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Electron-hole excitations and optical spectra from first principles
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We present a recently developed approach to calculate electron-hole excitations and the optical spectra of
condensed matter from first principles. The key concept is to describe the excitations of the electronic system
by the corresponding one- and two-particle Green’s function. The method combines three computational
techniques. First, the electronic ground state is treated within density-functional theory. Second, the single-
particle spectrum of the electrons and holes is obtained within theGW approximation to the electron self-
energy operator. Finally, the electron-hole interaction is calculated and a Bethe-Salpeter equation is solved,
yielding the coupled electron-hole excitations. The resulting solutions allow the calculation of the entire optical
spectrum. This holds both for bound excitonic states below the band gap, as well as for the resonant spectrum
above the band gap. We discuss a number of technical developments needed for the application of the method
to real systems. To illustrate the approach, we discuss the excitations and optical spectra of spatially isolated
systems~atoms, molecules, and semiconductor clusters! and of extended, periodic crystals~semiconductors and
insulators!.
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I. INTRODUCTION

Optical spectra provide extremely useful ways to inve
gate condensed-matter systems. Absorption, reflectiv
photoluminescence, and other optical techniques are c
monly used to characterize materials. In addition, optical
citations provide the basis for a vast range of technical
plications, including light-emitting devices, laser technolog
and photovoltaics. In this context, it is of great importance
be able to describe accurately such excitations by highly
liable and efficientab initio approaches.

For more than two decades,ab initio techniques have
been used to investigate many properties of materi
Density-functional theory~DFT! has proven to be a ver
powerful tool for electronic ground-state properties. For
single-particle spectrum of electrons and holes, one-b
Green’s function approaches based on theGW
approximation1,2 ~GWA! for the electron self-energy hav
turned out to be highly successful.3–5 Very accurate quasi
particle ~QP! properties have been obtained by this meth
with remaining uncertainties in the order of 0.1 eV, th
making the GWA a standard tool in predicting the electr
quasiparticle spectra of moderately correlated materials
various situations.3–7 However, neither the standard DFT n
GWA allows for a correct evaluation ofoptical spectra or
other charge-neutral excitations. The optical spectrum ca
lated within the independent-quasiparticle picture of
shows significant deviations from experiment~see the dis-
cussion in Sec. IV B!. The energetic position of characteri
tic peaks can be wrong, and the amplitudes of the peaks
deviate from experiment by a factor of 2 or more. The m
striking failure of the independent-particle spectrum is tha
does not describe bound exciton states, which are domi
in systems of reduced dimensions.
PRB 620163-1829/2000/62~8!/4927~18!/$15.00
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It has long been known that the investigation of optic
electron-hole excitations requires an effective two-body
proach going beyond the single-particle picture of individu
quasielectron and quasihole excitations,8,9 and that the corre-
sponding spectra can be drastically influenced by
electron-hole interaction.10 A rigorous approach to optica
spectra is given by evaluating the two-body Green’s funct
G2 ~on the basis of the one-body Green’s functionG1, which
may be described by the GWA!. Starting from the QP elec
tron and hole states ofG1 and their QP energies, th
electron-hole interaction, which results from the self-ene
operator, have to be calculated. Thereafter, the equatio
motion for G2 ~known as the Bethe-Salpeter equation! is
solved, yielding the coupled, correlated electron-hole exc
tion states.8–10 Together with the corresponding optical tra
sition matrix elements that result as coherent superposit
from those of free electron-hole pairs, the entire linear op
cal spectrum of a material can be evaluated. The realiza
of this approach, however, has long been limited to rat
simple situations or to simplifying model approximation
due to the complicated two-particle nature of the problem

Only recently, the development of efficient computation
techniques has made it possible to investigate the op
spectra of real materials from first principles. The method
present here is an approach that allows not only theab initio
calculation of the optical spectrum, but also of the effect
electron-hole wave functions for both bound and unbou
excitonic states. It has been applied successfully to inve
gate the optical spectrum of semiconductor clusters, of b
crystals, of one-dimensional polymers, and of the semic
ducting Si~111!-(231) surface.11 There have also been sev
eral other works in the literature on theab initio calculation
of optical spectra using different numerical techniques a
approximations. Onidaet al.12 as well as Albrechtet al.13
4927 ©2000 The American Physical Society
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addressed the spectrum of a small Na cluster, of the insu
Li2O, and the semiconductors Si and diamond. Bene
et al.14 calculated the optical absorption spectrum of a la
number of insulators and semiconductors. van der H
et al.15 studied the spectrum of the polymer polythiophen
In all cases, the inclusion of the electron-hole interact
~i.e., excitonic effects! turns out to be crucial for arriving at
comprehensive understanding of the optical spectra an
obtain results in agreement with experimental data.

The main focus of our present paper is to discuss in de
the techniques that we used in Ref. 11 for the calculation
the optical spectra of various materials. We demonstrate
the electron-hole interaction is calculated and the resul
excitonic effects are incorporated. An important issue is t
the underlying concepts can equally well be used to inve
gate very different materials, like small localized syste
~atoms, clusters, and molecules!, extended systems~such as
polymers, surfaces, and crystals! and any system in between
thus covering the entire range from the atomic length scal
macroscopic materials. To illustrate this point, we disc
results for two extreme situations: for single atoms and sm
molecules and clusters on the one hand, and for th
dimensionally periodic crystals on the other hand. The ac
treatment of excitonic effects, although they are in princi
analogous for all systems, requires somewhat different te
niques for the different material classes.

The paper is organized as follows. In Sec. II we give
short introduction to the many-body concepts on which
approach is based, and we outline some approximations
quired for the actual calculations. Section III addresses e
tations in atoms, molecules, and clusters, and examin
number of practical issues related to the numerical eva
tion of the approach for such systems. In Sec. IV some s
cific problems in dealing with extended, periodic crystals
investigated, and the optical spectra of semiconductors
insulators are presented. A short summary concludes the
per in Sec. V.

II. BASIC THEORETICAL FRAMEWORK

In this section we briefly sketch out the basic concepts
describing excitations by Green’s functions. More comp
hensive discussions on the formalism are given, for exam
by Hedin,1 by Hedin and Lundqvist,2 by Sham and Rice,8 by
Strinati,9 by Hanke and Sham,10 and by Del Sole and
Fiorino.16

Corresponding to the general framework, our compu
tional approach to realize these concepts consists of t
successive steps:~A! a DFT calculation for the electroni
ground state,~B! a GW calculation to obtain the QP excita
tion spectrum of electrons and holes, and~C! the calculation
of coupled electron-hole excitations and the evaluation of
optical spectrum.

A. The electronic ground state

The starting point of our approach is the calculation of
ground-state configurationuN,0& of the electronic subsystem
of N electrons for a given atomic structure. In the pres
work we focus on closed-shell systems, i.e., the total spin
the ground state is zero.17 For simplicity, the spin-orbit in-
teraction is not taken into account in the discussion.17 The
tor
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system should have an energy gap.18 The ground state can b
described, for instance, by density-functional theory~DFT!
within the local-density approximation~LDA !. Details of the
method can be found elsewhere.5 In our actual calculations
of the examples described, we employ norm-conservingab
initio pseudopotentials19 and Gaussian-orbital basi
functions.5 We take the atomic structure as fixed and igno
coupling of the optical excitations to the atomic geomet
Related effects such as spectral broadening, vibrational
rotational side bands, polaronic effects, self-trapping of
citons, and finite lifetimes of excitations are not consider
throughout the paper.

B. Quasiparticle excitations

Based on the ground-state configurationuN,0&, the one-
body Green’s function

G1~1,2!52 i ^N,0uT„c~1!c1~2!…uN,0& ~1!

describes particlelike excitation processes in which an e
tron is removed from the system (N→N–1) or added to it
(N→N11).2 G1 may be obtained from a Dyson-type equ
tion of motion,

@H01S~E!#G1~E!5EG1~E!. ~2!

In this equation,H05T01Vext1VCoul is the Hamiltonian in
the Hartree approximation. The exchange and correlation
fects among the electrons are described by the electron
energy operatorS(E). We calculateS within the GW
approximation,1,2

S5 iG1W, ~3!

i.e.,S is given as a product of the one-particle Green’s fun
tion G1 and the screened Coulomb interactionW. G1 andW
are evaluated from the results of the underlying DFT-LD
calculation of Sec. II A, which yields wave functionsucm

DFT&
and energiesEm

DFT . W is calculated within the random-phas
approximation~RPA! ~for details, see Refs. 3–5!. As usual,
the equation of motion forG1 is not evaluated in the genera
form given by Eq.~2!. Instead, it is transformed into th
corresponding Dyson’s equation for the quasiparticles of
system, i.e., the~long-lived! QP electron and hole states:

@H01S~Em
QP!#ucm

QP&5Em
QPucm

QP&. ~4!

In practice, Eq.~4! is evaluated in the basis given by th
DFT statesucm

DFT&. Assuming that the DFT and QP wav
functions are the same~which is often the case!,3 the QP
energy of a statem is given by

Em
QP5Em

DFT1^cmuS~Em
QP!2Vxcucm&, ~5!

where Vxc(r ) is the DFT exchange-correlation potentia
@Equation~5! is equivalent to a first-order perturbation ca
culation.# If the DFT and QP wave functions are not th
same, the QP states can nevertheless be expanded in the
states,ucm

QP&5(n8an8
(m)ucn8

DFT&, which allows one to set up an
~energy-dependent! QP Hamiltonian

Hnn8
QP

~E!5En
DFTdnn81^cn

DFTuS~E!2Vxcucn8
DFT& ~6!
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From Hnn8
QP (E), the QP states and energies can be obtain

Band structures and electronic spectra of many systems
been calculated within theGW approach.3–7 In the present
context, the QP band structure, i.e., the spectrum of in
vidual electron and hole states, serves as a basis for th
vestigation of coupled electron-hole excitations and of
optical spectrum.

Note that, in principle, the energy-dependent characte
the off-diagonal matrix elements ofHnn8

QP (E), as well as the
non-Hermitian character ofS(E), could lead to non-
orthogonal QP states and thus to conceptual problems in
following studies of electron-hole excitations. In all cas
studied here, however, the non-Hermitian part ofS is small
for all relevant states, and the coupling among the LD
states only involves states with energies close to each o
The violation of orthogonality is thus very small and do
not affect the following investigation of the two-particle pr
cesses.

