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Magnetotransport in nearly antiferromagnetic metals
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We present a theory of the magnetotransport in weakly disordered metals close to an antiferromagnetic
guantum-critical point. The anisotropic scattering from critical spin fluctuations is strongly influenced by weak
but isotropic scattering from small amounts of disorder. This leads to a large regime where the resistivity obeys
a scaling formp=py+ Ap~po+ T4 T/po,(p— Pe)/po.B/pe?], wherep, is the residual resistivityB the
magnetic field, angh— p.>0 measures the distance from the quantum-critical point on the paramagnetic side
of the phase diagram. Orbital effects of the magnetic field are most pronounced in very clean samples for not
too low temperatures, where the resistivity for increasing magnetic field crosses over from a linear temperature
dependencAp~T\/ﬁ to a resistivity linear irB and independent of andp,. At higher magnetic fieldsi p
saturates at a value proportional T&° or T?/(p—p,). Deviations from scaling, the interplay of orbital and
spin contributions of the magnetic field, and experimental test of the spin-fluctuation model are discussed in
detail.

[. INTRODUCTION a single mechanism is responsible for the observed behavior
as different exponents have been reported in various com-

One of the most important unresolved questions in thepounds. At least three different theoretical scenarios have
field of strongly correlated metals is the stability of the Fermibeen proposed and are discussed in literature.
liquid. In one dimension, the Fermi liquid is destroyed by The first scenario is based on the assumption that in a
strong quantum fluctuations. The strange properties of thbeavy Fermion system below a scalg, the low-energy
normal phase of high-temperature superconduti@msswell  excitations aréheavy quasiparticles and their collective ex-
as the observation of an unexpected metal-insulator transéitations. In this case the QCP should be in the same univer-
tion in Si-metal-oxide-semiconductor field-effect transistors sality class as the weak-coupling spin-density wéSBW)
and other systems have cast doubts on the applicability dfansition in a Fermi liquid studied by Hert2-*" More pre-
Landau’s Fermi-liquid paradigm in two dimensions. cisely, the so-called non-Fermi liquid behavior near the QCP

Even in three dimension$3D) a number of heavy- is determined by the mutual interaction between Landau
fermion metals near an antiferromagnet®&&FM) quantum damped spin fluctuations and inelastically scattered quasipar-
critical point (QCP) were shown to display striking devia- ticles in a nearly antiferromagnetic Fermi liquid.
tions from conventional Fermi liquid behavidr The main Alternatively, one can envision a situation where the
aim of this paper is to develop a detailed transport theory thakondo effects breaks down directly at the transition, e.g.,
allows to decide experimentally whether the non-Fermi-due to strong magnetic fluctuatiotfs?* A Fermi-liquid de-
liquid behavior near the QCP in weakly disordered metals
can be explained by a nearly AFM Fermi liquid.

It is believed that the magnetic transition in heavy Fer- Ak
mion systems results from the competition between the T L
Kondo screening of magnetic moments and the AFM corre- T
lations induced by the Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction** Pressure, magnetic fields, or doping
can influence this interplay of screening and magnetism. This

“_ quantum critical
regime

allows one to fine-tune systems directly to the QCP where metallic S

the strongest non-Fermi liquitNFL) effects are found; a antiferromagoet \\ &

schematic phase diagram is shown in Fig. 1. In particular, the / P X, B ... Q
resistivity rises as a function of temperature with exponents

smaller than 2, the specific-heat coefficient diverges or quantum critical point (QCP)

shows .a\ﬁ cusp, and the gusceptibility shows anomalous FIG. 1. Left figure: In a metallic AFM the magnetic order is
correctl_ons of the formT“,_Wlth a<1. We stress tha_t both suppressed as a function of some control parameter which can, e.g.,
magnetic and nonmagnetic phases are heavy-Fermion metgJs pressure, doping, or magnetic field. Deviations from the usual
which display, for example, the characteristically large sperermi-liquid behavior show up close to the QCP. Right figure: Near
cific heat. The discussion of this paper is restricted to thenhe transition to an antiferromagnet with ordering veo®@r the
behavior in the paramagnetic phase close to the QCP.  scattering on the Fermi surface is enhanced along “hot lines” con-
Despite the growing amount of experimental data, a comnected byQ. This strong scattering equilibrates the distribution
mon agreement on the origin of the observed non-Fermi ligfunction (shown for an electric field parallel toQ) in a region of
uid behavior is still lacking. At present it is unclear, whetherwidth Ak (see the main text and Appendix A for details
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scription of the transition is then not possible and it has been 1 (A*Q)? o,

speculated thalbcal fluctuations play the dominant role in S=_ E ;iw (r+ __2+ _“) Do

this scenarid®?° B éga M do r o
Independent of the precise nature of the QCP, sufficiently p

strong disorder will certainly change the nature of the tran- +Uf d f d3rld(r.nl4 1

sition. Indeed, if typical fluctuations of the effective Nee o (.7l @

temperature due to disorder are large compared to the dis- , ]

effects are important. Perhaps more importantly, even aimaginary time, 8=1/kgT is the inverse temperature, and
some distance from the QCP, in the nonmagnetic phase, raren= 27n/ 8 are bosonic Matsubara frequencies. The fluctua-
configurations of impurities can lead to a small magneticallytions are strongest near the ordering vecoof the AFM.
ordered region that can dominate some of the thermodylhe masg controls the distance from the QCP. The Landau
namic properties in a finite region around the Q@Riffiths- ~ damping term linear inw| is due to the effective scattering
McCoy singularitieg??~24 of quasiparticles from spin fluctuations. A large number of
Up to now, a comprehensive theoretical description existgarticle-hole pairs are created by a spin fluctuatioq ion-
only for the weak-coupling spin-density wave transitiori®  nects different parts of the Fermi surfad@ < 2k, see Fig.
As this theory is above its upper critical dimension, essend). We will not discuss the singular caseQ™= 2kg" 1678
tially all low-energy properties can be determined analyti-where the Fermi velocities, andv,. o are parallel or ‘Q
cally. It was realized only recenfly”’that the calculation of > 2kg” where the spin-fluctuations do not couple directly to
transport quantities is quite subtle and earlier prediclioffs the quasiparticles.
are not valid in weakly disordered materials. The complica- Due to the Ohmic Landau damping, the effective-field
tions arise because the scattering from spin waves is exheory (1) is characterized by a dynamic exponent
tremely anisotropic and effective only in small areas on the=2 (0~q? and is for d=3 above its upper critical
Fermi surface. Therefore the transport properties strongly dedimension;>*®d+z>4. Therefore the dynamic susceptibil-
pend both qualitatively and quantitatively on hotherscat- ity is mainly determined by the Gaussian part of EQ.and
tering mechanisms redistribute quasiparticles and scatteéhe spin-fluctuation spectrum in the paramagnetic phase can

them into these small regions. be modeled by’
The resistivity is often the most sensitive experimental
probe to study the QCP, and in a numbeKmfessure tuned 1
systems it is the only available quantity. As the effects of Xo(@)=X—q(®)~ @

> 5 ,
strong disorder are poorly understood at present, it is impor- U(Qoé)™+ wg—iw/T
tant to study very clean systems. The goal of this paper isvhereqy~ks andI" are characteristic momentum and en-
therefore to establish a set of predictions for the resistivityergy scales and is the correlation length of the spin fluc-
within a SDW approach for weakly disordered metals closquations. The dispersion,=0 vanishes at the ordering wave
to an AFM QCP. The interplay of the relevant scatteringvectorsQ; and varies on the scatg. For simplicity, we will
mechanisms is studied within a semiclassical approach usingainly consider “isotropic” momentum dependenéféa)q

a Boltzmann equation. The model and the Boltzmann equa~[(q=+Q;)/q,]? (Appendix D defines the models used for
tion is defined in Sec. I A. In Sec. II B the analytic solution numerical calculations more precisglivoderate anisotropy
of the Boltzmann equation is presented in the limit of lowinfluences our results only slightly, as will become clearer
temperature and weak, but finite disorder. The scaling proppelow. ¢ is the AFM correlation length that diverg@s® at

erties close to the quantum critical point are emphasized anghe QCP as ¥PcUT%2 For the purposes of our numerical
numerical solutions of the transport equations are used tgalculations we set

analyze crossover regimes and nonuniversal behavior. Or-

bital effects of a magnetic field are studied in Sec. Ill. Large 1M(qoé)?=r+c(TIT)%? )
nonlinear effects can be used as a tool to investigate the.

strongly anisotropic scattering from the spin waves. We willVith ¢=1. The T dependence of does not affect the low-
argue in Sec. IV that these calculations easily explain somimperature propertigbelow Eq.(28) a remarkable excep-
of the key observations in high-purity single crystals close tdion is discussefl We usec=1 to model the(nonuniversal

an AFM QCP: the temperature dependence of the resistivit estruction of the spin quctuann_s at the temperature scale
changes fromAp=TY5 to ApeT for cleaner and cleaner 1 - The_ parameters in E_(q2) can_d|rectl_y _be obtained from
system:88 We propose a number of stringent tests for ourinelastic neu.tron scatterm_g. Typically, it is expected that in a
picture and discuss how the orbital effects of a magnetic field!®avy Fermion systeni, is of the order of the coherence
can be separated from spin contributions. We conclude if¢mperature or Kondo energ . Close to the QCP;, is a
Sec. V by commenting on the relevance of this paper to 4near function of the tuning parameter, e.gxp—pc in a

wider class of problems. pressure tuned experiment. o _
Transport can be treated within a simpiguantum
Il. RESISTIVITY AT THE QCP Boltzmann approach, because the spin-spin interactions are

irrelevant in the renormalization group sense and further-
A. Model more the concept of Fermi quasiparticles is still vlich

