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We present a recently developed approach to calculate electron-hole excitations and the optical spectra of
condensed matter from first principles. The key concept is to describe the excitations of the electronic system
by the corresponding one- and two-particle Green’s function. The method combines three computational
techniques. First, the electronic ground state is treated within density-functional theory. Second, the single-
particle spectrum of the electrons and holes is obtained withinGithé approximation to the electron self-
energy operator. Finally, the electron-hole interaction is calculated and a Bethe-Salpeter equation is solved,
yielding the coupled electron-hole excitations. The resulting solutions allow the calculation of the entire optical
spectrum. This holds both for bound excitonic states below the band gap, as well as for the resonant spectrum
above the band gap. We discuss a number of technical developments needed for the application of the method
to real systems. To illustrate the approach, we discuss the excitations and optical spectra of spatially isolated
systemgatoms, molecules, and semiconductor clugtensl of extended, periodic crystdfemiconductors and
insulators.

I. INTRODUCTION It has long been known that the investigation of optical
electron-hole excitations requires an effective two-body ap-
Optical spectra provide extremely useful ways to investi-proach going beyond the single-particle picture of individual
gate condensed-matter systems. Absorption, reflectivityguasielectron and quasihole excitati§snd that the corre-
photoluminescence, and other optical techniques are consponding spectra can be drastically influenced by the
monly used to characterize materials. In addition, optical exelectron-hole interactiotf. A rigorous approach to optical
citations provide the basis for a vast range of technical apspectra is given by evaluating the two-body Green’s function
plications, including light-emitting devices, laser technology,G, (on the basis of the one-body Green'’s funct®n which
and photovoltaics. In this context, it is of great importance tomay be described by the GWAStarting from the QP elec-
be able to describe accurately such excitations by highly retron and hole states o6, and their QP energies, the
liable and efficieniab initio approaches. electron-hole interaction, which results from the self-energy
For more than two decadeap initio techniques have operator, have to be calculated. Thereafter, the equation of
been used to investigate many properties of materialanotion for G, (known as the Bethe-Salpeter equajlios
Density-functional theory(DFT) has proven to be a very solved, yielding the coupled, correlated electron-hole excita-
powerful tool for electronic ground-state properties. For thetion state$-° Together with the corresponding optical tran-
single-particle spectrum of electrons and holes, one-bodgition matrix elements that result as coherent superpositions
Green’'s function approaches based on th8W  from those of free electron-hole pairs, the entire linear opti-
approximatioh? (GWA) for the electron self-energy have cal spectrum of a material can be evaluated. The realization
turned out to be highly successfuf Very accurate quasi- of this approach, however, has long been limited to rather
particle (QP) properties have been obtained by this methodsimple situations or to simplifying model approximations
with remaining uncertainties in the order of 0.1 eV, thusdue to the complicated two-particle nature of the problem.
making the GWA a standard tool in predicting the electron Only recently, the development of efficient computational
quasiparticle spectra of moderately correlated materials itechniqgues has made it possible to investigate the optical
various situationd=’ However, neither the standard DFT nor spectra of real materials from first principles. The method we
GWA allows for a correct evaluation afptical spectra or present here is an approach that allows not onlyathénitio
other charge-neutral excitations. The optical spectrum calcuzalculation of the optical spectrum, but also of the effective
lated within the independent-quasiparticle picture oftenelectron-hole wave functions for both bound and unbound
shows significant deviations from experimdsee the dis- excitonic states. It has been applied successfully to investi-
cussion in Sec. IV B The energetic position of characteris- gate the optical spectrum of semiconductor clusters, of bulk
tic peaks can be wrong, and the amplitudes of the peaks casystals, of one-dimensional polymers, and of the semicon-
deviate from experiment by a factor of 2 or more. The mostucting S{111)-(2x 1) surface'! There have also been sev-
striking failure of the independent-particle spectrum is that iteral other works in the literature on tlad initio calculation
does not describe bound exciton states, which are dominawf optical spectra using different numerical techniques and
in systems of reduced dimensions. approximations. Onidat al!? as well as Albrechiet al!®
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addressed the spectrum of a small Na cluster, of the insulat@ystem should have an energy dgifihe ground state can be

Li,O, and the semiconductors Si and diamond. Benedictlescribed, for instance, by density-functional the(@FT)

et al1* calculated the optical absorption spectrum of a largewithin the local-density approximatioii.DA ). Details of the

number of insulators and semiconductors. van der Horsmethod can be found elsewhérén our actual calculations

et al’® studied the spectrum of the polymer polythiophene.of the examples described, we employ norm-conseraing

In all cases, the inclusion of the electron-hole interactioninitio  pseudopotentiald and Gaussian-orbital —basis

(i.e., excitonic effectsturns out to be crucial for arriving at a functions® We take the atomic structure as fixed and ignore

comprehensive understanding of the optical spectra and tooupling of the optical excitations to the atomic geometry.

obtain results in agreement with experimental data. Related effects such as spectral broadening, vibrational and
The main focus of our present paper is to discuss in detailotational side bands, polaronic effects, self-trapping of ex-

the techniques that we used in Ref. 11 for the calculation o€itons, and finite lifetimes of excitations are not considered

the optical spectra of various materials. We demonstrate howhroughout the paper.

the electron-hole interaction is calculated and the resulting

excitonic effects are incorporated. An important issue is that B. Quasiparticle excitations

the underlying concepts can equally well be used to investi- .

gate veryydif?erent r‘r?aterials, ?ike imall localized systems Based or? the gr_ound-state configuration0), the one-

(atoms, clusters, and moleculeextended systemsuch as °0dy Green’s function

polymers, surfaces, and crystaésd any system in between, . "

thus covering the entire range from the atomic length scale to G1(1.2=—N.OT((1)¢"(2)IN.0) @

macroscopic materials. To illustrate this point, we discussiescribes particlelike excitation processes in which an elec-

results for two extreme situations: for single atoms and smaliron is removed from the systenN(N-1) or added to it

molecules and clusters on the one hand, and for thregN—N+1)2 G, may be obtained from a Dyson-type equa-
dimensionally periodic crystals on the other hand. The actuaion of motion,

treatment of excitonic effects, although they are in principle

analogous for all systems, requires somewhat different tech- [Ho+2(E)]G1(E)=EG,(E). 2

nigues for the different material classes. ) ) . ) o
The paper is organized as follows. In Sec. Il we give aln this equationHy=To+Vext Veou is the Hamiltonian in

short introduction to the many-body concepts on which outthe Hartree approximation. The exchange and correlation ef-
approach is based, and we outline some approximations rdects among the electrons are described py j[he electron self-
quired for the actual calculations. Section Ill addresses exci€N€rgy. opgratoer(E). We calculateX within the GW

tations in atoms, molecules, and clusters, and examines gpproximation;
number of practical issues related to the numerical evalua- .
tion of the approach for such systems. In Sec. IV some spe- 2=iGyW, )

cific problems in dealing with extended, periodic crystals arg e 5 is given as a product of the one-particle Green’s func-
investigated, and the optical spectra of semiconductors anghn G, and the screened Coulomb interacth G, andW
insulators are presented. A short summary concludes the pgre evaluated from the results of the underlying DFT-LDA
per in Sec. V. calculation of Sec. Il A, which yields wave functiopg>" ")
and energie&D"". Wis calculated within the random-phase
Il. BASIC THEORETICAL FRAMEWORK approximation(RPA) (for details, see Refs. 3}5As usual,

In this section we briefly sketch out the basic concepts of1® €guation of motion o6, is not evaluated in the general
describing excitations by Green’s functions. More compref0rm given by Eq.(2). Instead, it is transformed into the
hensive discussions on the formalism are given, for example&0Teésponding Dyson’s equation for the quasiparticles of the
by Hedin! by Hedin and Lundqvist,by Sham and Ric&py system, i.e., thélong-lived QP electron and hole states:
Strinati? by Hanke and Sharf?, and by Del Sole and
Fiorino!® ’ [Ho+ SE 08 =ERN). @

Corresponding to the general framework, our computay, practice, Eq.(4) is evaluated in the basis given by the

tional approach to realize these concepts consists of thregeT states|¢2T). Assuming that the DFT and QP wave
m )

successive stepsA) a DFT calculation for the electronic functions are the sam@vhich is often the casg the QP
ground state(B) a GW calculation to obtain the QP excita- energy of a staten is given by

tion spectrum of electrons and holes, d@ the calculation
of c_oupled electron-hole excitations and the evaluation of the E%P: ErI]DqFT+<¢m|E(ES1P)_VXC| D), (5)
optical spectrum.
where V,.(r) is the DFT exchange-correlation potential.
A. The electronic ground state [Equation(5) is equivalent to a first-order perturbation cal-

The starting point of our approach is the calculation of theculation} If the DFT and QP wave functions are not the
g poi . PP . same, the QP states can nevertheless be expanded in the DFT
ground-state configuratioN,0) of the electronic subsystem

QR _ (m)| ,DFT. .
of N electrons for a given atomic structure. In the presenlStatesJ‘”mp> Zq:ay |, ), which allows one to set up an
work we focus on closed-shell systems, i.e., the total spin of

energy-dependenQP Hamiltonian
the ground state is zefd.For simplicity, the spin-orbit in- op DET DFT DFT.
teraction is not taken into account in the discussiofthe Hon (E)=Ep" Snn (¥ |Z(E) =V, ) (6)
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From HS,':,(E), the QP states and energies can be obtained. We(X) P (X1) th, (X2) P (X5)

Band structures and electronic spectra of many systems have Lo(12,12";0)=i > w—(E.—E,)

been calculated within th&W approaci~’ In the present "e ¢

context, the QP band structure, i.e., the spectrum of indi- Uy (X)) % (X1) We(Xo) P (X5)

vidual electron and hole states, serves as a basis for the in- - o+ (E—E.) , (8
vestigation of coupled electron-hole excitations and of the ©c

optical spectrum. wherev runs over the occupied hole states andver the

Note that, in principle, the energy-dependent character ofmpty electron states. In the denominators, appropriate
the off-diagonal matrix elements &f >, (E), as well as the ~imaginary infinitesimals have to be included that are not
non-Hermitian character ofS(E), could lead to non- shown here for sake of clarity.
orthogonal QP states and thus to conceptual problems in the Assuming that the electron-hole excitations are given by
following studies of electron-hole excitations. In all caseslong-lived transitiongin an analogous way to the quasipar-
studied here, however, the non-Hermitian partofs small  ticle approximation for the single-particle problem of Sec.
for all relevant states, and the coupling among the LDAIll B), the correlation functioh of Eq.(7) can be written in a
states only involves states with energies close to each othderm similar to Eq.(8):

The violation of orthogonality is thus very small and does
not affect the following investigation of the two-particle pro-
cesses.

