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We report here a theoretical model for the transport properties of cylindrical Bi nanowires. Based on the
band structure of Bi nanowires and the semiclassical transport model, the thermoelectric figure @f gierit
is calculated for Bi nanowires with various wire diameters and wire orientations. The results show the trigonal
axis is the most favorable wire orientation for thermoelectric applicationsZgsitt> 1 is predicted fon-type
trigonal wires with diameterd,,<<10 nm. The effect of thd-point holes onZ,,T is also investigated. It is
found thatZ,pT can be significantly enhanced, especially fstype Bi nanowires, if thel-point holes are
removed or suppressed.

I. INTRODUCTION wheremy is the average in-plane effective mass of the elec-
trons andd,, is the wire diameter. Since the motion along the
Nanowire systems have attracted a great deal of researgtire axis is not restricted, the electrons would have a disper-
interest because they allow study of quasi-one-dimension&ion relation for smalk, that looks like
(1D) quantum systen€ and offer potential applications in

thermoelectrics. Bi, which is a semimetal with one aniso- ﬁ2k|2
tropic hole pocket at th@ point of the Brillouin zone and Enm(k)=gnmt —, 2)
three highly anisotropic and nonparabolic electron ellipsoids 2m

at the L points, is especially favorable for studying low- .
dimensional systems and for thermoelectric applications, du/N€r€&nm represents the quantized energy Ie@ailk|*=0)

to its small electron effective mass and the highly anisotropid2P€led by two quantum numbers, (n), andk, andm;" are
Fermi surface. The detailed crystal and electronic band strudhe wave vector of the electron wave functions and the ef-
ture of bulk Bi are given in Refs. 4—6. Recently, substantiaffective mass for electrons traveling along the wire axis, re-
progress has been made in synthesizing single-crystal Bipectively. We note that for materials such as Bi with highly
nanowire arrays in anodic alumina templates with wireanisotropic carrier pockets, the effective mem§, which
diameters ranging from 7 nm to 200 rfm{% From x-ray determines the subband edge energigs, can be very dif-
diffraction studies, it was found that these Bi nanowires posferent from the massif , which characterizes the electron
sess a preferred growth direction along the wire axis: thenotion along the wire.

[0112] direction for smaller wire diameter nanowired,( In the nanowire system, the quantized subband energy

<50 nm and the[1011] direction for larger diameter &,,and the transport effective masg along the wire axis
nanowires ¢,,=60 nm.”®!In previous theoretical model- are the two most important parameters that determine almost
ing studies>*3a significant enhancement of the thermoelec-every electronic property of this 1D system. However, due to
tric performance witlZ,;T>1 was predicted for Bi nanow- the special geometric configuration of Bi nanowirésng

ires with wire diametersl,, <10 nm?3 circular wires with a high aspect length/diameter ratod

To model the electronic structure of a nanowire system, dhe anisotropic carrier pockets in Bi, the exact calculation of
simple assumption is usually made for an ideal 1D quantunthe band structure in Bi nanowires was found to be very
wire, where the carriers are confined inside a cylindrical pohallenging, and several approximation methods have been
tential well with an infinite potential height. An extension of used to study the electronic band structures of Bi nanowires
this simple approach provides a good approximation for Bin previous theoretical models. In the first calculation carried
nanowires embedded in an alumina template, in view of theut by Zhanget al,'** the quantized energy levels were
large band gap 3.2 eV) of the anodic alumina template evaluated by using a cyclotron effective mass approximation
material, which provides excellent confinement for the carri-for the in-plane effective mass perpendicular to the wire axis:
ers in the embedded quantum wires.

Since the electron motion in the quantum wires is re- N
stricted in directions normal to the wire axis, the quantum Mp~Me =
confinement causes the energies associated with the in-plane
motion to be quantized, and the lowest energy level isyheref is the unit vector along the wire axis ani, is the
roughly speaking, given by effective mass tensor. The transport effective mass was ap-

252 proximated by

AE~——7, (1)
my dg,

detM, vz

M1

()

mF ~T-Me-1. (4

0163-1829/2000/62)/461014)/$15.00 PRB 62 4610 ©2000 The American Physical Society



PRB 62 THEORETICAL INVESTIGATION OF THERMOELECTRC . . . 4611

In the earliest model¥’ parabolic dispersion relations were and is used to study the thermoelectric properties of the
assumed for both electrons and holes. With these simplifyinginique Bi nanowire system for various wire orientations, in-
approximations, the quantized energy levels could be readilgluding the three principal axes and the two preferred growth
derived by solving the 2D Schdinger equation with a cir- directions at 77 K, which is a temperature of great interest
cular boundary conditiofft However, the cyclotron effective for cryogenic cooling applications. The results show that the
mass approximation is an oversimplification for the in-planethermoelectric performance strongly depends on the wire di-
effective mass, and is not valid for electrons with a highlyameter and the wire orientation, with the trigonal orientation
anisotropic in-plane effective mass tensor. Insteadndf  being the most favorable direction. The effect of thpoint

= J/m;m, for the average in-plane effective ma‘e§ .where holes on the thermoelectric performance is also discussed. It
m,; and m, are the two principal mass components in theis found that the thermoelectric performance can be greatly
plane normal to the wire axis, the quantized energy state#nproved, especially fop-type wires, if theT-point holes are
enm are to a much closer approximation determinechijy removed or suppressed, as, for example, by adding appropri-

given by (as will be shown later ate concentrations of S. _ , _
Transport measurements of Bi nanowire arrays of differ-
1 1/1 1 ent diameters and carrier concentrations have been
— = —(— + —) _ (5)  performed;®*?1417=1%nd the experimental results are quali-
m; 2\my m, tatively consistent with the predictions from our theoretical

models. A detailed comparison between the theoretical and

. . N N
The discrepancies betweenf and mp can be very signifi- the experimental results is given in Ref, 11.

cant if m; andm, are very different, as they are for Bi.
Subsequently, an improved model to describe the elec-

tronic states in Bi nanowires was developed by Suril- ELECTRONIC BAND STRUCTURE OF Bi NANOWIRES

et_al.,ls’*15 based on the square wire approximation for wires A. Theoretical modeling

oriented along the three principal axes. With the edges of the o ] ) ) )

square cross-section chosen to be parallel to the principal For an infinitely long wire w!th a circular cross sectlop of

axes of the in-plane mass tensor for each carrier pocket, tHéiameterd,,, we take thez’ axis to be parallel to the wire

square boundary condition greatly simplified the eigenvalu@xis with thex’ andy’ axes lying on the cross-sectional

problem for solving the Scheinger equation and yielded plane. Since the wire axis is allowed to be oriented _alor_lg an

analytical solutions for the quantized energy levels. In thisarbitrary direction with respect to the crystallographic direc-

approximation, the transport effective mass along the wirdions, the inverse effective mass tensor of one of the carrier
axis was derived as pockets in the wire coordinatex’(y’,z’) has the general
form
mi=(1-Mg D)~ ®)

for a parabolic carrier pocket. Although the square wire ap e
proximation provided a better solution for the in-plane effec- a=M"1=| axn an x|, @)
tive masses and for the quantized energy statgsthan the a3 Q32 Q33
previous cyclotron effective mass approximation, further im-
provements are needed to describe the adtinablar wires ) , i i
used in the experiment and their proper symmetries, which V\/_lthout loss of_ generality, we first se_ek solutions for th_e
require that the physical quantities should be invariant undef-PCint holes, which can be well described by a parabolic

rotations about the wire axis. In the square wire approximagjispersion relation, in order to illustrate the numerical meth-

tion, the quantized subband energies are highly dependent &S developed in the next section. Solutions for itheoint
the rotations of the square cross section about the wire axiSarers with nonparabolic dispersion reIa_nonsIare discussed
and therefore the subband energies are not well defined #i S€c. | C. The envelope wave functiolf(r’) of the
this approximation. T—pomt h(())les is governed by the effective-mass Sdimger