C. Electron-hole excitations

1. Electron-hole interaction and the Bethe-Salpeter equation

In this section, we discuss electron-hole excitatio
uN,0&→uN,S& that do not change the total number ofN elec-
trons. A rigorous approach to them is given by investigat
the two-particle Green’s function and solving its equation
motion, which is known as the Bethe-Salpeter equat
~BSE!. For a more detailed discussion of the formalism
refer to the work by Strinati~see Ref. 9!. Here we restrict
ourselves to a brief introduction and rather focus on the
tual realization of the approach within anab initio frame-
work.

Following Strinati,9 we investigate the Bethe-Salpet
equation in the form

L~12;1828!5L0~12;1828!1E d~3456!L0~14;183!

3K~35;46!L~62;528!. ~7!

L(12;1828) denotes the electron-hole correlation functi
and K(35;46) the electron-hole interaction kernel~see be-
low!. L0(12;1828)5G1(1,28)G1(2,18) corresponds to free
electron-hole pairs with the interactionK switched off. The
set of variables~1! comprises position, spin, and time coo
dinates: (1)5(x1 ,t1)5(r1 ,s1 ,t1). L depends on four time
variables, related to two creation processes~electron and
hole! and two annihilation processes. In the context of op
cal excitations, we restrict ourselves tosimultaneouscreation
and simultaneous annihilation, so only two of the four tim
variables are independent.9 Due to time homogeneity in the
absence of external fields, only the difference of these
time variables is finally relevant for Eq.~7! and is used to
carry out a one-dimensional time-energy Fourier transfo
into L(12;1828;v) where ~1!, ~2! etc., now contain only
position and spin degrees of freedom. All further discuss
will take place in this energy space.

Assuming that the one-body Green’s functionG1 is fully
given by the electron and hole quasiparticles of the syst
L0 can be written as
d.
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L0~12,1828;v!5 i(
v,c

Fcc~x1!cv* ~x18!cv~x2!cc* ~x28!

v2~Ec2Ev!

2
cv~x1!cc* ~x18!cc~x2!cv* ~x28!

v1~Ec2Ev!
G , ~8!

wherev runs over the occupied hole states andc over the
empty electron states. In the denominators, appropr
imaginary infinitesimals have to be included that are n
shown here for sake of clarity.

Assuming that the electron-hole excitations are given
long-lived transitions~in an analogous way to the quasipa
ticle approximation for the single-particle problem of Se
II B !, the correlation functionL of Eq. ~7! can be written in a
form similar to Eq.~8!:

L~12,1828;v!5 i(
S

FxS~x1 ,x18!xS* ~x28 ,x2!

v2VS

2
xS~x2 ,x28!xS* ~x18 ,x1!

v1VS
G . ~9!

In this expression,S denotes the correlated electron-hole e
citations of the system with the corresponding excitation
ergiesVS . The electron-hole amplitudes have the structu

xS~x,x8!52^N,0uc†~x8!c~x!uN,S&. ~10!

In the actual evaluation of the BSE, we transform
quantities from the continuous position variables into the
sis given by the single-particle wave functions of the elect
and hole states, which can be understood as a second q
tization procedure. The electron-hole amplitudes can thus
expressed in the form

xS~x,x8!5(
v

occ

(
c

empty

Avc
S cc~x!cv* ~x8!1Bvc

S cv~x!cc* ~x8!.

~11!

Note that in Eq.~11! one of the sums only runs over occu
pied states (v) and the other one over empty states (c).
Among the product statescc, no combinations of two occu
pied or two empty states occur. This results from the spec
form ~8! of L0 and of the BSE~7!.

With the help of Eqs.~8!, ~9!, and~11!, the BSE~7! turns
into a generalized eigenvalue problem

~Ec2Ev!Avc
S 1 (

v8c8
Kvc,v8c8

AA
~VS!Av8c8

S

1 (
v8c8

Kvc,v8c8
AB

~VS!Bv8c8
S

5VSAvc
S ,

(
v8c8

Kvc,v8c8
BA

~VS!Av8c8
S

1~Ec2Ev!Bvc
S

1 (
v8c8

Kvc,v8c8
BB

~VS!Bv8c8
S

52VSBvc
S . ~12!

The matrix elements of the electron-hole interaction kerneK
are given by
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Kvc,v8c8
AA

~VS!5 i E d~3456!cv~x4!cc* ~x3!K~35,46;VS!

3cv8
* ~x5!cc8~x6!, ~13!

Kvc,v8c8
AB

~VS!5 i E d~3456!cv~x4!cc* ~x3!K~35,46;VS!

3cv8
* ~x6!cc8~x5!, ~14!

and similar expressions forKBA andKBB.
The above equation~12! has a block-matrix structure. Th

diagonal blocks are given by the energy differences (Ec
2Ev) and the interaction matrix elementsKAA and KBB,
respectively. The off-diagonal blocks are given byKAB and
KBA. For the systems studied here, however, the off-diago
blocks are found to be small and have nearly no effect on
excitation energies.20 We have calculated the excitation e
ergies of the SiH4 molecule with and without the off-
diagonal blocks and found that the excitation energies ag
with each other to within 0.03 eV~see Sec. III C!. Albrecht
et al.13 have carefully investigated the influence of the o
diagonal blocks on the optical spectrum of bulk Si and fou
nearly no effect for the absorption spectrum.@Some other
optical properties, however, like the macroscopic dielec
constant, may be slightly influenced byKAB and KBA ~see
Ref. 13!.# Therefore we setKAB5KBA50, which decouples
Eq. ~12! into two equations forAvc

S andBvc
S separately, and

both equations yield exactly the same excitations~with the
only difference that for the solutions forB the excitation
energies have negative sign!. The positive solutions resul
from the eigenvalue problem

~Ec2Ev!Avc
S 1 (

v8c8
Kvc,v8c8

AA
~VS!Av8c8

S
5VSAvc

S . ~15!

This is equivalent to expanding the excited states in elect
hole pair configurations as

uN,S&5(
v

hole

(
c

elec

Avc
S âv

†b̂c
†uN,0&5:(

v

hole

(
c

elec

Avc
S uvc&, ~16!

whereâv
† andb̂c

† create a hole or an electron, respectively,
the many-body ground stateuN,0&. The expansion of Eq
~16! is also known as the Tamm-Dancoff approximation.14,21

The electron-hole interaction kernelK is given by the
functional derivative

K~35;46!5
d@VCoul~3!d~3,4!1S~3,4!#

dG1~6,5!
. ~17!

In order to be consistent with the QP band-structure calc
tion, we again employ theGW approximation for the self-
energy operatorS. Under the additional assumption that th
derivative of the screened interactionW with respect toG1
can be neglected,22 one obtains

K~35;46!52 id~3,4!d~52,6!v~3,6!

1 id~3,6!d~4,5!W~31,4! ~18!

5:Kx~35;46!1Kd~35;46!. ~19!
al
e

ee

d

c

n-

a-

The termKx, which results from the Coulomb potential i
Eq. ~17!, is usually called theexchange termwhile the term
Kd, which results from the screened-exchange self-energ
Eq. ~17!, has the form of adirect interaction term. We will
keep to this conventional terminology throughout the pap
The direct interaction termKd(35;46) is responsible for the
attractive nature of the electron-hole interaction and the
mation of bound electron-hole states~i.e., excitons!. The ex-
change interaction termKx(35;46), on the other hand, con
trols details of the excitation spectrum, such as the splitt
between spin-singlet and spin-triplet excitations, or t
transverse-longitudinal splitting of thes excitons in zinc-
blende-structured semiconductors. Note thatKd(35;46) in-
volves the screened Coulomb interactionW while Kx(35;46)
contains the bare Coulomb interactionv.

The matrix elements of the interaction are given by

^vcuKAA,d~VS!uv8c8&

5E dx dx8cc* ~x!cc8~x!cv~x8!cv8
* ~x8!

3
i

2pE dv e2 iv01
W~r ,r 8,v!

3F 1

VS2v2~Ec8
QP

2Ev
QP!1 i01

1
1

VS1v2~Ec
QP2Ev

QP!1 i01G ~20!

and

^vcuKAA,xuv8c8&5E dx dx8cc* ~x!cv~x!v~r ,r 8!

3cc8~x8!cv8
* ~x8!. ~21!

The matrix elements consist of six-dimensional real-sp
integrals, involving the QP electron and hole wave functio
Although the evaluation of these integrals is straightforwa
the details of the electronic system under investigation w
require specific techniques to calculate the terms~20! and
~21! ~see Secs. III and IV!.

In addition to the real-space integration, the direct int
action termKd(35;46) requires a frequency integration. W
evaluate this by expanding the screened interaction in
same plasmon-pole model which is employed in theGW part
of our approach~for details, see Ref. 5!, which can be written
as

W~r ,r 8,v!5(
l

Wl~r ,r 8!
v l

2

3S 1

v2v l1 i01
2

1

v1v l2 i01D , ~22!

wherev l denotes the plasmon frequency andWl(r ,r 8) the
spatial behavior of the plasmon model. This allows one to
carry out the frequency integration analytically:
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^vcuKAA,d~VS!uv8c8&52(
l
E dx dx8cc* ~x!cc8~x!cv~x8!cv8

* ~x8!Wl~r ,r 8!

3
v l

2 F 1

v l2„VS2~Ec8
QP

2Ev
QP!…

1
1

v l2„VS2~Ec
QP2Ev

QP!…
G . ~23!
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In many cases~e.g., in most semiconductor crystals!, the
excitationsuS& are mainly composed from electron-hole pa
configurationsuvc& whose transition energies (Ec

QP2Ev
QP)

are close to the resulting excitation energyVS , i.e., the rel-
evant differencesVS2(Ec

QP2Ev
QP) are much smaller than

the plasmon energiesv l that control the dynamics of th
screening. In such a case, Eq.~23! can be replaced by th
simple result

^vcuKAA,duv8c8&

52E dx dx8cc* ~x!cc8~x!cv~x8!

