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Magnetotransport in nearly antiferromagnetic metals

A. Rosch
Center for Materials Theory, Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854

~Received 27 October 1999!

We present a theory of the magnetotransport in weakly disordered metals close to an antiferromagnetic
quantum-critical point. The anisotropic scattering from critical spin fluctuations is strongly influenced by weak
but isotropic scattering from small amounts of disorder. This leads to a large regime where the resistivity obeys
a scaling formr5r01Dr'r01T3/2f @T/r0 ,(p2pc)/r0 ,B/r0

3/2#, wherer0 is the residual resistivity,B the
magnetic field, andp2pc.0 measures the distance from the quantum-critical point on the paramagnetic side
of the phase diagram. Orbital effects of the magnetic field are most pronounced in very clean samples for not
too low temperatures, where the resistivity for increasing magnetic field crosses over from a linear temperature
dependenceDr;TAr0 to a resistivity linear inB and independent ofT andr0. At higher magnetic fields,Dr
saturates at a value proportional toT1.5 or T2/(p2pc). Deviations from scaling, the interplay of orbital and
spin contributions of the magnetic field, and experimental test of the spin-fluctuation model are discussed in
detail.
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I. INTRODUCTION

One of the most important unresolved questions in
field of strongly correlated metals is the stability of the Fer
liquid. In one dimension, the Fermi liquid is destroyed
strong quantum fluctuations. The strange properties of
normal phase of high-temperature superconductors1 as well
as the observation of an unexpected metal-insulator tra
tion in Si-metal-oxide-semiconductor field-effect transisto2

and other systems have cast doubts on the applicabilit
Landau’s Fermi-liquid paradigm in two dimensions.

Even in three dimensions~3D! a number of heavy-
fermion metals near an antiferromagnetic~AFM! quantum
critical point ~QCP! were shown to display striking devia
tions from conventional Fermi liquid behavior.3–13 The main
aim of this paper is to develop a detailed transport theory
allows to decide experimentally whether the non-Ferm
liquid behavior near the QCP in weakly disordered met
can be explained by a nearly AFM Fermi liquid.

It is believed that the magnetic transition in heavy F
mion systems results from the competition between
Kondo screening of magnetic moments and the AFM co
lations induced by the Ruderman-Kittel-Kasuya-Yosi
~RKKY ! interaction.14 Pressure, magnetic fields, or dopin
can influence this interplay of screening and magnetism. T
allows one to fine-tune systems directly to the QCP wh
the strongest non-Fermi liquid~NFL! effects are found; a
schematic phase diagram is shown in Fig. 1. In particular,
resistivity rises as a function of temperature with expone
smaller than 2, the specific-heat coefficient diverges
shows aAT cusp, and the susceptibility shows anomalo
corrections of the formTa, with a,1. We stress that both
magnetic and nonmagnetic phases are heavy-Fermion m
which display, for example, the characteristically large s
cific heat. The discussion of this paper is restricted to
behavior in the paramagnetic phase close to the QCP.

Despite the growing amount of experimental data, a co
mon agreement on the origin of the observed non-Fermi
uid behavior is still lacking. At present it is unclear, wheth
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a single mechanism is responsible for the observed beha
as different exponents have been reported in various c
pounds. At least three different theoretical scenarios h
been proposed and are discussed in literature.

The first scenario is based on the assumption that i
heavy Fermion system below a scaleTK , the low-energy
excitations are~heavy! quasiparticles and their collective ex
citations. In this case the QCP should be in the same uni
sality class as the weak-coupling spin-density wave~SDW!
transition in a Fermi liquid studied by Hertz.15–17 More pre-
cisely, the so-called non-Fermi liquid behavior near the Q
is determined by the mutual interaction between Land
damped spin fluctuations and inelastically scattered quasi
ticles in a nearly antiferromagnetic Fermi liquid.

Alternatively, one can envision a situation where t
Kondo effects breaks down directly at the transition, e
due to strong magnetic fluctuations.18–21 A Fermi-liquid de-

FIG. 1. Left figure: In a metallic AFM the magnetic order
suppressed as a function of some control parameter which can,
be pressure, doping, or magnetic field. Deviations from the us
Fermi-liquid behavior show up close to the QCP. Right figure: N
the transition to an antiferromagnet with ordering vectorQ, the
scattering on the Fermi surface is enhanced along ‘‘hot lines’’ c
nected byQ. This strong scattering equilibrates the distributio
function ~shown for an electric fieldE parallel toQ) in a region of
width Dk ~see the main text and Appendix A for details!.
4945 ©2000 The American Physical Society
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scription of the transition is then not possible and it has b
speculated thatlocal fluctuations play the dominant role i
this scenario.19,20

Independent of the precise nature of the QCP, sufficie
strong disorder will certainly change the nature of the tr
sition. Indeed, if typical fluctuations of the effective Ne`l
temperature due to disorder are large compared to the
tance of the quantum critical point~Harris criterion!, disorder
effects are important. Perhaps more importantly, even
some distance from the QCP, in the nonmagnetic phase,
configurations of impurities can lead to a small magnetica
ordered region that can dominate some of the thermo
namic properties in a finite region around the QCP~Griffiths-
McCoy singularities!.22–24

Up to now, a comprehensive theoretical description ex
only for the weak-coupling spin-density wave transition.15,16

As this theory is above its upper critical dimension, ess
tially all low-energy properties can be determined analy
cally. It was realized only recently25–27that the calculation of
transport quantities is quite subtle and earlier predictions17,27

are not valid in weakly disordered materials. The compli
tions arise because the scattering from spin waves is
tremely anisotropic and effective only in small areas on
Fermi surface. Therefore the transport properties strongly
pend both qualitatively and quantitatively on howotherscat-
tering mechanisms redistribute quasiparticles and sca
them into these small regions.

The resistivity is often the most sensitive experimen
probe to study the QCP, and in a number of~pressure tuned!
systems it is the only available quantity. As the effects
strong disorder are poorly understood at present, it is imp
tant to study very clean systems. The goal of this pape
therefore to establish a set of predictions for the resistiv
within a SDW approach for weakly disordered metals clo
to an AFM QCP. The interplay of the relevant scatteri
mechanisms is studied within a semiclassical approach u
a Boltzmann equation. The model and the Boltzmann eq
tion is defined in Sec. II A. In Sec. II B the analytic solutio
of the Boltzmann equation is presented in the limit of lo
temperature and weak, but finite disorder. The scaling pr
erties close to the quantum critical point are emphasized
numerical solutions of the transport equations are used
analyze crossover regimes and nonuniversal behavior.
bital effects of a magnetic field are studied in Sec. III. Lar
nonlinear effects can be used as a tool to investigate
strongly anisotropic scattering from the spin waves. We w
argue in Sec. IV that these calculations easily explain so
of the key observations in high-purity single crystals close
an AFM QCP: the temperature dependence of the resist
changes fromDr}T1.5 to Dr}T for cleaner and cleane
systems.5,6,8 We propose a number of stringent tests for o
picture and discuss how the orbital effects of a magnetic fi
can be separated from spin contributions. We conclude
Sec. V by commenting on the relevance of this paper t
wider class of problems.

II. RESISTIVITY AT THE QCP

A. Model

Following Hertz15,16 a spin-density antiferromagneti
transition in a metal can be modeled by an effect
Ginzburg-Landau theory defined by the action
n
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Fq,ivn
* S r 1

~q6Q!2

q0
2

1
uvnu
G D Fq,ivn

1UE
0

b

dtE d3r uF~r ,t!u4, ~1!

whereF is the order parameter that fluctuates in space
~imaginary! time, b51/kBT is the inverse temperature, an
vn52pn/b are bosonic Matsubara frequencies. The fluct
tions are strongest near the ordering vectorQ of the AFM.
The massr controls the distance from the QCP. The Land
damping term linear inuvu is due to the effective scatterin
of quasiparticles from spin fluctuations. A large number
particle-hole pairs are created by a spin fluctuation ifQ con-
nects different parts of the Fermi surface (Q,2kF , see Fig.
1!. We will not discuss the singular case ‘‘Q52kF’’ 16,28

where the Fermi velocitiesvk and vk6Q are parallel or ‘‘Q
.2kF’’ where the spin-fluctuations do not couple directly
the quasiparticles.

Due to the Ohmic Landau damping, the effective-fie
theory ~1! is characterized by a dynamic exponentz
52 (v;qz) and is for d53 above its upper critica
dimension,15,16 d1z.4. Therefore the dynamic susceptibi
ity is mainly determined by the Gaussian part of Eq.~1! and
the spin-fluctuation spectrum in the paramagnetic phase
be modeled by15–17

xq~v!5x2q~v!'
1

1/~q0j!21vq2 iv/G
, ~2!

whereq0'kF and G are characteristic momentum and e
ergy scales andj is the correlation length of the spin fluc
tuations. The dispersionvq>0 vanishes at the ordering wav
vectorsQi and varies on the scaleq0. For simplicity, we will
mainly consider ‘‘isotropic’’ momentum dependencies29 vq
'@(q6Qi)/q0#2 ~Appendix D defines the models used f
numerical calculations more precisely!. Moderate anisotropy
influences our results only slightly, as will become clea
below. j is the AFM correlation length that diverges15,16 at
the QCP as 1/j2}UT3/2. For the purposes of our numerica
calculations we set

1/~q0j!25r 1c~T/G!3/2 ~3!

with c51. TheT dependence ofj does not affect the low-
temperature properties@below Eq.~28! a remarkable excep
tion is discussed#. We usec51 to model the~nonuniversal!
destruction of the spin fluctuations at the temperature s
G. The parameters in Eq.~2! can directly be obtained from
inelastic neutron scattering. Typically, it is expected that i
heavy Fermion system,G is of the order of the coherenc
temperature or Kondo energyTK . Close to the QCP,r is a
linear function of the tuning parameter, e.g.,r}p2pc in a
pressure tuned experiment.

