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Order induced by dipolar interactions in a geometrically frustrated antiferromagnet

S. E. Palmer and J. T. Chalker
Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom

~Received 3 January 2000!

We study the classical Heisenberg model for spins on a pyrochlore lattice interacting via long-range dipole-
dipole forces and nearest-neighbor exchange. Antiferromagnetic exchange alone is known not to induce or-
dering in this system. We analyze low-temperature order resulting from the combined interactions, both by
using a mean-field approach and by examining the energy cost of fluctuations about an ordered state. We
discuss behavior as a function of the ratio of the dipolar and exchange interaction strengths and find two types
of ordered phase. Below a certain value of this ratio, we find that the system orders in a four-sublattice Ne´el
state. For interaction strengths above this critical ratio, the system orders with an incommensurate wave vector.
We relate our results to the recent experimental work and reproduce and extend the theoretical calculations on
the pyrochlore compound, Gd2Ti2O7, by N. P. Raju, M. Dion, M. J. P. Gingras, T. E. Mason, and J. E.
Greedan, Phys. Rev. B59, 14 489~1999!.
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INTRODUCTION

Geometrically frustrated magnetic systems have rece
a great deal of attention in recent years from both experim
talists and theorists.1 Such systems are typically composed
corner- or edge-sharing frustrated units, usually triangles
tetrahedra. For example, a two-dimensional network
corner-sharing triangles forms thekagome´ lattice, while the
three-dimensional pyrochlore structure is composed
corner-sharing tetrahedra. Magnetic systems with such st
ture exhibit unusual low-temperature properties, which
not completely understood. These materials typically rem
disordered to a freezing temperature,Tg , much less than the
magnitude of the Curie-Weiss constantuuCWu.1,2 Indeed, the
depression of the transition temperature below that expe
from the measured value ofuuCWu is often used to gauge th
degree of frustration in a magnetic system.

The reluctance of geometrically frustrated antiferroma
nets to order can be understood by considering class
models, many examples of which yield macroscopically
generate ground states. For instance, it has been shown
the Heisenberg model for spins on a pyrochlore lattice in
acting via nearest-neighbor antiferromagnetic exchange
an extensive number of degrees of freedom in the gro
state.3–6 The degeneracy of the ground-state manifold is
lifted in this model by thermal fluctuations, and the syste
has no finite-temperature ordering transition.5,6 Several real-
izations of pyrochlore magnets have been stud
experimentally.2,7–9

Classical models that include nearest-neighbor excha
interactions alone may not be sufficient for explaining all t
low-temperature properties of some frustrated antiferrom
nets. For instance, the origin of the freezing transition m
involve additional aspects of the system. In real materi
several other types of interactions are present. Further ne
bor exchange may be relevant4 as may crystal-field effects,10

magnetic dipole interactions,9 or the effect of quenched
disorder.3,11

In this paper, we focus on how the inclusion of dipol
forces affects the properties of the pyrochlore antiferrom
PRB 620163-1829/2000/62~1!/488~5!/$15.00
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net. Because of the ground-state degeneracy of this sys
with only nearest-neighbor exchange, dipolar interactions
important in establishing order even if they are weak. Mo
over, the influence of dipole interactions in a pyrochlore a
tiferromagnet has been probed in the compound Gd2Ti2O7,12

which should be well represented by an isotropic Heisenb
model.

The properties of Gd2Ti2O7 have been studied both ex
perimentally and theoretically in a recent paper by R
et al., in which it was shown that Gd2Ti2O7 undergoes a
transition to long-range order at a temperature of abou
K.12 Their measurement of the high-temperature suscept
ity gives a negative Curie-Weiss constant,uCW.29.8 K.12

Measurements on a magnetically dilute sample show a
duction in uuCWu, indicating that this value is predominantl
due to antiferromagnetic exchange.12 The transition tempera
ture is much lower thanuuCWu, indicating that the system is
frustrated. The theoretical work of these authors involv
mean-field calculations expressed as a Landau expansio
the free energy and taken to quadratic order. They exam
the ordering instabilities that occur as the temperature is l
ered. With nearest-neighbor exchange and long-range dip
interactions, they find that order parameter fluctuations
entire branches inq space along the star of the (111) dire
tion become unstable simultaneously at the mean-field c
cal temperatureTc .12 Degeneracies of this kind are ofte
broken by thermal or quantum fluctuations, a phenome
known as order-by-disorder.13 Raju et al. suggest that this
mechanism may operate to induce order in the model t
study.12