Xs(X1,X1) X5 (X5,X7)
w— QS

L(12,72":w)=i>,
S

_Xs(Xz,Xé)Xg(X11X1)

C. Electron-hole excitations
0)+QS

(€)
1. Electron-hole interaction and the Bethe-Salpeter equation ) .

) i i _ . Inthis expression$S denotes the correlated electron-hole ex-
In this section, we discuss electron-hole excitationtations of the system with the corresponding excitation en-

IN,0)—[N,S) that do not change the total numberidglec- ergiesQs. The electron-hole amplitudes have the structure
trons. A rigorous approach to them is given by investigating

the two-particle Green'’s function and solving its equation of xs(x,x")=—(N,0| wT(x’)z//(x)IN,S>. (10

motion, which is known as the Bethe-Salpeter equation

(BSE). For a more detailed discussion of the formalism we |n the actual evaluation of the BSE, we transform all

refer to the work by Strinatisee Ref. § Here we restrict quantities from the continuous position variables into the ba-

ourselves to a brief introduction and rather focus on the acsis given by the single-particle wave functions of the electron

tual realization of the approach within ab initio frame-  and hole states, which can be understood as a second quan-

work. tization procedure. The electron-hole amplitudes can thus be
Following Strinati} we investigate the Bethe-Salpeter expressed in the form

equation in the form

occ empty
XsOGX) =20 20 ASe () i (X') + Bogth, (0 (X).
L(12;1’2’)=L0(12;1’2’)+f d(3456L((14;1'3) vt (11)
X K(35:46L(62;52). 7) Note that in Eq.(11) one of the sums only runs over occu-

pied states ) and the other one over empty stateg.(

L(12;1'2") denotes the electron-hole correlation functionAmong the product statesy, no combinations of two occu-
and K(35;46) the electron-hole interaction kerrigke be- pied or two empty states occur. This results from the specific
low). Lo(12:1'2')=G4(1,2)G4(2,1') corresponds to free oM (8) of Lo and of the BSH?).

electron-hole pairs with the interactidt switched off. The _ With the help of Eqs(8), (9), and(11), the BSE(7) turns

set of variableg1) comprises position, spin, and time coor- INt0 @ generalized eigenvalue problem
dinates: (1¥(X;,t1)=(r1,04,t1). L depends on four time

variables, related_tp two creation processgekectron and _ (EC_EU)A;':»CJFE K?cAv'c'(Qs)Af'c'
hole) and two annihilation processes. In the context of opti- v'c! '

cal excitations, we restrict ourselvesdgimultaneougreation

and simultaneous annihilation, so only two of the four time +> Kchu'c' Qs)Bf,C,:QSAEC’
variables are independehDue to time homogeneity in the v'c! ‘

absence of external fields, only the difference of these two

time variables is finally relevant for E¢7) and is used to BA S s

carry out a one-dimensional time-energy Fourier transform 2 Ko (Q9)A) i +(Ec—E)B

into L(12;1'2";w) where (1), (2) etc., now contain only ve

position and spin degrees of freedom. All further discussion BB S s

will take place in this energy space. +UEC Kicwe (9B =—0sB. (12

Assuming that the one-body Green’s functi@n is fully
given by the electron and hole quasiparticles of the systenifhe matrix elements of the electron-hole interaction kekhel
L, can be written as are given hy
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AA ) . The termK*, which results from the Coulomb potential in
KUC,UrC/(Qs)ZIJ d(3456) i, (X4) P (X3)K (35,4611 s) Eq. (17), is usually called th@xchange termvhile the term
K9, which results from the screened-exchange self-energy in
X w;‘,(xs)wc,(x(a), (13 Eq. (17), has the form of airect interaction term. We will
keep to this conventional terminology throughout the paper.
AB ) . The direct interaction terr9(35;46) is responsible for the
Kuc,u'c'(ﬂs):'f d(3456) ¢, (X4) g (X3)K(35,4641s) attractive nature of the electron-hole interaction and the for-
mation of bound electron-hole staté®., exciton$. The ex-
X l/I:,(X6)(//C/(X5), (14)  change interaction ter{*(35;46), on the other hand, con-
o ) BA BB trols details of the excitation spectrum, such as the splitting
and similar expressions fa¢"" andK*". between spin-singlet and spin-triplet excitations, or the

~ The above equatiofi2) has a block-matrix structure. The ransverse-longitudinal splitting of the excitons in zinc-
diagonal blocks are given by the energy differencés ( pjende-structured semiconductors. Note tK&¢35;46) in-

i i i A BB
—E,) and the interaction matrix elements* andBK » volves the screened Coulomb interactidtwhile KX(35;46)
respectively. The off-diagonal blocks are given K$® and contains the bare Coulomb interaction

KBA. For the systems studied here, however, the off-diagonal The matrix elements of the interaction are given by
blocks are found tgobe small and have nearly no effect on the

excitation energieS. We have calculated the excitation en- AAd r

ergies of the Silj molecule with and without the off- {velK™ Q9o e)

diagonal blocks and found that the excitation energies agree

with each other to within 0.03 eVsee Sec. Il ¢ Albrecht :f dx dx’ ¥ (X) her (X) g, (X)o7, (X)

et al*® have carefully investigated the influence of the off- ’

diagonal blocks on the optical spectrum of bulk Si and found i o

nearly no effect for the absorption spectrufSome other ><2—J dw e "% W(r,r',w)

optical properties, however, like the macroscopic dielectric &
constant, may be slightly influenced t§/? and KB4 (see
Ref. 13.] Therefore we seK”B=KBA=0, which decouples
Eq. (12) into two equations foA>, andBS, separately, and
both equations yield exactly the same excitatiowih the

1
X
Qs—0— (ES-EP)+i0*

only difference that for the solutions fd the excitation 1 20
energies have negative sjgrnrhe positive solutions result + 0P _LOP .+
from the eigenvalue problem Qsto—(BES—E; N+io
and
(EC_EU)ASC—'—E KUAévrcr(Qs)Afrcr:QsAUSC. (15
v'c’
c|KAAX|y ¢! =fdxdx’ *(X) g, (X)v(r,r’

This is equivalent to expanding the excited states in electron- (vl lore’y ¥e 004, (o(r.1")
hole pair configurations as , )

P J X s (X )P, (X). (21

hole elec hole elec
_ S Atpt _. S The matrix elements consist of six-dimensional real-space
IN.S) ; ; Auc8,DcIN.0) ; 2 Aclve), (19 integrals, involving the QP electron and hole wave functions.
R R Although the evaluation of these integrals is straightforward,
wherea! andb] create a hole or an electron, respectively, tothe details of the electronic system under investigation will
the many-body ground stat®N,0). The expansion of Eq. require specific techniques to calculate the tex2® and
(16) is also known as the Tamm-Dancoff approximattdA>  (21) (see Secs. Ill and IV

The electron-hole interaction kern&l is given by the In addition to the real-space integration, the direct inter-
functional derivative action termK9(35;46) requires a frequency integration. We
evaluate this by expanding the screened interaction in the
K(35:46 [ Veou(3)6(3.4 +X(3,4)] (17  Same plasmon-pole model which is employed in@&/ part
' 6G4(6,5 of our approactifor details, see Ref.)5which can be written

as
In order to be consistent with the QP band-structure calcula-
tion, we again employ th&W approximation for the self-

w
energy operatok . Under the additional assumption that the W(r,r',w)= >, W|(r,r’)7'
derivative of the screened interactiov with respect toG, !
can be neglectetf, one obtains 1 1
. X — = — |, (22
K(35;46 = —i45(3,4) 8(5~,6)v(3,6) w—w+i0" wt+tw-i0"
+i6(3,6)8(4,5W(3",4) (18  where w, denotes the plasmon frequency aWi(r,r’) the

spatial behavior of the plasmon moteThis allows one to
=:K*(35;46 + K4(35;46). (19 carry out the frequency integration analytically:
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(UC|KAA’d(Qs)|v'C'>=—2 fdx dX P (%) ther () g, (X ) o, (X )WA (1,1 ")

|

1 1

2

In many casege.g., in most semiconductor crystalshe

o (Vs (ET—EP) o Qs (EP_EP)|

(23

quires calculating the interaction and solving the BSE self-

excitations|S) are mainly composed from electron-hole pair consistently. We do this by an iterative procedure. In the first

configurations|vc) whose transition energiesEf"— E®F)
are close to the resulting excitation enet@y, i.e., the rel-
evant differenced)s— (EP—EQ") are much smaller than
the plasmon energies, that control the dynamics of the
screening. In such a case, H@3) can be replaced by the
simple result

(ve|KAM Yy ¢’y

=—f dx dx” ¢ (X) ther (X) ¢, (X")

XY, (X )W(r,r’",0=0), (24

which fully ignores the dynamical properties bf. In other
cases, however, the differencébs— (EQ"—E®") may be
larger (as, e.g., in atoms and molecule$his happens, e.g.,

step, we ignore the dynamics @f and employ static screen-
ing [i.e., K¢ is taken from Eq.(24)]. The BSE is solved,
yielding the excited statekS) and a first estimate of their
excitation energieﬁ(so). ThereafterK® is calculated again
[employing Q) in Eq. (23)]. The difference between the
updatedK? and the originally use&%? is taken as a pertur-
bation and treated in first order, thus updating (the com-
position of the excited statS) is not changed The proce-
dure may be repeated several times urlik reaches
convergencdtypically after 2—3 iterations

