The
simulation* support the existence of a chiral phase transi-dilution disorder deletes some of the sites on the system, thus
tion in such systems. The role of the anisotropy was reconproviding the random combination of frustrated and unfrus-
sidered in Ref. 15, where the Heisenberg spin Edwardstrated plaquettes, that is believed to be essential for SG or-
Anderson(HEA) model was considered with the addition of dering. The Hamiltonian of the system is
a random pseudodipolar interaction: clear signatures of a 5
finite-temperature SG phase were found. This result is not _
consistent with the one of Ref. 1(that was considered as H_‘]<x2y>, SX'SS’+FRX‘V'(S’</\SV) ' @)
being based on a realistic modelization of IIB Mn Te, even if ’
the direction of the DM vectors, sd@), was chosen at ran- where the fieldsS=(S,,S,,S;),S;,S, and S real with S
dom, while they should be periodic along the lattigeFur- =1, represent the spin of the Mn atoms, ahd0. A lattice
ther works on this subject can be found in Ref. 26. We re=site is randomly occupied by a spin with probabilfly The
mind at last that a diluted Ising antiferromagnet on a fccsum labeled byx,y)’ runs over the pairs of occupied nearest
lattice has been studied in Ref 16, where the signature of aeighboring sites of the lattice. The unit-length vectgs ,
SG phase transition for low enough densities has been dapecify the DM anisotropy, and they verif,_,=—R,_,.
tected. Following Ref. 12 we set
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while the other five independent vectors are obtained usin¢ & _,,_3 Tz ] TR
the threefold rotation symmetries of the lattice. In Ref. 12 the 'Z';’ * f‘”
ratio D/J has been estimated to be 0.054 forZng 33Te - ———— e
and Cg,MngssTe, and is very mildly dependent on the 871 “ Z'IT ﬁ;f; ]
composition of the sample: we have fixed it to 0.06 for sim- E g2 — B, L=16 :
plicity. As the local magnetic field acting on sp8y is [see & 43 | “a. By L=16 ]
Eq (1)] mh 05 _—amﬁ&ﬁ-ﬁ.é-}é-&-:-ﬁ-;—;—;—i—!—i—i—u—i—i—:
orft
D
h— ‘Jy Hx%l ] 5y+j (S/\Ryy), @ 0.25 03 035 04 045 g/j 0.55 0.6 0.65 0.7 0.75

it is easy to implement a heat-bath algorithm and the over- FIG. 1. Tensorial By) and scalar B,) overlap Binder param-
relaxed microcanonical algorithm of Ref. 19. We have foundeter versus temperature for siZes 8,16 and dilutionp=0.9 (up-
that the combination of these two updates tremendously rerer part andp=0.7 (lower par}.
duces the thermalization effort. In the production runs we
have performed a full-lattice heat-bath sweep followed by 19=0.7 andp=0.9 are displayed in Fig. 1. A1=0.9 for both
overrelaxed updates, that will be referred in the following aspbservables we find a low temperature, AFM ordered phase,
an elementary Monte Carlo st¢EMCS). In order to define  since the tensorial magnetization is nonvanishing. There is a
the observables, it is useful to considereglicali.e., a ther-  strong dip close to the phase-transition point, which probably
mally independent system with the same set of occupiegs very plausibly of first order. On the contrary fpr=0.7, it
sites, that we denot®(x) ]. The measured observables can beis clear that the tensorial magnetization is no longer an ap-
most easily described in terms of the following three basigpropriate order parameter. F@=0.8 (not shown in the
fields: the tensor fieli7, 5(x)= S¢sf—36%#, if the lattice  plot), our results indicate a crossover regime between the two
site x is occupied, and zero otherwiséhe tensorial overlap Zi[t:uationgéThegefKore, tfg)eSIovy-telmperatlrJ]re r|ﬁ13hase turns r:rom
_ o : to at 0.% p,.<0.8, similar to what happens in the
[005()=S(], and the scalar overlap fieldq(x) Ising case® Also for D=0,0<0.8 we do not find an AFM

=S5, ordered phasésee below.
The rationgle for studyi'ng the tensor fietdx)™ is that In ordFe)r to quantify how strong the effect of the anisot-
previous studies of AFM diluted systems on the fcc lattfte, ropy is, we compare the system g&0.7 with D=0 and

showed that only for moderate dilutions the system ceases 9006 In Fig. 2 we show the correlation length of the

develop AFM ordering. The tensorial magnetization is aMensorial overlap in units of the lattice size. This operator

gjeal order. pk?rarr}eter to chegk tbh||s tposs'bf'l';ylz"\i'nceh'tl.vv'”shouId be zero in the paramagnetic phase, diverging in the
€ nonvanishing foany conceivable type o or nell- g phase, and at the critical point reaches a finite universal