In the following, we extend this mean-field description
the system with only nearest-neighbor exchange and lo
range dipolar interactions to find the ordering pattern bel
Tc . We show that the quartic term in the free-energy exp
sion lifts the degeneracy of the critical modes. The order
pattern obtained for the ratio of dipolar to exchange inter
tion strengths appropriate for Gd2Ti2O7 is a four-sublattice
Néel state. In addition, we analyze the low-temperature fl
tuations away from the four-sublattice ground state. W
show that all distortions have a positive-energy cost. Ord
488 ©2000 The American Physical Society
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PRB 62 489ORDER INDUCED BY DIPOLAR INTERACTIONS IN A . . .
ing in this model, therefore, has an energetic origin and is
an example of fluctuation-induced order.

I. SPINS ON A SINGLE TETRAHEDRON

It is instructive first to consider spins on a single tetrah
dron. Labeling the spins byi , j , the interaction energy for the
tetrahedron is

Uint5
Jex

2 (
iÞ j

Si•Sj1
Jdd

2 (
iÞ j

@Si•Sj23~Si• r̂ i j !~Sj• r̂ i j !#,

~1.1!

whereJex andJdd are the relative interaction strengths of t
exchange and dipolar terms,Jdd}m2/r nn

3 , r nn is the edge
length of the tetrahedron~the nearest-neighbor distance b
tween spins!, andm is the dipole moment. We minimize thi
energy using a standard numerical search and find all
possible ground states. These are shown in Fig. 1. In eac
the ground-state configurations, the spins are coplanar
are tangent to the sphere circumscribing the tetrahedron.
worthwhile to note that these states are also ground state
spins interacting via nearest-neighbor antiferromagnetic
change only. Without dipolar interactions, the condition fo
configuration to be a ground state is that the vector sum
the spins on each tetrahedron is zero, leaving two inte
degrees of freedom for the configuration.4,6 Dipolar interac-
tions fix these two degrees of freedom and those arising f
the O(3) symmetry.

Since the interaction energy for a single tetrahedron
volves only nearest-neighbor dipolar contributions, o
might not expect the spin configurations in Fig. 1 to be
useful guide to behavior on the full pyrochlore lattice.
fact, and somewhat surprisingly, the ground state for the
lattice that we find in Sec. III turns out to be a period
repetition of that for a single tetrahedron, provided the ra
of dipolar to exchange interactions does not exceed a cri
value.

FIG. 1. Three degenerate ground states for spins on a si
tetrahedron. The spins in each configuration are parallel to ce
edges of the tetrahedron. These edges and the spins parallel to
are drawn with the same type of line, either bold or dashed. Th
are three other ground states, obtained from these by reversin
spins.
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II. MEAN-FIELD THEORY FOR INTERACTIONS
ON THE PYROCHLORE LATTICE

We consider a system of spins interacting via the Ham
tonian

H5
1

2 (
iÞ j ,ab

Si
aJi j

abSj
b ,

with

Ji j
ab5dabdnn1

C

r i j
3 S dab2

3~r i j
a !~r i j

b !

r i j
2 D , ~2.1!

whereC5r nn
3 Jdd /Jex . The exchange interaction is betwee

nearest-neighbors only, as indicated bydnn . The labelsi and
j refer to sites in the lattice anda andb label components of
the spin or spatial vectors. A mean-field treatment for Ham
tonians of this kind has been developed by Reimers, Ber
sky, and Shi.4 For completeness, we briefly summarize th
approach. Order parameters for the system are defined

Tr~r iSi !5Bi , ~2.2!

where r i is the local density matrix and is constrained
Tr(r i)51. Expanding the free energy in a power series inBi
yields

F5const1
1

2 (
iÞ j ,ab

Bi
a~3Tdabd i j 1Ji j

ab!Bj
b

1
9

20
T(

i ,ab
~Bi

aBi
a!~Bi

bBi
b!1O~B6!. ~2.3!

The next step is to diagonalize the quadratic term. In syste
with n atoms per unit cell, it is convenient to divide the si
label i into two parts:l labels the unit cell anda labels spins
within the unit cell. Making the Fourier transforms

Bla
a 5(

q
Bq

aaeiq•r l, ~2.4!