Transport can be treated within a simple~quantum!
Boltzmann approach, because the spin-spin interactions
irrelevant in the renormalization group sense and furth
more the concept of Fermi quasiparticles is still valid30 in
three dimensions. For small and static electric fields
transport equations take the usual form of fermions scat
ing from bosonic excitations. These equations are furt
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simplified by the assumption that the spin fluctuations sta
equilibrium, i.e., we neglect drag effects. This approximat
implicitly assumes the presence of sufficient momentum
laxation, e.g., by strong umklapp scattering. In the line
response regime, the quasiparticle distributionf k5 f k

0

2Fk(] f k
0/]ek) is linearized around the Fermi distributionf k

0

and the collision term reads27

] f k

]t U
coll

5(
k8

f k8
0

~12 f k
0!

T
~Fk2Fk8!Fgimp

2 d~ek2ek8!

1
2gS

2

G
nek2ek8

0 Im xk2k8~ek2ek8 !G . ~4!

Heregimp
2 andgS

2 are transition rates for impurity scatterin
and inelastic scattering from spin fluctuations, respectiv
andnv

0 is the Bose function.31

In the following we will show that the interplay of the tw
scattering mechanisms is highly nontrivial because of th
completely different momentum dependence. On the
hand, impurity scattering is very isotropic and is equally
ficient on the whole Fermi surface. Therefore, the distrib
tion function in the presence of a small electric fieldE is
smoothFk}vkE if impurity scattering dominates~solid line
in the right part of Fig. 1!. On the other hand the AFM
susceptibility is strongly peaked around the ordering vec
Qi . Accordingly, a quasiparticle with an energyek'm will
scatter efficiently from the spin fluctuations only near ‘‘h
lines’’ on the Fermi surface whereekH

'ekH6Qi
'm. This

strong scattering tends to equilibrate the distribution funct
at pointskH andkH6Qi in a region of widthDk ~dashed line
in Fig. 1!, where Dk depends on the relative strength
impurity- and spin-fluctuation scattering. The temperat
dependence ofDk and the distortion of the distribution func
tion close to the hot lines in a magnetic field is the ma
origin of the anomalous transport properties that are
cussed in this paper~see Appendix A for a simple qualitativ
calculation ofDk).

For convenience, we will use in the following, the dime
sionless quantitiest, x, r, and b to measure the effective
temperature, the amount of disorder, the distance from
quantum-critical point, and the strength of the magnetic fie

t5
T

G
, x5

pgimp
2

2gS
2

5
r0

rM
'

1

RRR
,

r 5
1

@q0j~ t50!#2
}p2pc , b5

B

B0
, ~5!

wherer05xrM is the residual resistivity andrM is a typical
high-temperature (t'1) resistivity that is defined below
One can approximately identifyx with the inverse of the
residual resistivity ratio~RRR!. B0 is the typical magnetic
field, which is necessary to see Shubnikov-de Haas osc
tions att51 ~for low T, Shubnikov-de Haas oscillations s
in for b.x)

rM5
3\gS

2

pe2vF
2

, B05
2gS

2q0
d

evF
2~2p!d

. ~6!
n
n
-
-

,
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e

-
-
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n

e

-

e
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The Fermi velocityvF is defined by an average over th
Fermi surface

vF
2/352/NFE E dk~vkn!2/@vk~2p!3#

wheren is a unit vector in the direction of the electric field

E Edk/vk5E d~ek2m!ddk

is an integral over the Fermi surface ind dimensions and
NF52**dk/@vk(2p)3# is the density-of-states.

B. Boltzmann equation and scaling

The linearized Boltzmann equations with the collisio
term ~4! can be written in the following form:

vkE1~vk3B!]kFk5E E Fkk8~Fk2Fk8!
dk8

vk8~2p!3
,

~7!

where an integration over directions perpendicular to
Fermi surface has already been performed and allk vectors
and integrations are restricted to the Fermi surface

E E dk/vk[E ddk d~ek2m!

whered is the number of dimensions. Currents are calcula
from

j i5E E v iFk dk/@vk~2p!3#.

Fkk8 includes contribution both from elastic scatterin
from impurities and inelastic scattering from spin fluctu
tions with

Fkk85gimp
2 1

2gS
2

GT E0

`

vnv
0 @nv

0 11#Im xk2k8~v!dv

5gimp
2 12gS

2I @r /t1vq /~q0
2t !#. ~8!

I (y) is defined by Eqs.~8! and ~2! and is asymptotically
given by I (y→0)'p/(2y) and I (y→`)'p2/(3y2).

For large temperatures and extremely large magn
fields the solution of Eq.~7! depends on all details of th
Fermi surface and only numerical solutions are possib
However, close to the quantum critical point the resistiv
shows scaling behavior and depends only slightly on the
ometry and the Fermi velocities along the hot lines. In t
following we will derive an approximate analytic solution o
the Boltzmann equation in this regime, the approximatio
used are exact in a well-defined limit of weak disorder, lo
temperature, weak coupling, and small magnetic fiel
which will be specified below. Some of our qualitative r
sults, especially in the absence of a magnetic field, can
derived by using a simple variational approach~Appendix A!
or even in a simple relaxation-time approximation, which w
present in Appendix B. The relaxation-time approximati
or, equivalently, the omission of vertex correction is co
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pletely wrong in certain geometries and leads to large er
especially for the Hall coefficient as explained in Appe
dix B.

At T50 the scattering is purely elastic and the quasip
ticle distribution function is given byFk

0(B)[Fk(B,T50)
with Fk

0(0)5eEvk /(gimp
2 NF). Our strategy is to keep trac

of the change ofFk close to the hot lines, where the stron
spin fluctuations tend to equilibrate the distribution functi
at the pointsk and k6Qi ~Fig. 1!. For sufficiently small
temperaturest2,x the distribution function will remain un-
disturbed in the ‘‘cold regions’’ far away from the hot line
where the inelastic scattering is of ordert2 and the elastic
scattering dominates. It is therefore convenient to write
distribution function in the following form33

Fk'~12pk!Fk
01pkFk6Qi

0 . ~9!

For strong spin scattering,pk approaches a value close
1/2 near the hot lines but vanishes further away. It is help
to use a coordinate system, where vectors on the Fermi
face k5kH1k' are split up in a vectorkH on the hot line
and a perpendicular vectork''kH ,vk . After a rescaling of
the momenta usingk5kq0At, in the limit t,Ax the Boltz-
mann equation takes the following form:

t (d21)/2E dk8~pk1pkH6Q1k821!I ~r /t1M kk8!

1AaHckH
xpk5ckH

8
b

At
~ v̂k3B̂!]k pk ~10!

with

I ~y!5E
0

`

dz z2n0~z!@11n0~z!#/~y21z2!,

k85ki81k'8 ,

M kk85k i8
21~k'8 2k'!2,

ckH
5~2p!dNFAvkH

vkH6Q/~pq0
2!,

ckH
8 5vkH

vkH6Q /vF
2 ,

and32 aH5vk1Q /vk . B̂ and v̂k are unit vectors in the direc
tion of B andvk , respectively. The strength of the magne
field is measured in units of a typical fieldB0 defined in Eqs.
~5! and~6!. One can think ofb as the typical angle by which
an electron is deflected within a typical scattering timetM

5(2p)dvF /(2gs
2q0

d21). We are only considering magnet
fields with b!x,1 ~i.e., vct!1), where Shubnikov-de
Haas oscillations are absent at low temperatures. In Eq.~10!
we have neglected subleading contributions, e.g., of the f
pk]kFk

0 , which are small in this regime becausepk varies
stronger with momentum thanFk

0 and all inelastic correc-
tions come from small areas on the Fermi surface. This is
true in the ultraclean limitx!t2, which has to be covered
separately~e.g., in Sec. III A!. For completeness we discus
some of our result ind dimensions, however, we are main
interested in three dimensions. Note that the Boltzma
rs
-

r-

e

l
ur-

m

ot

n

equation approach presumably breaks down ind52 as the
‘‘hot’’ electrons acquire a lifetime34 }AT, but it was never-
theless widely used in literature.27,36Qualitative features like
the interplay of hot and cold regions might still be correc
described by our approach even ind52.

From Eq. ~10! it is clear that only the combination
t (d21)/2/x, t/r , andb/(xAt) determinepk . Accordingly, the
resistivity obeys a scaling relation

Dr i j

rM
'td/2f i j S td21/2

x
,
r d21/2

x
,

b

xAt
D ~11!

for t!Ax!1, r !1, and sufficiently smallb, where f de-
pends smoothly on the details of the Fermi surface near
hot spots and the directions of magnetic and electric fie
rM is defined in Eq.~6!. Relation~11! becomes exact in the
scaling limit

t,x,b,r→0,
t (d21)/2

x
,
r

t
,

b

xAt
→const. ~12!

The scaling limit serves as a convenient regime for anal
calculations. An experimental verification of the predict
scaling would be the most precise test of the underly
models. We will calculate the scaling functionf in the fol-
lowing paragraphs in detail. However, for some applicatio
e.g., the Hall effect discussed in Sec. III A, the deviatio
from scaling are important and are calculated from a f
numerical solution of the Boltzmann equation~7!. A reader
interested only in the qualitative results can jump directly
Sec. IV A, where a short overview of the asymptotic beha
ior of f i i is given ~the off-diagonal componentsf iÞ j vanish
in the scaling limit, see Sec. III A where the Hall effect
discussed!.

The two-dimensional coupled integrodifferential equ
tions ~10! can be considerably simplified by realizing thatpk
varies smoothly parallel to the hot lines but the kernelI (ki8)
restricts the integrations to small values ofki8 . This allows

us to replacepkH6Q1k8[ p̃k i1k i8 ,k
'8

by p̃k i ,k
'8

in Eq. ~10!

and to perform thek i8 integration. For the same reason w
can neglect the contribution proportional to]k i

pk . All these
approximations are valid in the scaling limit~12!. It is there-
fore sufficient to solve a family of two coupled one
dimensional integral equations that depend parametrically
kH :

t (d21)/2E dk8~pk1 p̃k821!Gkk81AaHckH
xpk

5ckH
8 cosuB

b

At
]kpk , ~13!

t (d21)/2E dk8~ p̃k1pk821!Gkk81A 1

aH
ckH

xp̃k

5ckH
8 cosuB

b

At
]kp̃k,

whereuB is the angle betweenB and a vector parallel to the
hot lines atkH and
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Gk'k
'8

5E dd22kiI ~r /t1M kk8! ~14!