In this paper, we present a theoretical model for gjequation
nanowires, which explicitly takes into account the cylindrical
wire boundary conditions, the anisotropic carrier effective
mass tensor, i.e., nonparabolic features of lthgoint con-
duction and valence bands, and the multiple carrier pockets.
The temperature dependence of the band structure of Bi waBhe cylindrical symmetry properties of the circular wire are
also considered to obtain a more realistic result for thghen used to simplify E(8). By a proper rotation about the
temperature-dependent transport phenomena. A numerical axis, it is possible to make the matrix elements,
method was designed to derive the quantized subband enera,;=0, and Eq.(8) can then be written as
gies and the electronic wave functions of the circular wire. In
addition, the ambiguity between the two different expres- 2y 92 Era 92 92

Whereaij = ajj -

ﬁ2
~ 5 V-V () =EV¥(r). (8)

sions of Eqs(4) and(6) for the 1D transport effective mass a1+ a2 +2a13———+2a———tas3 >
in previous models is clarified in the present work. Using the 7% %y X’ 9z ay’oz 9z
electronic band structure of Bi nanowires thus obtained, a

. . oo 2E
semiclassical transport model, which is based on the Boltz- —| — Z— | 9
mann transport equation for 1D systems, is then developed h?
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Since the electrons are unbounded in #iedirection, we
assume that the electron wave functidn(r’) takes the
form:

W(r")y=u(x,y)expiéx" ) expiny’)expik, z"), (10)

where¢ and » are constants to be determined, &pdis the
wave number of the traveling wave in tlzé direction. We
note that by lettingé= — a3/ a1K,» and = — ax3/ asK,/ ,

the coupling terms betweex',y’, andk,, are eliminated,
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(aEJr,Ba—yZ)u:—)\u, (15
where we lete=aq4,, B=ay,, and
2 2,
)\Eﬁ(E_ 2m33>' 18

Also, the dummy variables’,y’ in Eq. (11) are here re-

and Eq.(9) is reduced to a simple second-order differentialplaced byx,y for simplicity. For the special and simple case

equation inx’ andy’ only:

ﬁZ &2 6'2) ( ﬁzkf,) ( )
—— | ay;——=+a,——|u=| E— u 11
2\ THgxrz TPayr2 2mg3
where
a§3 ais -
Mas=| @gg——— —| =72'-M-Z. (12)
% ( % Q2 71

Equation(11) is reminiscent of a 2D Schdinger equation
with in-plane effective mass components

my=a;"=(X'-M"1.x")71

my=az =y M ty) 2 (13
in the x’ and y’ directions, respectively. Since(x’,y’)
must satisfy the same boundary conditiord&g) according
to Eq. (10): u(x’,y’)=0 whenx’'?+y’?=(d,/2)?, the ei-
genvalues ofu(x’,y’) in Eq. (11) are quantized, and the
energy of the electrons is written as

12K,

Enm(kz’)zsnm_i_%a (14
wheree,, is the eigenvalue of Eq11) corresponding to the
subband edge eigenstatelgt=0 labeled by the quantum
numbers ,m). In Eqg. (14), we see that the electron states
split into many subbands with band edgesEat ¢,,,,, and
each subband behaves like a 1D system inzthéirection
with the transport effective mass,,=mg3. It should be
noted that since only the cylindrical symmetry of the wire

was actually assumed in the derivation of E¢EL)—(13),

where = B, which only applies to th@-point hole pocket
in trigonal Bi nanowires, the wavefunction of E(L5) has
the analytic solution

umn(r)N'Jm(anr)eimey (17)

whereJ,, is themth Bessel function, ang,,, is thenth root
of J,(xd,/2)=0 in order to satisfy the boundary conditions.
The eigenvalue. corresponding to the wavefunction in Eq.
(17) is then given byA pmn=ax?2,,.

For the general situation where+ 3, there are no ana-
lytic solutions and the eigenvalues can only be derived
through numerical methods. In the following, numerical so-
lutions to this particular eigenvalue problem are obtained by
transforming the differential equation E@L5) into a corre-
sponding difference equation, and the resulting Hamiltonian
matrix can be solved numerically to high accuracy with the
aid of computers.

First, due to the cylindrical boundary condition(r
=d,/2)=0, it is advantageous to express Ef5) in terms
of cylindrical coordinates:

J%u szeazu . 2cos¢9 sing gu _cos#sind d°u
PR IR 2 a0 r . arag
+sir120 au . sirfé d%u 18
r ar r2 ,902 ( )
d%u 'r120(92u cosé sing du 2cose sin® 4%u
—_— | _ _+ J
(9y S arz r2 J0 r aroe
cog6 du . cosd 4%u 1
roor r2 902’ (19

these results are also applicable to wires with a finite poten-

tial height. We also note that the effective massgs and  where# is the polar angle to the axis, andr is the perpen-
my. that determine the bound-state energies have differericular distance to the axis in cylindrical coordinates. To
expressions from the transport effective mass, which  transform Eq.(15) into a difference equation, we create a
characterizes the 1D dispersion relation, as indicated by Egsaesh consisting dfl concentric circles antll sectors within
(12) and(13). In addition, compared to the exact expressionthe wire cross section, as shown in Fig. 1. The polar coordi-
Eq. (12), for the transport effective mass,,, the transport nates of theM X N grid points in this circular mesh are
effective mass in Eq4) used by the previous cyclotron ef-
fective mass approximation is a better approximation than
the one in Eq(6) for the square wire approximation.

(rm,0,)=(mMér,ns0),

m=12,...M n=0,1,...(N-1) (20)

whereér=d,/2M and §6=2=/N are, respectively, the dis-

In Sec. Il A, the quantized energies of the bound states ofances between adjacent concentric circles and the angle
anisotropic carriers in an infinitely long circular wire are de- spanned by each sector. With these assigned grid points, the
termined by the 2D differential equation, which can be re-derivatives at (,0)=(r,,6,) in Egs.(18) and (19) are ap-
written as proximated by

B. Numerical solutions
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be estimated from its neighboring points using the original
differential equation, Eq.(15), in Cartesian coordinates,
which, in the difference approximation, can be expressed as

d2u

~NUg=a—
NG

o Yl
[u(dr,0)+u(dr,m)—2ug]

(or)?
[u(dr,m/2)+u(ér,3m/2) —2ug]
g (or)?

