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Density-wave states of nonzero angular momentum

Chetan Nayak
Physics Department, University of California, Los Angeles, CA 90095–1547

~Received 26 January 2000!

We study the properties of states in which particle-hole pairs of nonzero angular momentum condense.
These states generalize charge- and spin-density-wave states, in whichs-wave particle-hole pairs condense. We
show that thep-wave spin-singlet state of this type has Peierls ordering, while thed-wave spin-singlet state is
the staggered flux state. We discuss model Hamiltonians which favorp- andd-wave density-wave order. There
are analogous orderings for pure spin models, which generalize spin-Peierls order. The spin-triplet density-
wave states are accompanied by spin-1 Goldstone bosons, but these excitations do not contribute to the
spin-spin correlation function. Hence they must be detected with NQR or Raman-scattering experiments.
Depending on the geometry and topology of the Fermi-surface, these states may admit gapless fermionic
excitations. As the Fermi-surface geometry is changed, these excitations disappear at a transition which is third
order in mean-field theory. The singletd-wave- and tripletp-wave density-wave states are separated from the
corresponding superconducting states by zero-temperatureO(4)-symmetric critical points.
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I. INTRODUCTION

In recent years, a number of materials have been unc
ered in which the competition between effective attract
interaction and short-range repulsion appears to lead to
formation of superconducting states in which the Coo
pairs have nonzero relative angular momentum. In this
per, we suggest that such competition can also lead
density-wave states formed by the condensation ofparticle-
hole pairs of nonzero relative angular momentum. The
states generalize familiar charge- and spin-density-w
states, in whichs-wave particle-hole pairs condense. We d
cuss several different possible ordering schemes, the typ
interactions which favor them, their physical properties, a
their possible relevance to experiments.

Several such states are already commonly known by o
names, as we will show below. The singletl 51 density-
wave state is simply the Peierls state~or bond-ordered wave!,
while the singletl 52 density-wave state is known as th
staggered flux state of Refs. 1–3. However, triplet analog
these states have not been discussed. Since the triplet an
of these states break spin-rotational invariance, they havS
51 Goldstone boson excitations. However, the ground s
does not have a nonzero expectation value for the spin at
wave vector. Hence, as we will see, these Goldstone bo
cannot be detected in experiments which couple simply
the spin density, such as neutron scattering or NMR. Inste
Raman scattering or NQR are necessary to couple to
Goldstone bosons of these more subtle types of order
More generaly,s-wave probes cannot couple directly to th
orders discussed here; instead, local probes or those w
couple to higher powers of the order parameter are ne
sary.

Thep- andd-wave density-wave states are favored by
same types of interactions which favor thes-wave state—i.e.,
the charge-density wave~CDW!. However, they evade inter
actions which disfavor CDW order. Similarly, they are f
vored by superconductivity-favoring pair-hopping terms,4–7

while evading interactions which disfavor superconductivi
PRB 620163-1829/2000/62~8!/4880~10!/$15.00
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Hence, they are rather natural candidates for systems
competing repulsive interactions.

As in the case of higher angular momentum superc
ducting states, there is the possibility of gapless excitatio
since the order parameter can have nodes on the Fermi
face. To consider one consequence of this, suppose tha
shape of the Fermi surface is such that the nodes of the o
parameter do not lie on the Fermi surface. Let us distort
shape of the Fermi surface by, say, changing the anisotr
between the hopping parameters, which can be done by
plying uniaxial pressure. At the mean-field level, a thir
order phase transition can occur at which gapless excitat
appear. After this point, the system remains critical as a
sult of the node.

The analogy with supercondutivity can be taken a s
further by combining density wave order with supercondu
ing order in a pseudospin SU~2! triplet following Yang8 and
Zhang.9 At a critical point between the two types of orde
this pseudospin SU~2! could become exact, giving—togethe
with SU~2! spin symmetry—anO(4)-invariant critical point.
We discuss the possible relevance of such a critical poin
the pseudogap regime of the cuprate superconductors.

Particle-hole condensates with nonzero angular mom
tum were considered in the context of excitonic insulators
Halperin and Rice.10 They were rediscovered in the conte
of the mean-field instabilities of extended Hubbard mod
by Schulz11 and Nersesyan and co-workers.12,13 At around
the same time, Kotliar1 and Marston and Affleck2 found the
staggered flux state as a mean-field solution of the Hubb
model. However, it was apparently not recognized that
singletdx2-y2 density-wave state is the same as the stagge
flux state. More recently, this state,14–16 and a related
variant17,18 which does not break translational symmetr
have been discussed in the context of the cuprate super
ductors. A version of thedx2-y2 density-wave state~see the
comments in Sec. VII! has appeared in mean-field analys
of an SU~2! mean-field theory of thet-J model.19,20 The
nodal liquid state of Refs. 21–23 also bears a family rese
blance to the staggered flux state; we will return to the re
4880 ©2000 The American Physical Society
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tionship between these states in Sec. VII.

II. ORDER PARAMETERS AND BROKEN SYMMETRIES

We define the different possible density-wave orderin
by analogy with the more familiar superconducting ca
Consider a system of electrons on a square lattice of sida.
A superconductor is defined by a nonvanishing expecta
value of

^ca~k,t !cb~2k,t !&. ~1!

A triplet superconductor is characterized by the expecta
value

^ca~k,t !cb~2k,t !&5DW ~p!•sW a
gegb . ~2!

Fermi statistics requires thatDW (p) be odd inpW . p-wave su-
perconductors can have the components ofDW (p) chosen
from sinkxa, sinkya, or sinkxa6i sinkya. For instance, apx
superconductor with all spins polarized along the 3 direct
will have D11 iD2Þ0 andD35D12 iD250:

^ca~k,t !cb~2k,t !&5D0~sinkxa!sa
1gegb . ~3!