'5
1

2Aakk8

akk8!1

p

6akk8
3/2 akk8@1

for d53

~15!

with akk85r /t1k21k8222kk8 cosf, wherefÞ0 is the
angle betweenvkH

and vkH6Q . The equation forp̃k is ob-

tained by replacingaH by 1/aH and exchangingpk andp̃k in
Eq. ~13!. The boundary condition for Eq.~13! is pk ,p̃k→0
for k→6` by construction.

Currents are calculated from

j i5 j 0
i 12(

i
R

i

dkH

vkH
~2p!3

vkH

i

3~FkH

0 2FkH1Q
0 !q0AtE dk pk , ~16!

where

j052E E vkFkH

0 d3k/@vk~2p!3#

is the current in the absence of inelastic scattering,

R
i
dki

denotes the line integral along thei th hot line and the ex-
pression is summed over all hot linesi. Note thatpk is a
function of kH . In the scaling limitb!x, the magnetic-field
dependence ofFkH

0 }vkH
E can be neglected in the secon

term in Eq. ~16!. Using the symmetries of the Boltzman
equations one can derive the convenient expression

Dr i j

rM
'x

(
i
R

i
~dki /vkH

!Dv iDv j~q0At !E dk pk

E E ~vk
i !2~dkivk!

~17!

with Dv i5vkH

i 2vkH6Q
i .

C. Transport for BÄ0

In the absence of a magnetic field, two different regim
emerge depending on whether the elastic scattering do
nates close to the hot line.25,26 If impurity scattering domi-
nates (t,min@x,Arx#), it smears out the quasiparticle distr
bution (Dk'0 in Fig. 1!. pk in Eq. ~13! is small and in
leading order inpk one obtains
s
i-

Dr

rM
't3/2hS t

r D 3q0
3

8p4~vFNF!2 (
i
R

i
dki

@~vki
2vki6Qi

!n#2

uvki
3vki6Qi

u
,

~18!

hS t

r D5
p

2E0

`

yn0~y!@11n0~y!#ImAr

t
1 iy

'5
pz~3/2!G~5/2!

2A2
, t.r

p3

12
At/r , t,r .

~19!

In this dirty limit, we recover the well-knownT1.5 resistivity
at the QCP. This result is usually derived by an average o
the inelastic scattering rate.17 We want to stress that thi
approximation can be appliedonly in the presence of strong
impurity scattering and gives wrong results for cleaner s
tems.

To derive Eq. ~18!, we considered for simplicity,
isotropic-spin fluctuations. In the case of a moderate ani
ropy our results have to be changed slightly. For example
the anisotropy of the spin fluctuations is described
qigi j qj /q0

2, then the denominator of the integral in Eq.~18!
has to be replaced by

vkH
vkH6Q det1/2(

i j
k̂ i

agi j k̂ j
b

where thek1 is a unit vector parallel to the hot line andk2,k3

are unit vectors perpendicular tok1 and eithervkH
or vkH6Q .

The determinant is always finite because we do not cons
the casevki

ivki1Q ~‘‘ Q52kF’’ !.

In the limit Ax.t.min@x,Arx#, the resistivity riseslin-
early with temperature. The origin of this effect is that th
spin fluctuations equilibrate a region of widthDk't/Ax
~Fig. 1! as we will show in Eq.~29! ~or Appendix A!. There-
fore we obtainr;x(11t/Ax) or more precisely

Dr

rM
'tAxH q0

2Ap/3

2vF
2~2p!3NF

3/2 (
i
R

i
dki

3F @~vki
2vki6Qi

!n#2

uvki
3vki6Qi

u

vki6Qi

5/4

vki

3/4
S

vki6Qi
/vki

uv̂ki6Qi
v̂ki

uG J ,

where the only slightly varying function

Sa
a5E

2`

`

dk pk~a,a!'p

is calculated from the solution of the two coupled on
dimensional integral equations@see Eq.~29!#
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pq1E dq8
~pq1 p̃q821!~12a2!

~q2/a1q82a22qq8a!3/2
50,

p̃q1E dq8
~ p̃q1pq821!~12a2!

~q2a1q82/a22qq8a!3/2
50, ~20!

which in the limit a→61 are solved bypq51/@(11a)
1q2/2Aa# ~see Fig. 8!.

Omitting all prefactors we obtain in the scaling regimer
!1,t,Ax:

Dr

rM
'td/2f S td21/2

x
,
r d21/2

x D ~21!

;H td/2, r ,t,x2/d21

t2/52dx42d/52d, max@x2/d21,Axr52d/4#,t,Ax

t2/r 22(d/2), t,min@r ,Axr52d/4#,

where for completeness we have given the result in arbit
dimensionsd ~see Appendix A for a simple derivation o
these results!. A summary of the scaling behavior ind53 is
shown in Fig. 2. It is worthwhile to point out, that even aw
from the QCP, forr .0, there is a large regime with a NF
resistivity ~Figs. 3 and 4!. To actually observe theT2 term
one has to consider very low temperaturest,Arx. This has
to be compared to thermodynamic quantities, where

FIG. 2. In the scaling limitt,x,r→0, t/x,r /x→const the resis-
tivity is ‘‘universal’’ Dr/rM5t3/2f (t/x,r /x) for t,Ax,r ,1, where
t}T, x}r0, andr}p2pc measure the temperature, the amount
disorder, and the distance from the QCP. The plot shows the q
tative behavior of the scaling functionf @a,b# in the various re-
gimes. For min@x,Arx,t,Ax# the resistivity rises linearly with
temperature. Thermodynamic quantities show a crossover to Fe
liquid behavior at the scalet5r ~straight line!, while in transport a
T2 behavior is recovered at a much smaller scale min@x,Arx#. The
dashed line serves as a reminder that at lowest temperatures, e
that are not included in our approach become important, e.g., in
ference effects of disorder and interactions~Ref. 37! or a disorder
induced change of the spin-fluctuation spectrum~Ref. 24!.
ry

e

crossover to Fermi-liquid behavior is expected at a hig
scalet;r . In a very clean system these scales can be q
different and anomalous transport should be observed in
gimes where thermodynamic quantities display typi
Fermi-liquid properties.

For higher temperaturest.Ax, larger resistivitiesDr
@r0 or further away from the QCPr;1, the resistivity is
much less universal and one has to rely on numerical s
tions of the Boltzmann equation. In the ultraclean limitx

f
li-

i-

cts
r-

FIG. 3. Effective exponent, defined as the logarithmic derivat
of Dr(T), for a fixed distance from the QCPr 50.01 and various
values of disorder. In high-purity samples, the crossover to an
ponent 2 can be seen only at lowest temperaturet!min@x,Arx,r #
@Eq. ~18!#. The bump at higher temperatures is a precursor of
effect that in ultraclean samples,x!t2!1, we expectDr;t2 @Eq.
~22!#. In the scaling limit~12! the resistivity is linear in the inter-
mediate regimeArx,t,Ax @Eq. ~20!#. For the chosen parameter
this exponent 1 cannot be identified, however, a pronounced reg
with an effective exponent less than 1.5 is seen. The inset illustr
the problem to extract the exponent~Refs. 6 and 8! from the loga-
rithmic derivative ofDr5r2r0 if r0 is not known. Forr 50.02
and x50.01 the logarithmic derivative ofr2(12e)r0 for e52
210% ~dashed lines! is compared to the ‘‘true’’ exponent fore
50 ~solid line!.

FIG. 4. Effective exponent, defined as the logarithmic derivat
of Dr(T), for a relatively clean sample withx50.01 and various
values ofr}p2pc . The resistivity is calculated from a numerica
solution of the Boltzmann equation for model A defined in Appe
dix D. The inset showsr(t) for r 50,0.1,1.
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,t2!1, the distribution functionFk is suppressed in a larg
region around the hot lines27 @Dk'O(kF) in Fig. 1#. There-
fore only nonsingular scattering dominates the resistivity a
we obtain

r

rM
't2 ~22!

with a prefactor, which to leading order is independent of
distance from the QCPr but depends on all details of th
Fermi surface and of the interactionsfar from the hot lines.
Hlubina and Rice27 were the first to discuss this regim
where quantum-critical effects cannot be seen in the tra
port because the long-living quasiparticles in the ‘‘cold
gions’’ short circuit all contributions from the hot lines. Ou
numerical solutions, however, suggest that this regime is
perimentally not accessible. Figure 5 shows the logarith
derivative of Dr, which defines an effective expone
a, Dr}Ta. Even for an extremely clean system with a r
sidual resistivity ratio~RRR'1/x) of the order of 104, there
is never an extended range of temperatures where this e
tive exponent is close to 2. On the other hand, we see th
moderately clean systems withx,0.1 there is always a re
gime where the effective exponent is smaller than 1.5. S
ficiently clean systems clearly show the linear resistivity p
dicted by Eq.~20! over a large range.

The full scaling function forr 50 and the deviations from
scaling are shown in Fig. 11.

III. MAGNETOTRANSPORT

The characteristic feature of the spin-density wave s
nario is, that only the quasiparticles close to ‘‘hot lines’’ a
strongly affected by the spin fluctuations. This has to
contrasted with a situation where the Kondo effect is
stroyed close to the QCP, which would affect the full Fer
surface. It is therefore important to have a probe for test
the presence of sharp structures on the Fermi surface.