(27)

atr=0, and thenu, is solved as a linear combination of
wave-function valuesl,, at adjacent points:

FIG. 1. Schematic diagram of the grid points used to transform

each differential equation into a difference equation. The mesh in

the circular wire cross section consistsMfconcentric circles and

a(UgotUsg =)+ B(Urg —mot Uig ~3m12)

Upg=

N sectors. In the figure abov®] =5 andN=12. (5r)2)\+2(a+ﬁ)
u 1 (U gtUyg =)+ B(Upg —mppt Uiy —3m/2)
_2_(u —Unm- )1 (21) =3 i n on 'n
ar 25r m+1n m—1n 2((1+B) (28)
Ju when
(90 250(um n+1— um,nfl)a (22)
2(a+pB)
Pu 1 ()2 ——. (29
— = +Un—1n—2Umn), (23
ﬁl' (5 )2( m+1,n m—1n m,n
Thus, we are able to express thd {- 1) XN difference
92U 1 equations from Eq(26) in a matrix form;
—=—=(U +Unn—1—2Umn), (24)
(902 (50)2 m,n+1 mn—1 m,n
H.0)(1.0) R Hwom-1n-1)
d%u 1 . : :
ﬁra0_4(50)(5r) (um+1,n+l umfl,nfl
“Um+in-1" um—ln+1)a (25 H
where up, ,=u(rn,6,) is the value of the wave function
u(r, #) taken at the grid pointr(,, 6,,). After substituting the
derivatives in Eqs(18) and (19) by their finite difference
counterparts in Eq€21)—(25), we obtain a difference equa-
tion of Um’n of the form H(M—l,N—l)(l,O) o B H(M—l,N—l)(M—l,N—l)
)\um,n:Amnum+l,n+anumfl,n+cmnum,n+1+Dmnum,nfl Ui Ui
+gmn(um+l,n+l+umfl,nfl_um+1,nfl_um71,n+l) ul'l U1,1
+»7:mnum,nr (26)
. UiN-1 Uin-1
where A, Bmns - - - »Fmn are all functions of i, n). For =\ , (30)
the grid points at the outermost circle, the boundary condi- Uz,0 Uz,0
tion requires thatuy ,=0 for all n, and therefore only the : :
(M—=1)XN difference relations that result from the other
(M—=1)XN grid points need to be considered.
However, extra caution should be taken when applying UM-1N-1 Um—-1N-1

Eqg. (26) to grid points at the innermost circlan=1). Al-

though the origin was excluded from the grid points to avoidwhere{ is the Hamiltonian matrix established from the co-

infinite values for the coefficientd,,,Bmn, - - -, atr=0, it
is inevitable that the value afy, at the origin is needed for
the evaluation of Eq(26) for grid points at the first concen-
tric circle (m=1). Fortunately, the value af,=u(0,0) can

efficients in Eqs(26) and(28), and the eigenvalues 6f can
be evaluated numerically using modern mathematical pack-
ages. The number of eigenvalues obtained through this nu-
merical method is equal toM —1)XN. However, higher
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TABLE I. Comparisons of the lowest 4 eigenvalues of Ecf)  We note that Eq(33) will have the same form as the Schro

derived from analytic solutions and numerical calculations dor  dinger equatioiEq. (8)] for parabolic carrier pockets, if we
= B. These eigenvalues correspond to the subband energy levels gkfine aprimitive energy

the T-point holes for trigonal Bi nanowiresy= 16.95n, 1y with an

infinite potential height. -~ E
E=E[1+ | (34
Analytic solution Numerical solution ot
Aa(d2/4a) An(d2/4a) Degeneracy and the same procedures described in Secs. Il A and Il B can
be applied to solve for thiprimitive energyE:
5.783 5.784 1

14.6812 14.669 2 £2K2

26.374 26.262 2 Enm(Ky) = &nmt —=—, (35)

30.4712 30.468 1 2m,

wheres,,, is the primitive subband energy anth, is the

eigenvalues usually have larger discrepancies and should Qelnmclgvt% %ﬁe(itdl,\)/eTw:?fusloEgntt?;e;vgﬁb%);ﬁa 'Qn(é?rrefg\?er;;
discarded. The criterion for dependable eigenvalues can b qil2). 1] 4 gy
determined by and the 1D dispersion relations for each subband can be de-

rived readily by solvingg in Eq. (34) as

ath Eq. Eq | En(k
A< . 31 _ gL , =gl nm(Kz)
(5r)2+(dW56/2)2 ( ) Enm(kZ)__T+T 1+4 E , (36)

gL

Table | compares the lowest few eigenvaligsand their ~ and the band edge energy of each subband is then given by
degeneracies derived from the analytic solutions apd e =E, (k,=0)
from numerical solutiongwith M =64 andN=40) for the nmmnm Tz

special casexr= B where analytic solutions can also be ob- E E 4%
. . . . gL gL €nm
tained. The numerical solutionsy are in excellent agree- =— 7+ - 1+ E

ment with the analytic solutions,, and the relative errors gL
are smaller than 0.5% for all the values listed in Table I. By

E
increasing the number of concentric circhsand sectordN =(Ym— 1) —gL, (37)

simultaneously, even higher accuracy can be obtained. For 2

a# B, the numerical technique developed here provides avhere

powerful approach to calculate the eigenvalues accurately

and efficiently. In addition, wave functions(r) for the Aenm

eigenstates can be readily derived by solving for the eigen- yam=\ 1+ ¢ (39)

gL

We note that the 1D dispersion relatiép,(k,) in Eq. (36)

for each subband is more complicated than @#4) and also

is nonparabolic. However, for energies near the subband
In the previous sections, we have developed solutions foedge, it is a good approximation to treat the full dispersion

the T-point holes with parabolic dispersion relations. At therelation in Eq.(36) near the subband edge with a Taylor

L points, however, the bands are highly nonparabolic due te@xpansion as

the strong coupling between the-point electrons and

vectors of the Hamiltonian matrik{.

C. Nonparabolic band structure in Bi nanowires

holes?! and this nonparabolic band structure must be taken Equ EgqL A5, 2H%K2
into account when determining the subband energy levels Enm(k)=——=+—-\/ 1+ ¢ ] +% =
and the 1D dispersion relations for thepoint carriers. The g z=gL
dispersion relation for thé-point bands is described by the 72K2
two-band Lax modet? which can be written as ~eqmt ——, (39
2 2mz,nm
"k a-k=E(k)| 1+ =0 (32  where
2 EqL
for the conduction band at the point, wheree;, is the in- me =\ [1+ Aﬂ"ﬁ,z: YomM, (40)
verse effective mass tensor at the band edge Bgd ’ EqL

(=15 meV at 77 K, Ref. pis the direct band gap at the  ig the transport effective mass along the wire axis for the
point. By the effective mass theorem, we obtain a d'ﬁere”t'akorresponding subband. As indicated in E40), the trans-
equation for the envelope functioli(r) of theL-point elec- ot effective massesi* . increase with the subband edge
trons: energy, and are different for every subband.