An important issue concerns the spin structure of the so-
lutions of the BSE. Depending on the strength of the spin-
orbit interaction in the system, two situations can occur: If
the spin-orbit interaction is negligiblgé.e., as compared to
the electron-hole interactignthe single-particle statesv (
andc) can be classified as spin-up state§ (@andcf) and

if the excitonic binding energies are of the same order okpin-down statesy(| andc|). (Note that for occupied states

magnitude as the characteristic plasmon frequensjes if

v, this spin corresponds to tleectronthat originally occu-

the excitations|S) are composed from free electron-hole pies the state. The spin of the correspondiage would be

transitions with very different transition energie€E’
- ESP). In such cases the simple result of EB4) may not

the negative. The Hilbert space of the electron-hole pairs
(vc) now consists of four subspaceasic?, vicl, v]cT,

hold and the electron-hole interaction has to be evaluated edv | c|. Between these subspaces, most of the matrix el-

in Eqg. (23). Note that the interaction term in ER3) de-

pends on()s. This poses a significant problem since it re-

ements of EqY20) and(21) are zero; in the notation of these
subspaces the BSE Hamiltonian obtains the form

D+ K9+ KX 0 0 K> (—vlcT)

o 0 D+K¢ 0 0 (—vlcl)
H™= 0 0 D+Kd 0 (vlcl) 3

KX 0 0 D+KI+KX/ (<vlcl)

with D;(EC—EU). This Hamiltonian decouples into a spin-
triplet class of solutiongconsisting of the subspacesc|,
vict, and (142)(vTct+vlcl)], for which the Hamil-

states. In the electron-hole excitations, singlet and triplet
configurations are mixed and the BSE Hamiltonian must be
discussed including its full spin structutsee, for example,
our results for GaAs in Ref. 11 Since this increases the
number of basis states by a factor of 4, the evaluation of the

tonian become® +K¢, and a spin-singlet class of solutions BSE becomes more difficult. More complex spin structures

[consisting of the subspace (®)(vicl—vlcl)], for
which the Hamiltonian becomds+ K%+ 2K*. The BSE can

are also found for open-shell systems that do not have a
spin-singlet ground state.

thus be solved for singlet and triplet configurations sepa-

rately. The spin degrees of freedom have been completely

eliminated from the remaining problem.

2. Optical spectrum

The most important measurable quantity we address in

If the spin-orbit interaction is of the same order of mag-this paper is the interaction of an external light field with
nitude as the electron-hole interaction or larger, the singleexcitations in the system. This is described by the macro-
particle states cannot be classified as spin-up and spin-dovwgtopic transverse dielectric functios{w) of the system,
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which corresponds to the current-current correlationpresent case of nonlocal pseudopotentials, this no longer

function?® We calculate its imaginary pagb(w) as holds and the commutatp¥(r),r] has to be accounted for:
16me? .. (v]v|c)=(v|p+i[Vpsrllc). (29
e2(w)=—— > [N-(0p|S)]?8(w—Qg),  (26) _ » _
o) S Another problem arises from the QP corrections due to the

oL self-energy operator, which is nonlocal as well, so it does not

where A =A/|A| is the polarization vector of the light and commute with the position operator, either. Even if the QP
v=i/k[H,r] is the single-particle velocity operatowhich  shifts are the same for all empty states, the self-energy op-
corresponds to the current operator erator is nonlocal due to the different spatial properties of

The careful calculation of the optical transition matrix el- Wave functions at different wave vectors. As was discussed
by Levine and Allarf* the QP shift between the LDA and

P transition energy of an electron-hole paic) leads to a
renormalization of the optical transition matrix element:

ements(0|v|S) is crucial. Without the electron-hole interac-
tion, the excitations are given by vertical transitions betwee
independent hole and electron states, and(#8).reduces to

the well-known expression ESP— £QP
- h -
Ec - Eu

16me?

€X(w)= EC IN-(v]v|c)|?8(w— (E.—E,)),

w? The effect of this renormalization is that, taking into account
(270 the division byw? in Eq.(26), the weight of a transitiofvc)

. . in €, is not changed when the transition is shifted to higher
wherev (c) denotes valencéconduction states. One main energies by the QP correction.

effect of the electron-hole interaction is the coupling of dif- |, crystals, an alternative approach, which accounts for
ferent electron-hole configuratiofisc) in the excitationsS)  poth the nonlocal pseudopotential and the QP renormaliza-
[see Eq.(16)]. Concomitantly, the optical transition matrix tjon effects automatically, is to calculate the optical transi-
elements are given by tion matix elements bk-p perturbation theory. This leads
immediately to

hole elec
(Ov]s)=2 2 ASvlv[c), (28) or ES—EX o
v <Uk|va|Ck> = q j p(x)e ' a‘pc,k+qea(x)dxa
i.e., by a coherent sum of the transition matrix elements of (31

the contributing electron-hole pair configurations, including

the coupling coefficients’.. In this context, thephasesof To this end, the wave functions at the shifted wave vectors
the single-particle statas andc and of the coefficientss‘,\fC k+gqe, (e=x,y,z) have to be calculated explicitly.

are extremely important to correctly describe the interference angther issue in the discussion of the dielectric function
effects in the matrix elements. It is therefore crucial that all.gncerns the block-matrix structure of the BSE, as discussed
phases are treated consistently in the wave functions, in thg Eq. (12). It has been shown by Albrecket al®® that the
electron-hole interaction, and in the coupling CoemCientSnondiagonal block”B and KB have nearly no effect on
(see also the discussion in Sec)IV _ the e,( ) spectrum of semiconductors. In addition, we have
In the calculation ok(w), local fields, i.e., response fields {o,nq that the nondiagonal blocks have nearly no effect on
of the crystal that tend to screen the electric field, play anne excitation energies of small atomic clusters, eitisee
important role. They can cause a significant reduction of thegg. || O. Since in the present paper we are mainly inter-
dielectric function. Within the independent-particle picture, ogteqd in absorption spectra, we set these blocks to zero and
local fields are often included by calculating the entire di'only work in the subspace of positive excitation energies.
electric matrix eg /(@) (with G denoting the reciprocal-  Alprecht et al’® have found, however, that the blocks do
lattice vectory and evaluating the macroscopic dielectric change the macroscopic dielectric constaytiw=0) by up
function from the head of the inverse matrig, ¢, (@). I to 4% for Si. For a highly accurate calculation ef(w

the present context, however, this procedure is not necessant.0), it may thus be necessary to include the off-diagonal
It has been shown by Del Sole and Fioriebal. that the  plocks.

dielectric function as given by E@26) already includes the
local-field effects due to the exchange term of the electron-

with g being a small but finite shift t& in reciprocal space.

. . . ; . D. Basis sets
hole interaction(for details, see Ref. 16i.e., EqQ.(26) is ) ) _
fully sufficient and the entire dielectric matrixg /() For the real-space representation of the single-particle
needs not to be computed. wave functionsy(r) (within DFT, GWA, and BSEand of

the two-point functiong(r,r’), W(r,r"), etc.(for the GWA
deserves particular attention when pseudopotentials are us .d BSE' basis sets are requw_ed. The bases for t_he wave
unctions and for two-point functions can be chosen indepen-

Thte ctgrlrgnt olpera}tor IS %lven aﬁ'g#’r]'tlf tthel crystalt dently. The most common representation is a plane-wave
pq entiat 1s ?‘_ ocal operatar, 1.€., 1t the poten '9 COMMUESexpansion of all functiond? Different from this, real-space
with the position operatoff V(r),r]=0), the velocity opera-  representations are used by Beneéical. for the BSEX* by

tor can be replaced by the momentum opergiorin the  Rojaset al. and Riegeeet al. for the GWAZ® and by van der

The calculation of the transition matrix elemefitgv|c)
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Horst et al. for the BSE® In addition, Aryasetiawan and  Following Onidaet al,'? we employ a natural way to
Gunnarsson employ linear combination of muffin-tin orbital overcome these problems: we truncate the Coulomb interac-
(LMTO) bases for the DFT and the corresponding production v(r,r')=e?/|r—r’| in real space at a radiug,, i.e.,
basis for the GWA. v(r,r') is replaced by v (r,r')=(e*|r—r'[)O(r.—|r

In the current work, we employ basis sets of localized—r’|). The truncation radius, has to be chosen properly. In
Gaussian orbitals centered at the atomic positions for botbrder to eliminate interaction between systems in neighbor-
the wave functions and for all two-point functio®r de-  ing supercellsy, must be smaller than the supercell dimen-
tails, see Ref. b For the extended crystals, the computa-sion R minus the maximum diametet,,,, of the molecule:
tional demand is about the same for Gaussian-orbital basis.<R—d,,,.. On the other hand,. must be larger thad,,.,
sets and for plane-wave calculations. For the isolated atorrigself in order not to truncate the interaction within the sys-
and clusters, on the other hand, the use of Gaussians can fen: r .>d, ... This requires that the supercell be at least
extremely advantageous due to much smaller basis sizes. twice as large in every direction as the system its@lf:

Note that, in the BSE, the basis is only necessary for the-2d,,.. In reciprocal space the truncation of the Coulomb
evaluation of the electron-hole interaction matrix elementsinteraction simply leads tov.(q)=(4me?V)(1/g?)[1
The BSE itself is treated in the basis given by the single-— cos@ry)]. For g—0 this expression has the finite limit
particle stated(i.e., products of electron and hole states v.(0)=(4me?/
which is independent of the basis representation of the wavg) (r2/2).
functions. It is, however, also possible to address the BSE in " g k-point sampling is required for the wave functions of
a localized basis set of, e.g., atomic orbitedse the discus- finjte systems. In th&W calculation, however, the evalua-
sion by Hanke and Sham in Ref.)J@hich allows the evalu- tion of the self-energy requires a Coulomb-interaction inte-
ations of the optical spectrum but does not easily yield indi-gration, which is most conveniently carried out in reciprocal

vidual stategs). space on a grid. Depending on the required grid density, it
may be necessary to sample the Brillouin zone with more
lll. ATOMS, MOLECULES, AND CLUSTERS than just one point. However, if the Coulomb interaction is

