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Spin-glass ordering in diluted magnetic semiconductors: A Monte Carlo study
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We study the temperature-dilution phase diagram of a site-diluted Heisenberg antiferromagnet on a face-
certered-cubic lattice, with and without the Dzyaloshinskii-Moriya anisotropic term, fixed to realistic micro-
scopic parameters for IIB12xMnxTe(IIB5Cd,Hg,Zn). We show that the dipolar Dzyaloshinskii-Moriya an-
isotropy induces a finite-temperature phase transition to a spin-glass phase, at dilutions larger than 80%. The
resulting probability distribution of the order parameterP(q) is similar to the one found in the cubic lattice
Edwards-Anderson-Ising model. The critical exponents undergo large finite-size corrections, but tend to values
similar to the ones of the Edwards-Anderson-Ising model.
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Although most theoretical investigations on spin-gla
~SG! systems1 have focused on models based on Ising sp
systems that have been investigated in the recent period,
the diluted magnetic semiconductors IIB Mn Te series,
5Cd, Hg, Zn, i.e., Cd12xMnxTe,2,3 Hg12xMnxTe,3 and
Zn12xMnxTe4 ~and somehow even typical experimen
samples5 like CuMn, AgMn, EuxSr12xS), are closer in na-
ture to continuous Heisenberg spins. Early computer sim
tions suggested that in three spatial dimensions neither
tems with local interactions and Heisenberg6–8 or XY6,9

spins, nor systems with long-range Ruderman-Kit
~-Kasuya!-Yosida interactions10 undergo a finite-temperatur
SG phase transition. This fact could be potentially annoy
from a phenomenological point of view, but it becomes a
ceptable after noticing that a small anisotropic interacti
neglected in the above calculations, could induce a fin
temperature SG phase transition.

Still the situation is not crystal clear: the work of Ref. 1
claimed that the most important anisotropic coupling in I
Mn Te materials,12 the Dyalozhinskii-Moriya~DM! interac-
tion, is not able to induce a SG phase. On the contrar
theoretical analysis13 of experimental data on the IIB Mn T
series was used to suggest the presence of SG orderin
three-dimensional~3D! Heisenberg spin glasses~for finite
temperature and no anisotropies!: recent numerical
simulations14 support the existence of a chiral phase tran
tion in such systems. The role of the anisotropy was rec
sidered in Ref. 15, where the Heisenberg spin Edwa
Anderson~HEA! model was considered with the addition
a random pseudodipolar interaction: clear signatures o
finite-temperature SG phase were found. This result is
consistent with the one of Ref. 11~that was considered a
being based on a realistic modelization of IIB Mn Te, even
the direction of the DM vectors, see~1!, was chosen at ran
dom, while they should be periodic along the lattice12!. Fur-
ther works on this subject can be found in Ref. 26. We
mind at last that a diluted Ising antiferromagnet on a
lattice has been studied in Ref 16, where the signature
SG phase transition for low enough densities has been
tected.
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We have taken here the point of view of trying to be
realistic as possible, analyzing a model as close as pos
to the experimental samples. We show that nonrandom
terms~selecting a realistic value for the anisotropy! are able
to induce a SG phase transition in a 3D Heisenberg s
glass on a fcc lattice. We analyze and discuss in detail
values of critical exponents: the experimental results for
IIB12xMnxTe materials2,4 are in good agreement with th
most accurate calculations for the Edwards-Anderson mo
with Ising spins~IEA! on the cubic lattice17 (n51.860.2),
h520.2660.04), but the numerical simulations of Ref. 1
and of Ref. 15, yieldedn'1.0. We will show that the nu-
merical calculation of the critical exponents on the access
lattice sizes suffer from serious finite-size corrections, a
that a systematic analysis of the numerical data establish
clear trend towards values ofn larger than the ones found i
Refs. 15 and 16, and close to the experimental values.