£ It should be noted that in deriving the nonparabolic dis-
14 — |y 33 persion relation Eg.(32), the far band contribution

= |w(n). (33  persion rel .

gL (h<k</2mg) is usually neglected when applyihg p pertur-

h2
— 5 V-aVU(n=E
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TABLE II. Calculated effective mass components of each carrier pocket for determining the band struc-
ture in Bi nanowires at 77 K along the indicated crystallographic directions, based on the effective mass
parameters of bulk Bi given in Refs. 5 and 6. Tiiedirection is chosen along the wire axis. All mass values
in this table are in units of the free electron masg,

Mass component Trigonal Binary Bisectrix  [0112] [1011]

my. 0.1175 0.0023 0.0023 0.0029 0.0024

e~ pocketL(A) my, 0.0012 0.2659 0.0012 0.0012 0.0012
m, 0.0052 0.0012 0.2630 0.2094 0.2542

my. 0.1175 0.0023 0.0023 0.0016 0.0019

e~ pocketL(B) my, 0.0012 0.0016 0.0048 0.0125 0.0071
m, 0.0052 0.1975 0.0666 0.0352 0.0526

my 0.1175 0.0023 0.0023 0.0016 0.0019

e~ pocketL(C) my, 0.0012 0.0016 0.0048 0.0125 0.0071
m, 0.0052 0.1975 0.0666 0.0352 0.0526

my. 0.0590 0.6340 0.6340 0.1593 0.3261

T-point hole pocket my 0.0590 0.0590 0.0590 0.0590 0.0590
m, 0.6340 0.0590 0.0590 0.2349 0.1147

bation theory to bulk bismuth, due to the very small effective[01T2] wires, the degeneracy at thepoints is lifted, result-

masses at the 3D band edge for strongly coupled bandﬁ‘ig in two inequivalent groups of carrier pockets: a single

However, for Bi nanowires where the 3D-point energy (@Iectron pocketl .(A) and two electron pockets (B,C)

split; ilnto many subbands, the far band contribgtions are NQLith the same symmetry and band parameters as each other
negligible for higher subbands where the effective masses &t different from those for the .(A) pocket. Since the '

the subband edge are not small compared to the free electr?_n

massm,. We therefore write the more complete expression e(A) pocket has _smalle_r mass components.(, m) in
the quantum confined directions than the electron pockets

to relatemy ,, to m, : L«(B,C) (see Table I, the L¢(A) pocket forms a higher
conduction subband, while the pockétgB,C) form a two-
1 _ i+ 1 (41) fold degenerate subband at a lower enelgge Fig. 2 Be-

cause of the larger mass component along the wire axis
(m,/) for the electron pocket .(A) than forL¢(B,C), the
dispersion relation of thé (A) subband has a smaller cur-
vature(see Fig. 2. The band edge of the lowest subband of

" =
Mz mn Mo YoM,

D. Band shifting and the semimetal-semiconductor transition
in Bi nanowires

Based on the band structure parameters of bulk bismuth, 100

values ofm,,, my,, andm,, (or r~n;) at 77 K for Bi nano-
wires oriented along the three principal crystallographic axes
(trigonal, binary, and bisectrix directionsand the preferen- 60 |

80 |

tial [0112] and [1011] growth directions[or (0,0.8339, %

0.5519 and(0,0.9503,0.3112 respectively, in Cartesian co- & 40 -2\~

ordinates defined by the binary)( the bisectrix ¢), and the = 2 A =38
trigonal(z) axed are given in Table Il. In Table Il and for the § I 490 nm T
following discussions, the threle-point electron pockets in - w /[ T .

Bi are denoted byL (A), L(B), and L¢(C). The L¢(A) L holes Eg=15

pocket is chosen as the one with its major axis lying close to  -20 }
a bisectrix axis, and the pockets(B) andL¢(C) are ob-
tained by rotating the pockdt.(A) by 120° and—120° —40 5 5 700 750 200
about the trigonal axis, respectively. For thgoint pockets, Wire diameter (nm)

Egs. (40) and (41) should be used to include nonparabolic
effects into the entries in Table I, while the parabolic ap-
proximation of Eq.(39) was used to describe the small en-
ergy excursions fronk,, =0 for the dispersion along the

ere.aX|s. . . . . . the L-point electron pocketsA, B andC). The zero energy refers
Since Bi nanowires with smaIIe_r wire diameters:40 to the conduction band edge in bulk Bi. &g, decreases, the con-
nm) tend to be oriented along ti@112] direction, the cal-  duction subbands move up in energy, while the valence subbands
culated lowest subband energies for Bi quantum wires orimove down. Atd.=49.0 nm, the lowest conduction subband edge
ented along this preferred growth direction at 77 K areformed by thel (B,C) electrons crosses the highd@spoint valence
shown in Fig. 2 as a function of wire diameter. For thesubband edge, and a semimetal-semiconductor transition occurs.

FIG. 2. The subband structure at 77 K of Bi quantum wires
oriented along th¢0112] growth direction, showing the energies
vs wire diameter of the highest subbands forThgoint hole carrier
pocket as well as for the-point holes, and the lowest subbands for
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TABLE Ill. Calculated critical wire diameterd, for Bi nanowires oriented along various crystallographic
directions at 77 K. The predicted values of the critical wire diameters and the critical wire widths from the
cyclotron effective mass approximation and the square wire approximation, respectively, are also included for
comparison. The values in the table are given in units of nm.

Calculation method Trigonal Binary Bisectrix  [1011] [0112]
Circular wire + numerical 55.1 39.8 48.5 48.7 49.0
Square wire approx@ 52.1 34.5 41.3 NA NA
Cyclotron effective mass approX. 33 20 44 45 NA

8Reference 24.
bReference 12.

the Lo(B,C) electrons increases with decreasing wire diam- It should be noted that sinak is determined by the band
eterd,,, while the highest subband edges of ipoint and  structure of crystalline Bi, which is strongly temperature de-
L-point holes move downwards in energy. Eiyr<49.0 nm,  pendent fofT >80 K 2>?®the critical wire diameted, for the

the energy of the lowest-point conduction subband edge SM-SC transition will also b& dependent at high tempera-
exceeds that of the higheStpoint valence subband edge, tures (T>80 K). TheT dependence af, has been calculated
?ndicating that these nanowires have become semiconduqysing the best available values for the temperature depen-
Ing. N o dence of the bismuth band parameters, which are given in
In addition to the wire diameter, the subband structure ofrapje |v. Figure 3 shows the resulting calculated critical
the 1D Bi quantum wires is also strongly dependent on th§yire giameter, for the SM-SC transition in Bi nanowires as
wire orientation. The bisectrix wires and th&011] wires  a function of temperature for different wire orientations.
have the same symmetry as {ltd12] wires, and, therefore, Since the overlap energy, between theé.-point conduction

the three wire orientationgbisectrix,[1011], and[0112]) band and theT-point valence band and the effective mass
possess similar subband structutese Fig. 2 with slighty =~ components of th&-point electrons both increase with tem-
different critical wire diameters for the semimetal- perature(see Table IV, a smaller wire diameter is required
semiconductor(SM-SO transition. For the trigonal wires, 0 achieve the transition at higher temperatures. At 300 K,
the subband energies of the thregoint electron pockets the critical wire diameters where the SM-SC transition oc-
remain degenerate for all wire diameters, and the criticafurs are estimated as 15.4, 11.2, 13.6, 14.0, and 13.6 nm for
wire diameter for the SM-SC transition at 77 K occurs athanowires oriented along the trigonal, binary, bisectrix,
d.=55.1 nm. For binary wires, the electron pockietéB,C) [0112], and [1011] crystallographic directions, respec-
form a twofold degenerate subband at a higher energy thatively.

the electron pocket .(A) in contrast to Fig. 2. A more de- Based on the band structure derived for 1D Bi quantum
tailed study of the band structure of Bi nanowires for thesewires, the carrier concentration for undoped Bi nanowires
wire orientations is given in Ref. 23. has been calculated by adjusting the Fermi level so that the

The calculated critical wire diameteds, for the SMSC  number of holes is equal to the number of electrons. Figure 4
transition for Bi nanowires oriented along the three principalshows the calculated total carrier densities of Bi nanowires

crystallographic axes, tH®112], and theg/ 1011] directions  oriented along th€0112] growth direction as a function of

at 77 K are listed in Table Ill, in which the critical wire temperature for different wire diameters. Since the critical
width a, predicted by the square wire approximafiband  wire diameterd, is temperature dependent, three different
the critical wire diameted, obtained by the cyclotron effec- types of temperature dependences of the carrier densities are
tive mass approximatidf for available directions are also predicted for Bi nanowires, depending on the wire diameters.
included for comparison. For 10 nm Bi nanowires, which are always in the semicon-

TABLE IV. Temperature dependence of selected bulk Bi band structure parameters.