11runcated and thus smoothed in reciprocal space, and if the

In this section, we investigate the excitation spectrum O'supercell is sufficiently large, the sampling can be restricted
small isolated systems since optical excitations of atoms P y large, piing

molecules, and clusters are of great importance in laser dég only thel” point .Of egch B””OU'F‘ Zone. The ther param-
eter of the sampling is the maximum radius in reciprocal

vices, dye chemicals, photochemical reactions, and man ace, or the corresponding cutoff energy. This is determined
other applications. Isolated systems are often described bip ’ ponding 9y-
y the degree of localization of the electron and hole states.

quantum chemistry techniques such as coupled-cliS¥y As mentioned in Sec. Il D, the matrix elements of the

or configuration-interactioCl) methods. These approaches . ; 4 . .
yield highly accurate results; however, they are difficult toelectron-hole interaction are calculated with Gaussian-orbital

apply to larger molecules due to their scaling behavior a%)ass sets both for the wave fu_nct|ons and for the two-point
O(N5~7), whereN is the number of electrons. Our present screened or unscreeneddteraction kernel. Due to the small

Green’s function approach (GWBSE) reaches a high de- number of basis functions involved, these calculations are
gree of accuracyfpgl eV) while offering a much gbetter much faster than within a plane-wave basis set. Nevertheless,

scaling[ O(N®~4)]. Alternative approaches to small systemsthe limited number of basis functions can cause slight inac-

. ; . uracies, in particular for the unscreened contribution to the
would be those based on time-dependent densny—funcnon% : R
iagonal matrix elementg(vc)=(v'c’)] of the electron-

26,27 . . . . _
theory (TDDFT). Before dlfscussmg some lllustrative re hole interaction. Since these contributions account for most
sults, some remarks on technical specifications are NECESSatt the interaction, a very accurate evaluation is required here.
This is easily achieved by a plane-wave summation in recip-
rocal space, where the Coulomb interaction is diagonal:

In the context of traditional solid-state methods, atoms,

A. Technical details

clusters, and molecules require special handling due to their , , , ,

spatial isolation. The most convenient approach is to put dx X" g (X) e(X)vc(r,r") g (X ) i (X)

them in a supercell of sufficient size, which allows one to

employ conventional techniques developed for periodic sys- _ *

tems. The dependence of the results on the supercell size, % Pec(Ge(G)py o (G), (32

however, has to be checked carefully. Particular attention has

to be paid to artificial Coulomb interactions between the obwhere p, (G) = [dx ¢ (X) ¢,(X) e~ is the spatial Fou-
jects in different supercells. Already within DFT, additional rier transform of a product of two wave functions. A similar
charges on the system or permanent dipoles can lead to lonfprmula holds for the exchange term of the electron-hole
range interactions that die off very slowly with respect to theinteraction. The large sum ov&r vectors is very demanding.
supercell size. In th&GW approximation, the situation is However, since we do this only for the bare Coulomb inter-
even worse since nonphysical dynamic dipole-dipole interacaction (which is diagonal in reciprocal spgcand only for
tions between the supercells can occur even for systentbe diagonal matrix elements &€®" [(vc)=(v'c’)], the
without permanent dipoles. Therefore the convergence ofomputational cost is affordable. All off-diagonal matrix el-
GW calculations for atoms and clusters with respect to theements oK®", as well as the contribution of the screening to
supercell size can be very sloisee, e.g., the discussion by K&"9, are calculated with the Gaussian-orbital representation
Onidaet al. in Ref. 12. of the interaction(for details, see Ref.)5

iG-r
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TABLE |. Calculated ionization energidsand first neutral ex- TABLE Il. Calculated HOMO energy% negative of the ion-
citation_ energieseV) (Eg for _singlet andE for triplet excita_tion$ ization energy, LUMO energy (; negative of the electron affin-
for various noble-gas atorrign eV), compared with experimental ) |owest excitation energie€ for singlet, E; for triplet exci-
data from Ref. 29. tations, and excitonic binding energieg€§) of SiH, (see text, all
in eV. The experimental data are from Ref. 30.

This Expt.
work (Ref. 29 LDA HF GWABSE GWABSE Expt.
He: | 24.68 24.586 (Z = Vi) diag. diag. full
Es 20.75 20.615 HOMO —8.42 -12.98 -12.69 -12.69 -12.6
Er 19.81 19.818 LUMO ~057  1.49 1.10 0.27
Ne: ' 21.47 21.564 QP gap 7.85 1447 13.79 12.96
Es 16.95 16.848
E, 16.71 16.668 Es 8.82 8.49 9.16 8.8
Ar: | 15.94 15.759 Ee.s 5.65 5.30 380
Eg 11.99 11.827 Er 7.26 7.12 8.51
E; 11.76 11.631 Eg 1 7.21 6.67 4.45
B. Noble-gas atoms LUMO state is raised by 2 eV. The HF QP gap amounts to

) . 14.5 eV. The electron-hole excitation energies, on the other
The easiest systems to study are ato@#/ calculations  ang are 8.82 eV and 7.26 eV for the lowest spin-singlet and
for atoms have already been presented by Shirley angyipjet transition, respectively, which is in the order of mag-
Martin.“® The excitation spectra of atoms can be measuregide of the LDA HOMO-LUMO gap. The excitonic bind-
with extreme accuracy, allowing for a very careful check of; 4 anergiegdefined as the difference between the excitation
the reliability of our method. As an illustration, Table | energy and the QP gapf 5.6 eV and 7.2 eV are very large
shows calculated results for the not;lgggas atoms He, Ne, andympared to crystalline systems. This is a consequence of
Ar in comparison with measured dataThe ionization po-  he gpatial confinement, which enhances the overlap between

tential | is given by the negative of the QP energy of thea electron and hole wave functions and thus the interaction
highest occupied atomic level ¢1 2p, and 3, respec- panween them.

tivelyl). Ehe excitation eQergie;s r?fer to the transitions; 1 The third column shows the corresponding results with
—’155251 (He), ...2p°—2p°3s” (Ne), and ...3 the screening included in the self-energy operator and in the
—3p“4s” (Ar), respectively. These excitations occur both asg|ectron-hole interaction. Due to the screening, the HOMO is
spin-singlet and as spin-triplet transitions. The excitation enygised by 0.3 eV and the LUMO lowered by 0.4 eV. The
ergies of the spin-singlet transitions are higher since theyycitonic binding energies are reduced by 0.3—-0.5 eV. These
include the repulsive exchange term in the electron-hole inpo(ifications are much less pronounced than in crystalline
teraction. For all ionization and excitation energies, our resemiconductors, where the screening changes the QP ener-
sults show very good agreement with the measured data. Thges py several eV. This is due to the much weaker dielectric
remaining differences are in the order of only 0.1 eV, whichgcreening in small molecules. Nevertheless, the changes
we consider the general accuracy available within the GWseyeral tenths of an e\are significant, i.e., to obtain accu-
+BSE method. rate results it is crucial to correctly include the screening
effects, as it is done by the W self-energy operator.

Note that for the second and third column, the QP states
) ) were taken to be those of the LDA wave functions and only

We takg SiH as an exgmple to carefully discuss a ngmperthe diagonal terms ofY—V,.),» were examinedcf. Eq.
of details in the calculation of molecular spectra. This dIS—(5)]_ In the small systems studied here, however, the QP
cussion applies in a very general way to many other systemgyave functions of the HOMO and LUMO states and their

We focus on the following quantities: the ionization potential gnergies must be investigated more carefully. This is shown
I, the electron affinityA, the lowest spin-singlet and -triplet

excitation energie€g and E; and the corresponding exci-

C. Molecules

tonic binding energiegi.e., the difference betweeBg (or E, (@) (b)/\ ©

Ev) and the QP garEgr=ERvo — Enomo) - The results are / S~

compiled in Table II. =Bwct - -7 X~ - ‘o T T T
The first column contains the LDA highest occupied mo- /\

lecular orbital (HOMO) and lowest unoccupied molecular HOMO

orbital (LUMO) energies(Kohn-Sham eigenvalugs The \ /\ /\

HOMO-LUMO gap amounts to 7.85 eV. The second column

contains data that have been calculated within GB6E, FIG. 1. lllustration of a typical single-particle spectrum and

but with the screening set to zer@e., W=v). This is  wave functions in atoms and molecules, as resulting from LDA and
equivalent to the Hartree-FodlkF) approximation for the GW calculations(see text (a) indicates LDA, (b) indicates first-
self-energy operator. Compared to the LDA data, the HOMQorder perturbative GWAsee Eq(5)], and(c) refers to full diago-
state is significantly loweretby more than 4 eYwhile the  nalization of theGW Hamiltonian[see Eq.(6)].
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in column 4 of Table Il and is schematically illustrated in  TABLE Ill. Excitation energies of Sili calculated with differ-
Fig. 1. Within LDA [see panela)], the LUMO energy is ent approximations to the electron-hole interactisee text
below the vacuum level£0 eV), i.e., the state is bound. Its

wave function[indicated in i [ A diag. full ful full
pane(a)] is that of a localized, _

bound state. Within GWA, however, the LUMO state ob-K"" =0 =0 =0 included
serves a strongly positive QP shift that pushes the LUMO>¢"€ening static static dyn. dyn.
stateabovethe vacuum leve[see panelb)]. For SiH,, the g 9.65 9.24 9.16 9.16
first-order perturbation evaluation of£(-V,) [Eq. (5)] g, 331 3.72 3.80 3.80
yields a QP correction of 1.7 eV, resulting in a QP LUMO g 9.25 8.64 851 8.48
energy of 1.10 eV. Being above the vacuum level, thez 3.71 4.32 4.45 4.48

