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Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires
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We report here a theoretical model for the transport properties of cylindrical Bi nanowires. Based on the
band structure of Bi nanowires and the semiclassical transport model, the thermoelectric figure of meritZ1DT
is calculated for Bi nanowires with various wire diameters and wire orientations. The results show the trigonal
axis is the most favorable wire orientation for thermoelectric applications, andZ1DT.1 is predicted forn-type
trigonal wires with diametersdw,10 nm. The effect of theT-point holes onZ1DT is also investigated. It is
found thatZ1DT can be significantly enhanced, especially forp-type Bi nanowires, if theT-point holes are
removed or suppressed.
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I. INTRODUCTION

Nanowire systems have attracted a great deal of rese
interest because they allow study of quasi-one-dimensio
~1D! quantum systems1,2 and offer potential applications in
thermoelectrics.3 Bi, which is a semimetal with one aniso
tropic hole pocket at theT point of the Brillouin zone and
three highly anisotropic and nonparabolic electron ellipso
at the L points, is especially favorable for studying low
dimensional systems and for thermoelectric applications,
to its small electron effective mass and the highly anisotro
Fermi surface. The detailed crystal and electronic band st
ture of bulk Bi are given in Refs. 4–6. Recently, substan
progress has been made in synthesizing single-crysta
nanowire arrays in anodic alumina templates with w
diameters ranging from 7 nm to 200 nm.7–10 From x-ray
diffraction studies, it was found that these Bi nanowires p
sess a preferred growth direction along the wire axis:
@011̄2# direction for smaller wire diameter nanowires (dw

<50 nm! and the @101̄1# direction for larger diamete
nanowires (dw>60 nm!.7,8,11 In previous theoretical model
ing studies,12,13a significant enhancement of the thermoele
tric performance withZ1DT.1 was predicted for Bi nanow
ires with wire diametersdw,10 nm.13

To model the electronic structure of a nanowire system
simple assumption is usually made for an ideal 1D quan
wire, where the carriers are confined inside a cylindrical
tential well with an infinite potential height. An extension
this simple approach provides a good approximation for
nanowires embedded in an alumina template, in view of
large band gap (;3.2 eV! of the anodic alumina templat
material, which provides excellent confinement for the ca
ers in the embedded quantum wires.

Since the electron motion in the quantum wires is
stricted in directions normal to the wire axis, the quantu
confinement causes the energies associated with the in-p
motion to be quantized, and the lowest energy level
roughly speaking, given by

DE;
p2\2

mp* dw
2

, ~1!
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wheremp* is the average in-plane effective mass of the el
trons anddw is the wire diameter. Since the motion along t
wire axis is not restricted, the electrons would have a disp
sion relation for smallkl that looks like

Enm~kl !5«nm1
\2kl

2

2ml*
, ~2!

where«nm represents the quantized energy level~at kl50)
labeled by two quantum numbers (n,m), andkl andml* are
the wave vector of the electron wave functions and the
fective mass for electrons traveling along the wire axis,
spectively. We note that for materials such as Bi with high
anisotropic carrier pockets, the effective massmp* , which
determines the subband edge energies«nm , can be very dif-
ferent from the massml* , which characterizes the electro
motion along the wire.

In the nanowire system, the quantized subband ene
«nm and the transport effective massml* along the wire axis
are the two most important parameters that determine alm
every electronic property of this 1D system. However, due
the special geometric configuration of Bi nanowires~long
circular wires with a high aspect length/diameter ratio! and
the anisotropic carrier pockets in Bi, the exact calculation
the band structure in Bi nanowires was found to be v
challenging, and several approximation methods have b
used to study the electronic band structures of Bi nanow
in previous theoretical models. In the first calculation carr
out by Zhanget al.,12,14 the quantized energy levels wer
evaluated by using a cyclotron effective mass approxima
for the in-plane effective mass perpendicular to the wire a

mp* 'mc* 5S det Me

l̂•Me• l̂
D 1/2

, ~3!