Spin-polarizedpy andpx1 ipy superconductors have sinkxa
replaced by sinkya and sinkxa1i sinkya, respectively. The
analog of theA8 phase of3He has equal numbers of↑↑ and
↓↓ pairs:

^ca~k,t !cb~2k,t !&5D0~sinkxasa
1g1 sinkyasa

2g!egb .
~4!

An unpolarizedpx superconductor of↑↓ pairs hasD3Þ0
andD15D250:

^ca~k,t !cb~2k,t !&5D0~sinkxa!sa
3gegb . ~5!

As in the polarized case, unpolarizedpy andpx1 ipy super-
conductors have sinkxa replaced by sinkya and sinkxa
1i sinkya, respectively. In principle, more complicated ord
parameters are possible, with all components ofDW taking
nonvanishing values. If any component ofDW (p) is not real,
time-reversal symmetry~T! is broken.

A d-wave superconductor must be a spin-singlet sup
conductor. Adx2-y2 superconductor has

^ca~k,t !cb~2k,t !&5D0~coskxa2 coskya!eab , ~6!

while adxy superconductor has coskxa2 coskya replaced by
sinkxasinkya. A dx2-y21 idxy superconductor breaksT with
the order parameter:

^ca~k,t !cb~2k,t !&5D0~coskxa2 coskya

1 i sinkxa sinkya!eab . ~7!

We can define analogous orders for density-wave sta
However, the spin structures will no longer be determined
Fermi statistics. Let us first consider the singlet orderings
singlet s-wave density wave is simply a charge-dens
wave:

^ca†~k1Q,t !cb~k,t !&5FQdb
a ~8!
s
.

n

n

n

r-

s.
y
A

~An extendeds wave is also possible.! A singlet px density-
wave state has ordering

^ca†~k1Q,t !cb~k,t !&5FQ sinkxadb
a . ~9!

The singletpx1 ipy density-wave states are defined by

^ca†~k1Q,t !cb~k,t !&5FQ~sinkxa1 i sinkya!db
a .

~10!

Similarly, the singletdx2-y2 density-wave states have

^ca†~k1Q,t !cb~k,t !&5FQ~coskxa2 coskya!db
a ,

~11!

while the singletdx2-y21 idxy density-wave states have

^ca†~k1Q,t !cb~k,t !&5FQ~coskxa2 coskya

1 i sinkxa sinkya!db
a . ~12!

These states belong to a class of states of the form

^ca†~k1Q,t !cb~k,t !&5FQf ~k!db
a . ~13!

f (k) is an element of some representation of the space gr
of the vectorQW in the square lattice. In this paper, we w
focus primarily on the casesf (k)5 sinkxa and f (k)
5 coskxa2 coskya, but f (k) could be an element of som
larger representation. Thes-wave~or extendeds-wave! cases
f (k)5u f (k)u are the usual charge-density-wave states.

Q is the wave vector at which the density-wave orderi
takes place. It may be commensurate or incommensurate~In
this paper, we will take ‘‘commensurate’’ to mean the sit
ation in which 2QW is a reciprocal-lattice vector. The term
‘‘incommensurate’’ will actually include higher-order com
mensurability.! For commensurate ordering such that 2Q is a
reciprocal-lattice vector, e.g., Q5(p/a,0) or Q
5(p/a,p/a), we can take the Hermitian conjugate of th
order parameter:

^c†b~k,t !ca~k1Q,t !&5FQ* f * ~k!db
a ,

^cb†~k1Q1Q,t !ca~k1Q,t !&5FQ* f * ~k!db
a , ~14!

FQf ~k1Q!db
a5FQ* f * ~k!db

a

Therefore, forQ commensurate,

f ~k1Q!

f * ~k!
5

FQ*

FQ
. ~15!

Hence, if f (k1Q)52 f * (k), FQ must be imaginary. For
singlet px ordering, this will be the case ifQ5(p/a,0) or
Q5(p/a,p/a). For singletdx2-y2 ordering, this will be the
case if Q5(p/a,p/a). If f (k1Q)5 f * (k), FQ must be
real. For singletpx ordering, this will be the case ifQ
5(0,p/a). For singletdxy ordering, this will be the case i
Q5(p/a,p/a).

For incommensurate ordering,FQ can have arbitrary
phase: the phase ofFQ is the Goldstone boson of broke
translational invariance, i.e., the sliding density-wave mo



u-
w

in
s

sin
io

th
of

ra

on
s
s
e
ic
-

it

e

o
e

na
in

d
s

e
gh

the
t

.
m-

re
ent.
de-

4882 PRB 62CHETAN NAYAK
Impurities will pin this mode—at second order in the imp
rity potential, as in the case of a spin-density wave—so
will not consider it further.

All of these states break translational and rotational
variance. To further analyze the symmetries of these state
is instructive to write these orderings in real space. The
glet px density waves have a nonvanishing expectat
value:

^c†a~xW ,t !cb~xW1ax̂,t !&

5const2
i

2
~FQeiQW •xW1F2Qe2 iQW •xW !

3db
a~dyW ,xW1ax̂2dyW ,xW2ax̂!. ~16!

We have only written the modulated term; const refers to
uniform contribution coming from the Fourier transform
c†(k)c(k).

Let us consider the commensurate and incommensu
cases separately. The incommensurate singletpx density-
wave states completely break the translational and rotati
symmetries. IfFQ52F2Q* , T is preserved; otherwise, it i
broken. The singletpx1 ipy density-wave states alway
break T. Commensurate states, on the other hand, br
translation by one lattice spacing; translation by two latt
spacings is preserved. From Eq.~15!, a commensurate sin
glet px density-wave state withQ5(p/a,0) must have
imaginaryFQ :

^c†a~xW ,t !cb~yW ,t !&5const1uFQueiQW •xW

3db
a~dyW ,xW1ax̂2dyW ,xW2ax̂!. ~17!