LUMO state is no longer bound. Therefore its wave function BT
should be more delocalized than that of the original LDA

LUMO state. This tendency of delocalizatidishown in In Table Il the effects of various simplifications of the
panel(c)] is described by the off-diagonal matrix elements of ejectron-hole interaction kernel on the excitation energies
(X —Vyo) that control the mixing of the states when going and excitonic binding energies are discussed. In the first col-
from LDA to GWA [cf. Eq. (6)]. The LUMO state becomes ymn, only the diagonal matrix elements of the interaction
more delocalized while its energy is reduced to 0.27 eV(, =, andc=c’) are taken into account. The electron-hole
Note that in principle, if a bound empty state does not existexcitations are thus given by the free electron-hole pairs of
the lowest-energy state should have zero energy and be infine molecules, and the excitation energy is given by the QP
nitely delocalized. Due to the finite basis set in representingiap minus the expectation value of the interaction. Excitonic
the wave functions, however, an infinite delocalization of thecopling between different electron-hole pair configurations
LUMO is not possible and the energy remains positive. It isig completely neglected. In the second column this coupling
also interesting to note that the mixing of wave functionss included by taking the off-diagonal matrix elements be-
when including & —V,) only affects the empty states. The tween the electron-hole pair configurations into account.
occupied states remain nearly unchanged, i.e., the offrhis owers the excitation energies by as much as 0.7 eV for
diagonal matrix elements off(~Vy;) among the occupied the triplet state, thus demonstrating the importance of exci-
states, as well as those between occupied and empty stat@snic coupling for obtaining an accurate spectrum.

are very close to zero. This is related to the fact that the For the first and second columns of Table IIl, the
states are correctly described as bound, localized wave fungjectron-hole interaction has been calculated from static
tions already within LDA. We have found similar behavior screening. As discussed in Sec. Il C, this may not be accurate
in many molecules, i.e., the occupied wave functions ar@nough if the excitonic binding energies are comparable to
described correctly by LDA while the LUMO state(ishysi-  the characteristic plasmon frequencies of the system. The
cally incorrectly given by a bound state that is then turned dynamics of the screening can be incorporated perturba-
into an unbound, delocalized state by the self-energy operajyely. The results are displayed in the third colutarhich is

tor. Note that similar modifications could, in principle, also jgentical to the fourth column of Table)lllt turns out that

occur among the occupied states if they were incorrectly degynamic screening lowers the excitation energies by about
scribed by LDA. This could happen, e.g., in more stronglyg 1 ev.

correlated systems like transition metal oxides. Up to now, the off-diagonal block&”® and KB that
The positive energy of the LUMO statg.e., negative couple negative and positive excitation frequencies have
value of the electron affinifymeans that a negative charging peen ignored. In column 4 of Table I1l, we show the lowest-
ecule. In fact, to our knowledge, SjH ions have never been yery small differences in the order of 0.01 eV. For most
state is bound in the LDA spectrum but unbound in GWA, plprecht et al*® have found that the absorption spectrum of
occurs in many atoms and molecules. Therefore, a carefyy|k Sj is also insensitive to the off-diagonal blocks. This
calculation of its wave function, including the off-diagonal gives us confidence that, at least for weakly correlated sys-
matrix elements of, —V,), is mandatory. We note in pass- tems like Si or other semiconductors, accurate excitation en-
ing that the unbound character of the LUMO state also reprgies and optical spectra can be obtained within the block-
sults from change in self-consistent field§CF) calcula-  diagonal approximation. It is important to note, however,
tions within LDA total-energy approaches. that this behavior may not be true for other methods. In other
The delocalization of the empty states has a strong effeGhethods like, e.g., TDDFT, the interaction kertiel" may
on the electron-hole interactidisee column 4 of Table )l describe a different type of interaction Hamiltonian and its
Since the interaction depends on the overlap between the Qf¥f-diagonal blocks may play an important rdie.
states, the delocalizatieduceghe interaction and leads to
smaller excitonic binding energies than before. In fact, this
overcompensates the lowering of the empty states by the
delocalization, such that the resulting excitation energies are Starting from the Silj molecule discussed in the last sec-
higher than before. This holds in particular for the spin- tion, we have investigated the behavior of optical excitations
triplet excitations, thus reducing the singlet-triplet splitting of semiconductor clusters of increasing sizé\/e present
of the lowest excitation in Sijfrom 1.37 eV to 0.65 eV. results for clusters ranging from Sjkio Sk 4H»q, with diam-

D. Semiconductor clusters
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b ' GWA ] gap of Si(1.17 eV), corrected for the excitonic binding en-

0 I S ergy of 0.015 eV. The singlet-triplet splitting, which is on the
3 b LUMO \I:::g ] order of 1 eV for the small clusters, nearly vanishes in ex-
= | LPA Loz R tended systems. The lowest dipole-allowed spin-singlet tran-
g g LM G bek | sition that is relevant for the onset of the optical spectrum,
- _W should not converge towards the fundamental bulk band gap
-12 5 of Si, but towards the minimum direct band gap, corrected
0 5 10 15 ~ for excitonic effects, which is at about 3.4 elg¢ee Sec.

IV B). Figure 3 shows that the difference between the

lowest-energy spin-singlet transition and the first signifi-
FIG. 2. HOMO and LUMO energies of S, clusters (n=1 to cantly dipole-allowed transition increases with increasing

14), calculated as LDA Kohn-Sham eigenvalugs)(and within ~ cluster size. The optical absorption spectra of Séd of

GWA (@). The triangles () denote ionization energies measured Si,Hg have been measured by ltehal* The lowest-energy

by Itoh et al. (Ref. 30. dipole-allowed transition energies are 8.8 eV and 7.6 eV,

respectively(included in Fig. 3. Our calculated results of

eters from 3 A to 9 A. The clusters we study in this paper9.2 eV and 7.6 eV are in good agreement with these data.

can be regarded as the molecular limit of semiconductor

nanostructu.res that have recently attracted much atteﬁtio_n. IV. PERIODIC CRYSTALS: SEMICONDUCTORS

The analysis of many-body effects in the systems studied AND INSULATORS

here, together with respective data on periodic crystals, al-

lows for a more detailed understanding of electronic correla- In the previous section, the extreme case of small, three-

tion in the entire range of semiconductor systems from thelimensionally confined systems was examined. In this sec-

molecular to the nanoscale and macroscopic regime. tion we investigate the other extreme case of condensed-
Figure 2 shows the LDA an@W QP energies of the matter materials, i.e., infinitely extended periodic crystals.

HOMO state of each cluster. The size dependence of thAs illustrations we discuss the optical spectra of the semi-

LDA energies is mostly given by the quantum confinementconductors GaAs and Si, as well as those of the insulators

effect. In the limit of infinitely large clusters, the LDA LiF and LiCl. Before we turn to these results, however, some

HOMO energy should reach the LDA valence-band maxi-technical issues related to the periodicity of the crystals have

mum (VBM) of H-terminated Si surfaces, for which we ob- to be addressed.

tain —4.5 eV with respect to the vacuum level. The QP cor-

rections of the HOMO of our clustefsanging from 4.2 eV A. Technical details

to 2.2 e\j) are much larger than the QP correction of 0.4 eV o
of the VBM of bulk Si. This results from the much weaker N periodic systems, such as crystals, crystal surfaces, and

dielectric screening of the clusters as compared to bulk Si. IPOlymer chains, some further specifications of the formalism
the limit of infinitely large clusters, the QP correction of the Presented in Sec. I1C are necessary. The single-particle
HOMO should be 0.4 eV and its QP energy should amoungtates are now given agnk) with the wave vectok in the
to —4.9 eV. For all clusters shown here, the LUMO state idfirst Brllloqm zone. The two-particle excitations of E@.6)
bound in LDA but unbound in GWA(see the discussion &ré NOW given as
above. For N—«, the LUMO should reach the bulk values
of —4.0 eV in LDA and —3.7 eV in GWA. At o~
Figure 3 shows the excitation energies of the lowest spin- IN,S)= ; ; g Az?ckazkbz,k+Q|N'o>
triplet, spin-singlet, and dipole-allowed spin-singlet excita-
tions. All three transition energies exhibit the expected
guantum-confinement behavior, i.e., they decrease as the —12 2 E Afc|UCk>v (33
number of Si atoms in the clusters increases. For infinitely

large systems, the lowest-energy spin-singlet and -triplefyhereQ is the total momentum of the two-particle state. In
states should converge towards the fundamental bulk bartgnalogy to Bloch’s theorem for the single-particle problem,

Q is a well-defined quantum number for the two-particle

Number of Si atoms

hole elec

10 I ] states, and the excitations can be classified with resp&gt to
_ 8 . In an optical excitation proces§ is the momentum of the
3. 6l - bulk | photon that is absorbed by the two-particle state. The mag-
% Si 7] nitude of the photon momentum is usually very small and is
g 4 el . . thus unimportant in the present context. Its direction, on the
w 2l . ] other hand, is significant for the nonanalytical long-range
e | exchange term of the electron-hole interaction. In the case of
00 5 10 15 ~ the degenerate valence bands in cubic crystals, e.g., it leads

to the splitting of the excitons into transverse and longitudi-
nal modes. NonzerQ vectors are relevant for bound exciton

FIG. 3. Excitation energies of the lowest spin-triplekifp),  States in materials with an indirect fundamental gap.
spin-singlet ), and dipole-allowed spin-singled®) excitations The electron-hole interaction matrix elements are now
of the Sj,H, clusters. The experimental datal] are from Ref. 30.  given by

Number of Si atoms
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k' fq(r,r’) is a double-periodic function, i.e., it is lattice-
periodic in bothr andr’ separately. Using Eq36), a six-
dimensional integral of in the structure of, e.g., E¢34), is
calculated as