3cv8
* ~x8!W~r ,r 8,v50!, ~24!

which fully ignores the dynamical properties ofW. In other
cases, however, the differencesVS2(Ec

QP2Ev
QP) may be

larger~as, e.g., in atoms and molecules!. This happens, e.g.
if the excitonic binding energies are of the same order
magnitude as the characteristic plasmon frequenciesv l or if
the excitationsuS& are composed from free electron-ho
transitions with very different transition energies (Ec

QP

2Ev
QP). In such cases the simple result of Eq.~24! may not

hold and the electron-hole interaction has to be evaluate
in Eq. ~23!. Note that the interaction term in Eq.~23! de-
pends onVS . This poses a significant problem since it r
-

s

pa
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g
le
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quires calculating the interaction and solving the BSE s
consistently. We do this by an iterative procedure. In the fi
step, we ignore the dynamics ofW and employ static screen
ing @i.e., Kd is taken from Eq.~24!#. The BSE is solved,
yielding the excited statesuS& and a first estimate of thei
excitation energiesVS

(0) . Thereafter,Kd is calculated again
@employing VS

(0) in Eq. ~23!#. The difference between th
updatedKd and the originally usedKd,0 is taken as a pertur
bation and treated in first order, thus updatingVS ~the com-
position of the excited stateuS& is not changed!. The proce-
dure may be repeated several times untilVS reaches
convergence~typically after 2–3 iterations!.

An important issue concerns the spin structure of the
lutions of the BSE. Depending on the strength of the sp
orbit interaction in the system, two situations can occur:
the spin-orbit interaction is negligible~i.e., as compared to
the electron-hole interaction!, the single-particle states (v
and c) can be classified as spin-up states (v↑ and c↑) and
spin-down states (v↓ andc↓). ~Note that for occupied state
v, this spin corresponds to theelectronthat originally occu-
pies the state. The spin of the correspondinghole would be
the negative.! The Hilbert space of the electron-hole pai
(vc) now consists of four subspaces:v↑c↑, v↑c↓, v↓c↑,
andv↓c↓. Between these subspaces, most of the matrix
ements of Eqs.~20! and~21! are zero; in the notation of thes
subspaces the BSE Hamiltonian obtains the form
Heh5S D1Kd1Kx 0 0 Kx

0 D1Kd 0 0

0 0 D1Kd 0

Kx 0 0 D1Kd1Kx

D ~↔v↑c↑ !

~↔v↑c↓ !

~↔v↓c↑ !

~↔v↓c↓ !

, ~25!
let
be

e
the

res
e a

in
th
ro-
with D5̂(Ec–Ev). This Hamiltonian decouples into a spin
triplet class of solutions@consisting of the subspacesv↑c↓,
v↓c↑, and (1/A2)(v↑c↑1v↓c↓)#, for which the Hamil-
tonian becomesD1Kd, and a spin-singlet class of solution
@consisting of the subspace (1/A2)(v↑c↑2v↓c↓)#, for
which the Hamiltonian becomesD1Kd12Kx. The BSE can
thus be solved for singlet and triplet configurations se
rately. The spin degrees of freedom have been comple
eliminated from the remaining problem.

If the spin-orbit interaction is of the same order of ma
nitude as the electron-hole interaction or larger, the sing
particle states cannot be classified as spin-up and spin-d
-
ly

-
-

wn

states. In the electron-hole excitations, singlet and trip
configurations are mixed and the BSE Hamiltonian must
discussed including its full spin structure~see, for example,
our results for GaAs in Ref. 11!. Since this increases th
number of basis states by a factor of 4, the evaluation of
BSE becomes more difficult. More complex spin structu
are also found for open-shell systems that do not hav
spin-singlet ground state.

2. Optical spectrum

The most important measurable quantity we address
this paper is the interaction of an external light field wi
excitations in the system. This is described by the mac
scopic transverse dielectric functione(v) of the system,
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which corresponds to the current-current correlat
function.23 We calculate its imaginary parte2(v) as

e2~v!5
16pe2

v2 (
S

ulW •^0uvW uS&u2d~v2VS!, ~26!

wherelW 5AW /uAW u is the polarization vector of the light an

vW 5 i /\@H,rW# is the single-particle velocity operator~which
corresponds to the current operator!.

The careful calculation of the optical transition matrix e
ementŝ 0uvW uS& is crucial. Without the electron-hole interac
tion, the excitations are given by vertical transitions betwe
independent hole and electron states, and Eq.~26! reduces to
the well-known expression

e2
(0)~v!5

16pe2

v2 (
v,c

ulW •^vuvW uc&u2d„v2~Ec2Ev!…,

~27!

wherev ~c! denotes valence~conduction! states. One main
effect of the electron-hole interaction is the coupling of d
ferent electron-hole configurationsuvc& in the excitationsuS&
@see Eq.~16!#. Concomitantly, the optical transition matri
elements are given by

^0uvW uS&5(
v

hole

(
c

elec

Avc
S ^vuvW uc&, ~28!

i.e., by a coherent sum of the transition matrix elements
the contributing electron-hole pair configurations, includi
the coupling coefficientsAvc

S . In this context, thephasesof
the single-particle statesv andc and of the coefficientsAvc

S

are extremely important to correctly describe the interfere
effects in the matrix elements. It is therefore crucial that
phases are treated consistently in the wave functions, in
electron-hole interaction, and in the coupling coefficie
~see also the discussion in Sec. IV!.

In the calculation ofe(v), local fields, i.e., response field
of the crystal that tend to screen the electric field, play
important role. They can cause a significant reduction of
dielectric function. Within the independent-particle pictu
local fields are often included by calculating the entire
electric matrix eG,G8(v) ~with G denoting the reciprocal
lattice vectors! and evaluating the macroscopic dielect
function from the head of the inverse matrix,eG,G8

21 (v). In
the present context, however, this procedure is not neces
It has been shown by Del Sole and Fiorinoet al. that the
dielectric function as given by Eq.~26! already includes the
local-field effects due to the exchange term of the electr
hole interaction~for details, see Ref. 16!, i.e., Eq. ~26! is
fully sufficient and the entire dielectric matrixeG,G8(v)
needs not to be computed.

The calculation of the transition matrix elements^vuvW uc&
deserves particular attention when pseudopotentials are u
The current operator is given asvW 5 i @H,rW#. If the crystal
potential is a local operator, i.e., if the potential commu
with the position operator„@V(rW),rW#50…, the velocity opera-
tor can be replaced by the momentum operatorpW . In the
n
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present case of nonlocal pseudopotentials, this no lon
holds and the commutator@V(rW),rW# has to be accounted for

^vuvW uc&5^vupW 1 i @Vps,rW#uc&. ~29!

Another problem arises from the QP corrections due to
self-energy operator, which is nonlocal as well, so it does
commute with the position operator, either. Even if the Q
shifts are the same for all empty states, the self-energy
erator is nonlocal due to the different spatial properties
wave functions at different wave vectors. As was discus
by Levine and Allan,24 the QP shift between the LDA an
QP transition energy of an electron-hole pairuvc& leads to a
renormalization of the optical transition matrix element:

^vuvW uc& [QP]
ª

Ec
QP2Ev

QP

Ec
LDA2Ev

LDA ^vuvW uc& [LDA] . ~30!

The effect of this renormalization is that, taking into accou
the division byv2 in Eq. ~26!, the weight of a transitionuvc&
in e2 is not changed when the transition is shifted to high
energies by the QP correction.

In crystals, an alternative approach, which accounts
both the nonlocal pseudopotential and the QP renormal
tion effects automatically, is to calculate the optical tran
tion matix elements byk•p perturbation theory. This lead
immediately to

^vkuvauck& [QP]5
Eck

QP2Evk
QP

q E cvk~x!e2 iqr acc,k1qea
~x!dx,

~31!

with q being a small but finite shift tok in reciprocal space.
To this end, the wave functions at the shifted wave vect
k1qea (a5x,y,z) have to be calculated explicitly.

Another issue in the discussion of the dielectric functi
concerns the block-matrix structure of the BSE, as discus
in Eq. ~12!. It has been shown by Albrechtet al.13 that the
nondiagonal blocksKAB and KBA have nearly no effect on
the e2(v) spectrum of semiconductors. In addition, we ha
found that the nondiagonal blocks have nearly no effect
the excitation energies of small atomic clusters, either~see
Sec. III C!. Since in the present paper we are mainly int
ested in absorption spectra, we set these blocks to zero
only work in the subspace of positive excitation energi
Albrecht et al.13 have found, however, that the blocks d
change the macroscopic dielectric constante1(v50) by up
to 4% for Si. For a highly accurate calculation ofe1(v
50), it may thus be necessary to include the off-diago
blocks.

D. Basis sets

For the real-space representation of the single-part
wave functionscmk(r ) ~within DFT, GWA, and BSE! and of
the two-point functionse(r ,r 8), W(r ,r 8), etc.~for the GWA
and BSE!, basis sets are required. The bases for the w
functions and for two-point functions can be chosen indep
dently. The most common representation is a plane-w
expansion of all functions.3,4 Different from this, real-space
representations are used by Benedictet al. for the BSE,14 by
Rojaset al. and Riegeret al. for the GWA,25 and by van der
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Horst et al. for the BSE.15 In addition, Aryasetiawan and
Gunnarsson employ linear combination of muffin-tin orbi
~LMTO! bases for the DFT and the corresponding prod
basis for the GWA.6

In the current work, we employ basis sets of localiz
Gaussian orbitals centered at the atomic positions for b
the wave functions and for all two-point functions~for de-
tails, see Ref. 5!. For the extended crystals, the compu
tional demand is about the same for Gaussian-orbital b
sets and for plane-wave calculations. For the isolated at
and clusters, on the other hand, the use of Gaussians ca
extremely advantageous due to much smaller basis size

Note that, in the BSE, the basis is only necessary for
evaluation of the electron-hole interaction matrix elemen
The BSE itself is treated in the basis given by the sing
particle states~i.e., products of electron and hole state!,
which is independent of the basis representation of the w
functions. It is, however, also possible to address the BS
a localized basis set of, e.g., atomic orbitals~see the discus
sion by Hanke and Sham in Ref. 10!, which allows the evalu-
ations of the optical spectrum but does not easily yield in
vidual statesuS&.

