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Density-wave states of nonzero angular momentum
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We study the properties of states in which particle-hole pairs of nonzero angular momentum condense.
These states generalize charge- and spin-density-wave states, inswWagke particle-hole pairs condense. We
show that thg-wave spin-singlet state of this type has Peierls ordering, whileHivave spin-singlet state is
the staggered flux state. We discuss model Hamiltonians which faxardd-wave density-wave order. There
are analogous orderings for pure spin models, which generalize spin-Peierls order. The spin-triplet density-
wave states are accompanied by spin-1 Goldstone bosons, but these excitations do not contribute to the
spin-spin correlation function. Hence they must be detected with NQR or Raman-scattering experiments.
Depending on the geometry and topology of the Fermi-surface, these states may admit gapless fermionic
excitations. As the Fermi-surface geometry is changed, these excitations disappear at a transition which is third
order in mean-field theory. The singldtwave- and triplep-wave density-wave states are separated from the
corresponding superconducting states by zero-temper@#g-symmetric critical points.

I. INTRODUCTION Hence, they are rather natural candidates for systems with
competing repulsive interactions.

In recent years, a number of materials have been uncov- As in the case of higher angular momentum supercon-
ered in which the competition between effective attractiveducting states, there is the possibility of gapless excitations,
interaction and short-range repulsion appears to lead to th&nce the order parameter can have nodes on the Fermi sur-
formation of superconducting states in which the Coopefface. To consider one consequence of this, suppose that the
pairs have nonzero relative angular momentum. In this pashape of the Fermi surface is such that the nodes of the order
per, we suggest that such competition can also lead tparameter do not lie on the Fermi surface. Let us distort the
density-wave states formed by the condensatiopavficle-  shape of the Fermi surface by, say, changing the anisotropy
hole pairs of nonzero relative angular momentum. Theséetween the hopping parameters, which can be done by ap-
states generalize familiar charge- and spin-density-wavelying uniaxial pressure. At the mean-field level, a third-
states, in whicls-wave particle-hole pairs condense. We dis-order phase transition can occur at which gapless excitations
cuss several different possible ordering schemes, the types appear. After this point, the system remains critical as a re-
interactions which favor them, their physical properties, andsult of the node.
their possible relevance to experiments. The analogy with supercondutivity can be taken a step

Several such states are already commonly known by othdurther by combining density wave order with superconduct-
names, as we will show below. The singlet 1 density- ing order in a pseudospin $2) triplet following Yand and
wave state is simply the Peierls stébe bond-ordered waye ~ Zhang® At a critical point between the two types of order,
while the singletl=2 density-wave state is known as the this pseudospin S@2) could become exact, giving—together
staggered flux state of Refs. 1-3. However, triplet analogs ofvith SU(2) spin symmetry—ai®©(4)-invariant critical point.
these states have not been discussed. Since the triplet analdye discuss the possible relevance of such a critical point to
of these states break spin-rotational invariance, they [Save the pseudogap regime of the cuprate superconductors.
=1 Goldstone boson excitations. However, the ground state Particle-hole condensates with nonzero angular momen-
does not have a nonzero expectation value for the spin at ariym were considered in the context of excitonic insulators by
wave vector. Hence, as we will see, these Goldstone bosorsalperin and Ricé® They were rediscovered in the context
cannot be detected in experiments which couple simply t@f the mean-field instabilities of extended Hubbard models
the spin density, such as neutron scattering or NMR. Insteadly SchulZ! and Nersesyan and co-workéfs At around
Raman scattering or NQR are necessary to couple to thie same time, Kotlidrand Marston and Affleckfound the
Goldstone bosons of these more subtle types of orderingitaggered flux state as a mean-field solution of the Hubbard
More generalys-wave probes cannot couple directly to the model. However, it was apparently not recognized that the
orders discussed here; instead, local probes or those whiaingletd,..,» density-wave state is the same as the staggered
couple to higher powers of the order parameter are necefiux state. More recently, this stat&;'® and a related
sary. variant’8 which does not break translational symmetry,

The p- andd-wave density-wave states are favored by thehave been discussed in the context of the cuprate supercon-
same types of interactions which favor thevave state—i.e., ductors. A version of thel,2.» density-wave stat¢see the
the charge-density wa €DW). However, they evade inter- comments in Sec. Vllhas appeared in mean-field analyses
actions which disfavor CDW order. Similarly, they are fa- of an SU2) mean-field theory of the-J model!®?° The
vored by superconductivity-favoring pair-hopping tertns, nodal liquid state of Refs. 21-23 also bears a family resem-
while evading interactions which disfavor superconductivity.blance to the staggered flux state; we will return to the rela-
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tionship between these states in Sec. VII. (An extendeds wave is also possiblgA singlet p, density-
wave state has ordering

Il. ORDER PARAMETERS AND BROKEN SYMMETRIES

_ _ _ _ _ (T (k+ Q) gg(k,t)) = Dy sink,ass. (9
We define the different possible density-wave orderings
by analogy with the more familiar superconducting caseThe singletp,+ip, density-wave states are defined by
Consider a system of electrons on a square lattice ofaide
A superconductor is defined by a nonvanishing expectation  {#*'(k+ Q.0 (k1)) =Dg(sink,a+i sinkya) 5.