FIG. 5. Effective exponent of the resistivity at the QCPr
50), defined as the logarithmic derivative ofDr(T). At very low
temperatures, the ‘‘dirty-limit’’ exponent 3/2 is recovered. How
ever, in the experimentally accessible low-temperature regi
smaller exponents are to be expected for a rather clean systex
,0.1).
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The ~nonlinear! magnetoresistivity can be used to inves
gate precisely this question. By a magnetic field, the qu
particles are driven parallel to the Fermi surface by the fo
vk3B. Generally, nonlinear effects in the magnetotransp
show up if the quasiparticles are able to circle the Fe
surface without being scattered, i.e., forvct*1, wherevc is
the cyclotron frequency. However, if there is a small regi
of width Dk on the Fermi surface where the scattering
relatively strong~or weak35! then nonlinear effects will be-
come important for vct*Dk/kF . Close to the AFM
quantum-critical point the width of hot linesDk vanishes in
the low-temperature limit and the quasiparticles can
driven by a moderate magnetic field over the hot lines. T
will lead to large effects in the magnetotransport. The m
netotransport in nearly antiferromagnetictwo dimensional
metals has been studied before36,38 in detail in the context of
high-temperature superconductors. However, the authors
not focus on the role of weak disorder, which we find at le
in three dimensions to be essential to describe the l
temperature of the magnetotransport, both quantitatively
qualitatively.

A. Hall effect

The Hall effect is extremely sensitive to small amounts
disorder (x,t2) but essentially constant fort!Ax.

This can be seen most easily from the symmetry prop
ties of the Boltzmann equation~13! in the scaling limit. The
left-hand side of Eq.~13! is even ink, while the right-hand
side is odd and linear in the magnetic field. Therefore

E
2`

`

pk

is evenin B and there is no contribution to the Hall effe
from the hot lines in the scaling limit~12! where Eqs.~13!
and~17! are valid. This does not imply that the Hall effect
unaffected by the singular scattering close to the QCP. I
on the contrary an extremely sensitive probe to very sm

FIG. 6. Hall effect for modelA, calculated from a numerica
solution of 7. Extremely small amounts of disorder strongly infl
ence the Hall effect. Very clean samples are necessary to obs
this effect. Both the sign and the size of the effect depend on de
of the band structure.

e,
(
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amounts of impurity scattering. The Hall constant atT50 is
different in the ultraclean and the dirty limit,RH(t→0,x
!t2)5” RH(t→0,x5const). In the former limit, the elasti
impurity scattering dominates; in the latter the magnetic s
tering. The quasiparticle distributionFk has a completely
different momentum dependence in these two limits. O
consequence is that a different average over the effec
masses enter the Hall constant. Small amounts of diso
x;t2 change the distributionFk completely and give rise to
the strong features in the Hall effect shown in Fig. 6. T
calculation is based on a numerical solution of the full Bol
mann equations~7! for small magnetic fields. Even disorde
at the level of, e.g.,x51024, leads to a strong structure i
the Hall effect at quite high temperatures. Extremely cle
samples are necessary to observe the strong temperatur
pendence ofRH . Both the sign and the size of these effec
are nonuniversal and depend on the details of the band s
ture.

B. Magnetoresistivity: Small fields

While all corrections to the Hall effect cancel in the sc
ing limit ~12!, the magnetoresistivity is strongly influence
by the hot lines and can be used to investigate the quan
critical properties in more detail.
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We first discuss the dirty limitx.t (d53). pk is small
in this case allowing an expansion of Eq.~13! in pk . In
order b2, the distribution function changes byDpk

'@b cosQBckH
8 /(xAtckH

AaH)#2]k
2pk

0 wherepk
0 is the distri-

bution function forb50. The resistivity~17! is proportional
to *pk , but *Dpk vanishes obviously. Therefore it is usef
to integrate Eq.~13!:

E
2`

`

dk pk5
t

xAaHckH

E E
2`

`

dk dk8 Gkk8~12pk2 p̃k8!.

~23!

We calculate the leading correction to*pk from the right-
hand side of Eq. ~23!, using that pk

0

't/(xAaHckH
)*Gkk8 dk8:

DE pk'
11aH

3

aH
S b cosQBckH

8

xAtckH

D 2

E dk~]kpk
0!2 ~24!

and obtain forr ,t,min@x,Arx#,b!xAr :
Dr

rM
'b2

t4

x3r 5/2H p7q0
9/~12vF

4 !

@NF~2p!3#5 (
i
R

i
dkiF vki

3 1vki6Qi

3

vki

4 vki6Qi

4

@~vki
2vki6Qi

!n#2@~vki
3vki6Qi

!B̂#2

uvki
3vki6Qi

u G J , ~25!
cal
-

of
to

n

-

whereB̂ is a unit vector in the direction of the magnetic fiel
It is surprising that the leading low-temperature correction
this Fermi-liquid regimet!r is not proportional toT2 but
starts withT4. This is due to the above-mentioned cancel
tions and is actually valid only fort.rAx as shown below.

There are a number of other contributions to the mag
toresistivity that vanish in the scaling limit but might b
dominating in the experimentally relevant regime. One i
portant correction is due to the suppression of the AFM
magnetic fields; we will discuss these effects in detail in S
IV C. Before analyzing the magnetoresistivity it is useful
subtract theB dependence of the residual resistivityDr0
;b2/x, which is the largest correction to our results. The
fore we use in this section the definition

Dr5@r~b,t !2r~0,t !#2@r~b,0!2r~0,0!#. ~26!

Other subleading contributions become important for hig
magnetic fields or in the case of Eq.~25! for low tempera-
tures. They are missing in Eq.~10! because we neglecte
terms of the form]k(FkH

0 2FkH6Q
0 ). We estimate these cor

rections in the regimevct!1 andDr,r0 using Kohler’s
n

-

-

-
n
c.

-

r

rule @r(T,B)2r(0,B)}B2Dr(T,0)/r(0,0)2#. In the regime
discussed in Eq.~25!, they are of the order ofDr
}b2t2/(Arx2) and therefore Eq.~25! is valid only for t
.t* 5rAx. In the scaling limit~12!, t* vanishes.

The behavior in the disorder dominated quantum-criti
regime t,x, r !t is more complicated. For small mo
menta, Gkk8 is approximated by Gkk8
'1/(2Ar /t1k21k8222kk8 cosf), where f is the angle
betweenvkH

andvkH1Q . In leading order int/x for b50 and

k,1, Eq. ~7! is solved by

pk
0;t/xE Gkk8 dk8;t/~2x!ln@1/~r /t1k2!#, ~27!

where the prefactors andf dependence in the argument
the log have been omitted. The approximations leading
Eq. ~27! are valid forpk

0!1, therefore they break down in a
exponentially small regimer /t1k2&ce2x/(2t), wherec is a
constant of order 1.

With all prefactors, which are calculated using Eq.~24!,
for e2x/(2t)!r ,t,x, the inelastic contribution to the mag
netoresistivity is given by
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Dr

rM
'b2

t2

x3Ar H 3p5q0
9/~2vF

4 !

@NF~2p!3#5 (
i
R

i
dkiF vki

3 1vki6Qi

3

vki

4 vki6Qi

4

@~vki
2vki6Qi

!n#2@~vki
3vki6Qi

!B̂#2

uvki
3vki6Qi

u G J , ~28!
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where the geometrical factors are accidentally exactly
same as in Eq.~25!. It is quite surprising, that even in th
limit r !t the quadratic magnetoresistivity diverges prop
tional to 1/Ar . What happens if a system is directly at th
QCP, i.e., in the caser 50? In the scaling limit~12!, the
cutoff r /t in Eq. ~27! is replaced bye2x/(2t) and the magne-
toresistivity is proportional tob2t1.5ex/(4t)/x3. This exponen-
tially large correction is probably not experimentally obse
able. Either higher-order effects in the magnetic field w
become relevant~to be discussed in the next section! or one
has to take into account the temperature dependencer.
The low-temperature correction16 Dr'c8t3/2 can formally be
neglected in the scaling limit and usually leads only to sm
subleading corrections of the order ofDr /t'c8At both in
transport and thermodynamic quantities. The prefactorc8 is
proportional to the spin-spin interactionU ~1!. The magne-
toresistivity at the QCP in the dirty limit is a remarkab
exception of this rule: forr !t!x and c8At.e2x/(2t) the
temperature dependence ofr determines theB2 correction to
the resistivity and we expectDr;b2t1.25/(Ac8x3) @Eq. ~28!#
~see Fig. 7!. An experimental confirmation of this predictio
would be an interesting way to investigate the tempera
dependence of 1/j2, a quantity that can otherwise be me
sured only by high-precision inelastic neutron scattering.

The solution of the Boltzmann equation~13! in the regime
max@x,Arx#!t,Ax is dominated by large momentak,k8
@max@1,Ar /t#. We therefore use the asymptotic form
Gkk8 @Eq. ~15!# and rescale the argument ofpk by k

FIG. 7. Log-log plot of the temperature dependence of the m
netoresistivityDr/b22DrK /b2 at the QCP in a small magneti
field b for modelA, calculated from a numerical solution of Eq.~7!.
The ‘‘Kohler’s rule’’ contribution DrK5Dr(t50,b)@r(t50,b
50)/r(t,b50)# has been subtracted. In the dirty limit,t,x, one
can indentify the correction ~28! with Dr;b2t2/(x3Ar )
;b2t5/4/x3, r't3/2 at the QCP. The magnetoresistivity in th
clean regimex,t,Ax is much larger withDr;b2/(Axt) @see Eq.
~30!#. In the ultraclean limit,x,t2, we obtainDr;1/t2 and to
leading order no effects of the QCP can be seen.
e

-

-
l

ll

re

5qApt/(6xckH
sin2 f)/AaH and the argument ofp̃k8 by

k85q8Apt/(6xckH
sin2 f)AaH.

pq1E dq8~pq1 p̃q821!sin2 f

~q2/aH1q82aH22qq8 cosf!3/2
5

bc̃kH

tAx
]qpq ,

p̃q1E dq8~ p̃q1pq821!sin2 f

~q2aH1q82/aH22qq8 cosf!3/2
5

bc̃kH

tAx
]qp̃q

~29!

with c̃kH
5ckH

8 usinfuA6 cosQB /ApckH
. For small magnetic

fields,pq decays on the scale 1~bothaH andf are finite for
a generic Fermi surface!. This justifies our approximation to
expand Gkk8 for large momenta in the regimeAt/x
.max@Ar /t,1#, i.e., for t.max@Arx,x#. In the original units
the width ofpk is approximatelyDk'q0t/Ax and by scaling
we obtain thelinear resistivity shown in Eq.~20!.