III. ATOMS, MOLECULES, AND CLUSTERS

In this section, we investigate the excitation spectrum
small isolated systems since optical excitations of ato
molecules, and clusters are of great importance in laser
vices, dye chemicals, photochemical reactions, and m
other applications. Isolated systems are often described
quantum chemistry techniques such as coupled-cluster~CC!
or configuration-interaction~CI! methods. These approach
yield highly accurate results; however, they are difficult
apply to larger molecules due to their scaling behavior
O(N527), whereN is the number of electrons. Our prese
Green’s function approach (GW1BSE) reaches a high de
gree of accuracy (;0.1 eV) while offering a much bette
scaling@O(N324)#. Alternative approaches to small system
would be those based on time-dependent density-functi
theory ~TDDFT!.26,27 Before discussing some illustrative re
sults, some remarks on technical specifications are neces

A. Technical details

In the context of traditional solid-state methods, atom
clusters, and molecules require special handling due to t
spatial isolation. The most convenient approach is to
them in a supercell of sufficient size, which allows one
employ conventional techniques developed for periodic s
tems. The dependence of the results on the supercell
however, has to be checked carefully. Particular attention
to be paid to artificial Coulomb interactions between the
jects in different supercells. Already within DFT, addition
charges on the system or permanent dipoles can lead to l
range interactions that die off very slowly with respect to t
supercell size. In theGW approximation, the situation is
even worse since nonphysical dynamic dipole-dipole inter
tions between the supercells can occur even for syst
without permanent dipoles. Therefore the convergence
GW calculations for atoms and clusters with respect to
supercell size can be very slow~see, e.g., the discussion b
Onidaet al. in Ref. 12!.
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Following Onida et al.,12 we employ a natural way to
overcome these problems: we truncate the Coulomb inte
tion v(r ,r 8)5e2/ur2r 8u in real space at a radiusr c , i.e.,
v(r ,r 8) is replaced by vc(r ,r 8)5(e2/ur2r 8u)Q(r c2ur
2r 8u). The truncation radiusr c has to be chosen properly. I
order to eliminate interaction between systems in neighb
ing supercells,r c must be smaller than the supercell dime
sion R minus the maximum diameterdmax of the molecule:
r c,R2dmax. On the other hand,r c must be larger thandmax
itself in order not to truncate the interaction within the sy
tem: r c.dmax. This requires that the supercell be at lea
twice as large in every direction as the system itself:R
.2dmax. In reciprocal space the truncation of the Coulom
interaction simply leads tovc(q)5(4pe2/V)(1/q2)@1
2cos(qrc)#. For q→0 this expression has the finite lim
vc(0)5(4pe2/
V)(r c

2/2).
No k-point sampling is required for the wave functions

finite systems. In theGW calculation, however, the evalua
tion of the self-energy requires a Coulomb-interaction in
gration, which is most conveniently carried out in reciproc
space on a grid. Depending on the required grid density
may be necessary to sample the Brillouin zone with m
than just onek point. However, if the Coulomb interaction i
truncated and thus smoothed in reciprocal space, and if
supercell is sufficiently large, the sampling can be restric
to only theG point of each Brillouin zone. The other param
eter of the sampling is the maximum radius in recipro
space, or the corresponding cutoff energy. This is determi
by the degree of localization of the electron and hole sta

As mentioned in Sec. II D, the matrix elements of t
electron-hole interaction are calculated with Gaussian-orb
basis sets both for the wave functions and for the two-po
~screened or unscreened! interaction kernel. Due to the sma
number of basis functions involved, these calculations
much faster than within a plane-wave basis set. Neverthe
the limited number of basis functions can cause slight in
curacies, in particular for the unscreened contribution to
diagonal matrix elements@(vc)5(v8c8)# of the electron-
hole interaction. Since these contributions account for m
of the interaction, a very accurate evaluation is required h
This is easily achieved by a plane-wave summation in rec
rocal space, where the Coulomb interaction is diagonal:

E dx dx8cc* ~x!cc~x!vc~r ,r 8!cv~x8!cv* ~x8!

5(
G

rc,c~G!vc~G!rv,v* ~G!, ~32!

whererm,n(G)5*dx cm* (x)cn(x)e2 iG•r is the spatial Fou-
rier transform of a product of two wave functions. A simila
formula holds for the exchange term of the electron-h
interaction. The large sum overG vectors is very demanding
However, since we do this only for the bare Coulomb int
action ~which is diagonal in reciprocal space! and only for
the diagonal matrix elements ofKeh @(vc)5(v8c8)#, the
computational cost is affordable. All off-diagonal matrix e
ements ofKeh, as well as the contribution of the screening
Keh,d, are calculated with the Gaussian-orbital representa
of the interaction~for details, see Ref. 5!.
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B. Noble-gas atoms

The easiest systems to study are atoms.GW calculations
for atoms have already been presented by Shirley
Martin.28 The excitation spectra of atoms can be measu
with extreme accuracy, allowing for a very careful check
the reliability of our method. As an illustration, Table
shows calculated results for the noble-gas atoms He, Ne,
Ar in comparison with measured data.29 The ionization po-
tential I is given by the negative of the QP energy of t
highest occupied atomic level (1s, 2p, and 3p, respec-
tively!. The excitation energies refer to the transitions 1s2

→1s12s1 ~He!, . . . 2p6→2p53s1 ~Ne!, and . . . 3p6

→3p54s1 ~Ar!, respectively. These excitations occur both
spin-singlet and as spin-triplet transitions. The excitation
ergies of the spin-singlet transitions are higher since t
include the repulsive exchange term in the electron-hole
teraction. For all ionization and excitation energies, our
sults show very good agreement with the measured data.
remaining differences are in the order of only 0.1 eV, wh
we consider the general accuracy available within the G
1BSE method.

C. Molecules

We take SiH4 as an example to carefully discuss a numb
of details in the calculation of molecular spectra. This d
cussion applies in a very general way to many other syste
We focus on the following quantities: the ionization potent
I, the electron affinityA, the lowest spin-singlet and -triple
excitation energiesES and ET and the corresponding exc
tonic binding energies~i.e., the difference betweenES ~or
ET) and the QP gap,Egap

QP5ELUMO
QP 2EHOMO

QP ). The results are
compiled in Table II.

The first column contains the LDA highest occupied m
lecular orbital ~HOMO! and lowest unoccupied molecula
orbital ~LUMO! energies ~Kohn-Sham eigenvalues!. The
HOMO-LUMO gap amounts to 7.85 eV. The second colum
contains data that have been calculated within GW1BSE,
but with the screening set to zero~i.e., W[v). This is
equivalent to the Hartree-Fock~HF! approximation for the
self-energy operator. Compared to the LDA data, the HOM
state is significantly lowered~by more than 4 eV! while the

TABLE I. Calculated ionization energiesI and first neutral ex-
citation energies~eV! (ES for singlet andET for triplet excitations!
for various noble-gas atoms~in eV!, compared with experimenta
data from Ref. 29.

This Expt.
work ~Ref. 29!

He: I 24.68 24.586
ES 20.75 20.615
ET 19.81 19.818

Ne: I 21.47 21.564
ES 16.95 16.848
ET 16.71 16.668

Ar: I 15.94 15.759
ES 11.99 11.827
ET 11.76 11.631
d
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LUMO state is raised by 2 eV. The HF QP gap amounts
14.5 eV. The electron-hole excitation energies, on the ot
hand, are 8.82 eV and 7.26 eV for the lowest spin-singlet
-triplet transition, respectively, which is in the order of ma
nitude of the LDA HOMO-LUMO gap. The excitonic bind
ing energies~defined as the difference between the excitat
energy and the QP gap! of 5.6 eV and 7.2 eV are very large
compared to crystalline systems. This is a consequenc
the spatial confinement, which enhances the overlap betw
the electron and hole wave functions and thus the interac
between them.

The third column shows the corresponding results w
the screening included in the self-energy operator and in
electron-hole interaction. Due to the screening, the HOMO
raised by 0.3 eV and the LUMO lowered by 0.4 eV. Th
excitonic binding energies are reduced by 0.3–0.5 eV. Th
modifications are much less pronounced than in crystal
semiconductors, where the screening changes the QP e
gies by several eV. This is due to the much weaker dielec
screening in small molecules. Nevertheless, the chan
~several tenths of an eV! are significant, i.e., to obtain accu
rate results it is crucial to correctly include the screen
effects, as it is done by theGW self-energy operator.

Note that for the second and third column, the QP sta
were taken to be those of the LDA wave functions and o
the diagonal terms of (S2Vxc)nn8 were examined@cf. Eq.
~5!#. In the small systems studied here, however, the
wave functions of the HOMO and LUMO states and th
energies must be investigated more carefully. This is sho

FIG. 1. Illustration of a typical single-particle spectrum an
wave functions in atoms and molecules, as resulting from LDA a
GW calculations~see text!. ~a! indicates LDA,~b! indicates first-
order perturbative GWA@see Eq.~5!#, and~c! refers to full diago-
nalization of theGW Hamiltonian@see Eq.~6!#.

TABLE II. Calculated HOMO energy (5̂ negative of the ion-

ization energy!, LUMO energy (5̂ negative of the electron affin
ity!, lowest excitation energies (ES for singlet,ET for triplet exci-
tations!, and excitonic binding energies (EB) of SiH4 ~see text!, all
in eV. The experimental data are from Ref. 30.

LDA HF GWA/BSE GWA/BSE Expt.
(S2Vxc)nn8 diag. diag. full

HOMO 28.42 212.98 212.69 212.69 212.6
LUMO 20.57 1.49 1.10 0.27
QP gap 7.85 14.47 13.79 12.96

ES 8.82 8.49 9.16 8.8
EB,S 5.65 5.30 3.80
ET 7.26 7.12 8.51
EB,T 7.21 6.67 4.45



in

s

b-
O

O
th
on
A

o
g

s
V
is
in

tin
th
t i
ns
e
o

ta
th
un
or
ar

ed
er
o
d
ly

g
il
o

n
O
A
ef
al
-
re

fe

Q
o
hi
th
a

n-
g

e
ies
col-
on
le
of

QP
nic
ns
ing
e-
nt.
for

xci-

e
atic
rate
to

The
rba-

out

ave
st-
d.
ith
st
.
of
is
ys-
en-
ck-

er,
her

its

c-
ns

PRB 62 4935ELECTRON-HOLE EXCITATIONS AND OPTICAL . . .
in column 4 of Table II and is schematically illustrated
Fig. 1. Within LDA @see panel~a!#, the LUMO energy is
below the vacuum level ([0 eV), i.e., the state is bound. It
wave function@indicated in panel~a!# is that of a localized,
bound state. Within GWA, however, the LUMO state o
serves a strongly positive QP shift that pushes the LUM
stateabovethe vacuum level@see panel~b!#. For SiH4, the
first-order perturbation evaluation of (S2Vxc) @Eq. ~5!#
yields a QP correction of 1.7 eV, resulting in a QP LUM
energy of 1.10 eV. Being above the vacuum level,
LUMO state is no longer bound. Therefore its wave functi
should be more delocalized than that of the original LD
LUMO state. This tendency of delocalization@shown in
panel~c!# is described by the off-diagonal matrix elements
(S2Vxc) that control the mixing of the states when goin
from LDA to GWA @cf. Eq. ~6!#. The LUMO state become
more delocalized while its energy is reduced to 0.27 e
Note that in principle, if a bound empty state does not ex
the lowest-energy state should have zero energy and be
nitely delocalized. Due to the finite basis set in represen
the wave functions, however, an infinite delocalization of
LUMO is not possible and the energy remains positive. I
also interesting to note that the mixing of wave functio
when including (S2Vxc) only affects the empty states. Th
occupied states remain nearly unchanged, i.e., the
diagonal matrix elements of (S2Vxc) among the occupied
states, as well as those between occupied and empty s
are very close to zero. This is related to the fact that
states are correctly described as bound, localized wave f
tions already within LDA. We have found similar behavi
in many molecules, i.e., the occupied wave functions
described correctly by LDA while the LUMO state is~physi-
cally incorrectly! given by a bound state that is then turn
into an unbound, delocalized state by the self-energy op
tor. Note that similar modifications could, in principle, als
occur among the occupied states if they were incorrectly
scribed by LDA. This could happen, e.g., in more strong
correlated systems like transition metal oxides.