value of (10
(YK D) hp(—k,1)). (1) Similarly, the singletd,2.,> density-wave states have
A triplet superconductor is characterized by the expectation (T (k+ Q.1 ¢5(K,t)) = Do coska— cosk,a) sy,
value (11
(Yol s —k,D))=A(p)-0le,p5. (2)  while the singletd,.2+id,, density-wave states have
Fermi statistics requires that(p) be odd inﬁ. p-wave su- (T (k+ Q,t) g(k,t))=Dg(cosk,a— cosk,a

perconductors can have the componentsAgp) chosen
from sink.a, sink,a, or sink,a=xisinka. For instance, gy
superconductor with all spins polarized along the 3 direction
will have A;+iA,#0 andA;=A;—iA,=0:

+i sink,asink,a)dg. (12
These states belong to a class of states of the form

(oKDY~ kD)= Bo(sink@) oL e 5. (3 (W QUYpk) = 0ot 055 (13

Spin-polarizedp, andp,+ip, superconductors have dim f(Kk) is an element of some representation of the space group

replaced by sika and sirka+isinka, respectively. The Of the vectorQ in the square lattice. In this paper, we wil
analog of theA’ phase of*He has equal numbers ¢f and  focus primarily on the cased (k)= sinka and f(k)

|| pairs: = coska— coskya, but f(k) could be an element of some
larger representation. Trewave (or extended-wave cases
(Pa(K D=k, 1)) =Ag(sinkacs’+ sink,ac?) e,z f(k)=|f(k)| are the usual charge-density-wave states.
(4) Q is the wave vector at which the density-wave ordering

A larized d irs hasA.£0 takes place. It may be commensurate or incommensuiate.
n unpolarizedp, superconductor of | pairs hasAz# this paper, we will take “commensurate” to mean the situ-

andA;=4,=0: ation in which 2 is a reciprocal-lattice vector. The term
_ — i 3y “incommensurate” will actually include higher-order com-
(Walk (k1)) =Ao(sink,@) 7y €. ® mensurability) For commensurate ordering such th@ & a
As in the polarized case, unpolarizpd and p,+ip, super-  reciprocal-lattice  vector, e.g.,, Q=(w/a,0) or Q
conductors have siga replaced by sika and sirka  =(w/a,w/a), we can take the Hermitian conjugate of the
+isink,a, respectively. In principle, more complicated order order parameter:
parameters are possible, with all componentsAotaking '8 ex N
nonvanishing values. If any component®¢p) is not real, (PP (kD) o (k+Q,1)) = D> (k) 35,
time-reversal symmetryT) is broken.
A d-wave superconductor must be a spin-singlet super- (PPT(k+Q+ Q) Y (k+Q,1))=DEf* (k) 85, (14
conductor. Ad,2.,2 superconductor has
Dof(k+Q)dz=D5f* (k) o
(oK, D) hg(—k,1))=Ag(coska— coskja)e,s, (6)
Therefore, forQ commensurate,
while ad,, superconductor has ck@— coska replaced by

sinka@asinka. A d,2.,2+id,, superconductor breaks with f(k+Q) @
the order parameter: —_Q

Pk Po’ o
(Ya(k D ip(—k,1))= Ag(Cosk,a— coskya Hence, if f(k+Q)=—f*(k), ®o must be imaginary. For
+i sink,asinkya) e,z - (7) singlet p, ordering, this will be the case ®=(=/a,0) or
Q=(m/a,w/a). For singletd,2.,> ordering, this will be the
We can define analogous orders for density-wave stategase if Q=(w/a,w/a). If f(k+Q)=f*(k), ®o must be
However, the spin structures will no longer be determined byeal. For singletp, ordering, this will be the case iQ
Fermi statistics. Let us first consider the singlet orderings. A=(0,m/a). For singletd,, ordering, this will be the case if
singlet swave density wave is simply a charge-densityQ=(x/a,n/a).
wave: For incommensurate orderingbgy can have arbitrary
: N phase: the phase @b, is the Goldstone boson of broken
(P (k+ QD) ¢p(k,t)) =D 5 (8 translational invariance, i.e., the sliding density-wave mode.
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Impurities will pin this mode—at second order in the impu-  (a) b
rity potential, as in the case of a spin-density wave—so we s s
will not consider it further.

All of these states break translational and rotational in- - - e
variance. To further analyze the symmetries of these states, it
is instructive to write these orderings in real space. The sin-
glet p, density waves have a nonvanishing expectation — o o e — o
value:
(P (XD g(x+axt))
i L2 P C (d) — L ] L ]
=const—§(<I>Qe'Q‘X+(b_Qe"Q'X) ©
L ] ”r-—o—
X 64685 x+ax— Oy x—ax)- (16) .
We have only written the modulated term; const refers to the
uniform contribution coming from the Fourier transform of — o
T
v (k) (k). FIG. 1. (a) Q=(=/a,0) p, density-wave statgb) Q= (0,7/a)

Let us consider the commensurate and mcommensuratpeX density-wave Stateic) Q= (/a,0) py+ip, density-wave state.

cases tsetparately.l -I;hle tl)ncor;?]erltsuratlet_SIngfLedanIE{y:[_ %?) Incommensuratep, density-wave state. Arrowless lines are
wave stales completely break the transiational and rotationgj, s \where the kinetic energy is large but there is no net current.

symmetries. Ifbo=—®% o, Tis preserved; otherwise, itis Tpe jine thickness indicates the bond strength. Arrowed lines de-
broken. The singletp,+ip, density-wave states always note currents.

break T. Commensurate states, on the other hand, break

translation by one lattice spacing; translation by two lattic
spacings is preserved. From H45), a commensurate sin-
glet p, density-wave state witlQ=(7/a,0) must have
imaginary®q:

€correlation function coming fromy' (k) ¢(k) which is uni-
form in spacethe ...); as aesult, the phase of the above
bond correlation function—and, therefore, the flux through
each plaquette—is alternating. The commensur&e
=(m/a,m/a) singletd,, must have realby; therefore, it

tar g 7 1)) = iQ-x
(M (X ) Pg(y 1)) =constr[Dgle does not breaK.