where l̂ is the unit vector along the wire axis andMe is the
effective mass tensor. The transport effective mass was
proximated by

ml* ' l̂•Me• l̂ . ~4!
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In the earliest models,14 parabolic dispersion relations wer
assumed for both electrons and holes. With these simplify
approximations, the quantized energy levels could be rea
derived by solving the 2D Schro¨dinger equation with a cir-
cular boundary condition.14 However, the cyclotron effective
mass approximation is an oversimplification for the in-pla
effective mass, and is not valid for electrons with a high
anisotropic in-plane effective mass tensor. Instead ofmc*
5Am1m2 for the average in-plane effective massmp* , where
m1 and m2 are the two principal mass components in t
plane normal to the wire axis, the quantized energy sta
«nm are to a much closer approximation determined bymp*
given by ~as will be shown later!

1

mp*
.

1

2 S 1

m1
1

1

m2
D . ~5!

The discrepancies betweenmc* andmp* can be very signifi-
cant if m1 andm2 are very different, as they are for Bi.

Subsequently, an improved model to describe the e
tronic states in Bi nanowires was developed by S
et al.,13,15 based on the square wire approximation for wir
oriented along the three principal axes. With the edges of
square cross-section chosen to be parallel to the princ
axes of the in-plane mass tensor for each carrier pocket
square boundary condition greatly simplified the eigenva
problem for solving the Schro¨dinger equation and yielde
analytical solutions for the quantized energy levels. In t
approximation, the transport effective mass along the w
axis was derived as

ml* 5~ l̂•Me
21

• l̂ !21 ~6!

for a parabolic carrier pocket. Although the square wire
proximation provided a better solution for the in-plane effe
tive masses and for the quantized energy states«nm than the
previous cyclotron effective mass approximation, further i
provements are needed to describe the actualcircular wires
used in the experiment and their proper symmetries, wh
require that the physical quantities should be invariant un
rotations about the wire axis. In the square wire approxim
tion, the quantized subband energies are highly depende
the rotations of the square cross section about the wire a
and therefore the subband energies are not well define
this approximation.

In this paper, we present a theoretical model for
nanowires, which explicitly takes into account the cylindric
wire boundary conditions, the anisotropic carrier effect
mass tensor, i.e., nonparabolic features of theL-point con-
duction and valence bands, and the multiple carrier pock
The temperature dependence of the band structure of Bi
also considered to obtain a more realistic result for
temperature-dependent transport phenomena. A nume
method was designed to derive the quantized subband e
gies and the electronic wave functions of the circular wire
addition, the ambiguity between the two different expre
sions of Eqs.~4! and~6! for the 1D transport effective mas
in previous models is clarified in the present work. Using
electronic band structure of Bi nanowires thus obtained
semiclassical transport model, which is based on the Bo
mann transport equation for 1D systems, is then develo
g
ily
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and is used to study the thermoelectric properties of
unique Bi nanowire system for various wire orientations,
cluding the three principal axes and the two preferred gro
directions at 77 K, which is a temperature of great inter
for cryogenic cooling applications. The results show that
thermoelectric performance strongly depends on the wire
ameter and the wire orientation, with the trigonal orientati
being the most favorable direction. The effect of theT-point
holes on the thermoelectric performance is also discusse
is found that the thermoelectric performance can be gre
improved, especially forp-type wires, if theT-point holes are
removed or suppressed, as, for example, by adding appro
ate concentrations of Sb.16

Transport measurements of Bi nanowire arrays of diff
ent diameters and carrier concentrations have b
performed,10,12,14,17–19and the experimental results are qua
tatively consistent with the predictions from our theoretic
models. A detailed comparison between the theoretical
the experimental results is given in Ref. 11.

II. ELECTRONIC BAND STRUCTURE OF Bi NANOWIRES

A. Theoretical modeling

For an infinitely long wire with a circular cross section
diameterdw , we take thez8 axis to be parallel to the wire
axis with thex8 and y8 axes lying on the cross-section
plane. Since the wire axis is allowed to be oriented along
arbitrary direction with respect to the crystallographic dire
tions, the inverse effective mass tensor of one of the car
pockets in the wire coordinates (x8,y8,z8) has the genera
form

a[M215S a11 a12 a13

a21 a22 a23

a31 a32 a33

D , ~7!

wherea i j 5a j i .
Without loss of generality, we first seek solutions for t

T-point holes, which can be well described by a parabo
dispersion relation, in order to illustrate the numerical me
ods developed in the next section. Solutions for theL-point
carriers with nonparabolic dispersion relations are discus
in Sec. II C. The envelope wave functionC(r 8) of the
T-point holes is governed by the effective-mass Schro¨dinger
equation20

2
\2

2
¹"a"¹C~r !5EC~r !. ~8!