C?]'.df.‘l otrdderlngt. thr?oyter,t!t WO?Ld ?rl]so w?rk %nmr)r;cge SO value. In the isotropic cagsee zoom in upper part of Fig) 2
phisticated, yet trivial situafions fike those foun P the crossing point of the =12 and 16 lattices is not clearly

119 H ;
=1.7 The tensorial overld is most adequate o study the resolved, and their respective crossings withlthe8 curve

isotropic (0 =0) case, since in this situation the Hamlltoma}n shifts to lower temperature with growing lattice size. In Fig.

pogserz]s daO(S% global symme(:jtry: then t(;lehanisotrofp)r/] 'S 3 we also show the Binder cumulants of the tensorial overlap
switched on the symmetry reduces4g, and the use of the g o the tensor field fab = 0 atp=0.7. In addition, a long
scalar overlap becomes natural. For all three fields, one can

define straightforwardly the corresponding susceptibility,
Binder parameter, and a finite lattice correlation
length417:2t

The model(1) without impurities =1.0D=0.08]) un- =
dergoes a phase transition®f{p=1)~0.6Q] from a para-  »F
magnetic phase to an AFM phase, as shown by the behavic
of the tensorial magnetization. For larger dilutions a lower
temperature value needs to be reached in order to exit fron
the paramagnetic phase: the critical lifig(p), will eventu-
ally reach zero temperature at the percolation threshold for D/J=0.06
the magnetic ionsg;~0.2). The first question is for which ™’ 0.01? [ =07
dilution the system forgets its global AFM ordering. In order 01}
to answer this question we have performed slow annealing:
in 60 sampleqand its corresponding replidaat dilutions
p=1.0, 0.9, and 0.8, in latticels=8 and 16; a{p=0.7 and
p=0.6 (that will be shown to be in the SG compositional  FIG. 2. Correlation length of tensorial overléip units of lattice
range, we have annealed 700 samples. The results for thgize) vs temperature fob =0 (upper part and zoojrand in pres-
Binder cumulant of the tensor and scalar overlap fieldg at ence of anisotrop =0.06) (lower par.
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FIG. 3. Binder cumulants of the tensorial overlap and of tensor
field vs temperature fob=0 andp=0.7. FIG. 4. Probability distribution function of scalar overlap for
L=8,12,16 atp=0.6, T=J3/4.5~0.78T; andD =0.06].

run in 32 samples of size=32 atT=0.18) yielded a value of the IEA model in 3D, which seems even more plausible
of the Binder cumulant of the tensorial overlap of 050 from our measures of thB(q). To further investigate this

From Figs. 2 and 3 it is clear that at the explored tempera- . - . .
9 P P felatlon we have measured the critical exponents, in the di-

tures, the tensorial overlap field develops a large correlation™.. L . .
length, while the tensor field does not, thus signaling a lac ution range wher(_e we definitively find S.G ordering, namely,
of antiferromagnetic ordering at these temperatufes p=0.7 and 06 S_lnce we have at our d|sposal_ o_nly a narrow
course, at still lower temperatures one cannot exclude thEpnge of Iqtt|ce sizes, itis Important to use a_f|n|te-5|ze ;cal-
presen,ce of an AFM phaseOur results are similar to the Ing analysis that allows us to study the scaling corrections.
ones shown in Ref. 14 for the HEA model: the data for the' e have used the quotient method of Ref. 21, that has been
Binder cumulant of the tensorial overlap rapidly grow at apartlcularly usﬁ%{' in the study of scaling corrgcﬂons n dis-
certain temperature, but then saturate at a value that d%)r_]rde_ref_d .?ystt_a i.W.? mteas.tgrell?n Op_T_rft_?’ fj):;/ergm? n
creases with the lattice siZand close to the crossing tem- _. € infinite sizé imit at criticaity as el 70, on two
perature of the correlation length, see Figs. 2 andvBre- finite lattices of sided andsL, and we select the tempera-
over in Ref. 14 it has been showr,1 that the chiral-glass phaié”e value where the two correlation lengths in units of the
appears precisely at the temperatures at which the Bind ?tt'c.e S'Z? ﬁomude(see the crossmhg of Fig.)2For the
cumulant of the tensorial overlap grows. quotient of these two measures we have

On the other hand, with a 6% DM anisotrofsee the O(sL.T
lower frame of Fig. 2, we find a neat crossing of the corre- (sL.T) —Xolv -