The site-diluted antiferromagnetic~AFM! Heisenberg
model on the fcc lattice, with and without DM anisotropy,
a model for the IIB12xMnxTe series, where the Mn atom
form a fcc lattice with localized~Heisenberg! spins interact-
ing through short-range~superexchange! AFM terms, while
the magnetically inert IIB atoms randomly replaces the M
over the lattice. An AFM interaction on the fcc lattice
frustrated, and gives rise to some interesting order-diso
phenomena,18 both with Heisenberg19 and Ising spins.20 The
dilution disorder deletes some of the sites on the system,
providing the random combination of frustrated and unfru
trated plaquettes, that is believed to be essential for SG
dering. The Hamiltonian of the system is

H5J (
^x,y&8

FSx•Sy1
D

J
Rx2y•~Sx`Sy!G , ~1!

where the fieldsS5(S1 ,S2 ,S3),S1 ,S2 and S3 real with S2

51, represent the spin of the Mn atoms, andJ.0. A lattice
site is randomly occupied by a spin with probabilityp. The
sum labeled bŷx,y&8 runs over the pairs of occupied neare
neighboring sites of the lattice. The unit-length vectorsRx2y
specify the DM anisotropy, and they verifyRx2y52Ry2x .
Following Ref. 12 we set
4999 ©2000 The American Physical Society
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R(1/A2,1/A2,0)5S 1

A2
,2

1

A2
,0D ,

while the other five independent vectors are obtained us
the threefold rotation symmetries of the lattice. In Ref. 12
ratio D/J has been estimated to be 0.054 for Zn0.77Mn0.33Te
and Cd0.77Mn0.33Te, and is very mildly dependent on th
composition of the sample: we have fixed it to 0.06 for si
plicity. As the local magnetic field acting on spinSx is @see
Eq. ~1!#

hx5J (
y,uux2yuu5A2

Sy1
D

J
~Sy`Rx,y!, ~2!

it is easy to implement a heat-bath algorithm and the ov
relaxed microcanonical algorithm of Ref. 19. We have fou
that the combination of these two updates tremendously
duces the thermalization effort. In the production runs
have performed a full-lattice heat-bath sweep followed by
overrelaxed updates, that will be referred in the following
an elementary Monte Carlo step~EMCS!. In order to define
the observables, it is useful to consider areplica @i.e., a ther-
mally independent system with the same set of occup
sites, that we denoteS̃(x)#. The measured observables can
most easily described in terms of the following three ba
fields: the tensor field@ta,b(x)5Sx

aSx
b2 1

3 da,b, if the lattice
site x is occupied, and zero otherwise#, the tensorial overlap

@Oa,b(x)5Sx
aS̃x

b#, and the scalar overlap field@q(x)

5Sx•S̃x#.
The rationale for studying the tensor fieldt(x)21 is that

previous studies of AFM diluted systems on the fcc lattice16

showed that only for moderate dilutions the system cease
develop AFM ordering. The tensorial magnetization is
ideal order parameter to check this possibility, since it w
be nonvanishing forany conceivable type of AFM or heli-
coidal ordering. Moreover, it would also work on more s
phisticated, yet trivial situations like those found inD50,p
51.19 The tensorial overlap22 is most adequate to study th
isotropic (D50) case, since in this situation the Hamiltonia
posses aO(3) global symmetry: when the anisotropy
switched on the symmetry reduces toZ2, and the use of the
scalar overlap becomes natural. For all three fields, one
define straightforwardly the corresponding susceptibil
Binder parameter, and a finite lattice correlati
length.14,17,21

The model~1! without impurities (p51.0,D50.06J) un-
dergoes a phase transition atTc(p51)'0.60J from a para-
magnetic phase to an AFM phase, as shown by the beha
of the tensorial magnetization. For larger dilutions a low
temperature value needs to be reached in order to exit f
the paramagnetic phase: the critical line,Tc(p), will eventu-
ally reach zero temperature at the percolation threshold
the magnetic ions (pc'0.2). The first question is for which
dilution the system forgets its global AFM ordering. In ord
to answer this question we have performed slow anneal
in 60 samples~and its corresponding replicas! at dilutions
p51.0, 0.9, and 0.8, in latticesL58 and 16; atp50.7 and
p50.6 ~that will be shown to be in the SG composition
range!, we have annealed 700 samples. The results for
Binder cumulant of the tensor and scalar overlap fields ap
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50.7 andp50.9 are displayed in Fig. 1. Atp50.9 for both
observables we find a low temperature, AFM ordered pha
since the tensorial magnetization is nonvanishing. There
strong dip close to the phase-transition point, which proba
is very plausibly of first order. On the contrary forp50.7, it
is clear that the tensorial magnetization is no longer an
propriate order parameter. Forp50.8 ~not shown in the
plot!, our results indicate a crossover regime between the
situations. Therefore, the low-temperature phase turns f
AFM to SG at 0.7,pc,0.8, similar to what happens in th
Ising case.16 Also for D50,p,0.8 we do not find an AFM
ordered phase~see below!.