The singlet state of this type breaks no other symmetries;
usually called thePeierls stateor bond order wave. IfQ
5(0,p/a), FQ must be real:

^c†a~xW ,t !cb~yW ,t !&5const2 i uFQueiQW •xW

3db
a~dyW ,xW1ax̂2dyW ,xW2ax̂!. ~18!

As a result of thei, theQ5(0,p/a) singletpx density-wave
states breakT. However, the combination ofT and transla-
tion by an odd number of lattice spacings remains unbrok
The same is true of the commensurate singletpx1 ipy
density-wave states. Examples of commensurate and inc
mensurate singletpx and px1 ipy density-wave states ar
depicted in Fig. 1.

The commensurateQ5(p/a,p/a) singletdx2-y2 density-
wave states must have imaginaryFQ :

^c†a~xW ,t !cb~yW ,t !&5const1
i

2
uFQueiQW •xWdb

a~dyW ,xW1ax̂

1dyW ,xW2ax̂2dyW ,xW1aŷ2dyW ,xW2aŷ!.

~19!

As a result ofi, the singletdx2-y2 density wave breaksT, as
well as translational and rotational invariance. The combi
tion of time reversal and a translation by one lattice spac
is preserved by this ordering. The commensurateQ
5(p/a,p/a) singletdx2-y2 density-wave state is often calle
the staggered flux state. There is also a contribution to thi
e
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correlation function coming fromc†(k)c(k) which is uni-
form in space~the . . . ); as aresult, the phase of the abov
bond correlation function—and, therefore, the flux throu
each plaquette—is alternating. The commensurateQ
5(p/a,p/a) singlet dxy must have realFQ ; therefore, it
does not breakT.

^c†a~xW ,t !cb~yW ,t !&5const1
1

2
FQeiQW •xWdb

a~dyW ,xW1ax̂1aŷ

1dyW ,xW2ax̂2aŷ2dyW ,xW2ax̂1aŷ

2dyW ,xW1ax̂2aŷ! ~20!

On the other hand, the singletdx22y21 idxy state does break
T:

^c†a~xW ,t !cb~yW ,t !&5const1FQeiQW •xWdb
aF1

2
~dyW ,xW1ax̂1dyW ,xW2ax̂

2dyW ,xW1aŷ2dyW ,xW2aŷ!2
i

4
~dyW ,xW1ax̂1aŷ

1dyW ,xW2ax̂2aŷ2dyW ,xW2ax̂1aŷ

2dyW ,xW1ax̂2aŷ!G . ~21!

Note that the nodeless commensurate singletdx2-y21 idxy
density-wave state does not break more symmetries than
commensurate singletdx2-y2 density-wave state, in contras
to the superconducting case. Examples of singletdx2-y2, dxy ,
anddx2-y21 idxy density-wave states are depicted in Fig. 2

If QW is not along one of the axes, the associated inco
mensurate density-wave states will mixs, p, d, etc. density-
wave orders. ForQW 5(p/a,p/a)1qW with uqW u small, there are

FIG. 1. ~a! Q5(p/a,0) px density-wave state.~b! Q5(0,p/a)
px density-wave state.~c! Q5(p/a,0) px1 ipy density-wave state.
~d! Incommensuratepx density-wave state. Arrowless lines a
bonds where the kinetic energy is large but there is no net curr
The line thickness indicates the bond strength. Arrowed lines
note currents.
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states which are primarilydx2-y2 density-wave states with
small admixtures, proportional toqW , of real dx2-y2, px , and
py states,

f ~k!5 coskxa2 coskya2
1

2
~11eiQxa!eikxa

1
1

2
~12e

i
2(Qx2Qx)a!eikya1

1

2
~11e

i
2(Qx1Qx)a!

3e2 ikya, ~22!

which satisfies Eq.~15! with FQ imaginary. ForuqW u small,
this is

f ~k!5 coskxa2 coskya1
i

2
qxa~coskxa2 coskya!

2
1

2
qxa sinkxa2

1

2
qya sinkya. ~23!

We now consider the triplet density-wave states. Trip
states all break spin-rotational invariance and, theref
have Goldstone boson excitations. We will discuss the
perimental consequences of these Goldstone bosons
The triplet s-wave density-wave state is simply a spi
density wave. The tripletp- andd-wave states are characte
ized by

^ca†~k1Q,t !cb~k,t !&5FW Q~k!•sW b
a , ~24!

with the components ofFW Q(k) chosen from, sinkxa, sinkya,
sinkxa6i sinkya, coskxa2 coskya, sinkxasinkya, and
coskxa2 coskya6i sinkxasinkya, respectively.

A state in which the particle-hole pairs are polarize
which is the most direct analog of a spin-density wave
FW Q(p) of the formFQ

3 Þ0, FQ
1 5FQ

2 50,

FIG. 2. ~a! Commensuratedx2-y2 density-wave state.~b! Com-
mensuratedxy density-wave state.~c! Commensuratedx2-y21 idxy

density-wave state.~d! Incommensurate,T-preservingdx2-y2. Ar-
rowless lines are bonds where the kinetic energy is large but the
no net current. Line thickness indicates bond strength. Arrow
lines denote currents.
t
e,
x-
ter.

,
s

^ca†~k1Q,t !cb~k,t !&5FQf ~k!sb
3a , ~25!

where f (k) is chosen from the above set. Alternatively, t
particle-hole pairs can be unpolarized, e.g.,

^ca†~k1Q,t !,cb~k,t !&5FQ~sinkxasb
1a1 i sinkyasb

2a!.
~26!

As in the superconducting case, more complicated order
rameters are possible, with all components ofDW taking non-
vanishing values. For commensurate ordering, we can fol
the same logic as in Eq.~14!. The phases of the componen
of FW Q(p) are constrained in the same way as the sing
order parameters, as illustrated by thei in front of the second
term in Eq.~26!.