(vek|flo'c'k’)

X X X X
X X X X X
X X X X X
x X X ¥ X
X X X X X

Ef dx dx’ ¢ (X) theric T (r,r ) k(XD &) 5. (X)

k, k

’ = f dx dx" U () Ugric ) Fg(r,r U, g(XHul ¢, (X)

FIG. 4. lllustration of the interpolation scheme of the electron-

hole interaction in reciprocal space. The do®s)(denote combina- = :<vCE|fa|v ’C’E’) (37
tions of wave vectorsk k') for which the interaction matrix ele-
ments arecalculated The crosses X) denote combinations of Where uyp(x)=e" " "¢x(x) is the lattice-periodic part of
wave vectorsK,k') for which the matrix elements are obtained by the wave functiom at wave vectok. Of the sum oveq in
the interpolation scheme of E17). Thereafter, the BSE is solved Eq. (36) onlya: (R’ —]2) contributes to Eq(37).
on the grid{x}. Note that each of the two axes represents a three- After,calculating such matrix elements on the coarse grid

dimensional reciprocal space. -~ o ) ] . ]
{k,k’} (indicated schematically as#®() in Fig. 4), the main
problem remains in evaluating the corresponding matrix el-
<vck|Keh,d|U/C/kr>:_f dx dX'l//:k+Q(X)¢fcf e +0(X) ements for a pair of wave vectork,k’) different from
' ' (k,k’). This requires an appropriate interpolation scheme in
KXW, ) (XN 0 (X)) (34) ']Ehﬁ six-dimensional reciprocal space, which can be done as
ollows.

For any given wave vectdk, the lattice-periodic func-
tions uzk(x) form a complete set in which any other lattice-
periodic function can be expanded. This holds in particular

cklIKe X[y 'Kk’ :j dx dx’ o X X)o(r.r’ for the lattice-periodic pant of a wave functiom at another
(vck] v ) e k(X Pp(X)v(r,r’) wave vectork:

iker

(neglecting the frequency dependencejf and

X ther o+ (X )y (X'). (35 -
M Un(x)= 2 difuR(0). 39
In semiconductor crystals, several occupied and unoccupied "

bandsv andc, as well as several hundred wave vectkys By applying the operatiorfidx u’;;;(x) to Eq.(38) and using
i.e., up to 10 basis functions, are necessary to represent th
transitions|S) relevant to the optical spectrum. The determi-
nation of the~10® matrix elements of the electron-hole in-
teraction, each of which requires a multidimensional integra- N

tion given by Eqgs(34) and(35), forms a major bottleneck. dﬂt:f dx Uﬁ@(x)unk(x)- (39
In order to make the calculations feasible, we have devel-

oped a novel interpolation scheme with respect to reciprocalgy employing Eq(38), a matrix elementvck|f|v’c’k’) of
space vectorgsee Fig. 4 The main idea is to calculate the gq. (37) can be obtained as

interaction only for some pointk(k’) on a coarse grid in

reciprocal spacgindicated as @) in Fig. 4], and then to  {(vck|flv'c’k")
interpolate onto a much finer gridk,k’)} required for the

fhe orthonormality of the wave functions kf one obtains
that the coefficientsl¥ are given as

BSE [indicated as X)]. In this interpolation, particular at- = > dﬁg(dig)*(dﬁ?E:)*dB‘,‘E:(ﬁlﬁzﬂfq|?13714E’>

tention has to be paid to the divergent behavior of the Cou- Tyfonana v ¢

lomb interaction in the limik—k’ and to the phases of the o o

wave functiongsee below: -~ d™ K g"2Ky% (g™ yx gk R AR R K
The general idea of the interpolation scheme is the fol- ;17%3;4 ok (0 )™ (00)™ sy (ManzK| Fglgn k)

lowing. Let f(r,r’) be a lattice-periodic two-point function
(later, this will be the bare and screened Coulomb interac- (40)
tion). f can be written in terms of its Fourier transform, The step from the first to the second line in E4Q) is an
approximation sincg= (k' —k) is replaced byg= (k' —k).
N g+ Gyt Q61 Several issues must be discussed in the context of &),
f(rr)=2 e fecr(a)e The transformation is only exact if the four summations run

aee over all indices (1... ) and if g=q (or if fq=13). For
='E e 10T (r.r el (36) practical purposes, however, the summations must be trun-
e o ' cated to a very small subset of states, and the sgtvettors
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can only be finite, sé,= f5 is usually not exactly valid. For band summation of Eq40) can be restricted to very few
f, being the(screened or bayeCoulomb interaction, this bands without losing significant accuracy. In the actual cal-
poses a severe problem. This can best be demonstrated Bylations, we restrich, andns to the same set of valence
expanding the screened Coulomb interaction in terms of it§ands andh, andn, to the same set of conduction bands that

Fourier transform:

€s6(0)

ei(q+G’)~r’_
la+Glla+G’|

W(r,l")= 2 e—i(q+G)~r
qGG’
(41)

Some terms in Eg4Y), i.e., the ones wittG=0 and/orG’

=0, behave as & and 14. Therefore the matrix elements

of K¢ depend very sensitively on the reciprocal distagci
particular wheng is small, i.e., the conditiori,~ f is not
fulfilled. An interpolation scheme directly fa¢® would thus

are finally included in the BSE:

"‘E ""l‘(‘ N/'IZI E/E/ e
Byekororkr =2 AUK(AS0* (dY ) do g azei s e
vev'c’
(47)

and the same expression for the coefficidmtndc.

The exchange interaction matrix elemeKtsof Eq. (35)
do not suffer from the divergent behavior of the Coulomb
interaction. Since the occupied ) and empty(c) states are
orthogonal, the integralM Sc(k,q) in Eqg. (35 are propor-

be very unstable and converge extremely slowly with respedional to g for g—0, thus leading to a finite value of the

to the density of the grida}.

Instead, we decompod€” into three contributions, moti-

vated by the Fourier series fav. Corresponding to Eq41),

the matrix elements ok® are given as double summations

over G andG’. For smallg, the “head” (G=G’=0) and
the “wings” (G=0or G’ =0) of W behave as #? and 11,
respectively, whereas all other matrix elements\bfemain
finite. Concomitantly the matrix elements Kf' can be writ-
ten as

vek,v’c’k’ bvck,v’c’k’
2 q Cvck,v’c’k’ ’

(42

a
(vek|KeM|p e’k )=

with
Qyekoork =M oy (K+Q,q) g a(DIMY, (k,q)T*, (43)

-1
G EG,O(q) 0 *
bucrerie = 2 | Mo (Kt QoM (k)]

-1
(@)
+ MO (k+ Q,Q)leqoi—Gl[MUGv,(k,q)]* :

(44)

€co(d)

CU v'c! r= MG, k+ y -
ck,o’c’k 2 2 cc( Qq)|q+G||q+G’|

G#0 G’ #0

X[ME,(k,q)]*. (45)

The matrix elementMﬁn(k,q) are calculated as

MS,(k,q) = f dx g, (0e @O Ty ). (46)

The coefficientsa, b, and c fulfill the requirement that

interaction matrix elements. Therefore our interpolation
scheme applies directly t&*, and a decomposition into
some coefficientgas forkY) is not necessary.

The decomposition oK into the coefficients, b, andc
was motivated by the corresponding plane-wave representa-
tion of the screened Coulomb interactidgqg. (41)], consist-
ing of head, wings, and body. In our Gaussian-orbital basis
set, on the other hand, the structuréNéfs more complex. A
decomposition analogous to the one described above is,
nonetheless, possible and leads to the same decomposition of
Ke"d into the three contributiona, b, andc as denoted in
Eq. (42).

A very important issue is that the transformation Ep)
automatically takes care of the phases of the wave functions
ok - From Eq.(28) it becomes obvious that the phases are
crucial to describe constructive and destructive coherence
correctly. To be more precise, the phases of the wave func-
tions (which are totally arbitrary must be treated consis-
tently in the optical oscillator strengténd in the electron-
hole interaction matrix elements. Since a numerical
diagonalization procedure of the single-particle Hamiltonian
will yield random phases for the single-particle wave func-
tions, the evaluation of Eq47) is a definitive way of treat-
ing the phases in a controlled way when constructing the
interaction matrix elements by interpolation. Otherwise the
phase information will not be transferred to the optical tran-
sition matrix elements correctly and the optical spectrum will
be more or less given by the random-phase approximation
(apart from some minor energy shifts due to the attractive
nature of the interactionTo faciliate the computations, it is
helpful to define the phases of the single-particle wave func-
tions in a unique way that is kept throughout the calculations.
One possibility is to require that the sum of the basis-set
coefficients of the wave function be real.

A concrete example of the interpolation scheme is pre-
sented in Fig. 5. The figure shows the real part of a matrix
element ¢(=v’'=4=highest valence band,c=c’'=5

their underlying integration kernels are doubly lattice- =lowest conduction banaf the direct term of the electron-
periodic(see above They can thus be calculated employing hole interaction of GaAsmultiplied by q° for sake of clar-

the interpolation scheme of E0). In particular,a, b, and
¢ vary only weakly with respect t& andk’. Furthermore,
the wave functionau,, also vary only fairly weakly with

ity). The vectorsk, k’, k, andk’, andq are indicated in
panel(a). The wave vectork andk’ start atA and run along
two different directions[100] and[010]. The difference vec-

respect tok (apart from sudden band crossing; see below tor q increases from 0 to 0.7¢2/a). Panel(b) shows three
To be more precise, a statg, at k can be expressed with results of the matrix element, based on three starting points

high accuracy with only a few statesat k. Therefore, the

of the interpolation schemg(k,k’)=(A,A’),(B,B’), and
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dashed curve is constructed from the starting pokk()
c (a) =(B,B’). At this point, it coincides with the exact data,

K while there are significant deviations at wave vectors farther
away from B,B’). The long-dashed curve is based on the

interaction matrix elements calculated &,K')=(C,C').
Also for this curve, deviations appear farther away from its
starting point. The main issue, however, is that all curves
reproduce the exact result excellently in the vicinity of the
A respective starting point. Thus a coarse mesh of starting
C points finally leads to correct values for the electron-hole
interaction in the entire reciprocal space.