While the kernel of Eq.~29! is highly singular, the solu-
tion of the integral equation forb50 is nevertheless very
smooth: for large momentapq decays proportional to 1/q2

and is finite and smooth forq→0 with p01 p̃051 to cancel
the divergence of the kernel~see Fig. 8!. The perturbation
theory inb/(Axt) is analytic and well defined@all eigenval-
ues of the matrixd(q2q8)(11*Gqq8 dq8)1Gqq8 are larger
than 1# and we obtain forb,Axt, Ax.t.max@Arx,x#:

Dr

rM
;

b2

Axt
. ~30!

-

FIG. 8. Shape ofpq in the regimeb50, max@Axr,x#,t
,Ax for various values of aH5vk6Q /vk and cosf
5vk6Q•vk /(vk6Qvk). The integral S5*pq'p depends very
weakly on the parameters.pq with k}qt/Ax describes how strong
spin fluctuations equilibrate the distribution functionFk @Eq. ~9!#
andFk6Q in a region of widtht/Ax around a hot line.
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Although it is difficult to calculate the precise prefactor an
lytically, its structure is similar to the prefactor in Eq.~25!.
In Fig. 7 the numerical solution of the Boltzmann equati
shows the crossover from the dirty limit~28! to the clean
limit ~30!. In the ultraclean limitx!t2, the distribution func-
tion varies on the scalekF and Kohler’s rule is valid in
leading order and therefore we expectDr;b2/t2.

C. Magnetoresistivity: Large fields

The diverging prefactors of theB2 corrections already
indicate that any finite magnetic field will strongly influenc
the resistivity when the hot lines get sharper and sha
while B drives the quasiparticles over the Fermi surface.

For large fields, the main effect of theb]kpk term in the
Boltzmann equation~13! is to keep]kpk small. Due to the
boundary conditionspk→6`→0 and due to the fact that th
kernel Gkk8 decays for large momenta, the amplitude ofpk
decreases for large magnetic fields andpk is broadened. This
corresponds to the fact that magnetic field drives the qu
particles over the Fermi surface hence smoothing the qu
particle distribution. In a strong enough magnetic field,
can therefore use perturbation theory inpk and only the first
term on the right-hand side of Eq.~23! survives. In the scal-
ing regime, the resistivity saturates in a large~orbital! mag-
netic field at a value that is precisely given by the dirty-lim
formula ~18!. In this respect, a magnetic field and disord
have very similar effects, both smooth out the quasipart
distribution.

As the amplitude ofpk decreases for largeb, the main
effect of a large magnetic field in the dirty limitt
,max@x,Arx# is to suppresssubleadingcorrections to the
conductivity. The maximal change of*pk is calculated from
Eq. ~23!,

DE pk~b→`!'
t

xAaHckH

E E
2`

`

dk dk8 Gkk8~pk
01 p̃k8

0
!

5~11aH!E
2`

`

dk~pk
0!2, ~31!

wherepk
05t/(xAaHckH

)*Gkk8dk8 is the distribution func-

tion in the dirty limit in leading order int/x.
The effect of an intermediate field can be calculated

solving the Boltzmann equation in a finite field in perturb
tion theory in t/x by neglecting again theGkk8(pk1 p̃k8)
terms:

pk'E
k

`

dk8 pk8
0 e2(k82k)/kb

kb
~32!

with kb5b/(xAt)@ckH
8 /(AaHckH

)#. The main effect of the

magnetic field is to smear the distribution function on t
scalekb .

In the Fermi-liquid regimet,min@r,Arx# the scale of the
distribution functionpk

0;(t/x)/(r /t1k2) is given byAr /t,
accordingly the small-field formula~25! can be applied for
kb,Ar /t or b,Arx. As discussed above, the large magne
field Dr defined in Eq.~26! saturates at
-

er

i-
si-

r
le

y
-

c

Dr~b.Arx,t !

rM
;

t4

xr3/2
~33!

and the weak-field expansion~25! connects smoothly to this
regime. As above, we can estimate the range of validity
Eq. ~33! by comparing it to neglected corrections of the ord
of Dr;b2Dr(0,t)/r0

2;b2t2/(Arx2). Therefore Eq.~33! is
valid for b,tAx/r , t,min@x,Arx#.

The dirty quantum-critical regimer ,t,x has a richer
structure, as there are two scales in the distribution func
pk

0 , Eq. ~27!: 1 and max@Ar /t,e2x/(2t)#. For 1.kb

.max@Ar /t,e2x/(4t)# the magnetic field, or more precisel
kb

2 , takes the role ofr /t in Eq. ~28! and provides a cutoff to
the logarithmic divergence ofpk

0, Eq. ~27!. We therefore
expect forr ,t,x, max@xAte2x/(2t),Arx#,b,xAt:

Dr~b,t !

rM
;b

t2

x2
~34!

and the magnetoresistivity will saturate forb.xAt at

Dr~b,t !

rM
;

t5/2

x
. ~35!

This has to be compared to the largest subleading correc
of the formb2t1.5/x2 ~estimated from Kohler’s rule!. There-
fore Eq.~35! is valid for b,Atx.

All the above discussed effects in the dirty limit are ve
small on an absolute scale because the disorder has alr
smeared out most of the features of the distribution funct
and can only be observed because it is easy to measur
differencer(T,B)2r(T) with high precision. Much stron-
ger effects are to be expected in the cleaner reg
max@x,Arx#,t,Ax, where the zero-field resistivity is linea
in temperature.

For b,Axt, the effect of the magnetic field can be treat
in perturbation theory and Eq.~30! is valid. To analyze the
regimeAxt,b it is useful to rescale the momenta in Eq.~29!

using q52bc̃kH
/(tAx)kAaH so that the Boltzmann equa

tion reads

AaHpk1
t2x

b2c̃kH

2 E dk8~pk1 p̃k821!sin2 f

~k21k8222kk8 cosf!3/2
52]kpk .

~36!

The corresponding equation forp̃k8 is obtained by replacing
aH by 1/aH . The kernel of the integral equation is strong
divergent*Gkk8dk8}1/k2. The contribution from the inte-
gral is, however, small for large magnetic fields and su
ciently large momentak.k0 ~a precise estimate is give
below! and Eq.~36! is solved bypk:05c6e2kAaH. For k
,0 the prefactorc2 has to vanish due to the boundary co
dition puku→`50. For k→0 the divergence of the kerne
dominates the integral equation and forces the solution
take the formpk→01 p̃k8→051. For aH51 one therefore
expects32 pk→05 p̃k8→051/2. Generally,pk→0 is a number
close to 0.5 depending slightly onaH , f, andb. For a large
magnetic field, the rise ofpk close tok50 is independent of
aH and pk→0(b@Axt)5 p̃k→0(b@Axt)51/2. The prefactor
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of the exponential decayc1 for k.k0 is therefore 1/2
and *pkdk51/(2AaH) or, after rescaling, *pk dk
5b/(xAt)ucosQBu@ckH

8 /(2aHckH
)#. In this regime Axt,b

,min@t3/2,t2/Ar #, max@x,Arx#,t,Ax, the rise of the resis-
tivity r2r0 is linear in uBu and independentof temperature
and disorder~the precise range of validity is calculated b
low!.

r~b,t !2r0~b!

rM
'bH 3pq0

3/2

vF
4@~2p!3NF#2 (

i
R

i
dki

3F @~vki
2vki6Qi

!n#2u~vki
3vki6Qi

!B̂u

uvki
3vki6Qi

u G J .

~37!

For higher magnetic fields the formula given above w
break down, because Eq.~29! is valid only for large mo-
mentak.max@1,Ar /t# or, equivalently, Eq.~36! is valid for
k.max@xAt/b,Arx/b#. To estimate the range of validity o
Eq. ~37!, we solve Eq.~36! more precisely fork,0 in a
regime, wherepk is still small:

pk'
t2x

b2c̃kH

2 E
2`

k

dk8 e(k82k)Aa
2

k2
'

t2x

b2c̃kH

2

2

k
. ~38!

pk is large fork&k0't2x/b2 and Eq.~37! is therefore valid
for k0.max@Atx/b,Arx/b# or b,min@t3/2,t2/Ar #. For larger
values ofb the kernel is less singular andpk stays small for
all momenta. Accordingly, the resistivity is dominated by t
first term on the right-hand side of Eq.~23! and the magne-
toresistivity saturates at a value, which is given by the dir
limit formula ~18!:

r~b,t !2r0~b!

rM
't3/2hS t

r D 3q0
3

8p4~vFNF!2

3(
i
R

i
dki

@~vki
2vki6Qi

!n#2

uvki
3vki6Qi

u
~39!

hS t

r D'5
pz~3/2!G~5/2!

2A2
, t.r

p3

12
At/r , t,r .

This expression is valid for min@t3/2,t2/Ar #,b
,min@t1/4x3/4,Atx3/4/r 1/4#, where the upper limit estimate
the regime where nonuniversal contributions followi
Kohler’s rule dominate. In Fig. 9 the temperature dep
dence of the large-field magnetoresistivity is shown sc
matically.

IV. DISCUSSION

A. Overview over magnetoresistivity

Before we discuss the experimental relevance of our
culations in detail, we collect the results for the magneto
l

-

-
-

l-
-

sistivity in the scaling limit ~12!. Most of the prefactors,
which are omitted here, can be found in the previous s
tions. Onlyorbital effects of the magnetic field are taken in
account, a discussion of the interplay of spin and orb
effects is given in Sec. IV C.t andb defined in Eq.~5! are the
dimensionless temperature and magnetic field, respectiv
x is proportional to the strength of disorder and can crud
be identified with the inverse of the residual resistivity ra
and r measures the distance from the QCP.