The positive energy of the LUMO state~i.e., negative
value of the electron affinity! means that a negative chargin
of the molecule is unfavorable; an additional electron w
not be bound but will spontaneously separate from the m
ecule. In fact, to our knowledge, SiH4

2 ions have never bee
observed in experiment. This situation, i.e., that the LUM
state is bound in the LDA spectrum but unbound in GW
occurs in many atoms and molecules. Therefore, a car
calculation of its wave function, including the off-diagon
matrix elements of (S2Vxc), is mandatory. We note in pass
ing that the unbound character of the LUMO state also
sults from change in self-consistent field (DSCF) calcula-
tions within LDA total-energy approaches.

The delocalization of the empty states has a strong ef
on the electron-hole interaction~see column 4 of Table II!.
Since the interaction depends on the overlap between the
states, the delocalizationreducesthe interaction and leads t
smaller excitonic binding energies than before. In fact, t
overcompensates the lowering of the empty states by
delocalization, such that the resulting excitation energies
higher than before. This holds in particular for the spi
triplet excitations, thus reducing the singlet-triplet splittin
of the lowest excitation in SiH4 from 1.37 eV to 0.65 eV.
e
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In Table III the effects of various simplifications of th
electron-hole interaction kernel on the excitation energ
and excitonic binding energies are discussed. In the first
umn, only the diagonal matrix elements of the interacti
(v5v8 andc5c8) are taken into account. The electron-ho
excitations are thus given by the free electron-hole pairs
the molecules, and the excitation energy is given by the
gap minus the expectation value of the interaction. Excito
coupling between different electron-hole pair configuratio
is completely neglected. In the second column this coupl
is included by taking the off-diagonal matrix elements b
tween the electron-hole pair configurations into accou
This lowers the excitation energies by as much as 0.7 eV
the triplet state, thus demonstrating the importance of e
tonic coupling for obtaining an accurate spectrum.

For the first and second columns of Table III, th
electron-hole interaction has been calculated from st
screening. As discussed in Sec. II C, this may not be accu
enough if the excitonic binding energies are comparable
the characteristic plasmon frequencies of the system.
dynamics of the screening can be incorporated pertu
tively. The results are displayed in the third column~which is
identical to the fourth column of Table II!. It turns out that
dynamic screening lowers the excitation energies by ab
0.1 eV.

Up to now, the off-diagonal blocksKA,B and KB,A that
couple negative and positive excitation frequencies h
been ignored. In column 4 of Table III, we show the lowe
energy excitations with the off-diagonal blocks include
The data are extremely similar to those of column 3, w
very small differences in the order of 0.01 eV. For mo
practical purposes,KA,B and KB,A can indeed be ignored
Albrecht et al.13 have found that the absorption spectrum
bulk Si is also insensitive to the off-diagonal blocks. Th
gives us confidence that, at least for weakly correlated s
tems like Si or other semiconductors, accurate excitation
ergies and optical spectra can be obtained within the blo
diagonal approximation. It is important to note, howev
that this behavior may not be true for other methods. In ot
methods like, e.g., TDDFT, the interaction kernelKe,h may
describe a different type of interaction Hamiltonian and
off-diagonal blocks may play an important role.27

D. Semiconductor clusters

Starting from the SiH4 molecule discussed in the last se
tion, we have investigated the behavior of optical excitatio
of semiconductor clusters of increasing size.11 We present
results for clusters ranging from SiH4 to Si14H20, with diam-

TABLE III. Excitation energies of SiH4, calculated with differ-
ent approximations to the electron-hole interaction~see text!.

KA,A diag. full full full
KA,B

ª0 ª0 ª0 included
Screening static static dyn. dyn.

ES 9.65 9.24 9.16 9.16
EB,S 3.31 3.72 3.80 3.80
ET 9.25 8.64 8.51 8.48
EB,T 3.71 4.32 4.45 4.48



e
to
n
ie
a
la
th

th
en

xi
-

or

eV
er
i.
e
un
i

s

in
ta
e
t

e
pl
a

-
e
x-
an-
m,
gap
ted

he
ifi-
ing

V,
f
a.

ee-
ec-
ed-
ls.
mi-
tors
me
ave

and
sm
ticle

In
m,
le
o

ag-
is

the
ge
e of
eads
di-
n

ow

ed

4936 PRB 62MICHAEL ROHLFING AND STEVEN G. LOUIE
eters from 3 Å to 9 Å. The clusters we study in this pap
can be regarded as the molecular limit of semiconduc
nanostructures that have recently attracted much attentio31

The analysis of many-body effects in the systems stud
here, together with respective data on periodic crystals,
lows for a more detailed understanding of electronic corre
tion in the entire range of semiconductor systems from
molecular to the nanoscale and macroscopic regime.

Figure 2 shows the LDA andGW QP energies of the
HOMO state of each cluster. The size dependence of
LDA energies is mostly given by the quantum confinem
effect. In the limit of infinitely large clusters, the LDA
HOMO energy should reach the LDA valence-band ma
mum ~VBM ! of H-terminated Si surfaces, for which we ob
tain –4.5 eV with respect to the vacuum level. The QP c
rections of the HOMO of our clusters~ranging from 4.2 eV
to 2.2 eV! are much larger than the QP correction of 0.4
of the VBM of bulk Si. This results from the much weak
dielectric screening of the clusters as compared to bulk S
the limit of infinitely large clusters, the QP correction of th
HOMO should be 0.4 eV and its QP energy should amo
to –4.9 eV. For all clusters shown here, the LUMO state
bound in LDA but unbound in GWA~see the discussion
above!. For N→`, the LUMO should reach the bulk value
of –4.0 eV in LDA and –3.7 eV in GWA.

Figure 3 shows the excitation energies of the lowest sp
triplet, spin-singlet, and dipole-allowed spin-singlet exci
tions. All three transition energies exhibit the expect
quantum-confinement behavior, i.e., they decrease as
number of Si atoms in the clusters increases. For infinit
large systems, the lowest-energy spin-singlet and -tri
states should converge towards the fundamental bulk b

FIG. 2. HOMO and LUMO energies of SimHn clusters (m51 to
14!, calculated as LDA Kohn-Sham eigenvalues (s) and within
GWA (d). The triangles (n) denote ionization energies measur
by Itoh et al. ~Ref. 30!.

FIG. 3. Excitation energies of the lowest spin-triplet (nup),
spin-singlet (s), and dipole-allowed spin-singlet (d) excitations
of the SimHn clusters. The experimental data (h) are from Ref. 30.
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gap of Si~1.17 eV!, corrected for the excitonic binding en
ergy of 0.015 eV. The singlet-triplet splitting, which is on th
order of 1 eV for the small clusters, nearly vanishes in e
tended systems. The lowest dipole-allowed spin-singlet tr
sition that is relevant for the onset of the optical spectru
should not converge towards the fundamental bulk band
of Si, but towards the minimum direct band gap, correc
for excitonic effects, which is at about 3.4 eV~see Sec.
IV B !. Figure 3 shows that the difference between t
lowest-energy spin-singlet transition and the first sign
cantly dipole-allowed transition increases with increas
cluster size. The optical absorption spectra of SiH4 and of
Si2H6 have been measured by Itohet al.30 The lowest-energy
dipole-allowed transition energies are 8.8 eV and 7.6 e
respectively~included in Fig. 3!. Our calculated results o
9.2 eV and 7.6 eV are in good agreement with these dat

IV. PERIODIC CRYSTALS: SEMICONDUCTORS
AND INSULATORS

In the previous section, the extreme case of small, thr
dimensionally confined systems was examined. In this s
tion we investigate the other extreme case of condens
matter materials, i.e., infinitely extended periodic crysta
As illustrations we discuss the optical spectra of the se
conductors GaAs and Si, as well as those of the insula
LiF and LiCl. Before we turn to these results, however, so
technical issues related to the periodicity of the crystals h
to be addressed.

A. Technical details

In periodic systems, such as crystals, crystal surfaces,
polymer chains, some further specifications of the formali
presented in Sec. II C are necessary. The single-par
states are now given asucnk& with the wave vectork in the
first Brillouin zone. The two-particle excitations of Eq.~16!
are now given as

uN,S&5(
k

(
v

hole

(
c

elec

Avck
S âvk

† b̂c,k1Q
† uN,0&

5:(
k

(
v

hole

(
c

elec

Avc
S uvck&, ~33!

whereQ is the total momentum of the two-particle state.
analogy to Bloch’s theorem for the single-particle proble
Q is a well-defined quantum number for the two-partic
states, and the excitations can be classified with respect tQ.
In an optical excitation process,Q is the momentum of the
photon that is absorbed by the two-particle state. The m
nitude of the photon momentum is usually very small and
thus unimportant in the present context. Its direction, on
other hand, is significant for the nonanalytical long-ran
exchange term of the electron-hole interaction. In the cas
the degenerate valence bands in cubic crystals, e.g., it l
to the splitting of the excitons into transverse and longitu
nal modes. NonzeroQ vectors are relevant for bound excito
states in materials with an indirect fundamental gap.

The electron-hole interaction matrix elements are n
given by
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^vckuKeh,duv8c8k8&52E dx dx8cc,k1Q* ~x!cc8,k81Q~x!