Parameters Temperature Dependence
—-38 T<80 K
Band overlap(meV)? Ag= ( )
—38-0.044T—80)+4.58x 10" 4(T—80)>—7.39x 10 8 T—-80)° (T>80 K)
L-point direct band gagmeV)° Equ=13.6+2.1x10 3T+2.5x10 *T?
mea(0) ;i
L-point electron [Me(T)]ij= [me(0));

1-2.94¢10 3T+5.56x10 T2
Effective mass componefits®

%Reference 25.

bReference 26.

‘Reference 6.

9m(0) is the effective mass tensor Bt=0 K.
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tween the conduction band and the valence band, while the
semiconducting band gap increases with decreabifug 40

nm Bi nanowires below 170 K. Therefore, the slope of the
curve for 40 nm Bi nanowires in Fig. 4 decreases with in-
creasingT.

Ill. THEORETICAL MODELING FOR
THERMOELECTRIC TRANSPORT PROPERTIES

A. Semiclassical transport model for Bi nanowires

The thermoelectric related transport coefficients of Bi
nanowires can be obtained from a semiclassical model,
which is based on the Boltzmann transport equation. For a
one-band system in a 1D quantum wire, important
thermoelectric-related transport coefficients such as the elec-
trical conductivityo, the Seebeck coefficieg and the ther-
mal conductivityx, are derived as+?’

FIG. 3. Calculated critical wire diametek, for the semimetal- o=, (42)
semiconductor transition as a function of temperature for Bi nano- '
wires oriented along different directions. 1 O

: : . . S=———=, 43

ductor regime up to 300 Ksee Fig. 3, the carrier density eT , (0 (43)
increases exponentially witli up to 300 K. On the other
hand, for 80 nm Bi nanowires, which remain in the semime- 1 (£ D)2
tallic regime even down to O K, the carrier density has a Ke=— ( (2)— © ) (44)
similar temperature dependence to that of bulk Bi. The eT L

smaller carrier density of the 80 nm nanowires compared to,
bulk Bi arises because of the smaller overlap between the
conduction and the valence bands in Bi nanowires as com- adk df
pared to bulk Bi. As for the 40 nm Bi nanowires, the tem- E(“)=e2f — _> 7(K)v(K)v(K)[E(K)—Eg]%,
perature for the SM-SC transition is predicted to be around w2d?| dE

170 K for a[0112] nanowire (see Fig. 3 Thus, for T (45)
<170 K, 40 nm Bi nanowires are in the semiconductor re-in which «=0,1,2, E(k) is the carrier dispersion relation,
gime, and the carrier density drops significantly with de-7(k) is the relaxation timeEr is the Fermi energy, ant{E)
creasing temperature, while fdr>170 K, the nanowires are s the Fermi-Dirac distribution function. For a one-band sys-

in the semimetal regime, and the carrier density has a similaem with a parabolic dispersion relation, the transport ele-
temperature dependence to that of bulk Bi. It should also benents. (4) in Eqs.(42)—(44) are derived as

noted that for semiconducting wires, the slope of the curves

hereT is the temperature and

in Fig. 4 is approximately proportional to the band gap be- 1
LO=D|5F 1|, (46)
10" 3 1
(kgT)D EF%— Eg* F o1 (for electron$
e (1=
510” L 3 1
> 2 2 2
-‘é 10" (47)
()]
5 10" (2) 2p|2 * Lz
£ L39=(kgT)*D|5Fa2= 3" Fuppt 5" F 1), (48)
o]
© 4o whereD is given by
10" _ 8e [2m*kgT 12 9
0 100 200 300 22 PP M

Temperature (K)

FIG. 4. Calculated total carrier densifglectrons and holeof in which . is the carrier mobility along the nanowire and

Bi nanowires oriented along tf[@lTZ] direction as a function of = ydx
temperature for different wire diameters: 10 nm, 40 nm, and 80 nm, Fi= f —_— (50)
in comparison to that for bulk Bi. 0 e+
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denotes the Fermi-Dirac related functions, with fractional in- TABLE V. Calculated mobility along the wire for each carrier
dicesj=—13,%,2,.... Thereduced chemical potentigt is pocket in Bi nanowires with various wire orientations at 77 K,
defined as based on experimental values of bulk Bi in Ref. 33. The values are

given inm?V-1s 1,

(Er—e)/kgT  (for electrons,
= (51

_ o Mobility Trigonal Binary Bisectrix [1011] [0112]
(er,’—Ep)/kgT (for holes,

e~ pocketA  25.93 68.11 1.08 1.10 1.32
e~ pocketB  25.93 1.42 4.11 5.21 7.59
e~ pocketC  25.93 1.42 4.11 5.21 7.59
b_HoIe pocket 2.10 11.84 11.84 8.17 4,91

wheree?) and{?) denotes the band edges for electrons and
holes, respectively.

For the Bi quantum wire system, there are many 1D su
bands due to the multiple carrier pockets at thgoints and

th?.t;l.— po'Tt’ ?nd the qltja?tﬂ;n cgrt;flneczjmﬁnt—lndu_ce(lj gan%vhere k= ket kIS the total thermal conductivity due to
SPIIting a1so 1orms a set o subbands Irom a singié Dang, o, gjectron and phonons. In the following, we calculate the

in the bulk matenal. Therefore, when considering th_e trgns-ZlDT for Bi nanowires at 77 K by using the general formal-
port properties of real 1D nanowire systems, contrlbutlonslsm derived in Sec. Ill A
from all of the subbands near the Fermi energy should be Since the mobility tensors for electrons and holes are an-

i (a)g j _ -

included, and thec(a) s 'fﬂ)s (42 (‘.14) .ShOU|d be re isotropic, the mobilityuj for carriers traveling along the wire
placed by the sunt ;=X £;* of contributions from each .o depends on the wire orientation, aagis given by
subband(labeled byi) to obtain the various transport coef-