In the disorder dominated regime the absolute size of
fects of an orbital magnetic field are quite small. Close to
QCP, forr !t,x, the prefactor of theb2 term is, however,
extremely large and for very small magnetic fields a cro
over to a linear field dependence of the magnetoresistivit
predicted. ForDr5r(b,t)2r(b,0) we obtain

Dr

rM
;t3/22

t5/2

x
15

b2t2

x2gx,r ,t

, b,gx,r ,t

b
t2

x2
, gx,r ,t,b,xAt

t5/2

x
, xAt,b,Atx

~40!

with gx,r ,t'max@xAr ,xAte2x/(4t)#. For very smallgx,r ,t this
expression can be used to measure the temperature de
dence of the correlation lengthj using r}1/j2.

In the disorder-dominated Fermi-liquid regimet
,min@r,Arx#,1, the temperature dependent part of t
magnetoresistivity is still enhanced, but it is probably ve
difficult to extract thet4 contribution experimentally.

FIG. 9. Schematic plot of the temperature dependence of
resistivity. In an ultraclean system, the resistivity would rise p
portional tot2 ~thin-dotted line!. In a system with a small amountx
of disorder the resistivity at the QCP~thick-solid line! at zero mag-
netic field rises witht3/2 at very low temperaturest,x, but shows a
linear behaviorDr;Axt for x,t,Ax. If the system is tuned to the
quantum-critical point in a finite field, a behavior similar to th
dot-dashed line is expected:Dr}t3/2 should be observed over
larger ranget,b2/3. In an intermediate regimeb2/3,t,b/Ax the
resistivity depends weakly on temperature~the thin-dashed line cor-
responds toDr}t3/2). Note that a different behavior is expected if
finite magnetic field is applied to a compound that is quantum c
cal for b50 asb drives the system away from the QCP.
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FIG. 10. Resistivity as a function ofT1.2 in CePd2Si2 taken from~Ref. 5! ~left figure! compared to our calculation within modelA defined
in Appendix D for x50.01 ~right figure!. The insets show the corresponding logarithmic derivative ofr(T)2r(0). If one compares the
insets, one has to take into account that the low-temperature behavior of the logarithmic derivative ofDr strongly depends on the exac
determination ofr0 ~see inset of Fig. 4!. Below '400 mK, CePd2Si2 is superconducting~lower inset!. Note the offset of the lineT50 in
both plots.
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t4
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15

b2t4

x3r 5/2
, b,Arx, t.rAx

t4

xr3/2
, Arx,b,tAx

r
.

~41!

The largest effects can be observed for rather clean
tems with max@x,Arx#,t,Ax, which show a linear resistiv
ity for b50:

Dr

rM
;

¦

Axt1
b2

Axt
, b,Axt

b, Axt,b,minF t3/2,
t2

Ar
G

minF t3/2,
t2

Ar
G , minF t3/2,

t2

Ar
G

,b,x3/4minF t1/4,
At

r 1/4G .

~42!

B. Experimental situation for BÄ0

According to our calculation, ind53, spin-fluctuation
theory predicts that the resistivity in dirty systems rises w
T3/2, while in cleaner compounds a large regime with a line
resistivity is expected. This behavior is actually seen in
large number, but not all, AFM quantum-critical systems.
resistivity proportional to T1.5 has been reported in
CeCu2Si2,7 CeNiGa2,9 CeCu62xAgx ,10 CeNi2Ge2,8

CePd2Si2 , CeIn3,5 or CeCu5Au.11 All these systems are dirty
in the following sense: in the regime, where the exponent
has been observed, the rise of the resistivityDr is small
compared to the residual resistivity.

For a small number of the above-mentioned compoun
cleaner samples exist. For these high-purity single crys
the resistivity seems to rise with an exponent smaller t
s-

r
a

.5

s,
ls,
n

1.5. The cleaner the samples are, the closer the exponent
1. This qualitative trend coincides with the predictions of o
calculations ~Fig. 5!. Examples for this are CePd2Si2 ,
CeNi2Ge2

6,5,8 where samples with RRR of the order of 10
exist. In clean samples of CeIn3, exponents smaller than 1.
are observed over some temperature range, but at lo
temperatures the exponent crosses over to 1.5, as exp
from theory. In Fig. 10 the resistivity of a quite clean samp
of CePd2Si2

5 is compared to a typical solution of the Boltz
mann equation. It is important to point out, that not only
similar effective exponent shows up in both theory and
periment, but that it is observed over a similar range 0.1r0

,Dr(T),10r0. Only the effective scaleG/q0
2 seems to be

approximately a factor 10 too large compared toTK /kF
2 , but

a quantitative comparison of these high-energy scales is
tainly very dubious within our perturbative treatment of
strongly correlated system. Furthermore, a quantitative c

FIG. 11. Scaling plot off (t/x,0)5Dr(t/x)/t3/2 at the QCP (r
50) using a numerical solution of the Boltzmann equations
various amounts of disorderx. The straight-solid lines show the
limiting casesDr}t3/2 for t!x andDr}t for x!t!Ax. Deviations
from scaling are large fort/x.1/Ax.
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parison would require a more realistic model based on so
knowledge of the band structure and the actual width of
spin fluctuation.

The theory, presented in this paper, is certainly not ap
cable to strongly disordered systems, where the nature o
quantum-critical transition is changed due to disorder. It d
not explain the linear temperature dependence of the re
tivity in CeCu62xAux due to two reasons. The first is, th
CeCu62xAux is relatively dirty at the QCP (x50.1). More
important is the unusual nature of the spin fluctuatio
which are strongly anisotropic,39 and show an unusual fre
quency dependence.18

The most precise test of the spin-fluctuation model wo
be to verify ~or falsify! our scaling prediction~11! by com-
paring several very clean quantum-critical samples w
varying residual resistivity ratios. An example for the e
pected deviations from scaling is shown in Fig. 11.

A somewhat unexpected result of our calculation is tha
clean systems away from the QCP, a Fermi-liquid form
the resistivity can be observed only at very low temperatu
t,Arx. This has to be compared to thermodynamic qua
ties, where FL behavior sets in at a considerably higher s
t,r . In a clean system with a RRR over 100, the crosso
scale in transport quantities can easily be, e.g., a factor
lower than in thermodynamic quantities. This might expla
claims based on transport measurements that the non-Fe
liquid behavior in these clean systems extends over a fi
region away from the QCP.6,8

C. Spin and orbital effects ofB

A magnetic field influences the resistivity near a quantu
critical point in two quite independent ways: by spin a
orbital effects. The spin contribution typically suppresses
antiferromagnetic order. In the context of this paper, we w
call these phenomena ‘‘spin effects’’ despite the fact, tha
most cases orbital degrees of freedom are involved. On
nonmagnetic side of the phase diagram and forB fields,
which are not too large, the leading order spin effects
supposedly be described by the magnetic-field dependen
r, the variable that describes the distance to the QCP.
small fields, one expects in an AFM metal above the up
critical dimensionDr}B2. A controlled study of the effects
of a finite magnetic field close to the AFM QCP in a me
does not exist to our knowledge, however, Ioffe and Millis40

have carefully investigated the uniform susceptibility wit
out finding unexpected anomalies. A large magnetic field
induce other~first-order! transitions or change the nature
the magnetic fluctuations completely.

The focus of this paper is ‘‘orbital effects.’’ We conside
a regime where interference effects do not play any role
have restricted our attention to the classicalv3B force on
the electrons. This approximation is valid in the scaling lim
~12!, wherevct!1 and the disorder is so weak that wea
localization corrections set in at much lower temperature37

In the scaling limit~12!, i.e., for clean enough systems
very low temperatures in small magnetic fields close to
QCP, spin effects can be neglected. Forb}x3/2 the correction
Dr}b2 is small compared tox for sufficiently smallx. In
realistic heavy Fermion systems, it is, however, probably
possible to produce a sample that is clean enough so
e
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only orbital effects show up in the interesting regime. T
reason is that on the one hand the Lorentz forcev3B is
suppressed due to the large massm* of the heavy quasipar
ticles and on the other hand spin effects are enhanced du
the large susceptibilityx'1/TK}m* /m0.

A reliable estimate of these effects is difficult as the d
tails of the interplay of the Kondo effect and the RKK
interaction are poorly understood.41 For a crude estimate, we
assume that all high-energy scales, including scattering r
and renormalized coupling constants, can be approxima
by TK . Orbital effects are important forb.x3/2 or mBB
.x3/2kBTKm* /m0 and spin effects can be neglected forDr
,x or mBB,AxkBTKAm0 /m* . If this is qualitatively cor-
rect, only an extremely clean sample withx,(m0 /m* )3/2,
i.e., with a RRR larger than (m* /m0)3/2, shows orbital ef-
fects without the influence of spin effects. This implies th
spin effects are present in most cases, becausem* /m0 is
quite large in those clean stoichiometric systems where
quantum-critical point is reached by pressure.

Nevertheless, the orbital effects have a very clear sig
ture even in the presence of large spin effects, especiall
suitably designed experiments. The necessary magn
fields are not very large. In our units, Shubnikov-de Ha
oscillations are expected forb.x at low temperatures while
strong effects in the magnetoresistivity in clean samples
in for b.x3/2, i.e., for magnetic fields that can easily be
order of magnitude smaller.