3W~r ,r 8!cvk~x8!cv8k8
* ~x8! ~34!

~neglecting the frequency dependence ofW) and

^vckuKeh,xuv8c8k8&5E dx dx8cc,k1Q* ~x!cvk~x!v~r ,r 8!

3cc8,k81Q~x8!cv8k8
* ~x8!. ~35!

In semiconductor crystals, several occupied and unoccu
bandsv and c, as well as several hundred wave vectorsk,
i.e., up to 104 basis functions, are necessary to represent
transitionsuS& relevant to the optical spectrum. The determ
nation of the;108 matrix elements of the electron-hole in
teraction, each of which requires a multidimensional integ
tion given by Eqs.~34! and ~35!, forms a major bottleneck
In order to make the calculations feasible, we have de
oped a novel interpolation scheme with respect to recipro
space vectors~see Fig. 4!. The main idea is to calculate th
interaction only for some points (k̃,k̃8) on a coarse grid in
reciprocal space@indicated as (d) in Fig. 4#, and then to
interpolate onto a much finer grid$(k,k8)% required for the
BSE @indicated as (3)]. In this interpolation, particular at
tention has to be paid to the divergent behavior of the C
lomb interaction in the limitk→k8 and to the phases of th
wave functions~see below!.

The general idea of the interpolation scheme is the
lowing. Let f (r ,r 8) be a lattice-periodic two-point function
~later, this will be the bare and screened Coulomb inter
tion!. f can be written in terms of its Fourier transform,

f ~r ,r 8!5 (
qGG8

e2 i (q1G)•r f G,G8~q!ei (q1G8)•r8

5:(
q

e2 iq•r f q~r ,r 8!eiq•r8. ~36!

FIG. 4. Illustration of the interpolation scheme of the electro
hole interaction in reciprocal space. The dots (d) denote combina-

tions of wave vectors (k̃,k̃8) for which the interaction matrix ele
ments arecalculated. The crosses (3) denote combinations o
wave vectors (k,k8) for which the matrix elements are obtained b
the interpolation scheme of Eq.~47!. Thereafter, the BSE is solve
on the grid$3%. Note that each of the two axes represents a thr
dimensional reciprocal space.
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f q(r ,r 8) is a double-periodic function, i.e., it is lattice
periodic in bothr and r 8 separately. Using Eq.~36!, a six-
dimensional integral off in the structure of, e.g., Eq.~34!, is
calculated as

^vck̃u f uv8c8k̃8&

[E dx dx8cck̃
* ~x!cc8k̃8~x! f ~r ,r 8!cv k̃~x8!cv8k̃8

* ~x8!

5E dx dx8uck̃
* ~x!uc8k̃8~x! f q̃~r ,r 8!uv k̃~x8!uv8k̃8

* ~x8!

5:^vck̃u f q̃uv8c8k̃8& ~37!

where unk̃(x)5e2 i k̃•rcnk̃(x) is the lattice-periodic part of
the wave functionn at wave vectork̃. Of the sum overq in
Eq. ~36!, only q̃5( k̃82 k̃) contributes to Eq.~37!.

After calculating such matrix elements on the coarse g

$k̃,k̃8% ~indicated schematically as (d) in Fig. 4!, the main
problem remains in evaluating the corresponding matrix
ements for a pair of wave vectors (k,k8) different from
( k̃,k̃8). This requires an appropriate interpolation scheme
the six-dimensional reciprocal space, which can be done
follows.

For any given wave vectork̃, the lattice-periodic func-
tions uñk̃(x) form a complete set in which any other lattic
periodic function can be expanded. This holds in particu
for the lattice-periodic partu of a wave functionn at another
wave vectork:

unk~x!5(
ñ

dnk
ñk̃uñk̃~x!. ~38!

By applying the operation*dx um̃k̃
* (x) to Eq. ~38! and using

the orthonormality of the wave functions atk̃, one obtains

that the coefficientsdnk
ñk̃ are given as

dnk
ñk̃5E dx uñk̃

* ~x!unk~x!. ~39!

By employing Eq.~38!, a matrix element̂vcku f uv8c8k8& of
Eq. ~37! can be obtained as

^vcku f uv8c8k8&

5 (
ñ1ñ2ñ3ñ4

dvk
ñ1k̃

~dck
ñ2k̃

!* ~d
v8k8

ñ3k̃8
!* d

c8k8

ñ4k̃8
^ñ1ñ2k̃u f quñ3ñ4k̃8&

' (
ñ1ñ2ñ3ñ4

dvk
ñ1k̃

~dck
ñ2k̃

!* ~d
v8k8

ñ3k̃8
!* d

c8k8

ñ4k̃8
^ñ1ñ2k̃u f q̃uñ3ñ4k̃8&.

~40!

The step from the first to the second line in Eq.~40! is an
approximation sinceq5(k82k) is replaced byq̃5( k̃82 k̃).
Several issues must be discussed in the context of Eq.~40!.
The transformation is only exact if the four summations r
over all indices (1, . . . ,̀ ) and if q5q̃ ~or if f q5 f q̃). For
practical purposes, however, the summations must be t
cated to a very small subset of states, and the set ofq̃ vectors

-

-
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can only be finite, sof q5 f q̃ is usually not exactly valid. For
f q being the~screened or bare! Coulomb interaction, this
poses a severe problem. This can best be demonstrate
expanding the screened Coulomb interaction in terms o
Fourier transform:

W~r ,r 8!5 (
qGG8

e2 i (q1G)•r
eG,G8

21
~q!

uq1Guuq1G8u
ei (q1G8)•r8.

~41!

Some terms in Eq.~41!, i.e., the ones withG50 and/orG8
50, behave as 1/q2 and 1/q. Therefore the matrix element
of Kd depend very sensitively on the reciprocal distanceq, in
particular whenq is small, i.e., the conditionf q' f q̃ is not
fulfilled. An interpolation scheme directly forKd would thus
be very unstable and converge extremely slowly with resp
to the density of the grid$q̃%.

Instead, we decomposeKd into three contributions, moti-
vated by the Fourier series forW. Corresponding to Eq.~41!,
the matrix elements ofKd are given as double summation
over G and G8. For smallq, the ‘‘head’’ (G5G850) and
the ‘‘wings’’ ( G50 or G850) of W behave as 1/q2 and 1/q,
respectively, whereas all other matrix elements ofW remain
finite. Concomitantly the matrix elements ofKd can be writ-
ten as

^vckuKeh,duv8c8k8&5
avck,v8c8k8

q2
1

bvck,v8c8k8
q

1cvck,v8c8k8 ,

~42!

with

avck,v8c8k85Mcc8
0

~k1Q,q!e0,0
21~q!@M vv8

0
~k,q!#* , ~43!

bvck,v8c8k85(
G

H Mcc8
G

~k1Q,q!
eG,0

21~q!

uq1Gu @M vv8
0

~k,q!#*

1Mcc8
0

~k1Q,q!
e0,G

21~q!

uq1Gu @M vv8
G

~k,q!#* J ,

~44!

cvck,v8c8k85 (
GÞ0

(
G8Þ0

Mcc8
G

~k1Q,q!
eG,0

21~q!

uq1Guuq1G8u

3@M vv8
G8 ~k,q!#* . ~45!

The matrix elementsMmn
G (k,q) are calculated as

Mmn
G ~k,q!5E dx cm,k* ~x!e2 i (q1G)•rcn,k1q~x!. ~46!

The coefficientsa, b, and c fulfill the requirement that
their underlying integration kernels are doubly lattic
periodic~see above!. They can thus be calculated employin
the interpolation scheme of Eq.~40!. In particular,a, b, and
c vary only weakly with respect tok and k8. Furthermore,
the wave functionsunk also vary only fairly weakly with
respect tok ~apart from sudden band crossing; see belo!.
To be more precise, a stateunk at k can be expressed wit
high accuracy with only a few statesñ at k̃. Therefore, the
by
ts

ct

band summation of Eq.~40! can be restricted to very few
bands without losing significant accuracy. In the actual c
culations, we restrictn1 and n3 to the same set of valenc
bands andn2 andn4 to the same set of conduction bands th
are finally included in the BSE:

avck,v8c8k85 (
ṽ c̃ṽ8c̃8

dvk
ṽ k̃~dck

c̃k̃!* ~dv8k8
ṽ8k̃8!* dc8k8

c̃8k̃8aṽ c̃k̃,ṽ8c̃8k̃8

~47!

and the same expression for the coefficientsb andc.
The exchange interaction matrix elementsKx of Eq. ~35!

do not suffer from the divergent behavior of the Coulom
interaction. Since the occupied (v) and empty~c! states are
orthogonal, the integralsM vc

0 (k,q) in Eq. ~35! are propor-
tional to q for q→0, thus leading to a finite value of th
interaction matrix elements. Therefore our interpolati
scheme applies directly toKx, and a decomposition into
some coefficients~as forKd) is not necessary.

The decomposition ofKd into the coefficientsa, b, andc
was motivated by the corresponding plane-wave represe
tion of the screened Coulomb interaction@Eq. ~41!#, consist-
ing of head, wings, and body. In our Gaussian-orbital ba
set, on the other hand, the structure ofW is more complex. A
decomposition analogous to the one described above
nonetheless, possible and leads to the same decompositi
Keh,d into the three contributionsa, b, andc as denoted in
Eq. ~42!.

A very important issue is that the transformation Eq.~40!
automatically takes care of the phases of the wave funct
cnk . From Eq.~28! it becomes obvious that the phases a
crucial to describe constructive and destructive cohere
correctly. To be more precise, the phases of the wave fu
tions ~which are totally arbitrary! must be treated consis
tently in the optical oscillator strengthand in the electron-
hole interaction matrix elements. Since a numeri
diagonalization procedure of the single-particle Hamilton
will yield random phases for the single-particle wave fun
tions, the evaluation of Eq.~47! is a definitive way of treat-
ing the phases in a controlled way when constructing
interaction matrix elements by interpolation. Otherwise t
phase information will not be transferred to the optical tra
sition matrix elements correctly and the optical spectrum w
be more or less given by the random-phase approxima
~apart from some minor energy shifts due to the attract
nature of the interaction!. To faciliate the computations, it is
helpful to define the phases of the single-particle wave fu
tions in a unique way that is kept throughout the calculatio
One possibility is to require that the sum of the basis-
coefficients of the wave function be real.