ficients. S !
. . . . . =(I- - 54

Another physical quantity of interest in thermoelectric ap- mi=l-p ) ®4
plications for Bi quantum wire systems is the lattice therma'WhereT is the unit vector a|0ng the wire axis. Equaum)
conductivity «, which, together with the electronic thermal follows from the general definition of the carrier mobility in
conductivity x., determines the total thermal conductivity of terms of u=er/m* and from Matthiessen’s rule summing
the system. The lattice thermal conductivity in the 1D sys-1/7, for each scattering proce&d? Table V lists the mobili-
tems has been studied by using the Boltzmann equation fafes along the wire calculated using E&4) for each carrier
phonons and considering the diffusive and specular phonopocket in Bi nanowires at 77 K for various wire
scattering at the wire bounda®y. The calculated results grientations3
showed thatq, decreases significantly below the bulk value  The lattice thermal conductivity in bulk Bi is also aniso-
for small diameters. In this study, we use a simpler approackopic, andx, ; along the wire axis is given by
to estimatex, for Bi nanowire systems as follows. From the '
kinetic theory, the thermal conductivity of phonons is given kL i=1-K - 1=CcoS0k | +siPOk, I (55)
by?° ’ ' ‘

where x| and ., are the thermal conductivities parallel
1 and perpendicular to the trigonal axis, respectively, énsl
—c,ul, (52)  the angle between the wire axis and the trigonal axis. The
3 measured values af_ | and«_ | of bulk Bi at 77 K are 13.2

and 9.9 W/mK® respectively. For Bi at 77 K, the heat ca-
whereC, is the heat capacity per unit volumejs the sound pacityC,=1.003 JK * cm~3 3% and the estimated sound ve-
velocity, andl is the mean free path for phonons. We note|ocitiesv along the selected directions are listed in Table VI,
that the wide band-gap host material that confines electronghich are extrapolated from measured valtie¥.
cannot confine the phonon paths, and thus, because of acous-Using the general formalism presented in Sec. 1ll A$pr
tic mismatch, phonons will be scattered when they movey ., andx, j and the above discussion to account for the
across the wire boundary. Therefore, if the phonon mean fregltiple carrier pockets and their anisotropy, the thermoelec-
pathlg in bulk Bi is greater than the wire diametdy,, then  tric figure of meritZ,T has been calculated. Figure 5 shows
| and«,_ are mainly limited by the predominant phonon scat-the calculatedZ ;T for n-type Bi nanowires oriented along
tering at the wire boundary, and the lattice thermal conducthe trigonal axis at 77 K as a function of donor concentration
tivity of the quantum wire system is obtained N, for three different diameters. We note that the value of
approximately*° by settingl =d,, and using Eq(52). On 7, T for a given Ny increases drastically with decreasing
the other hand, the bulk value @t_ is used for a conserva- wire diameteIdW, and the maximurﬂlDT for each diameter

tive estimation of the thermal conductivity of Bi nanowire occurs at an optimized donor concentratidgopy, Which
systems ifd,, is larger than g .

KL=

TABLE VI. The sound velocities (in 10° cm/s of Bi at 77 K
along the three principal axes and other selected directions. The
values are interpolated from the measured results at 1Rek 35

The efficiency of a thermoelectric material is measured byand 300 K(Ref. 36.
the dimensionless figure of meit

B. Calculation of Z,5T of Bi nanowires at 77 K

Orientation ~ Trigonal Binary Bisectrix [1011] [0112]

SoT
ZT=

K

(53 v(1Fcms 201 260 267 245 224




PRB 62 THEORETICAL INVESTIGATION OF THERMOELECTRC . . . 4619

TABLE VII. The optimum carrier concentratiomdy o (in 10'®

7 cm %) and the corresponding; T of n-type Bi nanowires calcu-
6| lated at 77 K for various wire diameters and orientations.
5| Wire 5nm 10 nm 40 nm
Orientation  Ngpy Z1oT  Naopy ZioT  Napy ZipT
— 4t Trigonal 0.96 6.36 0.81 2.0 0.38 0.31
N9 Binary 0.35 3.68 0.28 1.14 0.56 0.13
37 Bisectrix 4.1 2.21 1.78 0.40 4.97 0.03
[10T1] 3.21 2.69 1.57 0.51 2.57 0.04
21 [0112] 207 341 133 070 273 0.6
1 L
40 nm . . . . . . .
oL - — — " nanowires with various orlentatlons, which shows a rapid
10 10 10 10" 10 increase inZ,pT with decreasingl,, .
Dopant Concentration (cm ) Although binary wires have a smaller critical wire diam-

_ ) _ eterd, for the SMSC transition than bisectrix wir€see Fig.
FIG. 5. Calculated T for n-type Bi nanowires oriented along 3), they have a higher optimal,;T than bisectrix wires at
the trigonal axis at 77 K as a function of donor concentration forypo came wire diametdsee Fig. J. The dependence of the
three different wire diameters. optimal Z,5T on the wire orientation can be qualitatively
. hat ds d ) . explained by a simple argument considering the dependence
Increases somewhat dg decreases. For 5 nm BI nanowires ¢ 7 1 o the effective mass in a 1D system. First, we note
oriented along the trigonal axis at 77 K, the maximum cal- -+ the optimal Fermi energy for the maximufoT is
; ; i — 108
C“'E‘ged ﬁlDT I'S abfgut 6 |W|th an Olpt'(;n'zed(\j'd(opt)_hl . usually below but very close to the lowest conduction sub-
cm T e value oiZ,pT also strongly depends on the wire 5, edgé?® Therefore, for semiconducting Bi nanowires
orientation due to the anisotropic nature of the Bi band StruCith Fermi energie€- close to the optimal Fermi level, the
ture and of the thermal propv_artles. Figure 6 shoyvs the Ca|CL§yStem can be approximately described by a one-band model
latedZ,pT at 77 K as a function oy for 10 nm Binanow- 5 o temperatures, in which the thermal enelgyT is
ires oriented in different directions. For 10 nm Bi nanowires uch smaller than the band gap and adjacent subband sepa-
at 77 K, _the _tngonal nanowires hgve t_he h_|ghest optimal4iinns. Since the Seebeck coefficient in a one-band system
ZypT, which is about 2.0, while bisectrix wires have the js t5irly independent of the band structure and is determined
lowest optimalZ,pT=0.4. This optimalZ,pT increases as ., e position ofEx only, the dependence @,,T on the
the wire orientation is varied from the bisectrix axis closer t0carrier effective mass is only influenced by the electrical
the trigonal axis, as shown 61011 ] and[0112] nanowires  conductivitys and the electronic contribution to the thermal
(see Fig. which, respectively, make an angle of 71.9° andconductivity «,. At this Fermi energy rangeg, is usually
56.5° with respect to the trigonal axis. The optimum carriersmall due to the low carrier densities, and the total thermal
concentrationdNgopy and the corresponding;pT of n-type  conductivity is dominated by the lattice thermal conductiv-
Bi nanowires at 77 K are listed in Table VII for various wire jty. For a 1D system, the carrier densityis proportional to
diameters and orientations. Figure 7 shows the calculatedm* and to the degeneracy factgrof the lowest subband,
optimal Z;pT at 77 K as a function ofl,, for n-type Bi 5o that the conductivity, which can be written as
=ne’s7/m* in a one-band system, will be proportional to

2.0 . 4
trigonal
N !
. £ n-type
150 binary 37 \ bisectrix 77K
:e ............ WA 101]
1.0 M o2
N
0.5
1 l
0'90‘—6/ 10" 10" 1.:)1‘9 10
. -3 0
Dopant Concentration (cm ) 0 60

, diameter (nm)
FIG. 6. Calculated T at 77 K as a function of donor concen-

tration N4 for 10 nmn-type Bi nanowires oriented in different di- FIG. 7. Calculated ;T at 77 K as a function odl,, for n-type
rections: trigonal, binary bisectrix1011], and[0112]. Bi nanowires oriented along different directions.
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TABLE VIII. The optimum carrier concentrationl, qq (in ameters and orientations. Compared with the results in Table
10** cm™®) and the corresponding;pT of p-type Bi nanowires V|| for n-type Bi nanowires, we note thattype Bi nano-
calculated at 77 K for various wire diameters and crystalline orienires of the samel,,, in general, have a much low&gT.
tations. The asymmetric behavior betweentype and p-type Bi
nanowires is discussed in the following section.