Following Hert2>'® a spin-density antiferromagnetic three dimensions. For small and static electric fields the

transition in a metal can be modeled by an effectivetransport equations take the usual form of fermions scatter-

Ginzburg-Landau theory defined by the action ing from bosonic excitations. These equations are further
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simplified by the assumption that the spin fluctuations stay inrhe Fermi velocityvr is defined by an average over the
equilibrium, i.e., we neglect drag effects. This approximationFermi surface

implicitly assumes the presence of sufficient momentum re-

laxation, e.g., _by strong umkla_lpp _scatterl_ng: In_the_hgear— U|2:/3:2/NFf fdk(vkn)zl[vk(Zw)ﬂ

response regime, the quasiparticle distributidp=f,

0 o Do . . . L L
— @y (dfy/de) is linearized around the Fermi distributié  wheren is a unit vector in the direction of the electric field.
and the collision term reaéls

of 2,(1—f9) ffdk/vk=f 5(e,— w)dk
T =3 @ 0p)| gl i)

coll k' is an integral over the Fermi surface thdimensions and

292 . Ne=2f[dk/[v(27)3] is the density-of-states.
+ Tnek—ek,lm Xk—k' (€= €r) |-

(4)

B. Boltzmann equation and scaling

2 2 e . . .
Here gin, andgs are transition rates for impurity scattering e jinearized Boltzmann equations with the collision
and inelastic scattering from spin fluctuations, respectivelygrm (4) can be written in the following form:

andn® is the Bose functiori

In the following we will show that the interplay of the two
scattering mechanisms is highly nontrivial because of their v E+ (v, X B)akd)k:f f Fuc (Py— Py )———,
completely different momentum dependence. On the one v (2m)
hand, impurity scattering is very isotropic and is equally ef- ()
ficient on the whole Fermi surface. Therefore, the distribuyhere an integration over directions perpendicular to the
tion function in the presence of a small electric fi#ldis  Fermj surface has already been performed and actors

smooth®,«VvE if impurity scattering dominatesolid line  anq integrations are restricted to the Fermi surface
in the right part of Fig. 1L On the other hand the AFM

susceptibility is strongly peaked around the ordering vectors
Q, . Accordingly, a quasiparticle with an energy~ u will f j dk/UkEJ d S(e—p)

scatter efficiently from the spin fluctuations only near “hot

lines” on the Fermi surface WherekH%EkHtQi%:U“ This  whered is the number of dimensions. Currents are calculated

strong scattering tends to equilibrate the distribution functiorfrom
at pointsk andk,, = Q; in a region of widthAk (dashed line

!

in Fig. 1), where Ak depends on the relative strength of ji=f jvﬂ)k dk/[v,(2m)3].
impurity- and spin-fluctuation scattering. The temperature

tion close to the hot lines in a magnetic field is the mainfrom impurities and inelastic scattering from spin fluctua-
origin of the anomalous transport properties that are distions with

cussed in this papésee Appendix A for a simple qualitative

calculation ofAk). 292 =
For convenience, we will use in the following, the dimen- Fkkr=gﬁnp+ ﬁf wng[n2)+ 1M xy_k(w)dw
0

sionless quantities, x, r, and b to measure the effective
temperature, the amount of disorder, the distance from the

quantum-critical point, and the strength of the magnetic field. Zgﬁnp+ 203l [r/t+ wq/(gdt)]. (8)
T g2 o 1 I(y) is defined by Eqgs(8) and (2) and is asymptotically
t=— x=——me_Fo_ ~ given byl (y—0)~ m/(2y) andl(y— =)~ =?/(3y?).
I 295 +~m RRR For large temperatures and extremely large magnetic
fields the solution of Eq(7) depends on all details of the
1 B Fermi surface and only numerical solutions are possible.

r= TOCP_ Pe, b= B’ 5 However, close to the quantum critical point the resistivity
[doé(t=0)] 0 shows scaling behavior and depends only slightly on the ge-

wherep,=xpy, is the residual resistivity angl, is a typical ~ometry and the Fermi velocities along the hot lines. In the
high-temperature t&1) resistivity that is defined below. following we will derive an approximate analytic solution of

One can approximately identify with the inverse of the the Boltzmann equation in this regime, the approximations
residual resistivity ratidRRR). B, is the typical magnetic Uused are exact in a well-defined limit of weak disorder, low
field, which is necessary to see Shubnikov-de Haas oscilldemperature, weak coupling, and small magnetic fields,

tions att=1 (for low T, Shubnikov-de Haas oscillations set Which will be specified below. Some of our qualitative re-
in for b>x) sults, especially in the absence of a magnetic field, can be

derived by using a simple variational appro@éippendix A
3%402 202qg¢ or even in a simple relaxation-time approximation, which we
Os 9sYo . . P L
PM=""5 5 =% . (6) present in Appendix B. The relaxation-time approximation
TEVE evg(2m) or, equivalently, the omission of vertex correction is com-




4948 A. ROSCH PRB 62

pletely wrong in certain geometries and leads to large errorequation approach presumably breaks dowi#n2 as the
especially for the Hall coefficient as explained in Appen-“hot” electrons acquire a lifetim& o \T, but it was never-
dix B. theless widely used in literatufé6 Qualitative features like

At T=0 the scattering is purely elastic and the quasiparthe interplay of hot and cold regions might still be correctly
ticle distribution function is given byI)ﬁ(B)ECI)k(B,TZO) described by our approach evends2.
with d)E(O)zeEvk/(gﬁnpNF). Our strategy is to keep track From Eq. (10 it is clear that only the combinations
of the change ofb, close to the hot lines, where the strong t{~1"%/x, t/r, andb/(x\/t) determinep,.. Accordingly, the
spin fluctuations tend to equilibrate the distribution functionresistivity obeys a scaling relation
at the pointsk and k*=Q; (Fig. 1). For sufficiently small

(tdllz pd-12 p )

temperature$®<x the distribution function will remain un- Apjj a2 o

disturbed in the “cold regions” far away from the hot lines - Hlx o x Jt
. - . . Pwm Xyt

where the inelastic scattering is of ordérand the elastic o

scattering dominates. It is therefore convenient to write thdor t<\x<1, r<1, and sufficiently smalb, wheref de-

(11)

distribution function in the following forri pends smoothly on the details of the Fermi surface near the
hot spots and the directions of magnetic and electric fields.
Py~ (1-p ) PP+ pe®Ppg - (99 py is defined in Eq(6). Relation(11) becomes exact in the
' scaling limit

For strong spin scattering,  approaches a value close to
1/2 near the hot lines but vanishes further away. It is helpful X b 10 r 2 . const (12
to use a coordinate system, where vectors on the Fermi sur- e ' Xty '
facek=ky+k, are split up in a vectok, on the hot line
and a perpendicular vectér, Lk, ,v, . After a rescaling of The scaling limit serves as a convenient regime for analytic

the momenta using = xqy+t, in the limit t<\x the Boltz-  calculations. An experimental verification of the predicted
mann equation takes the following form: scaling would be the most precise test of the underlying

models. We will calculate the scaling functidrin the fol-
lowing paragraphs in detail. However, for some applications,
t(dfl)lzJ’ A’ (Pret Pry =@ wr — DI(H/t+M o) e.g., the Hall effect discussed in Sec. Il A, the deviations
from scaling are important and are calculated from a full
b . . numerical solution of the Boltzmann equatitf). A reader
+ \/a_HCkHXpK: CIQHW(VKX B) 3P (10 interested only in the qualitative results can jump directly to
Sec. IVA, where a short overview of the asymptotic behav-
with ior of f;; is given (the off-diagonal components..; vanish
in the scaling limit, see Sec. Ill A where the Hall effect is
(™ 0 0 _— discussef
I(y)—fo dz Zn°(2)[1+n°(2))/(y*+72?), The two-dimensional coupled integrodifferential equa-
tions (10) can be considerably simplified by realizing thgt
varies smoothly parallel to the hot lines but the kem(e&ﬁ)
restricts the integrations to small values:qgf. This allows

{(d-1)/2

K=Ktk ,

MKK’ = K|\,2+ (Ki_ KL)Zl us to repIvaDkHiQ+K’E pK”+Kﬁ ,Ki by pKH ,Ki in Eq (10)

and to perform the<H’ integration. For the same reason we
Ci,, = (2m) NE Vi Vi, =0/ (7TD), can neglect the contribution proportionaldgp,. All these
approximations are valid in the scaling linfit2). It is there-

CLHZUkHkato/vlzz, fore sufficient to solve a family of two coupled one-

R R dimensional integral equations that depend parametrically on
and®? ay=vy . o/vi. B andy, are unit vectors in the direc- ki
tion of B andv,, respectively. The strength of the magnetic
field is measured in units of a typical fieR}, defined in Egs. (d-1)/2 / ~
(5) and(6). One can think ob as the typical angle by which t J A’ (Pt Pur = DG+ \/a_HCkHXp"
an electron is deflected within a typical scattering timg
=(2m)%e/(2929371). We are only considering magnetic 2op
fields with b<x<1 (i.e., w.r<1), where Shubnikov-de- N
Haas oscillations are absent at low temperatures. (.
we have neglected subleading contributions, e.g., of the form (d-1)12 |~ 1 ~
Pkdc®Y, which are small in this regime becaupg varies t f de' (Pt Pur = 1) G T\ kX Pr
stronger with momentum tha®{ and all inelastic correc-
tions come from small areas on the Fermi surface. This is not , ~
true in the ultraclean limik<t?, which has to be covered =Cy, CoseBﬁf?ka'
separately(e.g., in Sec. Il A. For completeness we discuss
some of our result il dimensions, however, we are mainly where 6y is the angle betweeB and a vector parallel to the
interested in three dimensions. Note that the Boltzmanrot lines atky and

= C,QH cosfg (13
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GKLKi:f dd_2k||l(r/t+MKK,) (14
! a, . <1
2 r—aKK’ KK
~ for d=3
T
GaT aKKr>1 (15)

with a,, =r/t+k’+ k'?—2kk’ cos¢, where p+0 is the
angle betweerka and Vi, Q- The equation fop,. is ob-
tained by replacingyy, by 1/ay and exchanging, andp, in
Eq. (13). The boundary condition for Eq13) is p,,p.—0

for k— * o by construction.
Currents are calculated from

%(@0, - 00 ank [ dep,, a9

where

jo=2 [ [ v}, aruy2my

is the current in the absence of inelastic scattering,

ﬁdk”

denotes the line integral along thth hot line and the ex-
pression is summed over all hot linesNote thatp, is a
function ofky . In the scaling limitb<x, the magnetic-field

dependence o v, E can be neglected in the secon
k™ ki

MAGNETOTRANSPORT IN NEARLY ...