The orders discussed here can be generalized to othe
and 3D lattices. The orbital wave functions sinkxa, etc., will
be replaced by representations of the point groups of th
other lattices.

To eachT-preserving singlet ordering, we can associa
an ordering of a pure spin model, in the same way that sp
Peierls ordering is related to Peierls ordering:

^ca†~k1Q,t !ca~k,t !&→^SW ~k1Q,t !•SW ~k,t !&. ~27!

These spin orderings are states in which the exchange e
gies are large along preferred directions. These prefe
diractions oscillate from one lattice point to the next wi
spatial frequencyQW . The simplest case is spin-Peierls orde
ing, in which the spins form dimers. Another example isdxy
ordering of a spin model, which takes the form

^SW ~xW ,t !SW ~yW ,t !&52
1

4
~FQeiQW •xW1F2Qe2 iQW •xW !~dyW ,xW1ax̂1aŷ

1dyW ,xW2ax̂2aŷ2dyW ,xW2ax̂1aŷ2dyW ,xW1ax̂2aŷ!,

in analogy with Eq.~20!.

III. MODEL HAMILTONIANS

We are primarily concerned in this paper with the unive
sal properties of the states introduced above. We will
attempt to show that particular realistic models of interact
electrons havep- or d-wave density-wave ground state
Rather, we will content ourselves with discussing the typ
of interactions which favor such orders, and showing t
they lead to energetically favorable trial variational wa
functions for some idealized Hamiltonians.

The analog of the BCS reduced Hamiltonian for sing
density-wave order is

H5E d2k

~2p!2
e~k!ca†~k!ca~k!

2gE d2k

~2p!2

d2k8

~2p!2
@ f ~k! f ~k8!ca†

3~k1Q!ca~k!cb†~k8!cb~k81Q!#. ~28!

In the triplet case, we replace the four-fermion operator
Eq. ~28! by

is
d
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4884 PRB 62CHETAN NAYAK
ca†~k1Q!sa
abcb~k!cg†~k8!sg

adcd~k81Q!. ~29!

We now introduce the variational wave function

uC&5)
k,a

@uk,aca†~k!1vk,aca†~k1Q!#u0&. ~30!

Its energy can be minimized if we take

ūk,avk,a5
gFQf ~k!

A@e~k!2e~k1Q!#214g2uFQu2@ f ~k!#2

~31!

in the singlet case and

ūk,asW a
bvk,b5

gFW Qf ~k!

A@e~k!2e~k1Q!#214g2uFQu2@ f ~k!#2

~32!

in the triplet case, and requireFQ to satisfy the gap equation

gE d2k

~2p!2

~ f ~k!!2

A@e~k!2e~k1Q!#214g2uFQu2@ f ~k!#2
51

~33!

The reduced Hamiltonian has long-ranged interactions
the variational wave function is essentially correct. We w
now show that short-ranged Hamiltonians will include ter
of the form ~28!, and that the trial wave function~30! is
reasonable for these short-ranged Hamiltonians.

Consider, then, the following lattice model of interactin
electrons:

H52t(
^ i , j &

~cis
† cj s1H.c.!1U(

i
ni↑ni↓1V(

^ i , j &
ninj

2tc1 (
^ i , j &,^ i 8, j &,iÞ i 8

cis
† cj scj s

† ci 8s2tc2(
i

@~ci 1 x̂,s
†

cis

2cis
† ci 1 x̂,s!~ci 1 x̂1 ŷ,s

†
ci 1 ŷ,s2ci 1 ŷ,s

†
ci 1 x̂1 ŷ,s!1x→y#.

~34!

The first two terms are the usual hoppingt and on-site repul-
sion U of the Hubbard model. The third term is a neare
neighbor repulsionV. The third and fourth terms lead to th
correlated motion of pairs of electrons.tc1 hops an electron
from i 8 to j whenj is vacated by an electron hopping toi. tc2
hops nearest-neighbor pairs in the same direction. Term
this general form were discussed in Refs. 4–7 as a me
nism for superconductivity. As we will see below, they n
only favor superconductivity, butp- and d-wave-density
wave order as well.

Fourier transforming the interaction terms into mome
tum space, we see that terms of the form of the redu
interaction~28! are, indeed, present:

H int5E d2k

~2p!2
„Uc↑†~k1!c↑~k2!c↓†~k3!c↓~k4!

1$2V@cos~k3
x2k4

x!a1 cos~k3
y2k4

y!a#

22tc1@cos~k1
x2k4

x!a1 cos~k1
y2k4

y!a12 cosk1
xa
o
l
s

-

of
a-

-
d

3cosk4
xa12 cosk1

ya cosk4
ya] 22tc2~sink1

xa sink4
xa

1 sink1
ya sink4

ya!%ca†~k1!ca~k2!cb†~k3!cb~k4!….

~35!

Let us now consider various candidate orderings and
terms which favor or penalize them. Antiferromagnetic ord
is favored byU but penalized byV. Charge-density-wave
order is favored byV but penalized byU. p- and d-wave
superconductivities are favored bytc2 and tc1, respectively
and penalized byV. p- andd-density-wave orders are favore
by tc2 and tc1, respectively, and are both favored byV. The
density-wave states can be favored over the others by ta
V large. Thep- or d-wave states can be favored by takingtc2
or tc1 large. To be more precise, the mean-field equations
various ordered states read

lE d2k

~2p!2

~ f ~k!!2

A@e~k!2e~k1Q!#214l2uFQu2@ f ~k!#2
51,

~36!

where

ldDW58V196tc1 ,

lpDW54V116tc1116tc2 ,
~37!

lCDW516V196tc1116tc222U,

lAF52U.