Jlmab
ab 5

1

N (
q

Jq
aabbe2 iq•r lm ~2.5!

and substituting these expressions into the free energy,
arrives at the expression for the quadratic part off 5F/N, the
free energy per unit cell, used in Ref. 12:

f (2)5
1

2 (
ab,ab

(
q

Bq
aa~3Tdabdab1Jq

aabb!B2q
bb . ~2.6!

Consider diagonalization of the 3n33n matrix, Jq
aabb . De-

note the eigenvalues bylq
i and eigenvectors byUq

i for i
51, . . . ,3n. Expanding the order parameters in the basis
eigenvectors

Bq
aa5(

i
Uq

a,a ifq
i , ~2.7!

one obtains

le
in
em
re
all
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490 PRB 62S. E. PALMER AND J. T. CHALKER
f (2)5
1

2 (
q

(
i

~3T1lq
i !fq

i f2q
i . ~2.8!

To find the minimum of the quadratic term, it is necessary
determine the minimumlq

i for all i andq.
Specializing to the pyrochlore lattice, we follow previou

workers in using a rhombohedral unit cell containing fo
magnetic ions (3n512).4,12 Primitive basis vectors are
(a/2)( ĵ 1 k̂), (a/2)( ı̂1 k̂), and (a/2)( ı̂1 ĵ ), wherea is the
edge length of the cubic unit cell. Also, the four magne
ions within the cubic unit cell are located at (x,y,z)

5(0,0,0), (0,14 , 1
4 ), ( 1

4 ,0,14 ), and (14 , 1
4 ,0).

The instability of the paramagnetic phase is analyzed
considering the sign of (3T1lq

i ). In the paramagnetic phas
all are positive. At the mean-field critical temperature, t
smallest becomes negative. Using the ratioJdd /Jex50.2,
Raju et al. showed that such an approach does not co
pletely determine the ordering pattern.12 At Tc , a star of
modes simultaneously becomes unstable. For the same v
of Jdd /Jex , we recover these results. By contrast, for valu
of Jdd /Jex.Rc.5.7, we find that a discrete set of isolate
modes~related by the lattice symmetry! become unstable.

To illustrate this point, we plot in Fig. 2 the minimum
eigenvalue of theJq matrix as a function ofq for various
values ofJdd /Jex ranging from that used by Rajuet al.12

~based on the measured values ofuuCWu and the lattice spac
ing and the calculated value of the magnetic moment
Gd31) to a much larger value. ForJdd /Jex,Rc , the mini-
mum eigenvalue is independent ofq along the (111) direc-
tion. For Jdd /Jex.Rc , there are isolated minima locate
close to~but not at! q50. These are the individual incom
mensurate modes that become unstable atTc in the case
Jdd /Jex.Rc . From an examination of the eigenvectors a
sociated with the minimum eigenvalues of theJq matrix at
these points, we determine that the ordering is not copla

We next investigate the ordering pattern belowTc for
Jdd /Jex,Rc . The degeneracy of the soft modes is lifte
when we include contributions to the free energy from
fourth-order term. At temperatures belowTc , the order pa-
rameters acquire finite magnitude and one is faced with
problem of simultaneously minimizing the quadratic a

FIG. 2. Minimal eigenvalueslq /Jex along the (111) line inq
space for various values of the dipole-dipole interaction stren
Curve a corresponds toJdd /Jex50.2 as in Ref. 12. Curvesb
throughf haveJdd /Jex52.92, 5.63, 8.35, 11.06, and 13.78, respe
tively, ~Ref. 14!.
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quartic parts of the free energy. Consider first the qua
term in isolation. In terms of the real space order paramet
Bla

a , this is

F (4)5
9T

20 (
la,ab

Bla
a Bla

a Bla
b Bla

b . ~2.9!

Its value depends on the magnitude and direction ofBla . For
fixed magnitude ofS laa(Bla

a )2, the quartic term is minimized
by a state with alluBlau equal. Fortunately, and apparent
fortuitously, a state satisfying this condition can be co
structed that also minimizes the quadratic term. In detail,
proceed as follows. The eigenvector associated with on
the modes that becomes unstable atTc is illustrated in Fig. 3.
Taking the most general combination of this eigenvector a
its three partners, and imposing the condition that the val
of uBlau are the same at four sites of a tetrahedron, we g
erate the configurations of Fig. 1 and no others. Tiling
lattice with these configurations, we obtain only states w
ordering wave vectorq50. We conclude that the orderin
pattern forT just belowTc is as shown in Fig. 4.