4949

Ap o (t) 303 [(VkH_VkH:Qi)n]z
— ¥ o | ——— dk
Pwm ! r 87T4(U|:N|:)2§i: ﬁ ” |VkHXVkHtQi|
(18
t » r
h(;) = 2| ymorentomm 3y
7{(312T(5/2)
22 ’
~ v2 (19
ar
P t/r, t<r.

In this dirty limit, we recover the well-knowii' resistivity

at the QCP. This result is usually derived by an average over
the inelastic scattering raté.We want to stress that this
approximation can be applieshly in the presence of strong
impurity scattering and gives wrong results for cleaner sys-
tems.

To derive Eq. (18), we considered for simplicity,
isotropic-spin fluctuations. In the case of a moderate anisot-
ropy our results have to be changed slightly. For example, if
the anisotropy of the spin fluctuations is described by
0igi; /g3, then the denominator of the integral in EG8)
has to be replaced by

UkHUkHiQ det1/2; Rf’g” R'IB

where thek? is a unit vector parallel to the hot line akd, k®
are unit vectors perpendicular kd and eitherka Of Vi, +q-
The determinant is always finite because we do not consider
the casevy ||vi, + o (“ Q=2kg").
[

In the limit \Xx>t>min[x,yrx], the resistivity risedin-
early with temperature. The origin of this effect is that the
spin fluctuations equilibrate a region of widthk~t/+/x

d (Fig. 1) as we will show in Eq(29) (or Appendix A. There-
fore we obtainp~x(1+t/4/x) or more precisely

term in Eq.(16). Using the symmetries of the Boltzmann

equations one can derive the convenient expression

Ei ﬁ(dk“/ka)AviAvj(qo\/f)fdeK

| [ whoakpo

kaiQ'

Apj; _
Pwm

7

X

with Av'=0v} —
"

C. Transport for B=0

In the absence of a magnetic field, two different regimes
emerge depending on whether the elastic scattering domi-

nates close to the hot lirfé:2® If impurity scattering domi-

Ap aa\ I3
X 2 3 3/22 édkll
Pwm 20p(2m)°Ng< T i

KitO (oo
I~ V= Vi

3/4

[ [(VkH - Vk”iQi)n]z Vil
Vi

I

e !
|VkH X Vk” + Qi | VkH_Q‘ VkH

where the only slightly varying function

Sa= fx dep(a,a)~m

nates {<min[x,\rx]), it smears out the quasiparticle distri-

bution Ak~0 in Fig. 1). p, in Eqg. (13) is small and in
leading order imp,. one obtains

is calculated from the solution of the two coupled one-
dimensional integral equatiofisee Eq(29)]
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/ 2
1//% nonuniversal regime
/\/_ t> \/E, p~ t2
= 15 ]
A S
‘ ©
o= - ~
T o 1 4
Ap ~ ty/x <
T g
\/a % e = 05 LS _ J
© / 11 1=0.02,x=0.01
10° 10° 107
1 2 0 s s !
Dp~ 32 Ap~ /T 107 107 107
f — f s E _____ t
Vel T T \\\\ > FIG. 3. Effective exponent, defined as the logarithmic derivative
1 == 1/ of Ap(T), for a fixed distance from the QCP=0.01 and various
T

values of disorder. In high-purity samples, the crossover to an ex-
FIG. 2. In the scaling limit,x,r —0, t/x,r/x—const the resis- Pponent 2 can be seen only at lowest temperatsgenin[x,\x,r ]

tivity is “universal” Ap/py=t32f(t/x,r/x) for t<\x,r<1, where [Ed.(18)]. The bump at higher temperatures is a precursor of the
teT, X pg, andr=p— p. measure the temperature, the amount of €ffect that in ultraclean samples<t®<1, we expect\p~t* [Eq.
disorder, and the distance from the QCP. The plot shows the quali22]. In the scaling limit(12) the resistivity is linear in the inter-
tative behavior of the scaling functioff a, 8] in the various re- mediate regime/rx<t<1/x [Eq. (20)]. For the chosen parameters
gimes. For mifx,yrx<t<\/x] the resistivity rises linearly with this exponent 1 cannot be identified, however, a pronounced regime
temperature. Thermodynamic quantities show a crossover to Eermyvith an effective exponent less than 1.5 is seen. The inset illustrates
liquid behavior at the scale=r (straight ling, while in transport a  the problem to extract the exponefefs. 6 and 8from the loga-
T2 behavior is recovered at a much smaller scale[xifix]. The  fithmic derivative ofAp=p—p, if pg is not known. For =0.02
dashed line serves as a reminder that at lowest temperatures, effe@®d x=0.01 the logarithmic derivative 0p—(1—€)p, for e=2
that are not included in our approach become important, e.g., inter= 10% (dashed linesis compared to the “true” exponent fog
ference effects of disorder and interactid®ef. 37 or a disorder =0 (solid line).
induced change of the spin-fluctuation spectriiRef. 24.

crossover to Fermi-liquid behavior is expected at a higher

(Pt Par—1)(1—a2) scalet~r. In a very clean system these scales can be quite
pq+f ,_\PqT Py =0, different and anomalous transport should be observed in re-
(g% a+q'?a—2qq'a)¥? gimes where thermodynamic quantities display typical

Fermi-liquid properties.
(Pt P —1)(1—a) For higher temperatures>+/X, larger resisti\_/itigs_Ap_
P +f da’ 9 ™a =0, (20) >p, or further away from the QCIP~1, the resistivity is
d (q?a+q'%la—2qq'a)®? much less universal and one has to rely on numerical solu-
tions of the Boltzmann equation. In the ultraclean limit

which in the limit a— =1 are solved byp,=1[(1+a)
+0g?%/2\/a] (see Fig. 8.

Omitting all prefactors we obtain in the scaling regime 2
<1t<x:
Ap {d-1/2 d-172 8 15
— ~t 42| ——, ) (21 °
Pwm X X ~
a 17¢
{02 p ooyt <
' o)
{2/5-dyd=di5—d a1 fs-did oy [y s} 05 |
S
t2/r2=@2) - t<min[r, yxr°~ 94, ‘ . ”
[r.Vx ! 0 o0z o004 > =10
where for completeness we have given the result in arbitrary 0 = - -
dimensionsd (see Appendix A for a simple derivation of 10 10 10
these resuljs A summary of the scaling behavior @~ 3 is t

shown in Fig. 2. Itis worthwhile to point out, that even away  gg 4. Effective exponent, defined as the logarithmic derivative
from the QCP, for >0, there is a large regime W|t2h a NFL of Ap(T), for a relatively clean sample with=0.01 and various
resistivity (Figs. 3 and 4 To actually observe th&“ term  yajues ofr«p—p.. The resistivity is calculated from a numerical

one has to consider very low temperatures,rx. This has  solution of the Boltzmann equation for model A defined in Appen-
to be compared to thermodynamic quantities, where thelix D. The inset showg(t) for r=0,0.1,1.
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Z
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8 —ex=10" N\,

o o—0ox=10" N\
0.5 —ex-107 R
o—ox=10" 3
—— e x>1
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(T k) 0.0 o2

0.1
| . (T @k’
FIG. 5. Effective exponent of the resistivity at the QCP (
=0), defined as the logarithmic derivative &p(T). At very low FIG. 6. Hall effect for modelA, calculated from a numerical
temperatures, the “dirty-limit” exponent 3/2 is recovered. How- solution of 7. Extremely small amounts of disorder strongly influ-
ever, in the experimentally accessible low-temperature regimeence the Hall effect. Very clean samples are necessary to observe
smaller exponents are to be expected for a rather clean system ¢his effect. Both the sign and the size of the effect depend on details
<0.1). of the band structure.