Wire 5nm 10 nm 40 nm
Orientation  Naopy ZioT  Nawpy ZioT  Naopy  ZioT

C. Effect of T-point holes on the thermoelectric properties

Trigonal 096 636 129 072 62 017 of Bi nanowires
Binary 079 178 103 0.16 7.9 0.05 _ _ )
Bisectrix 074 032 019 040 050 007 In_ Bi nanowires, due to the presenceTepom_t holes Fhat
[1011] 104 116 043 019 063  0.05 QOmlnate.the transport phenomena thy.pe Bi nanowires

— in most situations, the transport properties exhibit an asym-
[0112] 259 246 058 018 075 003 auic pehavior forn-type and p-type nanowires. The

T-point holes, which are also anisotropic, have a larger 3D
effective mass component-(0.634m,) along the trigonal
(gm*‘l’z). Therefore, the optimaZ T is roughly propor- direction, and smaller effective mass components
tional to e=(gm* ~*?) in a 1D transport system. The rela- (~0.059m,) for the binary and the bisectrix directionghe
tive values ofe for Bi nanowires oriented along the trigonal, different anisotropy of theT-point holes relative to the
binary, and bisectrix directions are calculated to bel-point carriers further complicates the dependence of the
1:0.69:0.19, respectively, which agrees quite well with thethermoelectric properties on the wire orientation.
relative values of the calculated optim&|sT of 1:0.57:0.2 To reveal the effect of th&-point holes on the thermo-
for 10 nm Bi nanowires in these three directidisee Table electric properties of Bi nanowires, we first preséhpT
VIl). It should be noted that, due to the transport effectiveresults for trigonal Bi wires, in which the three electron
mass approximation E@6), instead of Eq(4) or (12), which ~ pockets at thé. points become degenerate. The solid curves
was used in the square wire approximation, the previous caifh Fig. 8 show the calculated;pT at 77 K as a function of
culation by Suret al.gave rise to a higheZ 5T for bisectrix ~ E¢ for 40 nm, 20 nm, 10 nm, and 5 nm trigonal Bi nano-
Bi nanowires than for binary wire$:2* wires, where the zero of energy refers to thpoint conduc-

For a comparison, the optimum acceptor concentratioiion band edge of bulk Bi. The highest subband edges of the
Na(opy @nd the corresponding;pT for p-type Bi nanowires  T-point holes and of thé&-point holes are denoted bg{f(’)T)
are calculated and listed in Table VIII for various wire di- and sﬁ?{), respectively, and the lowest subband edge of the

(&) (b)

05 ; 1.0 = ; r —
! e © : e @
Gy o | S
04 | ! o8} ! g O ' FIG. 8. CalculatedZ,pT as a
‘; i h(T) f i function of the chemical potential
Ay o6t i\ } : (or Fermi energyat 77 K for (a)
P—o . P o ! 40 nm,(b) 20 nm,(c) 10 nm, and
& z i 1 no T-paint kel ! ; . !
N Nooal /I o paimt hotes E (d) 5 nm Bi nanowires oriented
‘Y ' ; along the trigonal direction. The
0z \\ : : zero in energy refers to the con-
v E | duction band edge in bulk Bi.
0 00 A A el andef?)) denote the highest
100 -50 -150 -100 -50 0 50 100 subband edge of th&-point holes
Fermi Energy (meV) Fennl Ensrgy (meV) and L_point holeS, respective|yl

and the lowest subband edge of
the L-point electrons is labeled as

(©) @ o eQly. The solid curves are the
- Bsnm ZipT calculated with both the
' o o T Pl o ' ' T T-point holes andL-point holes
&) &m oty | 7H & By | present, and the dashed curves
201 ,"; ; : 6| ; ‘ show theZ;,T when there are no
! ; sk ! T-point holes. For 5 nm Bi
15 { i ; | i i
- | L noT-point holes ol : nanowires, the solid and dashed
o8 4 1 Nagy curves coincide with each other,
10 ¢ ! ': 3 indicating that theT-point holes
i) 5L have a negligible effect on the
0S8 ¢ ! ; transport properties.
\ 1 -i #
0.0 L o U ¢
-300 -200 -100 O 100 200 ~600 -20 0 200 400

Fermi Energy (meV) Ferrai Energy (meV)
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L-point electrons is labeled by(},. The calculatedZ;,T
curves usually have two or more extremal values: the ex- 20 |

tremalZ,pT with a higherEg corresponds to optimail-type 8
nanowires, while the extremal T with a lowerEg belongs 6T 5nm
to optimalp-type nanowires. The curves for 40 nm to 10 nm 15 % «r
nanowires show an asymmetric behavior for phigpe wires 2r
H H |‘_ 0 " L L /
compared ton-type wires as expectelcee Figs. 8)—(c)], Ne 10| foT 07107 0% 10" /
. N, (1/cm®)

although 5 nm Bi nanowires exhibit a symmetric behavior
for n-type andp-type nanowire$see Fig. &)], as discussed
below. The calculated T, assuming that there were no
T-point holes for the corresponding Bi nanowires, is also
sketched in Fig. 8 by the dashed curves, showing a symmetry
in Z,pT for the n-type andp-type counterparts due to the
symmetric band structures of thepoint electrons and the
L-point holes.

For 40 nm trigonal nanowires at 77 Kl(n?')l') is only about FIG. 9. CalculatedZ,T for p-type Bi nanowires of different
15 meV be|OW8g()a) . The optimized Fermi energy for 40 nm diameters oriented along the trigonal axis at 77 K as a function of
n-type nanowires is located within the conduction band, andhcceptor dopant concentratityy . The dashed curves represent the
is not far from the valence band edgff, , compared to the results assuming there are figpoint holes. The inset showzpT
77 K thermal energkgT (~6 me\). Therefore, the pres- calculated as a function &, for 5 nm nanowires.
ence of theT-point holes partly cancels the contribution of
the electrons to the thermopow®rand the optimalZ,pT is
slightly reduced with respect to the dashed cusee Fig.
8(a)]. We also note that although both thipT of the ande(Y)) in trigonal Bi nanowires of very smad,, . For Bi
das_hgd and solid curves.decreaseEasdecreases from the nanowires oriented along the trigonal direction, Thpoint
optimized value, the solid curve decays faster due t0 th¢gles have the smallest effective mass components
increasing influence of th&-point holes. The adverse influ- (~0.053m,) in the confined directionéthe binary and the
ence of theT-point holes onZ;pT for n-type Bi nanowires  pjsectrix directiong while the carriers in the-point pockets
becomes less significant dg decreases, so that tiepoint  have one of the largest effective mass components
valence band is pushed further away from the conduction~0.11m,) in the confined directions. Since band shifting
band. As shown in Figs.(B)—(d), the T-point holes have due to the quantum confinement effect is approximately pro-
essentially no effect od,pT for 5 nm to 20 nmn-type Bi  portional to the inverse of the mass component in the con-
nanowires. fined directionsg ({}, will move downwards faster thas{S),