In order to quantify how strong the effect of the aniso
ropy is, we compare the system atp50.7 with D50 and
D50.06J. In Fig. 2 we show the correlation length of th
tensorial overlap in units of the lattice size. This opera
should be zero in the paramagnetic phase, diverging in
SG phase, and at the critical point reaches a finite unive
value. In the isotropic case~see zoom in upper part of Fig. 2!
the crossing point of theL512 and 16 lattices is not clearl
resolved, and their respective crossings with theL58 curve
shifts to lower temperature with growing lattice size. In F
3 we also show the Binder cumulants of the tensorial over
and of the tensor field forD50 atp50.7. In addition, a long

FIG. 1. Tensorial (BT) and scalar (Bq) overlap Binder param-
eter versus temperature for sizesL58,16 and dilutionp50.9 ~up-
per part! andp50.7 ~lower part!.

FIG. 2. Correlation length of tensorial overlap~in units of lattice
size! vs temperature forD50 ~upper part and zoom! and in pres-
ence of anisotropyD50.06J ~lower part!.
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run in 32 samples of sizeL532 atT50.18J yielded a value
of the Binder cumulant of the tensorial overlap of 0.30~5!.
From Figs. 2 and 3 it is clear that at the explored tempe
tures, the tensorial overlap field develops a large correla
length, while the tensor field does not, thus signaling a l
of antiferromagnetic ordering at these temperatures~of
course, at still lower temperatures one cannot exclude
presence of an AFM phase!. Our results are similar to the
ones shown in Ref. 14 for the HEA model: the data for t
Binder cumulant of the tensorial overlap rapidly grow a
certain temperature, but then saturate at a value that
creases with the lattice size~and close to the crossing tem
perature of the correlation length, see Figs. 2 and 3!. More-
over, in Ref. 14 it has been shown that the chiral-glass ph
appears precisely at the temperatures at which the Bin
cumulant of the tensorial overlap grows.

On the other hand, with a 6% DM anisotropy~see the
lower frame of Fig. 2!, we find a neat crossing of the corre
lation length ~the tensorial overlap Binder cumulant has
marked dip, in contrast with the scalar overlap shown in
lower frame of Fig. 1!. As the phase transition for the anis
tropic system occurs at a temperature 80% higher than
one close to the crossings of theD50 case, that according t
Ref. 14 signal a real chiral-glass phase transition, the nat
conclusion is that the DM anisotropy isnot a smooth pertur-
bation that reveals a hidden chiral-glass ordering.

In order to characterize more precisely the SG phase
have studied the distribution of the scalar overlap atp
50.6, D50.06J, and T5J/4.5'0.78Tc . At this tempera-
ture we have estimated the mean thermalization time in
L516 lattice, by considering a logarithmic plot of the me
overlap susceptibility of 64 samples, as a function of M
time, starting from a random configuration, and we ha
found it to be of order 250 EMCS. After that we have pe
formed a run with 800 samples, withL58, 12, 16, perform-
ing 8000 EMCS on each sample, and taking a measure e
4 EMCS. We displayP(q) in Fig. 4: the central part is
remarkably stable for growing lattice size. Therefore, on
lattice sizes that we are able to thermalize, the pattern
obtain is completely analogous to the one found for the I
model in 3D.23

Due to the globalZ2 symmetry of the Hamiltonian~1!,
one would expect it to belong to the same universality cl