A concrete example of the interpolation scheme is p
sented in Fig. 5. The figure shows the real part of a ma
element (v5v8545highest valence band,c5c855
5 lowest conduction band! of the direct term of the electron
hole interaction of GaAs~multiplied by q2 for sake of clar-
ity!. The vectorsk, k8, k̃, and k̃8, and q are indicated in
panel~a!. The wave vectorsk andk8 start atA and run along
two different directions,@100# and@010#. The difference vec-
tor q increases from 0 to 0.7(2p/a). Panel~b! shows three
results of the matrix element, based on three starting po
of the interpolation scheme@( k̃,k̃8)5(A,A8),(B,B8), and
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(C,C8)#. The dots indicate the exact result. The solid cu
shows the interpolation based on (k̃,k̃8)5(A,A8). For q

50 ~i.e., k5 k̃5A and k85 k̃85A8), it is by construction
identical to the exact result, which is given by 1/e`50.092.
At the other points this interpolation agrees nicely with t
exact data, but shows some deviations at largerq. The short-

FIG. 5. Illustration of the interpolation scheme of the electro
hole interaction, for the example of the matrix eleme
^45kuKeh,du45k8& ~real part only! between the highest valence ban
(54) and the lowest conduction band (55) of bulk GaAs. ~a!

Geometric arrangement of the points and vectorsk, k8, k̃, andk̃8 in
the Brillouin zone. All points are in a~001! plane, in units of 2p/a.
The capital letters denote the pointsA5A85(23/4,21/4,21/4),
B5(21/2,21/4,21/4), C5(21/4,21/4,21/4), B85(23/4,0,
21/4), andC85(23/4,1/4,21/4). ~b! Real part of the coefficien
a45k,45k8 , plotted againstuqu with q5(k82k). k runs fromA to C
while k8 runs fromA8 to C8. The three curves ( , - - - -, and

) denote three interpolations fora45k,45k8 , that are based on

the starting points (k̃5A,k̃85A8), (k̃5B,k̃85B8), and (k̃5C,k̃8
5C8), respectively. The summations in Eq.~47! are carried out
with four valence bands and six conduction bands. The dotted c
denotes the exact result.~c! Same as panel~b!, but with different
summations in Eq.~47!. The solid curve is the same as in~b!. The
dashed curve is calculated with the highest valence band (54) and
the lowest conduction band (55) only. Both interpolations are

based on the starting points (k̃5A,k̃85A8).
e

dashed curve is constructed from the starting point (k̃,k̃8)
5(B,B8). At this point, it coincides with the exact data
while there are significant deviations at wave vectors fart
away from (B,B8). The long-dashed curve is based on t
interaction matrix elements calculated at (k̃,k̃8)5(C,C8).
Also for this curve, deviations appear farther away from
starting point. The main issue, however, is that all curv
reproduce the exact result excellently in the vicinity of t
respective starting point. Thus a coarse mesh of star
points finally leads to correct values for the electron-h
interaction in the entire reciprocal space.

An interesting and important feature is that all three int
polation curves correctly describe the ‘‘step’’ in the intera
tion atq'0.5(2p/a), which results from a band crossing o
the two highest valence bands of GaAs. At this point,
highest valence state rapidly changes its character and w
function. In the interpolation scheme, this effect is only r
produced because the summation in Eq.~47! includes infor-
mation about the valence states other thanv5v854. The
importance of this summation is demonstrated explicitly
panel~c!. The solid curve in this panel, which is the same
in panel~b!, is calculated by including all four valence band
and the six lowest conduction bands in the summation of
~47!. For the dashed curve, on the other hand, only the te
( ṽ5v,ṽ85v8,c̃5c,c̃85c8) is kept, i.e., the mixing of the
wave functions is fully ignored. Panel~c! shows that this
unrealistic interpolation, which assumes that the wave fu
tion unk(x) of a given bandn is the same for all wave vector
k, can be well justified in the vicinity of the starting point
but can lead to totally wrong results for the electron-ho
interaction for wave vectors farther away.

For periodic crystals, the BSE is an eigenvalue problem
infinite dimensionality,

~Ec,k1Q
QP 2Evk

QP!Avck
S

1E
VBZ

d3k8 (
v8,c8

^vckuKehuv8c8k8&Av8c8k8
S

5VSAvck
S .

~48!

The integration*d3k8 ranges over the first Brillouin zone
For a numerical evaluation, the continuous integration w
respect tok8 has to be replaced by some discrete scheme
finite dimensionality. The easiest approach is to divide
Brillouin zone into an appropriate grid~uniform or nonuni-
form! of subvolumesVi , represented by one pointk i inside,
and to assume that~i! the coefficientsAvck

S can be repre-
sented by an average valueAvcki

S in Vi , taken atk i , and that

~ii ! the same holds for the band-structure energy differen
(Eck

QP2Ev,k1Q
QP ). In the case of a grid with equal subvolume

Vi[V for all i, this leads to the discrete eigenvalue proble

~Ec,ki1Q
QP 2Evki

QP!Avcki

S

1(
i 8

(
v8,c8

1

VEVi

d3kE
Vi8

d3k8^vckuKehuv8c8k8&Av8c8k
i8

S

5VSAvcki

S . ~49!
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The integration of the electron-hole interaction with resp
to k and k8 requires special care due to the divergence
k→k8 @cf. Eq. ~42!#. In particular, a careful six-dimensiona
integration of the kernels 1/uk2k8u2 and 1/uk2k8u over the
product volumeViVi8 is required. We do this by numerica
integration on different subgrids and extrapolating to z
grid spacing. In many situations, it may be desirable to
nonuniformk grids to sample sensitive regions of the Br
louin zone with increased accuracy, or to use differenk
grids for different band-band combinations (v,c) ~for in-
stance, if some bands are highly dispersive and others
not!. Both extensions of the approach are possible but
quire additional considerations because the basis s
uvck i& will have different weights (;1/Vi) in the excitations
uS&. In fact, the configurationsuvck i& then form a basis tha
is still orthogonal but no longer normalized. Concomitant
the BSE is no longer given by a standard eigenvalue prob
but by a generalized eigenvalue problem instead, with
overlap matrixSii 85d i i 8Vi that is still diagonal but not unity

B. Semiconductors: GaAs and Si

The focus of this section is on the resonant optical sp
trum of semiconductors above the fundamental gap ene
Eg , up to a maximum energy of severalEg .11 Similar stud-
ies were carried out by Albrechtet al.13 and by Benedict
et al.14 Bound excitons belowEg are not considered here
We have discussed the bound excitons in GaAs in Ref.

The evaluation of the BSE was carried out with the th
highest valence bands and the six lowest conduction ba
The electron-hole interaction was calculated for 32 wa
vectors k̃ in the first Brillouin zone, i.e., at the point

( 1
4 , 1

4 , 1
4 )(2p/a) and (3

4 , 1
4 , 1

4 )(2p/a) and the corresponding
stars. Thereafter, the interpolation scheme of Eqs.~42! and
~47! was employed to obtain the interaction matrix eleme
for 500 k points in the Brillouin zone. These 500 poin
form a cubic grid with a mesh distance of 0.2(2p/a). One
important issue is that the grid is not symmetric with resp
to the Brillouin zone. Instead, it is slightly shifted in a dire
tion different from the high-symmetry directions of the cry
tal. This leads to a finer sampling of the spectrum of fr
electron-hole pairs. An unshifted grid would correspond
only 28 crystallographically different points, which are mu
too few to achieve a good spectral resolution. The rand
shift, on the other hand, leads to a grid of 500 crysta
graphically different wave vectors, which gives a spect
resolution of about 0.15 eV, sufficient to compare the cal
lated spectra with experimental data.

To check the applicability of the interpolation scheme,
have carried out calculations based on different coarse g

$k̃%. It turns out that the final spectra are very stable w
respect to the coarse grid. From the coarse grid of 3k̃
points, we obtain essentially the same spectrum of GaA
we get from a coarse grid with 108 points. The uncertain
from using the coarse grid of only 32 points are smaller th
1% for transition energies and smaller than 5% for oscilla
strengths. The evaluation of the spatial integration in E
~34! and ~35! is the most demanding step of the entire a
proach. The use of the interpolation scheme reduces this
from 5003500 evaluations to only 32332 evaluations, i.e.
by a factor of 240.
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Figure 6 shows the optical spectrum of GaAs, calcula
with ~solid lines! and without ~dashed lines! electron-hole
interaction. The dots denote experimental data.32,33The spec-
trum resulting from the free quasiparticle interband tran
tions shows systematic deviations from experiment. At l
energies~2–5 eV! the absorption strength is much lower tha
in experiment while it is too high for energies above 5 e
When we include the electron-hole interaction, the peaks
eV and at 5 eV are strongly enhanced; in addition, the p
structure at 5 eV is effectively shifted to lower energies. T
spectrum including the interaction is in much better agr
ment with the measured data. Some fine structures of
measured data, such as the splitting of the 3 eV peak,
however, not observed in the calculation. This splitting
0.2 eV is due to spin-orbit splitting at high-symmetry poin
of the band structure. To observe these details in the ca
lation, thek-point grid must be refined to reach a spect
resolution of about 0.05 eV, and the spin variables must
included explicitly since spin-singlet and -triplet excitatio
are coupled by the spin-orbit interaction.

The modifications of the optical spectrum do not res
from a negative shift of the transition energies, as one mi
naively expect from the attractive nature of the electron-h
interaction. To illustrate this point, we present in Fig. 7 t
interband joint density of states and the density of exci
states~divided byv2 to make it comparable to the absorptio
spectrum! for the electron-hole transitions without and wi
the electron-hole interaction, respectively. It is obvious t
the density of excited states remains nearly unchanged by

FIG. 6. Calculated optical absorption spectrum of GaAs w
~solid lines! and without ~dashed lines! electron-hole interaction,
using three valence bands, six conduction bands, 500k points in
the BZ, and an artificial broadening of 0.15 eV. The dots den
experimental data from Ref. 32 (s) and Ref. 33 (d).