. ) . lesL e m=s=S©°"[1+O(L™ )], (3
lation length (the tensorial overlap Binder cumulant has a O(L,T) ’ ‘
marked dip, in contrast with the scalar overlap shown in the ) o .
lower frame of Fig. 1 As the phase transition for the aniso- where w>_0 is related to the first |rrel_evant operator in the
tropic system occurs at a temperature 80% higher than thgnormalization-group sense. The main advantage of the re-
one close to the crossings of the=0 case, that according to lation (3) is that the large statistical correlation betweer_1 the
Ref. 14 signal a real chiral-glass phase transition, the naturdfi€asurements d and¢ allows us to measure the quotient

conclusion is that the DM anisotropy fi®ta smooth pertur- vylth sufficient accuracy as to uncover the scaling correc-
bation that reveals a hidden chiral-glass ordering. tions. In ourZ, symmetric case we have of course used the

In order to characterize more precisely the SG phase wecalar overlap correlation length. Our results_ ar(_e_displayeq in
have studied the distribution of the scalar overlappat Table I, and they do show the presence of significant scaling
—0.6,D=0.06J, and T=J/4.5~0.78T,. At this tempera- corrections ¢ is computed using the temperature derivative

ture we have estimated the mean thermalization time in th@f €q.7 from the susceptibility of the scalar overlajSince

L =16 lattice, by considering a logarithmic plot of the meanV& Only have few lattice sizes it is meaningless to try an
overlap susceptibility of 64 samples, as a function of mcinfinite size extrapolation as the one of Ref. 24. We should

time, starting from a random configuration, and we havestill mention that the critical exponents obtained by a simple
foun’d it to be of order 250 EMCS. After thai we have per- log-log fit (for instance, with data measured at the maximum

formed a run with 800 samples, with=8, 12, 16, perform- . .
ing 8000 EMCS on each sample, and taking a measure every TABLE I. Transient critical exponents(L,,L,) andp(Ly,L,)
4 EMCS. We displayP(q) in Fig. 4: the central part is tained with the quotient methdgee the text
remarkably stable for growing lattice size. Therefore, on the — _ _ _
lattice sizes that we are able to thermalize, the pattern wirt?)  v(p=07) v(p=06) n(p=0.7)  n(p=0.6)
obtain is completely analogous to the one found for the IEA@8,12) 0.9419) 1.082) 0.4436) 0.1938)
model in 3D?® (8,16 105513  1.322) 03923  0.095412)
Due to the globalZ, symmetry of the Hamiltoniarl), (12,16 1.27722) 1.91(7) 0.296) —0.10(5)
one would expect it to belong to the same universality class
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of the specific heatis roughly equivalent to an average of a combination of microcanonical and heat-bath Monte Carlo
the transient exponents displayed in our table. Therefore thepdate, that have allowed us to thermalize-al6 lattice at
value of v~1 found with Ising spin¥ or in the HEA model T=0.78T, in the SG phase. We have measured the distri-
with pseudodipolar anisotropy,is most probably a preas- bution of the overlap, finding results analogous to the ones of
ymptotic value. In fact, the best available results for the IEA@n IEA 3D model on similar lattice sizes. We have given an
model in 3D Ref. 17p=1.8(2),7= —0.26(4) are plausible €stimate the critical exponents on the SG dilution range. Our
infinite volume extrapolations for our results. However, in'esults suffer from severe finite-size corrections, but it is
order to definitively elucidate this point, it would be helpful Plausible to deduce that critical exponents are converging to
to use the extrapolation method of Refs. 17 and 25 thathe IEA rfsults, as the experimental results for the [IB Mn Te
allows us to work in the paramagnetic region with a signifi—squeSﬁ' Further open questions need clarification: a better
cantly smaller thermalization effort measure of the critical exponents using the method of Ref.
e . . 25, the precise characterization of the AFM phase, and a
We have shown for the first time that dipolar DM aniso- ;™" . : o
tropic local interactions are able to induceg SG phase tra detailed study of the order of the paramagnetic antiferromag-

g . o ! . i \etic phase transition at low dilution.

sition for Heisenberg spins in three dimensions. This resul

has been obtained with the very small realistic value of the \We acknowledge interesting discussions with D. Brogioli,
anisotropy coupling constant in the IIB Mn Te series. GivenB. Coluzzi, A. Geddo-Lehmann, G. Parisi, F. Ricci-
the dramatic effect of this small perturbation term in theTersenghi, and J. J. Ruiz-Lorenzo. V.M.M. is a M.E.C. fel-
Hamiltonian, we suggest that the chiral-glass mechanisnow and has been partially supported by CICXEN97-
proposed in Ref. 13 is overwhelmed by the neglected DM1708 and AEN99-1693 The simulations have been
term. We have studied the temperature-dilution phase diggerformed using the Pentium clusters of the Universita
gram of the Hamiltoniar(1) in a large dilution range. We Cagliari (Kalix2) and the Universidad de Zaragof@TNN
have found that the low-temperature phase changes fromollaboration. While this work was in proofs Professor C. L.
AFM to SG order betweep=0.8 andp=0.7. We have used Henley called our attention to Ref. 26.
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