X O3( 05 x+ax— Oy i-ax). (17)

. . S 1 s
The singlet state of this type breaks no other symmetries; itis (yta(x t)y,(y,t))=constr = D o' R *8%( 5 5+ axsas
usually called thePeierls stateor bond order wave. 1Q < b ) 279 proycaay
=(0,m/a), o must be real: B
( T ) Q +5y,x—ax—ay_ 5y,x—ax+ay

(10 Py, 1) = consti[bg|e/ = — 8y ivakai) (20

X Gp( 0y xrai™ dyx-ar)-  (18) On the other hand, the singlé§z_ 2+ id,, state does break

As a result of the, the Q= (0,7/a) singletp, density-wave T:
states break. However, the combination of and transla-
tion by an odd number of lattice spacings remains unbroken. R R .. N
The same is true of the commensurate singdet-ip,  (y'*(x,t)¥p(y,t))=const- CI)Qe'Q'X5g[§(5§'§+a§<+ Sy —ax
density-wave states. Examples of commensurate and incom-
mensurate singlep, and p,+ip, density-wave states are i
depicted in Fig. 1. — 6y x+ay— Oy x—ay) — 2(537';”;”9

The commensurat® = (7/a,m/a) singletd,2.2 density-
wave states must have imaginaby, : + 6§ 5—ak—ay— 05 5—ak+ay

- - [ e
(¥ (XD (Y, 1)) = constr 5| Dol €2 5( 55 5 ax — 8y srax-ay) |- (2D

0y x-ak™ OyxrayT Oy x-ay)- Note that the nodeless commensurate singlet,2+id,,

(19 density-wave state does not break more symmetries than the
As a result ofi, the singletd,e.,> density wave breaks, as commensurate sing_leixz_yz density-wave sta_lte, in contrast
well as translational and rotational invariance. The combinal© 1€ superconductlng case. Examples of sqnj;,leg,;, dX.V’
tion of time reversal and a translation by one lattice spacingddx2y2+idxy density-wave states are depicted in Fig. 2.
is preserved by this ordering. The commensurage If Q is not along one of the axes, the associated incom-
= (mla,m/a) singletd,z.,> density-wave state is often called Mensurate density-wave states will nsixp, d, etc. density-
the staggered flux stateThere is also a contribution to this wave orders. FoQ = (w/a,m/a) + g with |g| small, there are
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(a) (b) (YT (k+Q,0) (k1)) = Dof (K)o, (25)

wheref(k) is chosen from the above set. Alternatively, the
particle-hole pairs can be unpolarized, e.g.,

(P (k+Q,1), pa(k,t)) = Do(sinkaos*+i sink,ass®).
(26)

As in the superconducting case, more complicated order pa-

rameters are possible, with all componentsﬁofaking non-
vanishing values. For commensurate ordering, we can follow
© d . P the same logic as in Eq14). The phases of the components

of <f>Q(p) are constrained in the same way as the singlet
order parameters, as illustrated by the front of the second
. . term in Eq.(26).

I The orders discussed here can be generalized to other 2D

and 3D lattices. The orbital wave functions kjg, etc., will
be replaced by representations of the point groups of these
FIG. 2. (8) Commensuratel,z.,> density-wave stateb) Com-  other lattices.

mensurated,, density-wave state(c) Commensuratel,z.,2+id,, To eachT-preserving singlet ordering, we can associate
density-wave state(d) IncommensurateT-preservingd,z.y2. Ar- an ordering of a pure spin model, in the same way that spin-
rowless lines are bonds where the kinetic energy is large but there Beierls ordering is related to Peierls ordering:
no net current. Line thickness indicates bond strength. Arrowed

lines denote currents. (P T(k+ Q1) ¢ (k1)) —(S(k+Q,t)-S(k,t)). (27

* "~

*r—eo—0e

states which are primarilgl,..» density-wave states with These spin orderings are states in which the exchange ener-

. : - gies are large along preferred directions. These preferred
small admixtures, proportional g, of real dez.y2, px, and diractions oscillate from one lattice point to the next with

p, states, _ - . ) _ _
spatial frequency). The simplest case is spin-Peierls order-
1 Q.2 ik ing, in which the spins form dimers. Another exampleljg
f(k)= coska— cosk,a— 5 (1+ex)e ordering of a spin model, which takes the form
1 Lo~ ik 1 ! 20 1\ &0 1 iQ-x —-iQ-x
+5(1- e2(Q= Q) glkya 4 5(1+ e2(QxtQ2) (SXOS(y 1)) == 7 (P 7+ P g8 ) (8] s axsay
xe 'y, (22 + 6y x—ax-ay~ Oy x—ax+ay~ Fy.x+ax—ay);

which satisfies Eq(15) with ®¢ imaginary. For|q| small,  in analogy with Eq(20).
this is
I1l. MODEL HAMILTONIANS