Hence the singletdx2-y2 density-wave state will be the
ground state if

8tc1,U24V,48tc1 ,

8tc2,2V140tc1 , ~38!

while the singletpx density-wave state will be the groun
state if

6V140tc1,U,2V18tc118tc2 ,

2V140tc1,8tc2 , ~39!

assuming that the van Hove singularities are at the antino
of the order parameters. Otherwise, thep- and d-wave
density-wave states will be favored over somewhat sma
regions of parameter space. By including spin-dependen
teractions such asJSW i•SW i , we can favor the tripletp- or
d-wave states. Hence it appears that the orderings discu
in this paper are viable. The detailed energetics at large c
pling strengths—which surely hold in physically interestin
systems—are beyond the scope of this paper.

IV. EXPERIMENTAL SIGNATURES

We now turn to the question of the experimental sign
tures of such states. Since the order parameter changes
as the Fermi surface is circled, there is no net CDW or sp
density-wave order which could be measured in, for
stance, neutron scattering. When another symmetry—in
dition to translational invariance—is broken, this is easi
~One can expect, on general grounds, that incommensu
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singlet or tripletp- or d-wave density-wave order at wav
vectorQW will induce CDW order at 2QW , since a term of the
form FQ

2 r2Q or FW Q•FW Qr2Q is allowed by symmetry in the
effective action. Nevertheless, we may wish to distingu
such a state from one which has only CDW order.!

Let us first consider broken time-reversal symmetry. T
commensurate singletdx2-y2 density wave state—or stag
gered flux state1–3—breaksT; there is an alternating patter
of currents circulating about each plaquette of the latti
These currents produce an alternating magnetic field mea
able bymSR and, in principle, by neutron scattering.3 The
magnitude of the current along a link of the lattice will be

j 5
et

\
FQ;1025 A3FQ . ~40!

Now FQ is related to the maximum of the gap according
D05gFQ , whereg is the appropriate coupling constant. L
us suppose, for the purposes of illustration, that the form
tion of the ordered state is driven byldDW . Then, forldDW
small, FQ;(t/ldDW)e2(const)t/ldDW. Alternatively, we may
take the high-Tc context as a guideline: observed gaps
;100–300 K, while interactions such are;1 eV. In this
case, we expectFQ;1022. This translates to a magnet
field at the center of each plaquette on the order of 10 G.
muons in amSR experiment might see a lowwer field if the
sit at points of high symmetry or away from the plane. T
orbital magnetic moments are likely to be dwarfed by lo
spin moments.3 Incommensurate ordering may or may n
breakT; if it does, the above analysis applies.

In the FQ
3 Þ0, FQ

1 5FQ
2 50 triplet dx2-y2 density-wave

state, there are counter-circulating currents of up- and do
spin electrons. These currents cancel, so there is no net
rent circulating about each plaquette, but there is an alter
ing pattern of spin currents circulating about each plaque
The checkerboard pattern of spin currents will generate,
the spin-orbit coupling,

HSO5E d2k

~2p!2

d2q

~2p!2
EW ~q!•~2kW1qW !c†a~k1q!sW a

bcb~k!,

~41!

a quadrupolar electric field which is, in principle, measura
in NQR experiments. With the above estimate of the curre
a nucleus with a nonzero quadrupole moment would have
induced splitting of order 10 Hz.

We now turn to broken spin-rotational invariance, char
teristic of the triplet states. Since it transforms nontrivia
under the point group of the square lattice, the triplet or
parameterFW Q will not couple to photons, neutrons, o
nuclear spins according toFW Q•FW , whereFW is BW , SW N , or IW,
respectively. Stated more physically, the triplet orde
states do not have anomalous expectation values for the
density but, rather, for spin currents; spin currents do
couple simply to these probes. However, the order param
FW Q will couple to such probes at second order, since
square transforms trivially under the point group. Such
coupling will be of the form
h

e

.
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e
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s
a

Hprobe5E d2x@2~FW •FW Q!~FW •FW Q* !2uFW Qu2F2#. ~42!

In the case of photons, this will lead to two-magnon Ram
scattering. The coupling to nuclear spins couples directly
the nuclear quadrupole moment, and will lead to a shift
the nuclear quadrupole resonance frequencies.

In the presence of disorder, rotational symmetry will
broken. Hence there will be a small coupling, proportional
the disorder strength, of the Goldstone bosons tos-wave
probes such as NMR and neutron scattering.

V. GAPLESS FERMIONIC EXCITATIONS

The mean-field Hamiltonian is

H5E
B.Z.

d2k

~2p!2
@e~k!ca†~k!ca~k!

1gFQf ~k!ca†~k1Q!ca~k!#. ~43!

If we define the four component objectxAa according to

S x1a

x2a
D 5S ca~k!

ca~k1Q!
D , ~44!

then the mean-field Hamiltonian can be written in the for

H5E
RBZ

d2k

~2p!2
xa†~k!S 1

2
@e~k!2e~k1Q!#tz1D~k!tx

1
1

2
@e~k!1e~k1Q!#Gxa ~45!

The integral is over the reduced Brillouin zone~RBZ!. The
t ’s are Pauli matrices; the ‘‘flavor’’ indexA51 and 2 on
which they act has been suppressed.D(k) is defined by

D~k![D0f ~k![gFQf ~k!. ~46!

The single-quasiparticle energies are

E6~k!5
1

2
@e~k!1e~k1Q!#

6
1

2
A@e~k!2e~k1Q!#214D2~k!. ~47!

Let us consider the situation in which there is a node, i
when the argument of the square root vanishes~we discuss
below the conditions under which this occurs!. For simplic-
ity, we will consider the commensurateQW 5(p/a,p/a) sin-
glet px density-wave state in a model with anisotrop
nearest-neighbor hopping,

e~k!522t~r coskxa1 coskya!, ~48!

with r ,1. The mean-field quasiparticle energies are

E~k!56A4t2~r coskxa1 coskya!21D0
2 sin2 kxa.

~49!