The T-point holes play a more important role in determin- asd,, decreases. In addition, the nonparabolic band structure
ing the behavior ofZ,pT of p-type Bi nanowires than for also tends to reduce the band shifting of theoint holes
their n-type counterparts. For Bi nanowires with diameters ofpecause of the increasing effective masses away from the
40 nm to 10 nm, theT-point holes and thé.-point holes, band edge. Therefore, at a certain wire diametes (nm),
respectively, mainly contribute to the tipT extremasee (%), crossesefy!,, and the highest valence subband is
the solid curves in Figs.(8)—(c)] near the subband edges formed by thelL-point holes. The suppression of tfigooint
{l)- For trigonal nanowires, th@-point holes  holes with respect te(?), results in nearly symmetric con-

Acceptor Concentration (1/cm3)

coincides with the dashed curve. The dramatically different
behavior inZ,5T of 5 nm Bi nanowires relative to that of the
larger diameter wires is due to the subband crossir@%

(0) (
Eh(T) and Eh(
have a large effective mass component along the transpogiction and valence bands, and the influence ofTipmint
direction, and therefore thé-point holes by themselves will hgles is therefore negligible for the range B of greatest
give rise to a small value &Z;pT and thus are undesirable interest[see Fig. &)].
for p-type thermoelectric applications. For example, for 10 Figure 9 shows the calculate®}T as a function of ac-
nm Bi nanowires shown in Fig.(8), theZ;pT variation with  ceptor dopant concentration, at 77 K for p-type trigonal
Er=2z(y}, arises essentially from ttiEepoint holes only, and  Bj nanowires with different,,, and the dashed curves show
the value of thisZ,pT extremum is merely-0.14, which is  the results for the corresponding wires assuminglfmint
much smaller than the optimal value of2 for n-type trigo-  holes. The results for 5 nprtype Bi nanowires are depicted
nal wires. In addition, even though tHepoint holes are in the insert figure for clarity. We note that with the presence
favorable forp-type thermoelectric materials, just like the of T-point holes in addition to theé-point holes, the dopant
L-point electrons, the presence of heavy-magmint holes  concentrations\, required for the optimaZ,pT for 10 nm
reduces the overall thermoelectric performance significantlyand 40 nm Bi nanowires are much higher than that for their
As shown in Figs. 8)—(c), the values of the optima;pT  n-type counterpartgsee Fig. 5 and the optimizedN, are
with Ep=&({{, are only about 0.17, 0.35, and 0.7 for 40 nm, ~1.3x 10 cm™2 and 6.2< 108 cm 3 for 10 nm and 40 nm
20 nm, and 10 nnp-type nanowires, respectively, which nanowires, respectively.
would otherwise be~0.32, 0.74, and 2.0 if there were no  For binary and bisectrix Bi nanowires, tAepoint holes
T-point holes. have identical subband structures due to symmetry. In these

For 5 nm Bi nanowires, however, the thermoelectric pertwo wire orientations, thel-point holes have one of the
formance is essentially independent of the presence amallest effective mass components along the transport di-
T-point holes, as shown in Fig.(@ where the solid curve rection and the largest mass component lying in the confined
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plane. Since the thermoelectric performance for one band isopic carrier pockets and the nonparabolic features of the
roughly proportional to fi*) 2, wherem* is the effective  L-point bands in Bi. A numerical solution is developed to
mass along the transport direction, tfigpoint holes are describe the subband structure of Bi quantum wires. The
more favorable foip-type thermoelectric applications in the critical wire diameterd, for the semimetal-semiconductor
binary and the bisectrix wires rather than for the trigonaltransition in Bi nanowires at 77 K is then calculated, which
wires, though still much inferior to thk-point carriers. is found to be between 39 nm and 55 nm, depending on the

We als?o)note tha(td)urjllke trigonal wires, the band crossingrystal orientation of the wire axis. The comparison of dyr
betweensy, ) andep () is not observed for the binary and (o wire widths a.) and those predicted by two previous
bisectrix wires for wire diameters down to 5 rfThis is  approximation models shows that significant discrepancies
due to the smaller band shifting for thepoint holes in  are caused by the anisotropic carrier pockets in Bi when this
binary and bisectrix wires owing to the heavier effective anisotropy is not properly taken into account. Because of the
mass in the confined directions. Therefore, for 5 nm bi”aryl'-dependent band structure in bulk Bl, decreases with
and bisectrix wires, th&-point holes still play a crucial role increasingT.
in determining the overalZ,pT in the p-type rangé?’ How- The thermoelectric figure of meid; 5T is investigated for
ever, it should be pointed out that for binary wires, the bandzj nanowires, based on the semiclassical transport model and
crossing Ofsﬁ?)u and 8%) is predicted for wire diameters the band structure model, and the results show that small
slightly below 5 nm, so that-type andp-type binary nano-  diameter Bi nanowiresd, <10 nm), when properly doped,
wires with ultrasmall wire diameters will have symmetric gre potentially good thermoelectric materials with,T>1.
performance. As for bisectrix wires, such a band crossing ighe effect of theT-point holes on the thermoelectric perfor-
very unlikely, because the very small effective mass compomance has also been discussed, and it is foundzth#t can
nent of thel-point pockets {-0.0023ng) in the confined pe significantly enhanced, especially ftype nanowires, if
directions will move the band edge of tHepoint holes  the T-point holes are removed or suppressed, which can pos-
down much faster than that of tAepoint holes. sibly be achieved by Sb doping.

In general, for Bi ninowires orieﬂted in other directions | this paper, we have mainly focused on the theoretical
(binary, bisectrix, [1011], and [0112] directiong, the  study. Recently, temperature-dependent resistance measure-
T-point holes exhibit a similar adverse effect on g T for ~ ments have been reliably performed for as-prepared and de-
trigonal Bi nanowires discussed abcvend a detailed study liberately doped Bi nanowire arrays of different diameters.
on these wire orientations can be found in Ref. 23. It isThe experimental results are consistent with the predictions
interesting to point out that, since the band structure wouldased on the theoretical model developed in this communi-
become symmetric if there were fAGpoint holes, the opti- cation. A detailed comparison is given in Ref. 11. However,
mal Z,pT and the corresponding acceptor concentratiorthe measurements of other transport properties of Bi hanow-
Naopy for p-type Bi nanowires in this case can be referred toires (such as the Seebeck coefficient and the thermal conduc-
the values ofn-type Bi nanowires in Table VII, except for tivity) are more challenging, and so far, no experimeatgl
large wire diameters>40 nm where the optimal perfor- values for Bi nanowires systems are available to the authors’
mance ofn-type Bi nanowires are affected by tiepoint  knowledge. Efforts are being made to improve the measure-
holes. By comparing the results in Tables VII and VIII, we ments of these quantities so that reproducible experimental
note that a significant enhancemenfzip,T can be achieved results can be obtained and the experimen@alalues of Bi
if the T-point holes can be removed or suppressed to liemanowires can be determined.
below theL-point holes. One possible approach to this is to
introduce an appropriate amount of antimd®p) into Bi to
form Bi;_,Sh, alloys2® It is observed that, for Sb concen- ACKNOWLEDGMENTS
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