[
f(k) = cosk.a— coskja+ 7 dxa(cosk,a— coskya) We are primarily concerned in this paper with the univer-
sal properties of the states introduced above. We will not
. 1 ) attempt to show that particular realistic models of interacting
—quasmkxa— quasmkya. (23)  electrons havep- or d-wave density-wave ground states.
Rather, we will content ourselves with discussing the types
We now consider the triplet density-wave states. Tripletof interactions which favor such orders, and showing that
states all break spin-rotational invariance and, thereforehey lead to energetically favorable trial variational wave
have Goldstone boson excitations. We will discuss the exfunctions for some idealized Hamiltonians.
perimental consequences of these Goldstone bosons later. The analog of the BCS reduced Hamiltonian for singlet
The triplet swave density-wave state is simply a spin- density-wave order is
density wave. The triplgt- andd-wave states are character-

ized by dk ot
= | Gayptevatio
(YT (k+Q,1) (k1)) =D (k) - 0, (24)
. d2k 2 ’
with the components oP (k) chosen from, sika, sinka, —gJ 5 2 [f(K) (k") et
sinka=isinka, coska—coska, sinkasinka, and (2m)* (2m)

coska— coska*isinkasinka, respectively. 8t p
A state in which the particle-hole pairs are polarized, X(KF Q)¢ (K gr(kT+ Q) (28)

which is the most direct analog of a spin-density wave hasn the triplet case, we replace the four-fermion operator of
Do(p) of the form®3#0, dL=d2=0, Eq. (28) by
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P T (k+Q) a2 g " (K e2 sk +Q).  (29) X coskia+ 2 coskya cosk}a] — 2t.,(sink}a sinka
We now introduce the variational wave function + sinkya sin kﬁa)}wﬂ(kl)wa(kz) AT (kg) Wp(Ka)).
(35
(W) =TT [ueatr”" (0 +vi g™ (k+Q)10). (30 _ , _ _
K a Let us now consider various candidate orderings and the
lts energy can be minimized if we take terms which favor or penalize them. Antiferromagnetic order
is favored byU but penalized by. Charge-density-wave
o g®of (k) order is favored by but penalized byJ. p- and d-wave
Uk Uk o= QZ > > ) superconductivities are favored Iy, andt.;, respectively
VLe(k) — e(k+Q)J°+4g% DT (k)] and penalized by. p- andd-density-wave orders are favored
31 by t., andt.,, respectively, and are both favored Yy The
in the singlet case and density-wave states can be favored over the others by taking
V large. Thep- or d-wave states can be favored by taking
— - gcf)Qf(k) ortg, large. To be more precise, the mean-field equations for
Uk, a0 Uk g~ various ordered states read
7 ek — e(k+ Q17+ 47 @[T (K) I
f d’k (f(k))? 3
in the triplet case, and requif, to satisfy the gap equation: (2m)2 \[e(k)— e(k+Q)]2+4)\2|d>Q|2[f(k)]2 o
) ) (36
d°k (f(k))
g f 5 5 5 5 =1 where
(2m)% JLe(k)— e(k+Q)1*+4g% ol [ f(K)]
(33) )\dDW: 8V+ 96tcl!
The reduced Hamiltonian has long-ranged interactions, so _
the variational wave function is essentially correct. We will Npow=4V+ 16le; +16Lc, @7
now show that short-ranged Hamiltonians will include terms _ _
of the form (28), and that the trial wave functiofB0) is Neow= 16V +96te; + 18, — 2U,
reasonable for these short-ranged Hamiltonians. Nac=2U
Consider, then, the following lattice model of interacting AF '
electrons: Hence the singletd,2.> density-wave state will be the
ground state if
H= —t<iEj> (c;racjgwL H.c.)+ UZi ”iT”iPLV(iEj) nin; 8ty <U—4V<i4st,,,
8t.,<2V+40t,, (38
—t ! eioCh cip—t "¢ . . . .
°1<i'j>'<i,2'j>'i¢i, CioCioCioCit szi [(€i15.0Ci while the singletp, density-wave state will be the ground
; N . state if
—CiyCi+xo)(C st oCit9,0 7 Ci i ,Citx o) TX—=Yy].
T ey e Ty - BV + 40ty < U< 2V+ 8ty + 8tey,
The first two terms are the usual hoppingnd on-site repul- 2V+ 40t <8tcy, (39

sion U of the Hubbard model. The third term is a nearest-assuming that the van Hove singularities are at the antinodes
nEIthor repuISION. The third and fourth terms lead to the of the order parameters_ Otherwise, tpe and d-wave
correlated motion of pairs of electrorty, hops an electron  density-wave states will be favored over somewhat smaller
fromi’ to whenj is vacated by an electron hoppingitd.,  regions of parameter space. By including spin-dependent in-
hops nearest-neighbor pairs in the same direction. Terms %ractions such aﬂé-éi we can favor the triplep- or

this g;aneral form \:jverg (Ijiscissed in_lli‘zefs. §_|7 as ﬁ meCh?f-wave states. Hence it appears that the orderings discussed
n|s|m for supercon uc(:j'uwty.. S ;ve wi Sde?j e OW'dt ey NOtin this paper are viable. The detailed energetics at large cou-
only favor superconductivity, bup- and d-wave-density pling strengths—which surely hold in physically interesting

wave o_rder as well. . . . . systems—are beyond the scope of this paper.
Fourier transforming the interaction terms into momen-

tum space, we see that terms of the form of the reduced

interaction(28) are, indeed, present: IV. EXPERIMENTAL SIGNATURES

We now turn to the question of the experimental signa-

d*k tures of such states. Since the order parameter chan i
L it It . p ges sign
int J’ (277)2(U¢/ (ke)¢1(k2) " (ka) 4, (Ky) as the Fermi surface is circled, there is no net CDW or spin-
density-wave order which could be measured in, for in-
+{2V[cog k3 —k})a+ cogki—k})a] stance, neutron scattering. When another symmetry—in ad-