The Hall constant is obviously not influenced by O(B2)
corrections due to the suppression of the AFM and soRH is
not affected by the above-mentioned problems. Therefor
should be very interesting to investigate the strong sam
dependence of the Hall effect predicted in Sec. III A. Unfo
tunately, only extremely clean samples will show a stro
temperature dependence~see Fig. 6!.42

For a detailed study of the magnetoresistivity in cle
systems, it is necessary to minimize spin effects. In a sys
like CePd2Si2, the effective distance from the QCP can
tuned by pressure. Therefore, one can select various p
sures on the antiferromagnetic side of the phase diag
close to the QCP and suppress the remaining magnetic o
by a suitable magnetic field. For such a setup the spin eff
are compensated by a change of pressure to a large e
especially in systems with Ising symmetry. For not t
strong fields the field-tuned quantum-critical transiti
should stay second order and one can compare sev
quantum-critical systems (r 50) with the same amount o
disorderx but different magnetic fields. Our calculation pr
dicts, that in a magnetic fieldb.x3/2, the low-temperature
resistivity rises proportional tot1.5. A schematic plot of the
expected behavior is shown in Fig. 9. Ideally, one can t
the scaling predictions by comparing samples of differ
quality. In an anisotropic system one should choose a di
tion of the magnetic field perpendicular to the easy axis a
to one of the ordering vectorsQ, because only the compo
nent of B parallel to the hot lines enters the scaling for
of the resistivity. @This effect is described by the
(vki

3vki6Qi
)B̂ factors in our results, e.g., in Eq.~37!.#

A simple way to distinguish spin and orbit effect is th
sign of the magnetoresistivity. A suppression of the AF
fluctuations on the paramagnetic side of the phase diag
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will reduce the amount of scattering and the resistivity w
go down. Due to the orbital effects discussed in the previ
section the resistivityincreasesbecauseb smears out the
quasiparticle distribution, therefore minimizing the effe
that cold regions short circuit the hot spots. This can lead
a sign change of Dr5@r(B,T)2r(0,T)#2@r(B,0)
2r(0,0)# either as a function of disorder or strength of t
magnetic field. Such an observation could help to sepa
the two effects quantitatively.

The interplay of the spin and orbit effects can also lead
less trivial effects. In the dirty limit close to the QCP, e.g
the magnetoresistivity for small magnetic fields~28! is pro-
portional to 1/Ar , Dr;b2t2/(x3Ar ). If spin effects sup-
press the AFM fluctuations withr'cb2, one can expect a
regime where the magnetoresistivity riseslinearly with B for
rather small fields@cb2,r (b50,t)#, Dr}bt2/(Acx3). It
is probably not very easy to distinguish this effect from t
linear b dependence due to orbital effects discussed in
~34! with Dr;bt2/x2 for b.xAr (b50).

In high purity single crystals of CeNi2Ge2, Groscheet al.8

have reported measurements of the resistivity in magn
fields of a few Tesla. As explained above, a direct comp
son of their findings with our calculations is difficult due
the interplay of orbital and spin effects. However, an imp
tant qualitative trend of their results can easily be explain
by our approach. In finite magnetic field, they observe a c
T2 dependence below a temperatureT* (B). Obviously, the
magnetic field drives the system away from the quantu
critical point. Remarkably, it seems that the magnetic field
much more effective in this respect than pressure, which
suppresses the magnetic order. For samples tuned by
sure towards the paramagnetic side of the phase diagra
clear T2 rise of the resistivity could not be observed. Th
qualitative effect can be understood within our approach
the case of pressure tuning, we expect Fermi liquid in a v
clean sample only for very low temperaturest,Arx. In a
sufficiently strong magnetic field, the crossover toT2 should
be visible at a much higher temperaturet,r 1/4Ab in agree-
ment with the experimental trends. If we assume thatr}b2

and use the above discussed crude estimates of the pr
tors, we expect the crossover temperatureT* to riselinear in
B with kBT* 'mBB(m0 /m* )1/4. I want to emphasize tha
this estimate is unreliable and should be replaced by a s
able strong-coupling theory of heavy-Fermion systems. N
ertheless, the experimental results8 seem to be consisten
with this simple-minded estimate of scales.

V. CONCLUSION

In all situations where two scattering mechanisms co
pete, one anisotropic and affecting only parts of the Fe
surface, the other isotropic, the transport is quite subtle
the interplay of the two mechanisms,A and B, can lead to
qualitatively new effects. The reason for this is very simp
the effectiveness of scattering mechanismA in the presence
of a current is strongly influenced by the momentum dep
dence of the out-of-equilibrium distribution of the quasipa
ticles, which is affected by mechanismB. Therefore, we ex-
pect thatrABÞrA1rB even in the weak-coupling limit of a
semiclassical theory described by a Boltzmann equationrX
is the resistivity in the presence of scattering mechanismX).
l
s

t
to

te

o
,

q.

ic
i-

-
d
r

-
s
so
es-
, a

n
ry

ac-

it-
v-

-
i
d

:

-
-

In this paper we have analyzed such a situation in de
Near the AFM quantum-critical point of slightly disordere
metals, weak isotropic impurity scattering competes with
strongly anisotropic scattering from spin fluctuations, whi
is most effective along ‘‘hot’’ lines on the Fermi surfac
The observation that even in relatively clean single crys
the effective resistivity exponenta, Dr}Ta, depends on
the amount of disorder in the system,5,6,8 is an important
indication that the interplay of scattering mechanisms is
evant in these systems. Our results forB50 explain the ex-
perimental trends:Dr}T1.5 for dirty systems andDr}T in
high-purity samples. A precise test of the spin-fluctuati
picture that underlies our calculation would be to check o
scaling predictions using a comparison of several high-pu
samples with different residual resistivitiesr0 directly at the
QCP: Dr'T1/5f (T/r0) with f (y→0)5const andf (y→`)
}1/Ay.

We furthermore propose to use orbital effects in a la
magnetic field to study anisotropic scattering mechanism
detail. Interesting nonlinear effects are expected if the m
netic field is strong enough to push quasiparticles within
scattering timetk over any sharp structure with widthDk on
the Fermi surface, i.e., fore(v3B)tk.Dk. In the limit of
very small but finite disorder, we were able to calculate
nonlinear magnetoresistivity analytically in all relevant lim
its. The main effect of a magnetic field is that sharp featu
in the quasiparticle distribution are smeared out. In this
spect both an increase of disorder and magnetic fields lea
similar effects. In sufficiently strong magnetic fields, w
therefore expect aT1.5 rise of the resistivity at the QCP an
a T2 law on the Fermi liquid side of the phase diagram ev
in samples where the resistivity is close to linear in the
sence of the magnetic field. Precise scaling predictions
be used to check this mechanism experimentally.

We hope that the results of this paper establish a se
predictions that can be used to investigate mainly one qu
tion: Can the non-Fermi-liquid behavior in clean systems
explained by a nearly antiferromagnetic Fermi liquid? At t
moment this question is still open. Our interpretation of t
data, e.g., of CePd2Si2 favors a SDW interpretation. Cer
tainly it is necessary to look also at other quantities. F
example in CePd2Si2 the Neél temperature seems to rise lin
early with p2pc , while in spin-fluctuation theory an expo
nent 2/3 is expected.

It is important to stress that at least in some systems c
to an AFM QCP a description within the three-dimension
SDW scenario seems to be impossible. The best-studied
ample for this is CeCu5.9Au0.1

3 where the spin-fluctuations
spectrum shows both an anomalous momentum39 and
energy18 dependence. The linear temperature dependenc
the resistivity in CeCu5.9Au0.1 has a different origin than the
one discussed in this paper. As the residual resistivity is r
tively high, the resistivity should rise withT1.5 within the 3D
models discussed in this paper~a linear resistivity could re-
sult from 2D critical fluctuations coupled to 3D electrons39!.
Interestingly, an exponent 1.5 has been reported for
quantum critical resistivity of CeCu62xAgx

10 and pressure
tuned CeCu5Au,11 which might indicate that small change
can induce a more conventional SDW transition in this co
pound. CeCu5.9Au0.1 is by now the most likely and best
studied candidate18–20 for a truly unconventional QCP
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(YbRh2Si2
12 and U0.2Y0.8Pd2Al3

13 have very similar thermo-
dynamic and transport properties!. The reported scaling o
the susceptibility in CeCu5.9Au0.1

18 seems to contradict an
simple SDW models.39 An interesting question is whethe
the rather strong disorder is responsible for the anoma
behavior or whether a pure interaction effect destroys
Fermi liquid close to the QCP.
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APPENDIX A: APPROXIMATE VARIATIONAL
SOLUTION OF THE BOLTZMANN EQUATIONS

In the absence of the magnetic field the Boltzmann eq
tion is equivalent to the following variational problem,43,27

which allows to calculate the qualitative behavior of the
sistivity in a very simple and efficient way. Following Hlu
bina and Rice,27 we define a functionalr of Fk :

r@Fk#5
\

4e2

R R ~dk dk8/vkvk8!Fkk8~Fk2Fk8!
2

S R ~dk/vk!~vkn!FkD 2

→min. ~A1!

The physical resistivity is given by the minimum ofr@Fk#
regarded as a functional ofFk , the scattering matrixF is
defined in Eq.~8!. Instead of solving the Boltzmann equatio
exactly, we can guess the qualitative structure of the s
tion: the strong scattering will equilibrate the distributio
function in a region of widthDk around the hot lines~see
Fig. 1!. In the dirty limit, the distribution function is of the
well-known form Fk

05vKE and as a variational ansatz w
assume thatFk vanishes@or more precisely is equal to
1/2(Fk

01Fk6Q
0 )# in a region of widthDk around the hot

lines. It is easy to calculate the qualitative structure ofDr as
a function of the variational parameterDk in the regime
where the disorder dominatesDr&r0:

Dr@Dk#'xuDku1
t2

@ t1r 1~Dk!2# (42d)/2
1O~ t2!.

~A2!

The first term is due to the denominator in Eq.~A1! and
reflects the fact that the disorder favors a smooth distribu
function. The structure of the second term can easily
guessed~or calculated!. It reproduces the well-known result
e.g., of Moriya17 for Dk50, who essentially averages th
scattering ratesFkk8 over the full Fermi surface.

In the dirty limit, the first term in Eq.~A2! dominates,Dk
vanishes at the minimum and one obtains the well-know
us
e

.

r
t

a-

-

u-

n
e

Dr'
t2

~ t1r !(42d)/2
, for Dk!t1r .

In the ultraclean limit (x!t2), Dk is of orderkF and

Dr't2 for Dk'1.