There is a node atkx50, kya5arccos(2r ). Expanding
about this node,
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E~q!56Avx
2qx

21vy
2qy

2, ~50!

with momentaqW now measured from the node, and

vx5D0a, vy52taA12r 2. ~51!

The effective Lagrangian for the quasiparticles near
nodes can be written

Leff5xa†~]t2tzvyi ]y2txvxi ]x!xa . ~52!

Terms which break the nesting of the Fermi surface, suc
the chemical potential or next-neighbor hopping, open h
pockets at the nodes:

Lm52mxa†xa . ~53!

We now turn to the question of when ap- or d-wave
density wave will have nodal excitations. Let us again be
with the commensurateQW 5(p/a,p/a) singlet px density-
wave state,

^ca†~k1Q,t !cb~k,t !&5 i uFQusinkxadb
a , ~54!

in a system in which the Fermi surface is nested atQW . This
state will have gapless excitations if the nodal linekx50
crosses the Fermi surface. For an open Fermi surface,
need not be the case. In an anisotropic nearest-neig
tight-binding model@Eq. ~48!#, with r .1, the Fermi surface
at half-filling is an open Fermi surface which does not cro
the line kx50. Consequently, there are no gapless exc
tions. Forr ,1, however, the Fermi surface does cross
line kx50, and there are gapless excitations.

Are there any thermodynamic singularities at the tran
tion at which gapless excitations occur? To answer this qu
tion, let us consider the mean-field ground-state energy

E05E
RBZ

d2k

~2p!2
E~k!5E

RBZ

d2k

~2p!2
Ae2~k!1D2~k!.

~55!

The first and second derivatives ofE0 are continuous. How-
ever, the third derivative of the ground state energy w
respect tor contains a term of the form

]3E0

]r 3
5E

RBZ

d2k

~2p!2

8e~k!t3cos3 kxa

@e2~k!1D2~k!#3/2
1•••. ~56!

This term diverges if there is a node on the Fermi surfa
but is finite otherwise. Hence the phase with a node on
Fermi surface is acritical line with a singular third deriva-
tive of the ground-state energy. We will call this phase
‘‘critical phase’’ of thepx density wave. Note that the secon
derivative of the ground-state energy is everywhere cont
ous, but nowhere differentiable in the critical phase. It
separated by a third-order phase transition from the ph
with no gapless excitations, the noncritical phase of thepx
density wave.

How does this observation generalize~a! away from half-
filling and to non-nested Fermi surfaces; and~b! to d-wave
and/or incommensurate ordering? To answer~a!, let us
change the chemical potential in order to move away fr
half-filling. Now
e

as
le

n

is
or

s
-

e

i-
s-

h

e,
e

e

-

se

]3E0

]r 3
5E

E(k),m

d2k

~2p!2

8e~k!t3 cos3 kxa

@e2~k!1D2~k!#3/2
1•••. ~57!

Below half-filling, the denominator never diverges. Hen
the system is always in the noncritical phase, despite the
that there are gapless excitations. As the chemical pote
is increased, the system crosses a third-order phase trans
and enters the critical phase. Above half-filling, it is alwa
in the critical phase.

Suppose, now, that we allow next-nearest-neighbor h
ping t8, thereby spoiling nesting. The ground-state energy
given by

E05E
E(k),m

d2k

~2p!2
E~k!

5E
E(k),m

d2k

~2p!2 F1

2
@e~k!1e~k1Q!#

2
1

2
A@e~k!2e~k1Q!#214D2~k!G ~58!

and

]3E0

]r 3
5E

E(k),m

d2k

~2p!2

4e~k!t3 cos3kxa

$@e~k!2e~k1Q!#214D2~k!%3/2

1•••.

This diverges if the nodal line ofD(k) crosses the curve
e(k)5e(k1Q), and this crossing point lies below th
chemical potential. In such a case, the system is in the c
cal phase. Regardless of the details of the band structure
curve e(k)5e(k1Q) is determined by symmetry for com
mensurateQW : it is the set of points for whichkW andkW1QW are
related by a symmetry of the square lattice. ForQW

5(p/a,0), e(k)5e(k1Q) if kx56p/2a. For QW
5(p/a,p/a), e(k)5e(k1Q) if kx6ky56p/a. A d-wave
density wave will always have nodal lines which cross t
curve e(k)5e(k1Q); a p-wave density wave may or ma
not. If there is no crossing point, or the crossing point is n
below the chemical potential, the system is in the noncriti
phase. Again, the noncritical phase can have gapless ex
tions.

In the case of incommensurate ordering, similar consid
ations hold. Let us suppose that the Fermi surface is neste
incommensurateQW ; i.e., if kW is on the Fermi surface, the
kW1QW is as well, ande(k)5e(k1Q)5m. If the Fermi sur-
face intersects the nodal lines ofD(k), then there will be
gapless nodal excitations. If the chemical potential is n
lowered or the hopping parameters are changed, so tha
Fermi surface is no longer perfectly nested, then the no
will open into hole pockets. Again, as the nesting conditi
is approached, a third-order phase transition will occur, a
the commensurate case.

In summary, the system will be in a ‘‘critical’’ state i
nodal points are at or below the Fermi surface. Otherw
the system will be ‘‘noncritical,’’ whether or not there othe
gapless excitations. The transition between these two st
and the entire critical phase is characterized, in mean-fi
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theory, by a diverent third derivative of the ground-state
ergy. There is no reason to mistrust mean-field theory, s
there are no strong order-parameter fluctuations which m
destabilize out calculations.