< x v Ly « dition to translational invariance—is broken, this is easier.
— 2t[cogky—ky)a+ cogky—ky)a+ 2 coskya (One can expect, on general grounds, that incommensurate
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singlet or tripletp- or d-wave density-wave order at wave
vectorQ will induce CDW order at B, since a term of the

2 => = . .
form ®gpaq OF Ro- Popyq is allowed by symmetry inthe v case of photons, this will lead to two-magnon Raman

effe:}:uve acﬂ?n. Neverthﬁlessﬁ we Ta{:[\;"\ﬁh to dIStmgu'Sh'scattering. The coupling to nuclear spins couples directly to
such a sta'te rom one which nas only orfler. the nuclear quadrupole moment, and will lead to a shift in
Let us first consider broken time-reversal symmetry. Thethe nuclear quadrupole resonance frequencies

comgilnsurattt—:;e_gnglmixi_y_zr. dﬁ“S'W wavel state—or stag- |, the presence of disorder, rotational symmetry will be
gered flux state=—breaksT; there is an alternating pattern 1., oy Hence there will be a small coupling, proportional to

of currents circulating about each plaquette of the Iatticethe disorder strength, of the Goldstone bosonss-teave
These currents produce an alternating magnetic field meas%'robes such as NMR ’and neutron scattering
able by ©SR and, in principle, by neutron scatterih@he '

magnitude of the current along a link of the lattice will be

H probe= f dX[2(F- o) (F- D) —|Dg|?F?]. (42

V. GAPLESS FERMIONIC EXCITATIONS

et The mean-field Hamiltonian is
J [ p—
h

Do~10° AXDg. (40)

d%k
HIJ SLe(k) T (k) (k)
Now @, is related to the maximum of the gap according to B.2(2m)

Ao=g%Pq, Whereg is the appropriate coupling constant. Let +gPof(K) T (k+ Q) (K)]. (43)
us suppose, for the purposes of illustration, that the forma-

tion of the ordered state is driven Bypy. Then, forngpy  If we define the four component objegf,, according to
small, ® o~ (t/\gpw)e ("W dow. Alternatively, we may

take the highF. context as a guideline: observed gaps are (Xla) :( ¥a(K)
~100-300 K, while integactions such arel eV. In this X2a P (k+Q)
case, we expecy~10 “. This translates to a magnetic ' I : .

field at the center gf each plaquette on the order of 10 G. Thg1en the mean-field Hamiltonian can be written in the form
muons in auSR experiment might see a lowwer field if they 42k 1

sit at points of high symmetry or away from the plane. The p :f X“T(k)(—[e(k)— e(k+Q) ]+ A(K) 7y
orbital magnetic moments are likely to be dwarfed by local RBZ(217)°? 2

spin moments. Incommensurate ordering may or may not

breakT,; if it does, the above analysis applies. -

In the ®3#0, d5=>D5=0 triplet d,22 density-wave Tl +elktQlixa 49
state, there are counter-circulating currents of up- and downgy, integral is over the reduced Brillouin zofRBZ). The
spin electrons. These currents cancel, so there is no net CUl"s are Pauli matrices: the “flavor” indexA=1 and 2 on
rent circulating about each plaquette, but there is an alterna\lﬁhich they act has beén suppress&ek) is defined by
ing pattern of spin currents circulating about each plaquette.
The checkerboard pattern of spin currents will generate, via A(K)=Aof(k)=gPof (k). (46)
the spin-orbit coupling,

: (44)

The single-quasiparticle energies are

H f d* _d' E(q)-(2k+q) ¢ (k+q)a?y4(k) E.(k) 1[ (k) + e(k+Q)]
= | ——— . + =5L€ €
5 ) (2m)? (2m)? V- VY Doadpk). - 2

(41)

1
*-\le(k)—e(k+Q) >+ 4A%(k). (47
a quadrupolar electric field which is, in principle, measurable
in NQR experiments. With the above estimate of the current,

a nucleus with a nonzero quadrupole moment would have Ahen the argument of the square root vanishves discuss

induced splitting of order 1O.HZ' . . . below the conditions under which this occurkor simplic-
We now turn to broken spin-rotational invariance, charac-,

teristic of the triplet states. Since it transforms nontrivially 'Y, We will consider the commensura@=(w/a,w/a) sin-

under the point group of the square lattice, the triplet orde@!€t Px density-wave state in a model with anisotropic
> . nearest-neighbor hopping,

parameter®q, will not couple to photons, neutrons, or

nuclear spins according @ F, whereF is B, Sy, or I, e(k)=—2t(r cosk,a+ cosk,a), (48)

respectively. Stated more physically, the triplet ordered i o )

states do not have anomalous expectation values for the spith r<1. The mean-field quasiparticle energies are

density but, rather, for spin currents; spin currents do not 5 ———

couple simply to these probes. However, the order parameter E(K)==* V4t (r cosk,a-+ cosk,a)’+Agsir’ k,a.