<t?<1, the distribution functiorb, is suppressed in a large The(nqnlinea}_magnet_oresistivity can be used to investi-
region around the hot lin85[ Ak~O(kg) in Fig. 1]. There-  gate precisely this question. By a magnetic field, the quasi-

fore only nonsingular scattering dominates the resistivity andarticles are driven parallel to the Fermi surface by the force
we obtain v X B. Generally, nonlinear effects in the magnetotransport

show up if the quasiparticles are able to circle the Fermi

surface without being scattered, i.e., tog7=1, wherew, is
£~t2 (22) the cyclotron frequency. However, if there is a small region
Pwm of width Ak on the Fermi surface where the scattering is

relatively strong(or weak®) then nonlinear effects will be-

i =
with a prefactor, which to leading order is independent oftheCOme important for wer=Ak/ke. Close to the AFM

distance from the QCP but depends on all details of the guantum-critical point the width of hot linesk vanishes in

\ ) i . the low-temperature limit and the quasiparticles can be
Fem?' surface 6!”"7 of the '”te“’%C“OfE' fr.om the hpt I|ne_s. driven by a moderate magnetic field over the hot lines. This
Hlubina and Ric& were the first to discuss this regime

h i itical effect tb in the t will lead to large effects in the magnetotransport. The mag-
where quantum-critical €liects cannot be seen in ne ransﬁetotransport in nearly antiferromagnetiwo dimensional

port because the long-living quasiparticles in the “cold ' metals has been studied befSr&in detail in the context of

gions” short circuit all contributions from the hot lines. Our high-temperature superconductors. However, the authors did
numerical solutions, however, suggest that this regime is X350t focus on the role of weak disorder which ’vve find at least
perimentally not accessible. Figure 5 shows the Iogarithmicm three dimensions to be essential’ to describe the low-

derivative of Ap, which defines an effective ex.ponent temperature of the magnetotransport, both quantitatively and
a, ApxT* Even for an extremely clean system with a re- qualitatively

sidual resistivity ratigRRR ~ 1/x) of the order of 16, there
is never an extended range of temperatures where this effec-
tive exponent is close to 2. On the other hand, we see that in
moderately clean systems wi# 0.1 there is always a re- The Hall effect is extremely sensitive to small amounts of
gime where the effective exponent is smaller than 1.5. Sufdisorder k<t?) but essentially constant far< y/x.

ficiently clean systems clearly show the linear resistivity pre- This can be seen most easily from the symmetry proper-

A. Hall effect

dicted by Eq.(20) over a large range. ties of the Boltzmann equatidi3) in the scaling limit. The
The full scaling function for =0 and the deviations from left-hand side of Eq(13) is even in«, while the right-hand
scaling are shown in Fig. 11. side is odd and linear in the magnetic field. Therefore
. MAGNETOTRANSPORT fm P

The characteristic feature of the spin-density wave sce-
nario is, that only the quasiparticles close to “hot lines” are
strongly affected by the spin fluctuations. This has to bes evenin B and there is no contribution to the Hall effect
contrasted with a situation where the Kondo effect is defrom the hot lines in the scaling limitl2) where Eqs(13)
stroyed close to the QCP, which would affect the full Fermiand(17) are valid. This does not imply that the Hall effect is
surface. It is therefore important to have a probe for testinginaffected by the singular scattering close to the QCP. It is
the presence of sharp structures on the Fermi surface. on the contrary an extremely sensitive probe to very small
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amounts of impurity scattering. The Hall constanfatO is We first discuss the dirty limik>t (d=3). p, is small
different in the ultraclean and the dirty limiRy(t— 0 in this case allowing an expansion of E4.3) in p,. In
<t?)#Ry(t—0x=const). In the former limit, the elastic order b? the distribution function changes byp,
impurity scattering dominates; in the latter the magnetic scat~[b cos@BclgH/(x\/fckH Vay)1?02p2 wherep? is the distri-

tering. The quasiparticle distributiod, has a completely  ption function forb=0. The resistivity(17) is proportional

different momentum dependence in these two limits. Ongq 1 put fAp, vanishes obviously. Therefore it is useful
consequence is that a different average over the effectivg, integrate Eq(13):

masses enter the Hall constant. Small amounts of disorder

x~t? change the distributio®, completely and give rise to

the strong features in the Hall effect shown in Fig. 6. The . t w
calculation is based on a numerical solution of the full Boltz- f dx pK:—f f dekdi’ G (1= Pp—Pyr)-
mann equations$7) for small magnetic fields. Even disorder * XNVayCy, -

at the level of, e.g.x=10 4, leads to a strong structure in (23
the Hall effect at quite high temperatures. Extremely clean

samples are necessary to observe the strong temperature &ée calculate the leading correction f@, from the right-
pendence oRy; . Both the sign and the size of these effectshand  side of Eq. (23, using that p°
are nonuniversal and depend on the details of the band strue-t/(x \/a_HCkH)fGKK' dx’:

ture.

B. Magnetoresistivity: Small fields

1+ a3 [ bCcosOgCy
While all corrections to the Hall effect cancel in the scal- Af P~
ing limit (12), the magnetoresistivity is strongly influenced “H X\/ECkH
by the hot lines and can be used to investigate the quantum-

2
f de(3,0%° (24

critical properties in more detail. and obtain forr <t<min[x,yrx],b<xyr:
Ap_, t! 7T7q8/(12vé)2 35 0 VR =g, [(Vig = Vig =) NI (Vi X Vi =) BT? 5
w2 | INe2m)® T wlof g IVig X Vig + o ’

whereB is a unit vector in the direction of the magnetic field. fule [p(T,B)—p(0,B)xB?Ap(T,0)/p(0,0)’]. In the regime
It is surprising that the leading low-temperature correction indiscussed in Eq.(25), they are of the order ofAp
this Fermi-liquid regimet<r is not proportional toT2 but ~ *b?t?/(\rx?) and therefore Eq(25) is valid only for t
starts withT*. This is due to the above-mentioned cancella->t* =rx. In the scaling limit(12), t* vanishes.

tions and is actually valid only for>r \/x as shown below. The behavior in the disorder dominated quantum-critical
There are a number of other contributions to the magneregime t<x, r<t is more complicated. For small mo-
toresistivity that vanish in the scaling limit but might be menta, G, is approximated by G,

dominating in the experimentally relevant regime. One im-~1/(2\r/t+ k*+ k' *— 2k’ cos¢), where ¢ is the angle
portant correction is due to the suppression of the AFM inbetweenv, , andvy . q. In leading order int/x for b=0 and
magnetic fields; we will discuss these effects in detail in Secx <1, Eq.(7) is solved by

IV C. Before analyzing the magnetoresistivity it is useful to

subtract theB dependence of the residual resistivilypg

~Db?/x, which is the largest correction to our results. There-

fore we use in this section the definition p2~t/xf G, e’ ~t/(2X)IN[1U(r/t+ k2], (27

Ap=[p(b,t)—p(0)]—[p(b,00—p(0,0)]. (26) where the prefactors and dependence in the argument of
the log have been omitted. The approximations leading to

] o . _ EQ.(27) are valid forp%<1, therefore they break down in an
Other subleading contributions become important for h'ghebxponentially small regime/t+ k?<ce ¥ ), wherec is a

magnetic fields or in the case of E@5) for low tempera-  -gnstant of order 1.

tures. They are missing in Eq10) because we neglected  \yith all prefactors, which are calculated using E24),
terms of the formk(CDEH_(D(k)HtQ)' We estimate these cor- oy ¢ ¥(2)<r <t<x, the inelastic contribution to the mag-
rections in the regimev.7<<1 andAp<pg using Kohler's netoresistivity is given by
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A 2 | 3m5qY(20t Vi T 0w q [(Vig = Vi )12 (Vig X Vi - o) B]?
2P 2 Ao/ (2vE) > fﬁ,dku 1 K 1~ "k
I I

pv 3P| [Ng(2m)3°

: (28)

4 4 X
kav kHiQi |Vk” VkHiQ||

where the geometrical factors are accidentally exactly the:q\/wt/(6xckH sir? ¢)/\Jay, and the argument op,. by
same as in Eq(25). It_ is quite surprising, thgt even in the K'=q’\/wt/(6xck Sie ) Jag.
limit r<t the quadratic magnetoresistivity diverges propor- H
tional to 1A/r. What happens if a system is directly at the _
QCP, i.e., in the case=07? In the ssglti)ng limit(12), the J dq’(pq+f)q,—1)sin2¢ bCkH& )
cutoff r/t in Eq. (27) is replaced by *{“" and the magne- q 2 2 / 32 aFq»
toresistivity is proportional td?t*%¥(0/x3. This exponen- (@7 antq"ay =290’ cos) tix
tially large correction is probably not experimentally observ- _
able. Either higher-order effects in the magnetic field will  _ dq’(Bqu pq,—l)sin2¢ bckH _
become relevanto be discussed in the next sectiar one Pq J 2 2 p e 9qPq
has to take into account the temperature dependence of (9°an+a""/an—299’ cos$) tVx
The low-temperature correctifhiAr ~c’t%? can formally be (29)
neglected in the scaling limit and usually leads only to small .~ R .
subleading corrections of the order af/t~c’\t both in Wi Ci, = Ci | SN ¢#|8 cosOg/\[mc,,. For small magnetic
transport and thermodynamic quantities. The prefactos  fields, p, decays on the scale (both ; and ¢ are finite for
proportional to the spin-spin interactidsh (1). The magne- @ generic Fermi surfageThis justifies our approximation to
toresistivity at the QCP in the dirty limit is a remarkable expand G, for large momenta in the regime/t/x
exception of this rule: for <t<x andc’i>e ¥@) the  >max{yr/t,1], i.e., fort>max{rx,x]. In the original units
temperature dependencerofetermines th&2 correction to  the width ofp, is approximatelyAk~qot//x and by scaling
the resistivity and we expee‘.tp~b2t1-25/(\/9x3) [Eqg.(28)]  we obtain theinear resistivity shown in Eq(20).
(see Fig. 7. An experimental confirmation of this prediction ~ While the kernel of Eq(29) is highly singular, the solu-
would be an interesting way to investigate the temperaturéon of the integral equation fob=0 is nevertheless very
dependence of &, a quantity that can otherwise be mea- smooth: for large momentp, decays proportional to 47
sured only by high-precision inelastic neutron scattering. and is finite and smooth fay— 0 with po+po=1 to cancel
The solution of the Boltzmann equati¢h3) in the regime  the divergence of the kernésee Fig. 8 The perturbation
max{x,\rx]<t<yx is dominated by large momenta '  theory inb/(y/xt) is analytic and well definefall eigenval-
>max1,/r/t]. We therefore use the asymptotic form of ues of the matrixd(q—q’)(1+ [Gqq dq') + Gy are larger
G.« [Eq. (15] and rescale the argument @f, by « than 1] and we obtain fob<xt, x>t>maxrx,x]:

107 Ap b?
6 —_—~—. (30
10 Pm \/;t
10°
o 10° 0.6
a -, = V,=V,,q COSP=0
& 10 0.5 = v=V, q cOsp=1
<C':_ 102 -== V=2V, o, COSQ=0
d 1 04 | — 2v,=v,,,, cose=0
~ 10
10° 03+
107
Q |3 |2 I1 I0 02 [
107 10” 10° 10
(T/M)ayky’ 01 |
FIG. 7. Log-log plot of the temperature dependence of the mag- ‘ s ‘
netoresistivity A p/b>— Ap, /b? at the QCP in a small magnetic -5 0 5
field b for modelA, calculated from a numerical solution of E@). q
The *“Kohler's rule” contribution Apx=Ap(t=0b)[p(t=0b
=0)/p(t,b=0)] has been subtracted. In the dirty limit:x, one FIG. 8. Shape ofp, in the regimeb=0, mafxr,x]<t

can indentify the correction (28) with Ap~b2t?/(x3\r) <yx for various values of ay=v¢.olvx and cosp
~b%t%x3,  r~t32 at the QCP. The magnetoresistivity in the =Vi.q-Vk/(vk=quk). The integral S=[p,~m depends very
clean regimex<t<+X is much larger wittA p~b?/(\/xt) [see Eq.  weakly on the parameterpy with keqt/\/x describes how strong
(30)]. In the ultraclean limit,x<t?, we obtainAp~1/t?> and to  spin fluctuations equilibrate the distribution functidn, [Eq. (9)]
leading order no effects of the QCP can be seen. and®,.q in a region of widtht/\/x around a hot line.
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Alt.hough. it is difficult to c_algulate the precise prgfactor ana- Ap(b> \/Fx,t) t4
lytically, its structure is similar to the prefactor in E@5). ~ (33
In Fig. 7 the numerical solution of the Boltzmann equation Pm Xr

shows the crossover from the dirgy limi28) to the clean  4ng the weak-field expansid@5) connects smoothly to this
limit (30). In the ultraclean limik<t<, the distribution func- regime. As above, we can estimate the range of validity of
tion varies on the scalé&: and Kohler's rule is valid in  gq (33) by comparing it to neglected corrections of the order

H 2742
leading order and therefore we expégi~b</t“. of Ap~b2Ap(0,t)/pS~b2t2/(\/sz). Therefore Eq(33) is
valid for b<tyx/r, t<min[x,yrx].
C. Magnetoresistivity: Large fields The dirty quantum-critical regime<t<x has a richer

The diverging prefactors of th82 corrections already structure, as there are two scales in the distribution function

indicate that any finite magnetic field will strongly influence Py, Ed. (27: 1 and makr/t,e”@]. For 1>k,

the resistivity when the hot lines get sharper and sharper maxr/t,e”“V] the magnetic field, or more precisely

while B drives the quasiparticles over the Fermi surface. 5, takes the role of/t in Eq. (28) and provides a cutoff to
For large fields, the main effect of th®j,p, term in the the logarithmic divergence op°, Eq. (27). We therefore

Boltzmann equatiori13) is to keepd,p, small. Due to the expect forr <t<x, max{xyte @) rx]<b<xift:

boundary conditiong,_,-..—0 and due to the fact that the

kernel Gy, decays for large momenta, the amplitudepgf Ap(b,t) t?

decreases for large magnetic fields gqds broadened. This om ”b; (34)

corresponds to the fact that magnetic field drives the quasi-

particles over the Fermi surface hence smoothing the quasiand the magnetoresistivity will saturate for-x+/t at

particle distribution. In a strong enough magnetic field, we

can therefore use perturbation theorypipand only the first Ap(b,t) %2

term on the right-hand side of E23) survives. In the scal- P T (35

ing regime, the resistivity saturates in a largebital) mag- , ) .

netic field at a value that is precisely given by the dirty-limit This has to bzelcsorr;pare_d to the largest subleading correction

formula (18). In this respect, a magnetic field and disorder©f the formbt™~/x* (estimated from Kohler's ruje There-

have very similar effects, both smooth out the quasiparticiéore Eq.(35) is valid forb<itx. o
distribution. All the above discussed effects in the dirty limit are very

As the amplitude ofp, decreases for largh, the main  Small on an absolute scale because the disorder has already
effect of a large magnetic field in the dirty limit ~ Smeared out most of the features of the distribution function

<max{xrx] is to suppressubleadingcorrections to the and can only be observed because it is easy to measure the

conductivity. The maximal change ¢p, is calculated from  differencep(T,B) —p(T) with high precision. Much stron-
Eq. (23), ger effects are to be expected in the cleaner regime

max X, \ﬂ]<t< JX, where the zero-field resistivity is linear
¢ . in temperature.
Af P (b—o0)~ —J j did’ G, (p2+D%) Forb< \/xt, the effect of the magnetic field can be treated
X\/a_HCkH — in perturbation theory and E@30) is valid. To analyze the
regime\/;t<b it is useful to rescale the momenta in Eg9)

:(1+aH)fw dr(p%)?2, (31)  usingq=—bc, /(tyX)kyay so that the Boltzmann equa-
- tion reads
where pd=t/(x\Jaycy )G, dx’ is the distribution func- 2 [ dK(pet Py — 1)Sir? &
tion in the dirty limit in leading order in/x. Jaypit 72 f 2 12 p - kP
The effect of an intermediate field can be calculated by b Ciyy (k*+k’"—2kk’ cos¢)
solving the Boltzmann equation in a finite field in perturba- (36)
tion theory int/x by neglecting again thé&,...(P.+P«’)  The corresponding equation fpr. is obtained by replacing

terms: ay by 1/ay, . The kernel of the integral equation is strongly

divergent f G, dk’ = 1/k2. The contribution from the inte-
gral is, however, small for large magnetic fields and suffi-
ciently large moment&k>k, (a precise estimate is given
below) and Eq.(36) is solved bypy=,=c.e Ve, For k
with Kb:b/(x\ﬁ)[CﬁH/(\/a_HCkH)]- The main effect of the <0 the prefactoc_ has to vanish due to the boundary con-

magnetic field is to smear the distribution function on thed't'm_1 p||<|—>°C:0,' For k—0 th_e divergence of the ker_nel
scalexy, . dominates the mtegri:ll equation and forces the solution to
In the Fermi-liquid regime<min[r,\rx] the scale of the take the formp,_o+pi_o=1. Foray=1 one therefore
distribution functionp®~ (t/x)/(r/t+«?) is given by \r/t,  expect$’ p,_o=Ppyw_o=1/2. Generally,p,_o is a number
accordingly the small-field formulé25) can be applied for ~close to 0.5 depending slightly an,, ¢, andb. For a large
kp<+Jr/t or b<\rx. As discussed above, the large magneticmagnetic field, the rise qfy close tok=0 is independent of
field Ap defined in Eq(26) saturates at ay and py_o(b> \xt) =py_.o(b>/xt) =1/2. The prefactor

” e (K" =Ky
0
pK%J‘ dK’ pK' (32)

Kp
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of the exponential decag, for k>k, is therefore 1/2
and [pdk=1/(2ay) or, after rescaling, [p,dx
=b/(x\/f)|cos®B|[c,QH/(2chkH)]. In this regime yXxt<b
<min[t¥2t2/\r], max{x,/rx]<t<\/X, the rise of the resis-
tivity p—po is linear in|B| andindependenbf temperature
and disordei(the precise range of validity is calculated be-

o, .
|

d
(37

For higher magnetic fields the formula given above will
break down, because EQ9) is valid only for large mo-
mentax>max1,\r/t] or, equivalently, Eq(36) is valid for
k>maxx\/t/b,\rx/b]. To estimate the range of validity of
Eqg. (37), we solve Eq.(36) more precisely fok<0 in a
regime, where, is still small:

J‘k
py is large fork<ky~t2x/b? and Eq.(37) is therefore valid
for ko>max \tx/b, Vrx/b] or b<min[t¥2t?/\/r]. For larger
values ofb the kernel is less singular any} stays small for
all momenta. Accordingly, the resistivity is dominated by the
first term on the right-hand side of E3) and the magne-

toresistivity saturates at a value, which is given by the dirty
limit formula (18):

37q3/2
vE[(2m)°Ng]?

p(b,t) = po(b)
Pwm

S fok

[(VkH_VkHiQi)n]2|(VkHXVkHiQi)B|
X Vi, +
[Vig X Vi g

t’x 2
bZc2 k-
H

dk’ ek’ =k v“EE ~=

t?x
Pk~ 2

~—— 38
7 (39)

t

o[t

r

p(b.O=po(b) _ o,

) 303
PM 87 (vENE)?