III. STATIC DISTORTIONS AWAY FROM
THE ORDERED STATE

Finally, we investigate whether a ground state with th
ordering pattern is stable against thermal fluctuations at l
temperatures. To describe this calculation using the nota
introduced above, we impose the constraintuBlau51 for ev-
ery l anda. We denote the components ofBla in the ground

h.

-

FIG. 3. An illustration of the eigenvectors for the soft mod
along the star of the~111! directions inq space. The vectorq is
perpendicular to the base of the tetrahedron and is shown com
out of the page. The three spins are coplanar, have equal magni
and are tangent to the circle that circumscribes the base of
tetrahedron. The spin on the fourth site has zero average value

FIG. 4. A projection of theq50 ordering pattern found for
Jdd /Jex,Rc onto thexy plane of the cubic lattice. The spins ar
coplanar and form a four-sublattice Ne´el state.
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state with the ordering pattern shown in Fig. 4 byBlaa
0 . We

expand

Blaa5Blaa
0 1dBlaa2

1

2
Blaa

0 udBlau21O~dB4!. ~3.1!

Since dBla ~when small! is orthogonal toBla , it has only
two independent components.

We expand the energy to quadratic order in the distort
variables obtaining

H5E01
1

2 (
lmab,ab

~Jlmab
ab !@dBlaadBmbb2 1

2 ~ udBlau2

1udBmbu2!B̂laa
0 B̂mbb

0 #, ~3.2!

whereE0 is the energy of the ground state. We then diag
nalize the quadratic term, which involves an 838 matrix for
each wave vector,q. We find the minimum eigenvaluesgq
of this matrix as a function ofq. As expected, we recover
flat branch of zero-energy modes whenJdd50.4 For Jdd
.0, we find that all fluctuations away from an ordered st
are associated with a positive energy cost~even in the long-
wavelength limit, since dipolar interactions break global
tational symmetry!. As an illustration, we plot the minimum
at eachq along the (001) direction inq space for various
values of the dipole-dipole interaction in Fig. 5. The en
getic barriers around our proposed ground state atT50
mean that there is not a degenerate, connected manifold.
ordering obtained is due to energetic selection and does
occur via an order-by-disorder mechanism.

One failure of the mean-field calculation presented in S
II is that it predicts a finite ordering temperature even for
caseJdd50, where it is known that the system remains d
ordered to zero temperature.5,6 In the face of this difficulty,
we can arrive at a crude estimate of the ordering tempera
from the size of the gap to static distortions atT50. Using
estimated values forJex and Jdd for Gd2Ti2O7 from Raju
et al.,12 we obtainTc;1.0 K. The remarkable agreement
this result with the actual ordering temperature obtained
perimentally, 0.97 K,12 is presumably partly coincidental.

IV. SUMMARY

We have considered the influence of dipolar interactio
in a nearest-neighbor Heisenberg model of a geometric
.E
n
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e
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frustrated system, reproducing and extending earlier work
Rajuet al.12 In particular, we determine the ordering patter
using a mean-field treatment and by examining the stab
of an ordered state to fluctuations. We believe that the ord
ing we find for Jdd /Jex,Rc should be that associated wit
the transition that is observed experimentally at around 1
in Gd2Ti2O7.12 This ordered state, shown in Fig. 4, is a fou
sublattice Ne´el state. For systems in which the value of t
ratio of dipolar to exchange interactions is above the criti
ratio Rc , we expect that the ordering will occur with a
incommensurate wave vector.

It will be interesting to compare these theoretical pred
tions with the results of neutron scattering fro
160Gd2Ti2O7, currently in progress.15
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FIG. 5. The minimum eigenvalues,gq /Jex for distortions away
from the ground state in the (001) direction inq space. The various
curves correspond to different values of the relative strength of
dipole-dipole interactionJdd /Jex . Curves A through E have
Jdd /Jex50.0, 0.04, 0.08, 0.12, and 0.16, respectively. CurveF has
Jdd /Jex50.2 as in Ref. 12.
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