(f)Q will couple to such probes at second order, since its (49)

square transforms trivially under the point group. Such arhere is a node ak,=0, k,a=arccos{-r). Expanding

coupling will be of the form about this node,

Let us consider the situation in which there is a node, i.e.,
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E(a) =+ o2+ 0202, (50) PE, j d%k  8e(K)t3 cos kya -
- = / . .
with momentaq now measured from the node, and or®  JEw<u(2m)? [e4(k)+A%(K)]¥?
Below half-filling, the denominator never diverges. Hence
vx=R808, vy=2tayl-r=. G the system is always in the noncritical phase, despite the fact
The effective Lagrangian for the quasiparticles near thdhat there are gapless excitations. As the chemical potential
nodes can be written is increased, the system crosses a third-order phase transition
and enters the critical phase. Above half-filling, it is always
Letr=X"1(0,= 7,041 dy = T0 4 ) X - (52)  in the critical phase.

the chemical potential or next-neighbor hopping, open ho Ingt', thereby spoiling nesting. The ground-state energy is

Terms which break the nesting of the Fermi surface, such g Suppose, now, that we allow next-nearest-neighbor hop-
e
pockets at the nodes: iven by

2
L= = ux" Xa- (53 E =f dk E(k)
_ E(<u(27r)2
We now turn to the question of whenm@ or d-wave
density wave will have nodal excitations. Let us again begin d%k [1
with the commensurat®= (w/a,w/a) singlet p, density- :fE(k)<,u(2ﬂ-)2 slel+ek+Q)]
wave state,
1
(T (k+ Q) ¢a(k, ) =i|Dolsink,asdy, (54 —EJ[e(k)—e(k+Q)]2+4A2(k)} (58)

in a system in which the Fermi surface is neste@afrhis  and

state will have gapless excitations if the nodal likng=0

crosses the Fermi surface. For an open Fermi surface, this (93E0 d?k 4e(k)t3 cosk,a

need not be the case. In an anisotropic nearest-neighbor™— 3 :j > 2 2 13

tight-binding model[Eq. (48)], with r>1, the Fermi surface o Bt<x(2m)” {[e(k)— e(k+Q)]"+4A%(K)}

at half-filling is an open Fermi surface which does not cross R

the line k,=0. Consequently, there are no gapless excita-

tions. Forr<1, however, the Fermi surface does cross thelhis diverges if the nodal line oA(k) crosses the curve

line k,=0, and there are gapless excitations. e(k)=€(k+Q), and this crossing point lies below the
Are there any thermodynamic singularities at the transichemical potential. In such a case, the system is in the criti-

tion at which gapless excitations occur? To answer this quessal phase. Regardless of the details of the band structure, the

tion, let us consider the mean-field ground-state energy  curve (k) = e(k+ Q) is determined by symmetry for com-

, , mensurat&): it is the set of points for whick andk+Q are
Eo=f d’k E(k)=J d°k \/m related by a symmetry of the square lattice. FQr
RBZ(27)? RBZ(21)? =(mla,0), e(kK)=e(k+Q) if k,~==m/2a. For O
(59  =(mla,mla), e(k)=e(k+Q) if kyxk,=*m/a. A d-wave
The first and second derivatives B, are continuous. How- density wave will always have nodal lines which cross the
ever, the third derivative of the ground state energy withCUrve (k)=e(k+Q); a p-wave density wave may or may

respect tar contains a term of the form not. If there is no crossing point, or the crossing point is not
below the chemical potential, the system is in the noncritical
& E, J, d’%k  8e(k)t3cosk,a phase. Again, the noncritical phase can have gapless excita-
X .
= . (56)  tions.
ar3 rRBz(2m)? [ €(k) +A2(k)]3"? In the case of incommensurate ordering, similar consider-

This term diverges if there is a node on the Fermi surface?tions hold. Let us suppose that the Fermi surface is nested at

but is finite otherwise. Hence the phase with a node on thécommensurat®; i.e., if k is on the Fermi surface, then
Fermi surface is a@ritical line with a singular third deriva- k+Q is as well, ande(k) = e(k+ Q)= . If the Fermi sur-

tive of the ground-state energy. We will call this phase theface intersects the nodal lines 4f(k), then there will be
“critical phase” of thep, density wave. Note that the second gapless nodal excitations. If the chemical potential is now
derivative of the ground-state energy is everywhere continulowered or the hopping parameters are changed, so that the
ous, but nowhere differentiable in the critical phase. It isFermi surface is no longer perfectly nested, then the nodes
separated by a third-order phase transition from the phaseill open into hole pockets. Again, as the nesting condition
with no gapless excitations, the noncritical phase ofghe is approached, a third-order phase transition will occur, as in
density wave. the commensurate case.