[ (Vi,— Vi, +0)N]
I [~ i
X dk 39
Zﬁ | |VkH><VkH+Q| 39
w{(3/12)T'(5/2)
—’ r
(.| 2e
T
Et/r, t<r.
This expression is valid for mie’2t%/\r]<b

<min[t¥%3 tx¥4r 4], where the upper limit estimates
the regime where nonuniversal contributions following
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p(t,b)

FIG. 9. Schematic plot of the temperature dependence of the
resistivity. In an ultraclean system, the resistivity would rise pro-
portional tot? (thin-dotted ling. In a system with a small amourt
of disorder the resistivity at the QQFhick-solid ling at zero mag-
netic field rises witht®? at very low temperatureis<x, but shows a
linear behavion p~ y/xt for x<t< \/x. If the system is tuned to the
guantum-critical point in a finite field, a behavior similar to the
dot-dashed line is expectedipct®2 should be observed over a
larger ranget<b?3. In an intermediate regimb?3<t<b/\x the
resistivity depends weakly on temperatqitee thin-dashed line cor-
responds ta pt3?). Note that a different behavior is expected if a
finite magnetic field is applied to a compound that is quantum criti-
cal forb=0 asb drives the system away from the QCP.

sistivity in the scaling limit(12). Most of the prefactors,
which are omitted here, can be found in the previous sec-
tions. Onlyorbital effects of the magnetic field are taken into
account, a discussion of the interplay of spin and orbital
effects is given in Sec. IV G.andb defined in Eq(5) are the
dimensionless temperature and magnetic field, respectively.
X is proportional to the strength of disorder and can crudely
be identified with the inverse of the residual resistivity ratio
andr measures the distance from the QCP.

In the disorder dominated regime the absolute size of ef-
fects of an orbital magnetic field are quite small. Close to the
QCP, forr<t<x, the prefactor of thd? term is, however,
extremely large and for very small magnetic fields a cross-
over to a linear field dependence of the magnetoresistivity is
predicted. ForA p=p(b,t)— p(b,0) we obtain

( b2t2
2 ’ b<gx,r,t
ng,r,t
Ap t5/2 t2
WN'[?’/Z_?WL b;, O <b<xyt (40
5/2
—, xyt<b<iltx
\

Kohler's rule dominate. In Fig. 9 the temperature depen-
dence of the large-field magnetoresistivity is shown sche-

matically.

IV. DISCUSSION

A. Overview over magnetoresistivity

with g, ~maxx\r,xyte ¥407]. For very smallg,, ; this
expression can be used to measure the temperature depen-
dence of the correlation lengthusingr o 1/£2.

In the disorder-dominated Fermi-liquid regime
<min[r,\rx]<1, the temperature dependent part of the

Before we discuss the experimental relevance of our calmagnetoresistivity is still enhanced, but it is probably very
culations in detail, we collect the results for the magnetoredifficult to extract thet* contribution experimentally.
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FIG. 10. Resistivity as a function d*2in CePgSi, taken from(Ref. 5 (left figure) compared to our calculation within modéldefined
in Appendix D forx=0.01 (right figure. The insets show the corresponding logarithmic derivative (df) — p(0). If one conpares the
insets, one has to take into account that the low-temperature behavior of the logarithmic derivativestobngly depends on the exact
determination of (see inset of Fig. ¥ Below ~400 mK, CePgSi, is superconductingower insej. Note the offset of the lind=0 in
both plots.

b2t 1.5. The cleaner the samples are, the closer the exponent is to
. —,  b<ix, t>rx 1. This qualitative trend coincides with the predictions of our
Ap 78 X (47 Calculations (Fig. 5. Examples for this are CepSi,,
pv r xr3? t4 X CeNiL,Ge,*>® where samples with RRR of the order of 100
F"”z’ Jrx<b<t \[F exist. In clean samples of Celnexponents smaller than 1.5

are observed over some temperature range, but at lowest

The largest effects can be observed for rather clean sydemperatures the exponent crosses over to 1.5, as expected
tems with makx,yrx]<t< \/x, which show a linear resistiv- "om theory. In Fig. 10 the resistivity of a quite clean sample

ity for b=0: of CePdSi,® is compared to a typical solution of the Boltz-
mann equation. It is important to point out, that not only a
b2 similar effective exponent shows up in both theory and ex-
Vxt+ m b< Vxt periment, but that it is observed over a similar rangep.1
<Ap(T)<10p,. Only the effective scal&/q3 seems to be
b, Jxt<b<min t¥ ﬁ approxirna’_[ely a factor 10 too large c_ompared’t@’k2 , bu_t
Ap ' ' a quantitative comparison of these high-energy scales is cer-
—~ (42 tainly very dubious within our perturbative treatment of a
Pm minl 132 ﬁ minl 32 ﬁl strongly correlated system. Furthermore, a quantitative com-
| r
10°
<b<x¥*min tm’rli:“]'
B. Experimental situation for B=0 10’

According to our calculation, ird=3, spin-fluctuation
theory predicts that the resistivity in dirty systems rises with
T2 while in cleaner compounds a large regime with a linear
resistivity is expected. This behavior is actually seen in a 10° t
large number, but not all, AFM quantum-critical systems. A
resistivity proportional to T'® has been reported in
CeCuySi,,’ CeNiGag,® CeCy_,Agy,'° CeNpGe)®
CePdSi,, Celn,® or CeCyAu.'* All these systems are dirty
in the following sense: in the regime, where the exponent 1.5
has been observed, the rise of the resistiity is small FIG. 11. Scaling plot off(t/x,0)=Ap(t/x)/t32 at the QCP (
compared to the residual resistivity. =0) using a numerical solution of the Boltzmann equations for

For a small number of the above-mentioned compounds;arious amounts of disordet. The straight-solid lines show the
cleaner samples exist. For these high-purity single crystaldimiting casesA poct¥? for t<x andA pct for x<t<<yx. Deviations
the resistivity seems to rise with an exponent smaller thamrom scaling are large for/x> 1/yx.

Ap/(thm)
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parison would require a more realistic model based on somenly orbital effects show up in the interesting regime. The

knowledge of the band structure and the actual width of theeason is that on the one hand the Lorentz foreeB is

spin fluctuation. suppressed due to the large mass of the heavy quasipar-
The theory, presented in this paper, is certainly not appliticles and on the other hand spin effects are enhanced due to

cable to strongly disordered systems, where the nature of th@e large susceptibilityy~ 1/T>m* /my.

quantum-critical transition is changed due to disorder. It does A reliable estimate of these effects is difficult as the de-

not egplain the linear temperature dependence. of Fhe resigsils of the interplay of the Kondo effect and the RKKY

tivity in CeCug,Au, due to two reasons. The first is, that ihieraction are poorly understo8For a crude estimate, we

CeCu_,Auy is relatively dirty at the QCPX=0.1). More  5qqme that all high-energy scales, including scattering rates

m;‘porr]tant IS thelunugual n?éure of hthe spin quctuIa:lonsand renormalized coupling constants, can be approximated

Wuelz(;lc aaee s;rr?ggn)ééanlsotrop -and show an unusual fre- by Tx. Orbital effects are important fob>x>? or ugB

q y dep ' d>x3’2kBTKm*/mo and spin effects can be neglected for

The most precise test of the spin-fluctuation model woul o o
be to verify (or falsify) our scaling predictior{11) by com- <X OF 1eB<XkgTymo/m* . If this is qualitatively cor-

paring several very clean quantum-critical samples witlf€Cl only an extremely clean sample witk<(mo/ m_*)slzv
varying residual resistivity ratios. An example for the ex-I-€-, With a RRR larger thann(*/mg)®? shows orbital ef-
pected deviations from scaling is shown in Fig. 11. fects without the influence of spin effects. This implies that
A somewhat unexpected result of our calculation is that irspin effects are present in most cases, becausém, is
clean systems away from the QCP, a Fermi-liquid form ofquite large in those clean stoichiometric systems where the
the resistivity can be observed only at very low temperature§uantum-critical point is reached by pressure.
t<\rx. This has to be compared to thermodynamic quanti- Nevertheless, the orbital effects have a very clear signa-
ties, where FL behavior sets in at a considerably higher scafélre even in the presence of large spin effects, especially in
t<r. In a clean system with a RRR over 100, the crossovepuitably designed experiments. The necessary magnetic
scale in transport quantities can easily be, e.g., a factor of §elds are not very large. In our units, Shubnikov-de Haas
lower than in thermodynamic quantities. This might explainoscillations are expected ftr>x at low temperatures while
claims based on transport measurements that the non-Ferngitong effects in the magnetoresistivity in clean samples set
liquid behavior in these clean systems extends over a finité for b>x%? i.e., for magnetic fields that can easily be an

region away from the QCP?® order of magnitude smaller. _
The Hall constant is obviously not influenced by B3}

corrections due to the suppression of the AFM andRgds
C. Spin and orbital effects of B not affected by the above-mentioned problems. Therefore it
should be very interesting to investigate the strong sample

critical point in two quite independent ways: by spin ang dependence of the Hall effect predicted in Sec. Il A. Unfor-

orbital effects. The spin contribution typically suppresses théunately, only extremely clean samples will show a strong
; ; . . temperature dependentsee Fig. 6%

antiferromagnetic order. In the context of this paper, we will E detailed study of th e ¢ istivity in cl

call these phenomena “spin effects” despite the fact, that in ' 0f & detalled study ot € magnetoresistivity in- ciean

most cases orbital degrees of freedom are involved. On th stems, it i.s necessary to m!nimize spin effects. In a system
nonmagnetic side of the phase diagram and Bofields, like CePdSi,, the effective distance from the QCP can be

which are not too large, the leading order spin effects caﬁumd by pressure. Therefore,_ one can select various pres-
yres on the antiferromagnetic side of the phase diagram

supposedly be described by the magnetic-field dependence B o .
r, the variable that describes the distance to the QCP. F ose to the QCP anq SUppress the remaining magnetic order
y a suitable magnetic field. For such a setup the spin effects

small fields, one expects in an AFM metal above the uppe
critical dimensionAr=B?2. A controlled study of the effects are cqmper_lsated by a changg of pressure to a large extent
especially in systems with Ising symmetry. For not too

of a finite magnetic field close to the AFM QCP in a metal ; . 2 .
does not exist to our knowledge, however, loffe and Miflis strong fields the field-tuned quantum-critical transition
' ' should stay second order and one can compare several

have carefully investigated the uniform susceptibility with- tical 0) with th f
out finding unexpected anomalies. A large magnetic field cafjuantum-critical systemsr & ). with the same amount o
induce othefirst-ordey transitions or change the nature of disorderx but different magnetic fields. Our calculation pre-
the magnetic fluctuations completely dicts, that in a magnetic field>x>?, the low-temperature

The focus of this paper is “orbital effects.” We consider resistivity rises proportional t(_)“’. A schematic plot of the
a regime where interference effects do not play any role an§*Pected behavior is shown in Fig. 9. Ideally, one can test
have restricted our attention to the classiealB force on € §cal|ng prec!|ct|ons_ by comparing samples of dlffer_ent
the electrons. This approximation is valid in the scaling limit 9Uality- In an anisotropic system one should choose a direc-
(12), wherew,7<1 and the disorder is so weak that weak- tion of the magnetlc_ field perpendicular to the easy axis and
localization corrections set in at much lower temperattfes. to one of the ordering vecto@_, because only the compo-

In the scaling limit(12), i.e., for clean enough systems at nent of B pqralllgl to thg hot lines enters th.e scaling form
very low temperatures in small magnetic fields close to the®’ the resistivity. [T.h|s effect is de§cr|bed by the
QCP, spin effects can be neglected. Bex*? the correction (Vi X Viq =) B factors in our results, e.g., in E(7).]