FIG. 3. Binder cumulants of the tensorial overlap and of ten
field vs temperature forD50 andp50.7.
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of the IEA model in 3D, which seems even more plausib
from our measures of theP(q). To further investigate this
relation we have measured the critical exponents, in the
lution range where we definitively find SG ordering, name
p50.7 and 0.6. Since we have at our disposal only a nar
range of lattice sizes, it is important to use a finite-size sc
ing analysis that allows us to study the scaling correctio
We have used the quotient method of Ref. 21, that has b
particularly useful in the study of scaling corrections in d
ordered systems.24 We measure an operatorO, diverging in
the infinite size limit at criticality asuT2Tcu2xO, on two
finite lattices of sidesL andsL, and we select the tempera
ture value where the two correlation lengths in units of t
lattice size coincide~see the crossing of Fig. 2!. For the
quotient of these two measures we have

O~sL,T!

O~L,T!
uj(sL,T)/j(L,T)5s5sxO /n@11O~L2v!#, ~3!

wherev.0 is related to the first irrelevant operator in th
renormalization-group sense. The main advantage of the
lation ~3! is that the large statistical correlation between t
measurements ofO andj allows us to measure the quotie
with sufficient accuracy as to uncover the scaling corr
tions. In ourZ2 symmetric case we have of course used
scalar overlap correlation length. Our results are displaye
Table I, and they do show the presence of significant sca
corrections (n is computed using the temperature derivati
of jq ,h from the susceptibility of the scalar overlap!. Since
we only have few lattice sizes it is meaningless to try
infinite size extrapolation as the one of Ref. 24. We sho
still mention that the critical exponents obtained by a sim
log-log fit ~for instance, with data measured at the maximu

r
FIG. 4. Probability distribution function of scalar overlap fo

L58,12,16 atp50.6, T5J/4.5'0.78Tc andD50.06J.

TABLE I. Transient critical exponentsn(L1 ,L2) andh(L1 ,L2)
obtained with the quotient method~see the text!.

(L1 ,L2) n(p50.7) n(p50.6) h(p50.7) h(p50.6)

~8,12! 0.941~9! 1.08~2! 0.443~6! 0.193~8!

~8,16! 1.055~13! 1.32~2! 0.392~3! 0.0959~12!

~12,16! 1.277~22! 1.91~7! 0.28~6! 20.10(5)
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of the specific heat! is roughly equivalent to an average
the transient exponents displayed in our table. Therefore
value ofn'1 found with Ising spins16 or in the HEA model
with pseudodipolar anisotropy,15 is most probably a preas
ymptotic value. In fact, the best available results for the IE
model in 3D Ref. 17,n51.8(2),h520.26(4) are plausible
infinite volume extrapolations for our results. However,
order to definitively elucidate this point, it would be helpf
to use the extrapolation method of Refs. 17 and 25,
allows us to work in the paramagnetic region with a sign
cantly smaller thermalization effort.

We have shown for the first time that dipolar DM anis
tropic local interactions are able to induce a SG phase t
sition for Heisenberg spins in three dimensions. This re
has been obtained with the very small realistic value of
anisotropy coupling constant in the IIB Mn Te series. Giv
the dramatic effect of this small perturbation term in t
Hamiltonian, we suggest that the chiral-glass mechan
proposed in Ref. 13 is overwhelmed by the neglected D
term. We have studied the temperature-dilution phase
gram of the Hamiltonian~1! in a large dilution range. We
have found that the low-temperature phase changes f
AFM to SG order betweenp50.8 andp50.7. We have used
-
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a combination of microcanonical and heat-bath Monte Ca
update, that have allowed us to thermalize aL516 lattice at
T50.78Tc , in the SG phase. We have measured the dis
bution of the overlap, finding results analogous to the one
an IEA 3D model on similar lattice sizes. We have given
estimate the critical exponents on the SG dilution range. O
results suffer from severe finite-size corrections, but it
plausible to deduce that critical exponents are convergin
the IEA results, as the experimental results for the IIB Mn
suggest.2,4 Further open questions need clarification: a be
measure of the critical exponents using the method of R
25, the precise characterization of the AFM phase, an
detailed study of the order of the paramagnetic antiferrom
netic phase transition at low dilution.
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