VI. TRANSITIONS TO SUPERCONDUCTING STATES

As Zhang9 recently emphasized, enhanced symmetry
be dynamically generated at a critical point between two
ferent ordered electronic states. The focus of that work w
critical point between an antiferromagnet and adx2-y2 super-
conductor. In earlier work, Yang identified an SU~2! symme-
try @which, together with SU~2! spin-rotational symmetry
trivially forms an O(4)5SU(2)3SU(2)3Z2] which is an
exact symmetry of the Hubbard model at half-filling wi
m5U/2. This symmetry would be dynamically generated
a critical point between a CDW and ans-wave supercon-
ductor. We now consider the modification of this idea top-
andd-wave ordering.

We first consider a transition at half-filling between a s
glet commensuratedx2-y2 density-wave and adx2-y2 super-
conductor. We group the two order parameters into a vec

F i~q! f ~k!5S A2ReH K c↑
†S k1

q

2Dc↓
†S 2k1

q

2D L J
A2ImH K c↑

†S k1
q

2Dc↓
†S 2k1

q

2D L J
i K ca†S k1Q1

q

2DcaS k2
q

2D L D .

~59!

@We will use underlined lowercase Roman letters such ai
51,2, and 3 to denote pseudospin triplet indices and up
case Roman letters to denote peudospin doublet indiceA
51 and 2. Lowercase Roman indicesa51,2, and 3 will be
vector indices~i.e., real spin triplet indices! and Greek letters
a51 and 2 will be used for real spin SU~2! spinor indices.
Pauli matricest i will be used for pseudospin, whilesa will
be reserved for spin.# If, following Yang,8 we introduce the
following SU~2! generators which we will call pseudosp
SU~2!

O35E
RBZ

d2k

~2p!2
@ca†~k!ca~k! ca†~k1Q!ca~k1Q!#,

O15E
RBZ

d2k

~2p!2
ic↑

†~k!c↓
†~2k1Q! ~60!

O25E
RBZ

d2k

~2p!2
ic↑~k!c↓~2k1Q!,

then the order parameters form a triplet under this SU~2!:
-
e

ht

n
-
a

t

-

r:

r-

S F1~q! f ~k!

F0~q! f ~k!

F2~q! f ~k!
D 5S 2 K c↑

†S k1
q

2Dc↓
†S 2k1

q

2D L
i K ca†S k1Q1

q

2DcaS k2
q

2D L
K c↑S k1

q

2Dc↓S 2k1
q

2D L D .

~61!

There is a small but important difference between our ps
dospin SU~2! and Yang’s8: the factors ofi in the definitions
of O6. These are necessary since a commensuratedx2-y2

density wave breaksT, while a dx2-y2 superconductor doe
not. Consequently, our pseudospin SU~2! does not commute
with T, which is an inversion followed by a rotation byp
about the3 axis.

The electron fields transform as a doublet under the ps
dospin SU~2! as well as the spin SU~2!. We will group them
into four-component objectsCAa , where A is the pseu-
dospin index,A51 and 2, anda is the spin index,a5↑,↓:

S C1a

C2a
D 5S ca~k!

i eabcb†~2k1Q!
D . ~62!

A ‘‘microscopic’’ Hamiltonian which isO(4) invariant
can be written as

H5H01Hint , ~63!

H05E
RBZ

d2k

~2p!2
e~k!CAa†CAa , ~64!

if Hint is given by

Hint5E d2q

~2p!2
@u(0,0)l (0,0)~q!l (0,0)~q!

1u(1,0)l i
(1,0)~q!l i

(1,0)~q!1u(1,0)l iQ
(1,0)~q!l iQ

(1,0)~q!

1u(0,1)la
(0,1)~q!la

(0,1)~q!1uQ
(0,1)laQ

(0,1)~q!laQ
(0,1)~q!

1u(1,1)l ia
(1,1)~q!l ia

(1,1)~q!1uQ
(1,1)l iaQ

(1,1)~q!l iaQ
(1,1)~q!#,

where

l (0,0)5E d2k

~2p!2
f ~k!CAa†S k1

q

2DCAaS k2
q

2D ,

l i
(1,0)5E d2k

~2p!2
f ~k!CAa†S k1

q

2D t iA
B CBaS k2

q

2D ,

l iQ
(1,0)5E d2k

~2p!2
f ~k!eabCCaS k1

q

2D eCAt iA
B CBbS 2k1

q

2D ,

la
(0,1)5E d2k

~2p!2
f ~k!CAa†S k1

q

2Ds ia
b CAbS k2

q

2D ,

~65!
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laQ
(0,1)5E d2k

~2p!2
f ~k!eABCAgS k1

q

2D egbs ia
b CBbS 2k1

q

2D ,

l ia
(1,1)5E d2k

~2p!2
f ~k!CAa†S k1

q

2D t iA
B s ia

b CBbS k2
q

2D ,

l iaQ
(1,1)5E d2k

~2p!2
f ~k!CCgS k1

q

2D eCAt iA
B

3egbs ia
b CBbS 2k1

q

2D .

@We have only written down the quartic terms; highe
order O(4) invariants also exist, but they are irrelevant
weak coupling.# These microscopic Hamiltonians descri
electrons at half-filling with a nested Fermi surface and
teractions which favor density-wave and superconducting
der equally. In other words, they describe a critical point
half-filling between adx2-y2 density wave and adx2-y2 super-
conductor. Near the critical point, we can focus on the lo
energy degrees of freedom: the Goldstone modes and
nodal fermionic excitations. We can write down anO(4)
invariant action for this:

Seff5E dt
d2k

~2p!2
CAa†

~k!@]t2e~k!#CAa~k!

1 igE dt
d2k

~2p!2

d2q

~2p!2
F i~q! f ~k!

3FeabCCaS k1
q

2D eCAtA
iBCBbS 2k1

q

2D
1eabCAa†S k1

q

2D tA
iBeBCCBb†S 2k1

q

2D G
1E dtd2xS ~]mF i !

21
1

2
rF iF i1

1

4!
u~F iF i !

2D .

~66!