Arxb? is small compared tx for sufficiently smallx. In A simple way to distinguish spin and orbit effect is the
realistic heavy Fermion systems, it is, however, probably nosign of the magnetoresistivity. A suppression of the AFM
possible to produce a sample that is clean enough so théltictuations on the paramagnetic side of the phase diagram

A magnetic field influences the resistivity near a quantum
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will reduce the amount of scattering and the resistivity will  In this paper we have analyzed such a situation in detail.
go down. Due to the orbital effects discussed in the previouslear the AFM quantum-critical point of slightly disordered
section the resistivityincreasesbecauseb smears out the metals, weak isotropic impurity scattering competes with the
quasiparticle distribution, therefore minimizing the effect strongly anisotropic scattering from spin fluctuations, which
that cold regions short circuit the hot spots. This can lead tés most effective along “hot” lines on the Fermi surface.
a sign change of Ap=[p(B,T)—p(0,T)]-[p(B,0) The observation that even in relatively clean single crystals
—p(0,0)] either as a function of disorder or strength of thethe effective resistivity exponent, ApxT“, depends on
magnetic field. Such an observation could help to separatdhe amount of disorder in the syst&fi® is an important
the two effects quantitatively. indication that the interplay of scattering mechanisms is rel-

The interplay of the spin and orbit effects can also lead teevant in these systems. Our results Bs£ 0 explain the ex-
less trivial effects. In the dirty limit close to the QCP, e.g., perimental trendsA po T1® for dirty systems and\p=T in
the magnetoresistivity for small magnetic fiel@®8) is pro-  high-purity samples. A precise test of the spin-fluctuation
portional to 14r, Ap~b?2/(x3\r). If spin effects sup- picture that underlies our calculation would be to check our
press the AFM fluctuations with~cb?, one can expect a scaling predictions using a comparison of several high-purity
regime where the magnetoresistivity ridieearly with B for ~ samples with different residual resistivitipg directly at the
rather small fielddcb?<r(b=0t)], Apxbt¥(Jcxd). It  QCP:Ap~TY5(T/p) with f(y—0)=const andf(y— o)
is probably not very easy to distinguish this effect from theox1/\fy.
linear b dependence due to orbital effects discussed in Eq. We furthermore propose to use orbital effects in a large
(34) with Ap~Dbt?/x? for b>x\r(b=0). magnetic field to study anisotropic scattering mechanisms in

In high purity single crystals of CelBe,, Groscheet al®  detail. Interesting nonlinear effects are expected if the mag-
have reported measurements of the resistivity in magnetioetic field is strong enough to push quasiparticles within the
fields of a few Tesla. As explained above, a direct compariscattering timer, over any sharp structure with widtkk on
son of their findings with our calculations is difficult due to the Fermi surface, i.e., fog(vXB) 7, >Ak. In the limit of
the interplay of orbital and spin effects. However, an impor-very small but finite disorder, we were able to calculate the
tant qualitative trend of their results can easily be explainedionlinear magnetoresistivity analytically in all relevant lim-
by our approach. In finite magnetic field, they observe a cleaits. The main effect of a magnetic field is that sharp features
T2 dependence below a temperatdig(B). Obviously, the in the quasiparticle distribution are smeared out. In this re-
magnetic field drives the system away from the gquantumspect both an increase of disorder and magnetic fields lead to
critical point. Remarkably, it seems that the magnetic field issimilar effects. In sufficiently strong magnetic fields, we
much more effective in this respect than pressure, which alstherefore expect @' rise of the resistivity at the QCP and
suppresses the magnetic order. For samples tuned by presT? law on the Fermi liquid side of the phase diagram even
sure towards the paramagnetic side of the phase diagram,ira samples where the resistivity is close to linear in the ab-
clear T2 rise of the resistivity could not be observed. This sence of the magnetic field. Precise scaling predictions can
qualitative effect can be understood within our approach. Irbe used to check this mechanism experimentally.
the case of pressure tuning, we expect Fermi liquid in a very We hope that the results of this paper establish a set of
clean sample only for very low temperatures\rx. In a  predictions that can be used to investigate mainly one ques-
sufficiently strong magnetic field, the crossoveiTfoshould ~ tion: Can the non-Fermi-liquid behavior in clean systems be
be visible at a much higher temperaturer /4\b in agree-  explained by a nearly antiferromagnetic Fermi liquid? At the
ment with the experimental trends. If we assume thalh? moment this question is still open. Our interpretation of the
and use the above discussed crude estimates of the pref&tata, e.g., of CeR&i, favors a SDW interpretation. Cer-
tors, we expect the crossover temperafliteto riselinearin ~ tainly it is necessary to look also at other quantities. For
B with kgT* ~ ugB(mg/m*)Y4 | want to emphasize that example in CePgbi, the Neétemperature seems to rise lin-
this estimate is unreliable and should be replaced by a suigarly with p—p., while in spin-fluctuation theory an expo-
able strong-coupling theory of heavy-Fermion systems. Nevhent 2/3 is expected.
ertheless, the experimental restilseem to be consistent It is important to stress that at least in some systems close
with this simple-minded estimate of scales. to an AFM QCP a description within the three-dimensional
SDW scenario seems to be impossible. The best-studied ex-
ample for this is CeCGybAu, ;> Where the spin-fluctuations
spectrum shows both an anomalous momenrtumand

In all situations where two scattering mechanisms comenergy® dependence. The linear temperature dependence of
pete, one anisotropic and affecting only parts of the Fermihe resistivity in CeCulgAug ; has a different origin than the
surface, the other isotropic, the transport is quite subtle andne discussed in this paper. As the residual resistivity is rela-
the interplay of the two mechanism&,and B, can lead to tively high, the resistivity should rise with*->within the 3D
qualitatively new effects. The reason for this is very simple:models discussed in this paper linear resistivity could re-
the effectiveness of scattering mechaniarin the presence sult from 2D critical fluctuations coupled to 3D electrdhs
of a current is strongly influenced by the momentum depeninterestingly, an exponent 1.5 has been reported for the
dence of the out-of-equilibrium distribution of the quasipar-quantum critical resistivity of CeGu,Ag,*° and pressure
ticles, which is affected by mechaniska Therefore, we ex- tuned CeCyAu,*! which might indicate that small changes
pect thatpag# pa+ pg €ven in the weak-coupling limit of a can induce a more conventional SDW transition in this com-
semiclassical theory described by a Boltzmann equafign ( pound. CeCylsAuy4 is by now the most likely and best-
is the resistivity in the presence of scattering mechadm  studied candidat&?° for a truly unconventional QCP

V. CONCLUSION
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(YbRh,Si,*? and W, ,Y o PhAI 12 have very similar thermo- t2
dynamic and transport propertjesThe reported scaling of ~ a—an
the susceptibility in CeGuAu, ;2 seems to contradict any (t+r)
simple SDW modelé® An interesting question is whether |n the ultraclean limit k<t?),
the rather strong disorder is responsible for the anomalous
behavior or whether a pure interaction effect destroys the

Ap for Ak<t+r.

Ak is of orderkg and

Ap~t? for Ak~1.