How does this observation generalizg away from half- In summary, the system will be in a “critical” state if
filing and to non-nested Fermi surfaces; aiixl to d-wave  nodal points are at or below the Fermi surface. Otherwise,
and/or incommensurate ordering? To answay, let us the system will be “noncritical,” whether or not there other
change the chemical potential in order to move away frongapless excitations. The transition between these two states
half-filling. Now and the entire critical phase is characterized, in mean-field-
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theory, by a diverent third derivative of the ground-state en- ; a| q
ergy. There is no reason to mistrust mean-field theory, since - %( k+ > %( —k+ >
there are no strong order-parameter fluctuations which might / ® _(q)f(k)
destabilize out calculations. Do(q)F(k) | = i< l/,aT( k+Q+g l//a( K g)>
@ _(q)f(k)
VI. TRANSITIONS TO SUPERCONDUCTING STATES < A k+ g ‘ﬁl( —k+ g >

As Zhand recently emphasized, enhanced symmetry can
be dynamically generated at a critical point between two dif- ] . .
ferent ordered electronic states. The focus of that work was &Nere is a small but important difference between our pseu-
critical point between an antiferromagnet and,a,2 super- dospin SU2) and Yang § the factors ofi in the definitions
conductor. In earlier work, Yang identified an @Jsymme- Of O". These are necessary since a commensutatg.
try [which, together with S(®) spin-rotational symmetry, density wave break3, while adxz__yz superconductor does
trivially forms an O(4)=SU(2)x SU(2)x Z,] which is an  not. Consequently, our pseudospin(8ldoes not commute
exact symmetry of the Hubbard model at half-filling with With T, which is an inversion followed by a rotation by
w=U/2. This symmetry would be dynamically generated atdbout the3 axis.

a critical point between a CDW and aawave supercon- The electron fields transform as a doublet under the pseu-
ductor. We now consider the modification of this idegpto  dospin SU2) as well as the spin S@). We will group them
andd-wave ordering. into four-component object®¥,,, where A is the pseu-

We first consider a transition at half-filling between a sin-dospin indexA=1 and 2, andx is the spin indexa=1,|:
glet commensuratel,2.,> density-wave and al22 super-

conductor. We group the two order parameters into a vector: (‘I’m _( 4(K) 62)
Vool i€ (—k+Q) /)"
a a A “microscopic” Hamiltonian which isO(4) invariant
2Re ( ¢l k+ 5 T—|<+—) P
V2 e{< 4 2) g 2 >] can be written as
q q
@, (q)f(k)= ﬁ|m(<¢4 k+ E) gl —k+ Em . H=Ho+Hin, (63)
. q q d?k
at
'<¢ kKHQ+3 ‘/’a(k‘ §>> Hom | = etowietg,, (64
(59 RBZ(2r)
if Hin is given by
[We will use underlined lowercase Roman letters such as
=1,2, and 3 to denote pseudospin triple_t indices ar_ld upper- ,  _ d*q [L(©0) (0.0} )\ 09 q)
case Roman letters to denote peudospin doublet indices '™ (27)2
=1 and 2. Lowercase Roman indicas 1,2, and 3 will be
vector indicegi.e., real spin triplet indicosand Greek letters +uO\ 0 g)N 9 q) + uHONE )N )
a=1 and 2 will be used for real spin $2) spinor indices. B B B B
Pauli matricesr will be used for pseudospin, while? will +u@OA LY N L)+ u NG () B (@)

be reserved for spihlf, following Yang? we introduce the

(1,1) _(1,1) _(1,1) (1,1) _(1,1) _(l,l)
following SU(2) generators which we will call pseudospin UG (q))\'_a (@)+ug }\'_aQ(q))\'_aQ(q)]’

S where
2
d?k (O'O)=f k Aat 9 ( _9)
o= jRBz(zw)z[l”“T(k)%(k) Pl (k+ Q) (k+Q)], : (2 OV gV k75
2
d%k A§1'°)=J (s k)21‘<k)\1f‘\aT o+ g)fawsa(k— g)
T= 7 o= - T Y
° fRBZ(ZW)ZI%(k)%( k+Q) (60
d2k ) q q
A{‘l?'O):f 2m? e B\PC“(HE P riaVeg| —k+ 3,

O*—f LS k —k+
= RBZ(27T)2“/IT( )i ( Q).

d?k q q
(01)_ Aat a1 8 _1
A f(zﬂ)zf(k)\lf (k+2 ol ¥ ag| K 2),

then the order parameters form a triplet under thig2U (65




4888 CHETAN NAYAK PRB 62

ket g) s#:Mo3=fde2x(e!q>i_aTq>j_+«1ﬁT§\Ir), (689)

2
>\<°v1>=f ok f(k)e*Bw (k+9 ol ¥
aQ (277)2 Ay 2 o™ BB
whereO? is the pseudospin S8B) generator defined above.
q If u=0, w will immediately force the pseudospin into the
Ti‘iaiﬂallfgﬁ( k— E)’ 1-2 plane, i.e., the superconductor will be favoredu+O0,
o7 the d,2,» density-wave state will be favored unty

«(y—u). At this point, a first-order phase transition—the

d%k q
(1,1)_ Aat
Nia —f 2 )Zf(k)\lf k+ 5

(11_ d?k 9| cas pseudo-spin-flip transition—will occur at which the pseu-
}‘i_aQ _j (ZW)Zf(k)\Iny k+ 2/€ Tia dospin switches from an easy-axis phase to an easy-plane
phase. If we allowd to have a different velocity thad.. ,
q then this first order phase transition can become two second-
Xfy%iﬁa‘l’sﬁ _k+§ . order phase transitions. Depending on the values of these

parameters and the strength of quantum fluctuations, the in-
[We have only written down the quartic terms; higher- tervening phase can either have both types of order or nei-

order O(4) invariants also exist, but they are irrelevant atther. » ) hen the i o
weak coupling] These microscopic Hamiltonians describe ' N€ critical point occurs when the jump @ is tuned to
electrons at half-filing with a nested Fermi surface and in-2€7°: Hence, it is a tricritical point. At such a critical point,

teractions which favor density-wave and superconducting orO(4)-Preaking terms can scale to zero. The critical point and

g . 125 . .
der equally. In other words, they describe a critical point ath® guantum critical regidft** are described by the physics

half-filling between ad,2..> density wave and d,2.,> super- of the critical fluctuations coupled to nodal fermionic excita-
XZ-y X4y . .
conductor. Near the critical point, we can focus on the low-{i0ns- By arguments similar to those of Ref. 21, the nodal

energy degrees of freedom: the Goldstone modes and t{grmions are neutral, spifi-objects. A more detailed analy-

nodal fermionic excitations. We can write down @(4) S!S W'"_Ibe glvenl elsewher€. be d at d4d
invariant action for this- Similar conclusions can be drawn fat,, and d,z.,