In this Lagrangian, we have rescaled all of the velocities a
stiffnesses to 1. In general, these quantities will
different—breaking theO(4) symmetry—and this cannot b
done. Symmety-breaking terms will be briefly addressed
low.

The transition between thedx2-y2 density wave and the
dx2-y2 superconductor is driven by a pseudospin-2 symme
breaking field, which we will callu:

Lu5u~F0
21F1F2!5u~F3

22F1
22F2

2!. ~67!

For u,0, the 3 axis is an easy axis, and thedx2-y2 density-
wave state is favored; foru.0, the 1-2 plane is an eas
plane, and thedx2-y2 superconducting state is favored.

We can move away from a nested Fermi surface by tun
the chemical potential or a next-neighbor hopping parame
Such effects are encapsulated by a pseudospin-1 symm
breaking term:
t

-
r-
t

-
he

d
e

e-

-

g
r.
ry-

Sm5mO35E dtd2x~e i jF i]tF j1C†t3C!, ~68!

whereO3 is the pseudospin SU~2! generator defined above
If u50, m will immediately force the pseudospin into th
1-2 plane, i.e., the superconductor will be favored. Ifu,0,
the dx2-y2 density-wave state will be favored untilmc

}(A2u). At this point, a first-order phase transition—th
pseudo-spin-flip transition—will occur at which the pse
dospin switches from an easy-axis phase to an easy-p
phase. If we allowF0 to have a different velocity thanF6 ,
then this first order phase transition can become two seco
order phase transitions. Depending on the values of th
parameters and the strength of quantum fluctuations, the
tervening phase can either have both types of order or
ther.

The critical point occurs when the jump inF is tuned to
zero. Hence, it is a tricritical point. At such a critical poin
O(4)-breaking terms can scale to zero. The critical point a
the quantum critical region24,25 are described by the physic
of the critical fluctuations coupled to nodal fermionic excit
tions. By arguments similar to those of Ref. 21, the no
fermions are neutral, spin-1

2 objects. A more detailed analy
sis will be given elsewhere.26

Similar conclusions can be drawn fordxy and dx2-y2

1 idxy transitions; the latter case is particularly simple sin
there are no fermions. In the case of transitions betw
px-wave density-wave and superconducting states, the o
parameters are both pseudospinand spin triplets. Hence the
effective-field theory for such a transition takes the form

Seff5E dt
d2k

~2p!2
CAa†

@]t2e~k!#CAa

1 igE dt
d2k

~2p!2

d2q

~2p!2
F i

a~q! f ~k!Fegasa
abCCg

3S k1
q

2D eCAtA
aBCBbS 2k1

q

2D1sa
abebgCAa†

3S 2k1
q

2D tA
aBeBCCBg†S 2k1

q

2D G1E dtd2x

3S ~]mF i !
21

1

2
F i

aF i
a1

1

4!
u~F i

aF i
a!2D ,

where

S F1
a

F2
a

F3
a
D 5S A2Re$^cg

†~k!egasa
abcb

†~2k!t&%

A2Im$^cg
†~k!egasa

abcb
†~2k!&%

i ^ca†~k1Q!sa
abcb~k!&

D . ~69!

VII. DISCUSSION

In this paper, we have discussed the properties of orde
states in which particle-hole pairs with nonzero angular m
mentum condense. These states generalize charge- and
density-wave states in the same way thatp- and d-wave
superconductors generalizes-wave superconductivity. How-
ever, unlike in the superconducting case—where the Me
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ner effect follows directly from the broken symmetry, irr
spective of the pairing channel—the angular variation of
condensate makesp- andd-wave density-wave ordering dif
ficult to detect. Experiments seeking to uncover such or
must~a! be sensitive to spatial variations of kinetic energy
currents, or~b! measure higher-order correlations of t
charge or spin density. We explained howmSR, neutron
scattering, NQR, and Raman scattering can be used in
regard. Impurities, which break rotational invariance, wou
cause an admixture ofp- or d-wave ordering withs-wave
ordering. It is natural to wonder whether experiments wh
appear to detect SDW order should be re-examined to s
they have actually uncoveredp- or d-wave order which, as a
result of impurities, is masquerading ass-wave order.

As in the superconducting case, the nontrivial pairi
symmetry can lead to the existence of nodal excitations.
parameters such as the chemical potential or next-neig
hopping are varied, nodal excitations appear at a transi
which is third order in mean-field theory. The ‘‘phase’’ wit
nodal excitations is always critical.

The analogies betweenp- and d-wave density-wave or-
dering andp- and d-wave superconductivity begs the que
tion: what is the nature of a phase transition between s
states? In answering this question, we are led to one of
motivations of this work. The pseudogap regime of the
prate superconductors exhibits some properties which ca
associated withdx2-y2 ordering. One explanation is that som
ce

en
e

er
r

is

h
if

s
or
n

h
he
-
be

features of thedx2-y2 superconducting state have been inh
ited. However, it is natural to inquire whether the physics
this regime could also be determined in part by proximity
a dx2-y2 density-wave state or the transition between
density-wave and superconducting states. In other words
ask whether the physics of the pseudogap regime shoul
described by a theory which incorporates fluctuations
tweendx2-y2 density-wave and superconducting states. In t
connection, we note that the physics of the critical po
between dx2-y2 density-wave and superconducting sta
bears a rough resemblance to that of the SU~2! mean-field
theory of thet-J model.19,20 In that theory, the gauge field
parametrizes fluctuations between thedx2-y2 density-wave
and superconducting states, a role played in our analysi
the Goldstone bosons of theO(4) effective theory. We also
note that the nodal liquid state21–23 shares many features o
the dx2-y2 density-wave and superconducting states. In b
the nodal liquid and SU~2! gauge theories, the quasipartic
spectra of spin-charge-separated phases follow from t
proximity to a dx2-y2 density wave. These issues and th
possible relevance to the cuprates will be further explo
elsewhere.26
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