Fermi liquid close to the QCP.
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APPENDIX A: APPROXIMATE VARIATIONAL
SOLUTION OF THE BOLTZMANN EQUATIONS

In the absence of the magnetic field the Boltzmann equ
tion is equivalent to the following variational probleth?’
which allows to calculate the qualitative behavior of the re-
sistivity in a very simple and efficient way. Following Hlu-
bina and Ricé&’ we define a functionab of ®,:

A é § (dkdk’/UkUk/)Fkk/(q)k_q)k/)z
P[¢k]:4—ez

2

( § (dk/Uk)(an)q)k

—min. (A1)
The physical resistivity is given by the minimum pf®,]
regarded as a functional @b, , the scattering matri¥ is
defined in Eq(8). Instead of solving the Boltzmann equation

a

Strictly speaking, a relaxation-time approximation is not
valid near a quantum critical point, where the scattering is
dominated by processes involving a fixed momentum trans-
fer Q. The time to equilibrate a quasiparticle distribution at
the pointk on the Fermi surface will crucially depend on the
quasiparticle distribution at the poikt+ Q. For example if
Q is perpendicular to the electric fielland some reflection
or gliding plane(and if the Fermi surface is not too compli-
cated, thenQ will connect points with the same nonequilib-
rium quasiparticle distribution and the singular scattering
will notrelax the nonequilibrium distribution. In such a situ-
ation vertex corrections cancel the leading self-energy con-
tributions and the relaxation-time approximation is com-
pletely wrong (see also Ref. 38 on the role of vertex
corrections for the Hall effects

Nevertheless, the relaxation-time analysis gives qualita-
tively the correct resistivity for generic situations, where the
Q vectors are not perpendicular Ebas can be verified by
comparison with the full solution of the Boltzmann equations
discussed in the main text. The relaxation-time approxima-
tion can have much larger errors for the Hall effect because

exactly, we can guess the qualitative structure of the solume gistribution functiond, perpendicular to the current is

tion: the strong scattering will equilibrate the distribution
function in a region of widthAk around the hot linegsee
Fig. 1). In the dirty limit, the distribution function is of the
well-known form ®2=vE and as a variational ansatz we
assume thatb, vanishes[or more precisely is equal to
1/2(<I>(k’+<D8iQ)] in a region of widthAk around the hot
lines. It is easy to calculate the qualitative structuré pfas

a function of the variational parameték in the regime
where the disorder dominatésp =< py:

2

~ 2
Ap[AK]~x|Ak|+ T RO,

(A2)

The first term is due to the denominator in HE&l) and

often dominated by quasiparticles that are scattered into this
region by spin fluctuations with momentu@ (in the geom-
etry show in Fig. 1 this effect is absent

In second-order perturbation theory the lifetime of the
electron afT=0 is given by’

1 5 €k
—=2gYT> | dolm y_(o)dlo— (& e,
Tk K’ 0
(BD)

wherey is given by Eq(2) with w,=(q* Qi)zlqg. Splitting
the integration ovek’ in a surface integral over the Fermi
surface and an energy integral perpendicular to it

f dSk'=f fdk'/vpf dee

reflects the fact that the disorder favors a smooth distribution

function. The structure of the second term can easily b
guessedor calculated It reproduces the well-known results,
e.g., of Moriyd’ for Ak=0, who essentially averages the
scattering rate§ ., over the full Fermi surface.

In the dirty limit, the first term in Eq(A2) dominatesAk
vanishes at the minimum and one obtains the well-known

é{vherev r(k") is the Fermi velocity, performing first the,.

and then thew integration we obtain

f fdk’ln

(6k/F)2+(r+wk,k/)2
(I’+wk,k,)2

16

T ve(2m)°

|

(B2)
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1

Tk

_ 9% e
2 T

€k

— or x<t?> (B8)
2T 82

2 2 2 1 ;
. O =r+(5klgg)*, p(I't)~t= for T—<m|n

el

1

a U|:(2’7T

(B3) as has been pointed out by Hlubina and Riten the dirty
where 8k is the distance ok+Q from the Fermi surface, limit, x>t2/(r +1), the elastic scattering dominates and one
i.e., essentially the distance &f from lines on the Fermi can expand EqsB6) or (B7) in the inelastic-scattering rates:
surface, wher&k=ekiQi=,u. Along these “hot lines” the

2
inelastic scattering is strongest. Ap(T) ~r < 1 > t

The scattering rate depends crucially on the distance from py, - Jr+t
the hot linessk = sk/kg=~ 8k/qq. Far from the hot lines or at
lowest energies for a system not directly at the quantum criti- 1 ){ 1

cal point, we recover the usualrik €2 . Directly at the QCP for o, ma =S| O t<ma{\x,x]  (BY)
k

and for 6x=0, the scattering rate is linear in the quasiparti-

cle energy. At finite temperatures, a typical quasiparticle haand we recover the well knowsip=T¥? near the quantum-
the energyT and for qualitative estimates we use the ap-critical point.

proximation In the relaxation-time approximation we obtain similar to
our results for the Boltzmann equation a pronounced inter-
1 1 [tY(r+t) for Sk<ir+t B4 mediate regime, where njitVr}]<1/r=max1/r}]. This
2 Ty 2/(5k)2 for Sk>\r+t’ corresponds to the regime where the first arctan in(B@)

is /2, while the second is small, i.e., nfakxx,x]<t<Xx.
wherery, is a typical scattering rate at the temperafiirand ~ The rise of the resistivity irlinear in temperature in this
t=T/T the dimensionless temperature. Fet1 the scatter- [€gime Is:

ing is highly anisotropic and strongest in a region of width

dk~\r+t. In the presence of weak disorder, the elastic AP(T)ME\& for max Jrx,x]<t<yx.
scattering due to impurities has to be added Pwm 2
1 1 N 1 1 N 1 (B5) APPENDIX C: NUMERICAL METHODS FOR SOLVING
_——=— — X -,
Tk Tel TE ™ TE THE BOLTZMANN EQUATION

The Boltzmann equations were solved by direct matrix
version. The Hall effect and th&2 magnetoresistivity
were calculated in perturbation theoryBn To keep the size
of the matrices small it is important to use all the symmetries
of the problem and to choose a suitable discretization of the
Fermi surface. At low temperatures the distribution function
@, changes very rapidly perpendicular to the hot lines.
Therefore we define the distribution function on polygon-
shaped patches on the Fermi surface, which are relatively
long parallel to the hot linedk <kg but short in the per-
pendicular direction close to the hot linesAk

where we measure the relative strength of impurity scatteringn
by the dimensionless quanti~ 7y / 7o~ 1/RRR, which is
defined in Eq.(5).

The conductivity in relaxation-time approximation is pro-
portional to the average af, over the Fermi surface@assum-
ing that the Fermi velocity does not vary too stronglBy
integrating Eq(B4) over 5, we therefore obtain an estimate
for the conductivity. The conductivity in units of the con-
ductivity o\, = 1/py, is approximately given by

a(T)

AL ey <kge min[Vt,t//x]. Because the kernel of the integral equa-
oM tion is strongly peaked it is essential to calculate a small
-1 number of matrix elements!;; = [ [ paichidKJ [ paicnjdK' G
_[ [ ™ (B6)  Numerically if they involve a momentum transfeks-k’
Tel T close toQ;. To speed up the calculations one can approxi-
matel[y]~ m2(27+Y)/[y(4m?+ 6y +3y?)] which is as-
T 1 1 1 ymptotically exact in next-to-leading order for large and
%f d5K—+f Sk—— small arguments; errors are smaller than 1.pPhe previ-
0 X+t2(r+t)  JFE X+t2(Sk)? ously used’?® approximationl[y]~ w2/y(3y+2) is also
sufficient to reproduce next to all of our results with essen-
1 tz/\/m t X tially neglegible error, one exception is the temperature de-
v TR arctant— pendence of the Hall effect in the ultraclean limit, where it
X+t2(r+t) X wrongly predictsRy~c,;*+c,T instead of the correcRy
N ~c+c, T3] We used Fermi surfaces with cubic symme-
—arctam——— | |. (B7) try. As the largest irreducible representation of the 48-
t dimensional cubic group is only three dimensional, it was

possible to reduce the size of the matrices by the huge factor
In the ultraclean limit,x<t?<1, the main contribution 16X 16 using the full symmetry of the scattering matrix. We
arises from regions far from the hot line or large. The  didn't try to solve the Boltzmann equations numerically in a
conductivity diverges with I7? with a prefactor of order 1: finite magnetic field, which would break the cubic symmetry,
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but used perturbation theory B to calculate the figures of ~ APPENDIX D: MODELS USED FOR THE NUMERICAL
this paper. CALCULATION
It is essential to use a proper discretization of the

L For our numerical calculations we use three different
magnetic-field term that conserves

models. ModelA is based on a spherical Fermi surfdsee
Fig. 1) and the ordering wave vector iQ=(0,0,

f f[B'(VkX V. @) 1(d%k/vy) *+ 2k cos®y with ® = 7/6. The precise value o are

S not very important as long as one stays away frég+=0

(“2 kg" ordering) or 6y=/2 (ferromagnetic ordering
_ 2 _ where our approach breaks dowhin our numerical calcu-
_f L(d KXV iPy) - B= 3gas(bk(5'dk) €D \ations we usedy=m/6. The dispersionw, in Eq. (2) is

_ . . given by (4—Q)?/qp.
for an arbitrary partS of the Fermi surface. Otherwise the = \10del B describes a cubic system with commensurate
discretization leads to large errors. To determine the avergyin waves with ordering vecto@=(*1,+1,+1) and

agedvx B contribution for a single patch, E¢C1) is applied
for a single patchd, on the edges of the patéhis deter- 0.=3+ E
=

mined by a linear interpolation: cosmq; .

i=X,y,z
R _ The bandstructure was chosen to be featureless but it in-
[B- (X Vi@ ](d’klv)~ 2 (B-AK)(Py ,+ Py )2 cludes terms that mix the various directions and it is charac-
! B - terized by 8 nonintersecting “hot lines”:
whereA k} =ki j 2—K; ;1 describes thg¢th edge with corners
kijo and k;;,. The vectorsAk} point counterclockwise €k=t2 COSﬂ'ki—{-t’E cos 2rk;+1t"(cosmky cosmk,
around patch with X.y.z XY,z

+ coswk, cosmk,+ cosmk, cosmk,) — u

I
; Akj=0. with t=—0.2,t'=0.05,1"= —0.045, andu= — 0.0225.
o We have compared model B to model C, where the order-
The value ofd, at the cornerk; ; , (n=1,2) is determined ing vector is parallel to the principal axesQ;
by a simple average over the valuedfon each neighboring =(#1,00),(0,=1,0),(0,0;=1) using also a different band
patch. The details of these averaging procedures are not structure. All results are very similar compared to those of
important as long as EGC1) is not violated. model B and are therefore not shown in this paper.
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