+idy, transitions; the latter case is particularly simple since
there are no fermions. In the case of transitions between

2
Seﬁ:j dr d’k qlAaT(k)[(yr_ €(K) ] pn(K) p,-wave density-wave and superconducting states, the order
(27)? parameters are both pseudospimd spin triplets. Hence the
effective-field theory for such a transition takes the form
+i f d P _dg O;(q)f(k)
i T ——®d;
)T em eme §

d<k +
S [ dr =50 o, — (1w,
. (2m)?

q iB
k+ E) GCATIA ’\PBB( —k+ z

q
el

X eaﬁ"{lca

ya ap
€ g, \IIC)/

+ig [ d AL BRI
| T ;
. U a2 a2

718 By B8t

q
at
+6aB\PA (k+ E

a Aat

k+ g) GCATiB\I’BB

X
2 2 1 1 2
_ 1| .aB_BCyyByt| _ . 2
66) X k+2)TA6 4 k-f—2 +fd7'dx
In this Lagrangian, we have rescaled all of the velocities and , 1 .01 a2
stiffnesses to 1. In general, these quantities will be X[ (9, P+ 5 PP+ Hu(PiP7)7 ),
different—breaking th&(4) symmetry—and this cannot be
done. Symmety-breaking terms will be briefly addressed bewhere
low.
The transition between the,>.> density wave and the o3 V2Rl (k) e o?Pyl(—K)t)}

d,2.,2 superconductor is driven by a pseudospin-2 symmetry- al| _ i a, af to
b)r(;ézldngpfield, which we wil calli. e 2= ﬁl.m{ A B

@5 (" (k+Q) ot yu(k))

Ly=Uu(P3+ D, D _)=u(d3—D2—dJ). (67)

Foru<Q0, the 3 axis is an easy axis, and the > density- VIl DISCUSSION
wave state is favored; fou>0, the 1-2 plane is an easy In this paper, we have discussed the properties of ordered
plane, and thel,2.,> superconducting state is favored. states in which particle-hole pairs with nonzero angular mo-

We can move away from a nested Fermi surface by tuningnentum condense. These states generalize charge- and spin-
the chemical potential or a next-neighbor hopping parametedensity-wave states in the same way tipatand d-wave
Such effects are encapsulated by a pseudospin-1 symmetrsaperconductors generalizavave superconductivity. How-
breaking term: ever, unlike in the superconducting case—where the Meiss-
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ner effect follows directly from the broken symmetry, irre- features of thel,2.,» superconducting state have been inher-
spective of the pairing channel—the angular variation of theted. However, it is natural to inquire whether the physics of
condensate makgs andd-wave density-wave ordering dif- this regime could also be determined in part by proximity to
ficult to detect. Experiments seeking to uncover such ordeg dy2,2 density-wave state or the transition between the
must(a) be sensitive to spatial variations of kinetic energy ordensity-wave and superconducting states. In other words, we
currents, or(b) measure higher-order correlations of the ask whether the physics of the pseudogap regime should be
charge or spin density. We explained hqwSR, neutron described by a theory which incorporates fluctuations be-
scattering, NQR, and Raman scattering can be used in thigyeend,..;2 density-wave and superconducting states. In this
regard. Impurities, which break rotational invariance, wouldconnection, we note that the physics of the critical point
cause an admixture gi- or d-wave ordering withswave  petween d,z,2 density-wave and superconducting states
ordering. It is natural to wonder whether experiments whichhears a rough resemblance to that of the(BUnean-field
appear to detect SDW order should be re-examined to see ffieory of thet-J model'>?° In that theory, the gauge field
they have actually uncovergs or d-wave order which, as a parametrizes fluctuations between ttig.,2 density-wave
result of impurities, is masquerading sisvave order. and superconducting states, a role played in our analysis by
As in the superconducting case, the nontrivial pairingthe Goldstone bosons of ti@(4) effective theory. We also
symmetry can lead to the existence of nodal excitations. Aggte that the nodal liquid state?® shares many features of
parameters such as the chemical potential or next-neighb@fe d,..» density-wave and superconducting states. In both
hopping are varied, nodal excitations appear at a transitiofhe nodal liquid and S(2) gauge theories, the quasiparticle
which is third order in mean-field theory. The “phase” with spectra of spin-charge-separated phases follow from their
nodal excitations is always critical. proximity to ad,z.2 density wave. These issues and their

The analogies betweepr and d-wave density-wave or- possible relevance to the cuprates will be further explored
dering andp- and d-wave superconductivity begs the ques- g|sewher&®

tion: what is the nature of a phase transition between such

statv_es?_ In answe_ring this question, we are Ie_d to one of the ACKNOWLEDGMENTS

motivations of this work. The pseudogap regime of the cu-
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