~[100] An interesting and important feature is that all three inter-

polation curves correctly describe the “step” in the interac-
0.2 ' ' ' tion atq~0.5(2w/a), which results from a band crossing of
=~ (b) the two highest valence bands of GaAs. At this point, the
0.1 o) , highest valence state rapidly changes its character and wave
: (€.C) ; , : . .

3 function. In the interpolation scheme, this effect is only re-
produced because the summation in Ey) includes infor-
mation about the valence states other thanv’'=4. The
importance of this summation is demonstrated explicitly in
) 0.2 0.4 0.6 panel(c). The solid curve in this panel, which is the same as

la| [in 27/a] in panel(p), is calculated b)_/ includinglall four valencg bands

and the six lowest conduction bands in the summation of Eq.
(47). For the dashed curve, on the other hand, only the term
(v=v,0'=v',c=c,c’'=c’) is kept, i.e., the mixing of the
wave functions is fully ignored. Panét) shows that this
unrealistic interpolation, which assumes that the wave func-
tion u,(Xx) of a given bana is the same for all wave vectors
k, can be well justified in the vicinity of the starting points,
. . . but can lead to totally wrong results for the electron-hole
0 0.2 0.4 0.6 interaction for wave vectors farther away.
|q| [in 2/a] _ .F.or pgriodic_crys'.[als, the BSE is an eigenvalue problem of
infinite dimensionality,
FIG. 5. lllustration of the interpolation scheme of the electron-
hole interaction, for the example of the matrix element (EQP _EQP)AS
(45k|Ke"9|45¢") (real part only between the highest valence band ~ ©k*Q —vk/Tluck
(=4) and the lowest conduction bang6) of bulk GaAs.(a)
+ j d3k’
Bz

BI

~[010]

> (vek|KeMu e’k HAS, = QAS, .

Geometric arrangement of the points and veckors', k, andk’ in v'c'k’
the Brillouin zone. All points are in €001) plane, in units of Zr/a. v'e!
The capital letters denote the poimds=A’=(—3/4,—1/4,—1/4), (48
B=(—-1/2-1/4-1/4), C=(—-1/4-1/4-1/4), "=(-3/4,0,

—1/4), andC’ = (—3/4,1/4-1/4). (b) Real part of the coefficient The integrationfd®k’ ranges over the first Brillouin zone.
ysc s+ Plotted againstg| with q=(k’ —k). k runs fromAto C  For a numerical evaluation, the continuous integration with
while k' runs fromA’ to C". The three curves(—, ----, and  respect tck’ has to be replaced by some discrete scheme of
— — ) denote three interpolations faps 45 , that are based on  finite dimensionality. The easiest approach is to divide the
the starting pointsk=Ak’=A"), (k=B,k'=B’), and k=C,k’ Brillouin zone into an appropriate gridiniform or nonuni-
=C'), respectively. The summations in E@7) are carried out form) of subvolumesV;, represented by one poikt inside,

with four valence bands and six conduction bands. The dotted curvand to assume thdt) the coefficientsAfCk can be repre-
denotes the exact result) Same as paneb), but with different  sented by an average Vamécki in V,, taken ak;, and that

summations in Eq(47). The solid curve is the same as(in). The .. .
dashed curve is g;k:?nated with the highest valence b (i @and (i) the same holds for the band-structure energy differences
) (EQ*—EX%. o). In the case of a grid with equal subvolumes

the lowest conduction band=(5) only. Both interpolations are ck )/ ! -
based on the starting poinE €A K’ =A"). V;=V for all i, this leads to the discrete eigenvalue problem

(C,C")]. The dots indicate the exact result. The solid curve(ESEi+Q— E?;:)Afcki

shows the interpolation based ok,k’')=(A,A’). For q L

=0 (i.e,, k=k=A andk’=k’=A’), it is by construction +> > = dakf d3k'<vck|Keh|v’C’k’)AS,C,k,
identical to the exact result, which is given by l# 0.092. i oo Vv v o

At the other points this interpolation agrees nicely with the _QAS 49
exact data, but shows some deviations at laggdihe short- - SAUCki ' (49)
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The integration of the electron-hole interaction with respect 30
to k andk’ requires special care due to the divergence for 25
k—k’ [cf. Eq.(42)]. In particular, a careful six-dimensional

integration of the kernels l{—k’|? and 1/k—k’| over the 2r
product volumeV,V/ is required. We do this by numerical ¢ 15
integration on different subgrids and extrapolating to zero 10 +

grid spacing. In many situations, it may be desirable to use
nonuniformk grids to sample sensitive regions of the Bril-
louin zone with increased accuracy, or to use differkent 0
grids for different band-band combinations,€¢) (for in-
stance, if some bands are highly dispersive and others are
not). Both extensions of the approach are possible but re- FIG. 6. Calculated optical absorption spectrum of GaAs with
quire additional considerations because the basis statésplid lineg and without(dashed lineselectron-hole interaction,
|vck;) will have different weights £ 1/V;) in the excitations  using three valence bands, six conduction bands, BQints in
|S). In fact, the configurationfck;) then form a basis that the BZ, and an artificial broadening of 0.15 eV. The dots denote
is still orthogonal but no longer normalized. Concomitantly, experimental data from Ref. 3Z) and Ref. 33 @).
the BSE is no longer given by a standard eigenvalue problem
but by a generalized eigenvalue problem instead, with an Figure 6 shows the optical spectrum of GaAs, calculated
overlap matrixS;; - = &;;,V; that is still diagonal but not unity. with (solid lines and without(dashed lines electron-hole
interaction. The dots denote experimental At The spec-
B. Semiconductors: GaAs and Si trum resulting from the free quasiparticle interband transi-

The focus of this section is on the resonant optical spections shows systematic deviations from experiment. At low
trum of semiconductors above the fundamental gap energgnergies2—5 e\ the absorption strength is much lower than
Eg. Up to @ maximum energy of seveis) 2 Similar stud- N experiment while it is too high fc_>r energies above 5 eV.
ies were carried out by Albrecret al’® and by Benedict When we include the electron-hole interaction, the peaks at 3
et al’* Bound excitons belowE, are not considered here. €V and at 5 eV are strongly enhanced; in addition, the peak
We have discussed the bound excitons in GaAs in Ref. 11Structure at 5 eV is effectively shifted to lower energies. The

The evaluation of the BSE was carried out with the threeSPECtrum including the interaction is in much better agree-
highest valence bands and the six lowest conduction bandgent with the measured data. Some fine structures of the

The electron-hole interaction was calculated for 32 waveneasured data, such as the splitting of the 3 eV peak, are,
vectors k in the first Brillouin zone, ie., at the points however, not observed in the calculation. This splitting of

111 - ) 0.2 eV is due to spin-orbit splitting at high-symmetry points
(3,2,3)(27/a) and (,3,7)(27/a) and the corresponding  of the band structure. To observe these details in the calcu-
stars. Thereafter, the interpolation scheme of E48) and  |ation, thek-point grid must be refined to reach a spectral
(47) was employed to obtain the interaction matrix elementsesolution of about 0.05 eV, and the spin variables must be
for 500 k points in the Brillouin zone. These 500 points jncluded explicitly since spin-singlet and -triplet excitations
form a cubic g”d with a mesh distance of 02‘(&) One are Coup|ed by the Spin_orbit interaction.

important issue is that the grid is not symmetric with respect The modifications of the optical spectrum do not result
to the Brillouin zone. Instead, it is slightly shifted in a direc- from a negative shift of the transition energies, as one might
tion different from the high-symmetry directions of the crys- najvely expect from the attractive nature of the electron-hole
tal. This leads to a finer sampling of the spectrum of freeinteraction. To illustrate this point, we present in Fig. 7 the
electron-hole pairs. An unshifted grid would correspond tojnterband joint density of states and the density of excited
only 28 crystallographically different points, which are much stateqdivided byw? to make it comparable to the absorption
too few to achieve a good spectral resolution. The randongpectruny for the electron-hole transitions without and with
shift, on the other hand, leads to a grid of 500 crystallothe electron-hole interaction, respectively. It is obvious that

graphically different wave vectors, which gives a spectralhe density of excited states remains nearly unchanged by the
resolution of about 0.15 eV, sufficient to compare the calcu-

lated spectra with experimental data.
To check the applicability of the interpolation scheme, we
have carried out calculations based on different coarse grids

{k}. It turns out that the final spectra are very stable with

respect to the coarse grid. From the coarse grid ofk32
points, we obtain essentially the same spectrum of GaAs as
we get from a coarse grid with 108 points. The uncertainties
from using the coarse grid of only 32 points are smaller than
1% for transition energies and smaller than 5% for oscillator
strengths. The evaluation of the spatial integration in Egs.
(34) and (35) is the most demanding step of the entire ap- FIG. 7. Density of excited states for GaAs divided &Y (in
proach. The use of the interpolation scheme reduces this stebitrary unit3. The dashed line corresponds to vertical band-to-
from 500x 500 evaluations to only 3232 evaluations, i.e., band transitions while the solid line results from the BSE, including
by a factor of 240. the electron-hole interaction.

Energy [eV]

JDOS/w? [arb. units]

Energy [eV]
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FIG. 8. Calculated optical absorption spectrum of Si wiblid Energy [eV]

lines and without(dashed lines electron-hole interaction, using
three valence bands, six conduction bands, &Q@oints in the BZ,
and an artificial broadening of 0.15 eV. Experimental data are take
from Ref. 34 O) and Ref. 35 @).