FIG. 7. Density of excited states for GaAs divided byv2 ~in
arbitrary units!. The dashed line corresponds to vertical band-
band transitions while the solid line results from the BSE, includ
the electron-hole interaction.
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interaction~with the exception of bound excitonic states b
low Eg , which are not visible in the present calculation!. The
changes in the optical spectrum originate from a comple
different effect: they are due to the coherent coupling of
optical transition matrix elements in the excited-state wa
function @cf. Eq. ~28!#, which leads to a constructive supe
position of the oscillator strengths for transitions at low
energies and to a destructive superposition at energies a
5 eV. Concerning the optical spectra aboveEg , this coherent
coupling is much more important than the energetic shift
the excitations. Such modifications of the spectrum also
cur in other semiconductors.10,11,13,14We have found similar
behavior in low-dimensional systems like polymers a
surfaces.11

In Fig. 8 the optical absorption spectrum of Si is pr
sented. Again, the solid~dashed! curve shows the spectrum
with ~without! the electron-hole interaction, respective
The dots denote measured data.34,35 The effects of the inter-
action on the spectrum are basically the same as in the
of GaAs. Again, the final spectrum is in much better agr
ment with the experimental data than the independe
particle spectrum. This holds in particular for the sharp pe
at 3.4 eV. The nature of this peak in the experimental sp
trum has been under discussion for a long time. Our res
clearly show fromab initio that the peak originates from
excitonic effects.

Bound excitons that occur in the low-energy onset of
optical spectrum of semiconductors are not discussed h
They are not seen in Figs. 6 and 8, neither in the meas
nor in the calculated spectra. In the measured data, the e
tons are not observed due to the limited resolution in the d
shown here. Since the binding energy of excitons amount
only a few meV in semicondutors, a much higher spec
resolution is required. In the calculation, the spectral reso
tion is also not sufficient to show the excitons. This is rela
to the density of thek-point grid used. In Eq.~33!, the bound
excitons are composed fromk points in the very vicinity of
the minimum gap~which is at theG point in the case of
GaAs!. This region of the Brillouin zone must be sample
with a very high density to represent the excitons. O
method together with such a high-density mesh, which
be restricted to the vicinity of the minimum gap, does gi
correctly the bound excitons in great detail~see the discus
sion on GaAs in Ref. 11!.

FIG. 8. Calculated optical absorption spectrum of Si with~solid
lines! and without ~dashed lines! electron-hole interaction, using
three valence bands, six conduction bands, 500k points in the BZ,
and an artificial broadening of 0.15 eV. Experimental data are ta
from Ref. 34 (s) and Ref. 35 (d).
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C. Insulators: LiF and LiCl

In wide-band-gap insulators the dielectric screening
much weaker than that in semiconductors. The dielec
constants of LiF and LiCl, for instance, are only 1.9 and 2
respectively, compared to 10.9 and 11.7 in GaAs and
Concomitantly the electron-hole interaction is much stron
and its effects on the optical spectra are much m
pronounced.11 As an example, Fig. 9 shows the absorpti
spectrum of LiF.

Over the entire energy range, the spectrum is comple
altered from the noninteracting case. Again the spectrum
cluding the interaction is in much better agreement with
periment, as was also found by Benedictet al.14 The most
striking feature in the calculated spectrum is the occurre
of two strongly bound singlet excitons at 12.8 eV~transverse
excitons!. In addition, a longitudinal singlet exciton, which i
not visible in the optical spectrum, is found at 13.3 eV.

The occurrence of excitons is much more pronounced
insulators than in semiconductors. In the case of GaAs, e
excitonic binding takes place on a meV energy scale and
formation of the exciton only includes states very close
the G point of the Brillouin zone~see above!. In insulators,
on the other hand, the much lower dielectric constant and
usually larger effective masses of the less dispersive ba
lead to excitonic coupling over the entire Brillouin zone a
increase the binding energy to as much as 1.5 eV in LiF

The strong modification of the spectra of insulators
excitonic effects makes it difficult to obtain reliable ban
structure data from the measured spectra. Fundamental
energies, for instance, can only be estimated by assum
specific values for excitonic binding energies. Our pres
approach allows us to apply a reverse procedure by calcu
ing the QP band structure and the optical spectrum from
principles. The comparison of the optical spectrum with e
perimental data may be used to deduce whether the und
ing calculated band structure is correct or not. In the pres
case of LiF, the calculated band gap is 14.4 eV and
calculated exciton is at 12.8 eV. Themeasuredexciton en-
ergy is at 12.7 eV, i.e., it is 0.1 eV lower than the calculat
one. We thus conclude that the true fundamental band ga
LiF is near 14.3 eV.

Based on the calculated imaginary parte2(v) of the di-
electric function, the real part is obtained by a Krame

n

FIG. 9. Calculated optical absorption spectrum of LiF wi
~solid lines! and without ~dashed lines! electron-hole interaction,
using three valence bands, six conduction bands, 500k points in
the BZ, and an artificial broadening of 0.25 eV. The experimen
data (d) are from Ref. 36.
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Kronig transformation, and all optical constants can
evaluated. This often allows for a more direct comparis
between theory and experiment. Optical experiments~like
reflectivity measurements! are sometimes limited to a certa
energy range, which may not be wide enough to carry o
careful Kramers-Kronig analysis. In such cases, it would
more appropriate to directly compare the measuredreflectiv-
ity spectrum with the calculated one. As an example,
show in Fig. 10 the reflectivity spectrum of LiCl. As in th
other figures, the solid~dashed! curve shows the spectrum
calculated with~without! the electron-hole interaction, re
spectively. The QP band structure has a fundamental ga
9.2 eV.

The independent-particle spectrum does not have m
structure. By the interaction, the reflectivity is enhanced
all energies and shows a number of sharp peaks. In par
lar, two peaks arise close to the gap energy, i.e., one exc
peak at 8.7 eV~belowEg) and a broader structure at 9.5–9
eV ~aboveEg). At 9.0 eV, i.e., 0.2 eV belowEg , the calcu-
lated reflectivity has a minimum. These features corresp
well to the respective structures in the measured spectr
one peak at 8.9 eV, a broader structure at 9.6–9.8 eV, a
minimum at 9.3 eV. Since there is a shift of 0.2 eV betwe
the measured and calculated features, we conclude tha
real fundamental gap energy of LiCl is likely to be at 0.2 e
higher energy than our calculated value, i.e., it is near 9.4
in reality.

D. Two-particle wave function

Our approach allows to explicitly calculate the wave fun
tion of an electron-hole excitationuS& in real space. The
wave function is given by Eq.~11! with the coefficientsBvc

S

set to zero. For a periodic system, this yields

xS~xe ,xh!5(
k

(
v

hole

(
c

elec

Avck
S cc,k1Q~xe!cvk* ~xh!. ~50!

The wave function is a scalar function in a double space.
coordinatexe refers to the position of the electron whilexh
refers to the position of the hole.xS is invariant to lattice-
vector shifts when applied simultaneously toxh andxe . Due
to the high dimensionality the discussion ofx is not easily
possible. To get the best insight into the real-space corr
tion between the hole and the electron in the excited s
and to observe the attractive nature of this correlation,

FIG. 10. Calculated reflectivity spectrum of LiCl with~solid
lines! and without ~dashed lines! electron-hole interaction, using
three valence bands, six conduction bands, 500k points in the BZ,
and an artificial broadening of 0.25 eV. The experimental data (d)
are from Ref. 37.
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should keep one of the particles fixed and discussx with
respect to the coordinates of the other particle. This give
correlation function that depends mainly on the differen
(xe2xh), but includes all details of the microscopic structu
of the excited state. In the case of a simplified isotro
effective-mass model, this correlation function would cor
spond to the envelope function of an exciton, which is giv
by hydrogenlike wave functions. In our present approa
however, much more detail is obtained.

As an illustration, we show in Fig. 11 the lowest-ener
spin-singlet exciton in LiF~at 12.8 eV excitation energy!. In
panel~a! we show the distribution of the electron relative
the hole, which we fix at an F atom, in the~010! plane. The
envelope function iss-like, with slight modifications due to
the anisotropy of the cubic crystal, and has a mean radiu
slightly over 4 Å or one lattice constant. Excitons in Li
have often been thought of as typical examples for Fren
like excitons, i.e., the excitation of the electron takes place
one atomic site or between neighboring atoms. Our resu
however, clearly show that the exciton is larger than th
The electron distribution of the second and third exciton
similar to Fig. 11~a!. Figures 11~b! and ~c! show the same
quantity as a line plot along the@101#, as well as along the
@100# direction@indicated as linesAB andCD, respectively,
in panel~a!#. The figures exhibit several interesting feature
First, the charge density of the electron is very low at the
atoms. From an extreme Frenkel exciton–like picture, o
might have expected that the electron hops from the centr
atom to the nearest-neighbor Li atoms. Instead, it partly
mains on the central F atom and partly hops to the first-

FIG. 11. ~a! Real-space distributionuxS(xh ,xe)u2 of the electron
(xe) with respect to the hole (xh) for the lowest-energy exciton in
LiF ~at 12.8 eV!, in the ~010! plane. Dots~triangles! denote Li~F!
atoms. The hole (xh) is fixed at the central F atom.~b, c! The same
quantity, along the linesAB andCD indicated in panel~a!.
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second-nearest F atoms and even farther away. Second
electron distribution on these neighbor F atoms is not iso
pic, but is highly polarized towards the central F atom. T
results from the correlation of the quasielectron to the eff
tive positive charge of the quasihole on the central F ato

V. CONCLUSIONS

We have presented a recently developed approach to
culate the optical spectra of real materials from first pr
ciples. This requires the evaluation of the spectrum of
single-particle and the two-particle Green’s function. T
electron self-energy operator, which occurs in the equa
of motion of both Green’s functions, is calculated within t
GW approximation. From the electron-hole excitations of t
two-particle Green’s function and the corresponding opti
transition matrix elements, the optical spectrum is calcula

We have developed computational schemes for the fi
principles application of this approach to real materials. T
approach in general holds for semiconducting condens
matter systems on all length scales, including atoms
molecules, clusters, quantum dots, polymers, surfaces,
crystals. Depending on the system, however, particular te
nical issues must be addressed. A number of such is
have been discussed in detail. In the particular case of p
odic crystals, we have presented a novel interpolat
scheme in reciprocal space that allows one to calculate
electron-hole interaction at very moderate cost.
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We have discussed electron-hole excitations in ato
molecules, and clusters~as examples for isolated systems!, as
well as the optical spectra of semiconductor and insula
crystals. In all cases the results are in excellent agreem
with measured data. The approach can be employed to in
tigate both bound exciton states below and resonant e
tonic states above the fundamental gap energy. The ex
tion energies and the spectra are drastically influenced by
electron-hole interaction, thus demonstrating the crucial r
of two-particle correlation. Without the interaction, i.e., o
the level of noninteracting quasiparticles, the spectra dev
significantly from the measured data.
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