For clean systems there is an interesting intermediate reg
where t1r ,(Dk)2,1, where we obtain a nontrivial resu
by minimizing Eq.~A2!:

Dr't2/52dx42d/52d with At1r ,Dk'~ t2/x!1/52d,1.

This very simple calculation reproduces the results of E
~21! qualitatively.

APPENDIX B: RELAXATION-TIME APPROXIMATIONS

Strictly speaking, a relaxation-time approximation is n
valid near a quantum critical point, where the scattering
dominated by processes involving a fixed momentum tra
fer Q. The time to equilibrate a quasiparticle distribution
the pointk on the Fermi surface will crucially depend on th
quasiparticle distribution at the pointk1Q. For example if
Q is perpendicular to the electric fieldE and some reflection
or gliding plane~and if the Fermi surface is not too compl
cated!, thenQ will connect points with the same nonequilib
rium quasiparticle distribution and the singular scatter
will not relax the nonequilibrium distribution. In such a situ
ation vertex corrections cancel the leading self-energy c
tributions and the relaxation-time approximation is co
pletely wrong ~see also Ref. 38 on the role of verte
corrections for the Hall effects!.

Nevertheless, the relaxation-time analysis gives qual
tively the correct resistivity for generic situations, where t
Q vectors are not perpendicular toE as can be verified by
comparison with the full solution of the Boltzmann equatio
discussed in the main text. The relaxation-time approxim
tion can have much larger errors for the Hall effect beca
the distribution functionFk perpendicular to the current i
often dominated by quasiparticles that are scattered into
region by spin fluctuations with momentumQi ~in the geom-
etry show in Fig. 1 this effect is absent!.

In second-order perturbation theory the lifetime of t
electron atT50 is given by27

1

tk
52gS

2/G(
k8

E
0

ek
dv Im xk2k8~v!d@v2~ek2ek8!#,

~B1!

wherex is given by Eq.~2! with vq5(q6Qi)
2/q0

2. Splitting
the integration overk8 in a surface integral over the Ferm
surface and an energy integral perpendicular to it

E d3k85E E dk8/vFE dek8 ,

wherevF(k8) is the Fermi velocity, performing first theek8
and then thev integration we obtain

1

tk
'

gS
2

vF~2p!3E E dk8 lnF ~ek /G!21~r 1vk2k8!
2

~r 1vk2k8!
2 G

~B2!
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'
gS

2q0
2

vF~2p!2

ek

G
minF ek

2Gdk
2
,1G , dk

25r 1~dk/q0!2,

~B3!

wheredk is the distance ofk1Q from the Fermi surface
i.e., essentially the distance ofk from lines on the Fermi
surface, whereek5ek6Qi

5m. Along these ‘‘hot lines’’ the
inelastic scattering is strongest.

The scattering rate depends crucially on the distance f
the hot linesdk5dk/kF'dk/q0. Far from the hot lines or a
lowest energies for a system not directly at the quantum c
cal point, we recover the usual 1/tk}ek

2 . Directly at the QCP
and fordk50, the scattering rate is linear in the quasipa
cle energy. At finite temperatures, a typical quasiparticle
the energyT and for qualitative estimates we use the a
proximation

1

tk
s
'

1

tM
H t2/~r 1t ! for dk,Ar 1t

t2/~dk!2 for dk.Ar 1t
, ~B4!

wheretM is a typical scattering rate at the temperatureG and
t5T/G the dimensionless temperature. Forr !1 the scatter-
ing is highly anisotropic and strongest in a region of wid
dk'Ar 1t. In the presence of weak disorder, the elas
scattering due to impurities has to be added

1

tk
5

1

tel
1

1

tk
s
'x

1

tM
1

1

tk
s
, ~B5!

where we measure the relative strength of impurity scatte
by the dimensionless quantityx'tM /tel'1/RRR, which is
defined in Eq.~5!.

The conductivity in relaxation-time approximation is pr
portional to the average oftk over the Fermi surface~assum-
ing that the Fermi velocity does not vary too strongly!. By
integrating Eq.~B4! overdk, we therefore obtain an estima
for the conductivity. The conductivitys in units of the con-
ductivity sM51/rM is approximately given by

s~T!

sM
'^tk&/tM

5K S tM

tel
1

tM

tk
s D 21L ~B6!

'E
0

Ar 1t
ddk

1

x1t2/~r 1t !
1E

Ar 1t

1

ddk
1

x1t2/~dk!2

5
1

x F12
t2/Ar 1t

x1t2/~r 1t !
2

t

Ax
S arctan

Ax

t

2arctan
AxAr 1t

t D G . ~B7!

In the ultraclean limit,x!t2,1, the main contribution
arises from regions far from the hot line or largedk. The
conductivity diverges with 1/T2 with a prefactor of order 1:
m

i-

-
s

-

c

g

r~Gt !'t2 for
1

tel
!minF 1

tk
sG or x!t2 ~B8!

as has been pointed out by Hlubina and Rice.27 In the dirty
limit, x@t2/(r 1t), the elastic scattering dominates and o
can expand Eqs.~B6! or ~B7! in the inelastic-scattering rates

Dr~T!

rM
'tMK 1

tk
sL '2

t2

Ar 1t

for
1

tel
@maxF 1

tk
sG or t!max@Arx,x# ~B9!

and we recover the well knowndr}T3/2 near the quantum-
critical point.

In the relaxation-time approximation we obtain similar
our results for the Boltzmann equation a pronounced in
mediate regime, where min@1/tk

s#&1/tel&max@1/tk
s#. This

corresponds to the regime where the first arctan in Eq.~B7!
is p/2, while the second is small, i.e., max@Arx,x#,t,Ax.
The rise of the resistivity inlinear in temperature in this
regime is:

Dr~T!

rM
't

p

2
Ax for max@Arx,x#,t,Ax.

APPENDIX C: NUMERICAL METHODS FOR SOLVING
THE BOLTZMANN EQUATION

The Boltzmann equations were solved by direct mat
inversion. The Hall effect and theB2 magnetoresistivity
were calculated in perturbation theory inB. To keep the size
of the matrices small it is important to use all the symmetr
of the problem and to choose a suitable discretization of
Fermi surface. At low temperatures the distribution functi
Fk changes very rapidly perpendicular to the hot line
Therefore we define the distribution function on polygo
shaped patches on the Fermi surface, which are relati
long parallel to the hot linesDki!kF but short in the per-
pendicular direction close to the hot linesDk
!kF min@At,t/Ax#. Because the kernel of the integral equ
tion is strongly peaked it is essential to calculate a sm
number of matrix elementsMi j 5**patchidk**patchjdk8Gkk8
numerically if they involve a momentum transfersk2k8
close toQi . To speed up the calculations one can appro
mateI @y#'p2(2p1y)/@y(4p216py13y2)# which is as-
ymptotically exact in next-to-leading order for large an
small arguments; errors are smaller than 1.5%@The previ-
ously used27,25 approximationI @y#'p2/y(3y12p) is also
sufficient to reproduce next to all of our results with esse
tially neglegible error, one exception is the temperature
pendence of the Hall effect in the ultraclean limit, where
wrongly predictsRH;c16c2T instead of the correctRH
;c16c2T3/2.# We used Fermi surfaces with cubic symm
try. As the largest irreducible representation of the 4
dimensional cubic group is only three dimensional, it w
possible to reduce the size of the matrices by the huge fa
16316 using the full symmetry of the scattering matrix. W
didn’t try to solve the Boltzmann equations numerically in
finite magnetic field, which would break the cubic symmet
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but used perturbation theory inB to calculate the figures o
this paper.

It is essential to use a proper discretization of t
magnetic-field term that conserves

E E
S
@B•~vk3“kFk!#~d2k/vk!

5E E
S
~d2k3“kFk!•B5 R

]S
Fk~B•dk! ~C1!

for an arbitrary partS of the Fermi surface. Otherwise th
discretization leads to large errors. To determine the a
agedv3B contribution for a single patch, Eq.~C1! is applied
for a single patch.Fk on the edges of the patchi is deter-
mined by a linear interpolation:

@B•~vk3“kFk!#~d2k/vk!'(
j

~B•Dk j
i !~F̄ki , j ,2

1F̄ki , j ,2
!/2

whereDk j
i 5k i , j ,22k i , j ,1 describes thej th edge with corners

k i , j ,2 and k i , j ,1 . The vectorsDk j
i point counterclockwise

around patchi with

(
j

Dk j
i 50.

The value ofF̄k at the cornersk i , j ,n (n51,2) is determined
by a simple average over the value ofF on each neighboring
patch. The details of these averaging procedures are no
important as long as Eq.~C1! is not violated.
.
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APPENDIX D: MODELS USED FOR THE NUMERICAL
CALCULATION

For our numerical calculations we use three differe
models. ModelA is based on a spherical Fermi surface~see
Fig. 1! and the ordering wave vector isQ5(0,0,
62kF cosQH with QH5p/6. The precise value ofuH are
not very important as long as one stays away fromuH50
~‘‘2 kF’’ ordering! or uH5p/2 ~ferromagnetic ordering!
where our approach breaks down;16 in our numerical calcu-
lations we useuH5p/6. The dispersionvq in Eq. ~2! is
given by (q2Q)2/q0

2.
Model B describes a cubic system with commensur

spin waves with ordering vectorsQ5(61,61,61) and

vq531 (
i 5x,y,z

cospqi .

The bandstructure was chosen to be featureless but it
cludes terms that mix the various directions and it is char
terized by 8 nonintersecting ‘‘hot lines’’:

ek5t (
x,y,z

cospki1t8 (
x,y,z

cos 2pki1t9~cospkx cospky

1cospkx cospkz1cospky cospkz!2m

with t520.2, t850.05, t9520.045, andm520.0225.
We have compared model B to model C, where the ord

ing vector is parallel to the principal axes:Qi
5(61,0,0),(0,61,0),(0,0,61) using also a different band
structure. All results are very similar compared to those
modelB and are therefore not shown in this paper.
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