FIG. 9. Calculated optical absorption spectrum of LiF with
'(]solid lineg and without(dashed lineselectron-hole interaction,
using three valence bands, six conduction bands, 6Qiints in
the BZ, and an artificial broadening of 0.25 eV. The experimental
data @) are from Ref. 36.
interaction(with the exception of bound excitonic states be- _ _
low E4, which are not visible in the present calculatiofihe C. Insulators: LiF and LiCl

changes in the optical spectrum originate from a completely |n wide-band-gap insulators the dielectric screening is
different effect: they are due to the coherent coupling of thenuch weaker than that in semiconductors. The dielectric
optical transition matrix elements in the excited-state waveconstants of LiF and LiCl, for instance, are only 1.9 and 2.6,
function [cf. Eq. (28)], which leads to a constructive super- respectively, compared to 10.9 and 11.7 in GaAs and Si.
position of the oscillator strengths for transitions at lowerConcomitantly the electron-hole interaction is much stronger
energies and to a destructive superposition at energies abogad its effects on the optical spectra are much more
5 eV. Concerning the optical spectra ab@g, this coherent  pronounced! As an example, Fig. 9 shows the absorption
coupling is much more important than the energetic shift ofspectrum of LiF.
the excitations. Such modifications of the spectrum also oc- Over the entire energy range, the spectrum is completely
cur in other semiconductof&**3we have found similar altered from the noninteracting case. Again the spectrum in-
behavior in low-dimensional systems like polymers andcluding the interaction is in much better agreement with ex-
surfaces? periment, as was also found by Benedittal* The most

In Fig. 8 the optical absorption spectrum of Si is pre-striking feature in the calculated spectrum is the occurrence
sented. Again, the solitdashed curve shows the spectrum of two strongly bound singlet excitons at 12.8 &vansverse
with (without) the electron-hole interaction, respectively. excitons. In addition, a longitudinal singlet exciton, which is
The dots denote measured d&t&> The effects of the inter- not visible in the optical spectrum, is found at 13.3 eV.
action on the spectrum are basically the same as in the case The occurrence of excitons is much more pronounced in
of GaAs. Again, the final spectrum is in much better agreeinsulators than in semiconductors. In the case of GaAs, e.g.,
ment with the experimental data than the independentexcitonic binding takes place on a meV energy scale and the
particle spectrum. This holds in particular for the sharp peaformation of the exciton only includes states very close to
at 3.4 eV. The nature of this peak in the experimental specthe I" point of the Brillouin zone(see above In insulators,
trum has been under discussion for a long time. Our resultsn the other hand, the much lower dielectric constant and the
clearly show fromab initio that the peak originates from usually larger effective masses of the less dispersive bands
excitonic effects. lead to excitonic coupling over the entire Brillouin zone and

Bound excitons that occur in the low-energy onset of theincrease the binding energy to as much as 1.5 eV in LiF.
optical spectrum of semiconductors are not discussed here. The strong modification of the spectra of insulators by
They are not seen in Figs. 6 and 8, neither in the measuregkcitonic effects makes it difficult to obtain reliable band-
nor in the calculated spectra. In the measured data, the exaitructure data from the measured spectra. Fundamental gap
tons are not observed due to the limited resolution in the datgnergies, for instance, can only be estimated by assuming
shown here. Since the binding energy of excitons amounts tgpecific values for excitonic binding energies. Our present
only a few meV in semicondutors, a much higher spectralpproach allows us to apply a reverse procedure by calculat-
resolution is required. In the calculation, the spectral resoluing the QP band structure and the optical spectrum from first
tion is also not sufficient to show the excitons. This is relatedprinciples. The comparison of the optical spectrum with ex-
to the density of th&-point grid used. In Eq(33), the bound  perimental data may be used to deduce whether the underly-
excitons are composed frokpoints in the very vicinity of ing calculated band structure is correct or not. In the present
the minimum gap(which is at thel’ point in the case of case of LiF, the calculated band gap is 14.4 eV and the
GaAs. This region of the Brillouin zone must be sampled calculated exciton is at 12.8 eV. Tmeeasuredexciton en-
with a very high density to represent the excitons. Ourergy is at 12.7 eV, i.e., it is 0.1 eV lower than the calculated
method together with such a high-density mesh, which camne. We thus conclude that the true fundamental band gap of
be restricted to the vicinity of the minimum gap, does giveLiF is near 14.3 eV.
correctly the bound excitons in great det@ke the discus- Based on the calculated imaginary pas{w) of the di-
sion on GaAs in Ref. 11 electric function, the real part is obtained by a Kramers-
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FIG. 10. Calculated reflectivity spectrum of LiCl wittsolid
lines and without (dashed lines electron-hole interaction, using
three valence bands, six conduction bands, &Q@oints in the BZ,
and an artificial broadening of 0.25 eV. The experimental d@t (
are from Ref. 37.
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Kronig transformation, and all optical constants can be
evaluated. This often allows for a more direct comparison
between theory and experiment. Optical experiméiike
reflectivity measurementsire sometimes limited to a certain
energy range, which may not be wide enough to carry out a
careful Kramers-Kronig analysis. In such cases, it would be

B

|wave function[® [arb. units]
>

more appropriate to directly compare the measuedigctiv- c D
ity spectrum with the calculated one. As an example, we R
show in Fig. 10 the reflectivity spectrum of LiCl. As in the distance from hole [4]

other figures, the soliddashedl curve shows the spectrum
calculated with(without) the electron-hole interaction, re-  FIG. 11.(a) Real-space distributiofys(x, ,Xe)|* of the electron
spectively. The QP band structure has a fundamental gap &Xe) with respect to the holex{) for the lowest-energy exciton in
9.2 eV. LiF (at 12.8 eV, in the (010 plane. Dotdtriangles denote Li(F)
The independent-particle spectrum does not have mucfoms: The holex,) is fixed at the central F aton, o) The same
structure. By the interaction, the reflectivity is enhanced afiuantity. along the lineAB andCD indicated in pane(a).
all energies and shows a number of sharp peaks. In particu-
lar, two peaks arise close to the gap energy, i.e., one excitophould keep one of the particles fixed and discyswith
peak at 8.7 eMbelowE,4) and a broader structure at 9.5-9.7 réspect to the coordinates of the other particle. This gives a
eV (aboveE,). At 9.0 eV, i.e., 0.2 eV belov,, the calcu- correlation function that depends mainly on the difference,
lated reflectivity has a minimum. These features corresponéXe—Xn), but includes all details of the microscopic structure
well to the respective structures in the measured spectrun®f the excited state. In the case of a simplified isotropic
one peak at 8.9 eV, a broader structure at 9.6—9.8 eV, and&ffective-mass model, this correlation function would corre-
minimum at 9.3 eV. Since there is a shift of 0.2 eV betweenspond to the envelope function of an exciton, which is given
the measured and calculated features, we conclude that ti¥ hydrogenlike wave functions. In our present approach,
real fundamental gap energy of LiCl is likely to be at 0.2 ev however, much more detail is obtained.

higher energy than our calculated value, i.e., it is near 9.4 eV As an illustration, we show in Fig. 11 the lowest-energy
in reality. spin-singlet exciton in LiKat 12.8 eV excitation energyln

panel(a) we show the distribution of the electron relative to
the hole, which we fix at an F atom, in tl{@10) plane. The
envelope function is-like, with slight modifications due to
Our approach allows to explicitly calculate the wave func-the anisotropy of the cubic crystal, and has a mean radius of
tion of an electron-hole excitatiofS) in real space. The slightly over 4 A or one lattice constant. Excitons in LiF
wave function is given by Eq(11) with the coefficients8).  have often been thought of as typical examples for Frenkel-
set to zero. For a periodic system, this yields like excitons, i.e., the excitation of the electron takes place at
one atomic site or between neighboring atoms. Our results,
S N however, clearly show that the exciton is larger than that.
XS(XeaXh):; ; 2 Avckter+Xe) Yu(Xn). (500 The electron distribution of the second and third exciton is
similar to Fig. 11a). Figures 11b) and (c) show the same
The wave function is a scalar function in a double space. Thguantity as a line plot along tHe.01], as well as along the
coordinatex, refers to the position of the electron whitg ~ [100] direction[indicated as line&\B andCD, respectively,
refers to the position of the holg: is invariant to lattice- in panel(a)]. The figures exhibit several interesting features.
vector shifts when applied simultaneouslyxpandx,. Due  First, the charge density of the electron is very low at the Li
to the high dimensionality the discussion pfis not easily atoms. From an extreme Frenkel exciton—like picture, one
possible. To get the best insight into the real-space correlanight have expected that the electron hops from the central F
tion between the hole and the electron in the excited statatom to the nearest-neighbor Li atoms. Instead, it partly re-
and to observe the attractive nature of this correlation, onenains on the central F atom and partly hops to the first- and

D. Two-particle wave function

hole elec
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second-nearest F atoms and even farther away. Second, theWe have discussed electron-hole excitations in atoms,
electron distribution on these neighbor F atoms is not isotromolecules, and clustefas examples for isolated systenes
pic, but is highly polarized towards the central F atom. Thiswell as the optical spectra of semiconductor and insulator
results from the correlation of the quasielectron to the effecerystals. In all cases the results are in excellent agreement
tive positive charge of the quasihole on the central F atom.with measured data. The approach can be employed to inves-
tigate both bound exciton states below and resonant exci-
V. CONCLUSIONS tonic states above the fundamental gap energy. The excita-
tion energies and the spectra are drastically influenced by the
We have presented a recently developed approach to caljectron-hole interaction, thus demonstrating the crucial role
culate the optical spectra of real materials from first prin-of two-particle correlation. Without the interaction, i.e., on

ciples. This requires the evaluation of the spectrum of thgne |evel of noninteracting quasiparticles, the spectra deviate
single-particle and the two-particle Green's function. Thegjgnificantly from the measured data.

electron self-energy operator, which occurs in the equation

of motion of both Green'’s functions, is calculated within the

GWapproxmanon. From t'he electron-hole excitations of Fhe ACKNOWLEDGMENTS
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