The cylindrical symmetry properties of the circular wire a
then used to simplify Eq.~8!. By a proper rotation about the
z8 axis, it is possible to make the matrix elementsa12
5a2150, and Eq.~8! can then be written as

a11

]2C

]x82
1a22

]2C

]y82
12a13

]2C

]x8]z8
12a23

]2C

]y8]z8
1a33

]2C

]z82

5S 2
2E

\2 D C. ~9!
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Since the electrons are unbounded in thez8 direction, we
assume that the electron wave functionC(r 8) takes the
form:

C~r 8!5u~x,y!exp~ i jx8!exp~ ihy8!exp~ ikz8z8!, ~10!

wherej andh are constants to be determined, andkz8 is the
wave number of the traveling wave in thez8 direction. We
note that by lettingj52a13/a11kz8 andh52a23/a22kz8 ,
the coupling terms betweenx8,y8, and kz8 are eliminated,
and Eq.~9! is reduced to a simple second-order different
equation inx8 andy8 only:

2
\2

2 S a11

]2

]x82
1a22

]2

]y82D u5S E2
\2kz8

2

2m33
D u ~11!

where

m33[S a332
a23

2

a22
2

a13
2

a11
D 21

5 ẑ8•M• ẑ8. ~12!

Equation~11! is reminiscent of a 2D Schro¨dinger equation
with in-plane effective mass components

mx8[a11
215~ x̂8•M21

• x̂8!21,

my8[a22
215~ ŷ8•M21

• ŷ8!21, ~13!

in the x8 and y8 directions, respectively. Sinceu(x8,y8)
must satisfy the same boundary condition asC(r ) according
to Eq. ~10!: u(x8,y8)[0 when x821y825(dw/2)2, the ei-
genvalues ofu(x8,y8) in Eq. ~11! are quantized, and th
energy of the electrons is written as

Enm~kz8!5«nm1
\2kz8

2

2m33
, ~14!

where«nm is the eigenvalue of Eq.~11! corresponding to the
subband edge eigenstate atkz850 labeled by the quantum
numbers (n,m). In Eq. ~14!, we see that the electron stat
split into many subbands with band edges atE5«nm , and
each subband behaves like a 1D system in thez8 direction
with the transport effective massmz85m33. It should be
noted that since only the cylindrical symmetry of the w
was actually assumed in the derivation of Eqs.~11!–~13!,
these results are also applicable to wires with a finite po
tial height. We also note that the effective massesmx8 and
my8 that determine the bound-state energies have diffe
expressions from the transport effective massmz8 , which
characterizes the 1D dispersion relation, as indicated by
~12! and~13!. In addition, compared to the exact expressio
Eq. ~12!, for the transport effective massmz8 , the transport
effective mass in Eq.~4! used by the previous cyclotron e
fective mass approximation is a better approximation th
the one in Eq.~6! for the square wire approximation.

B. Numerical solutions

In Sec. II A, the quantized energies of the bound state
anisotropic carriers in an infinitely long circular wire are d
termined by the 2D differential equation, which can be
written as
l

n-

nt

s.
,

n

of

-

S a
]2

]x2
1b

]2

]y2D u52lu, ~15!

where we leta[a11, b[a22, and

l[
2

\2
S E2

\2kz8
2

2m33
D . ~16!

Also, the dummy variablesx8,y8 in Eq. ~11! are here re-
placed byx,y for simplicity. For the special and simple cas
wherea5b, which only applies to theT-point hole pocket
in trigonal Bi nanowires, the wavefunction of Eq.~15! has
the analytic solution

umn~r !;Jm~xmnr !eimu, ~17!

whereJm is themth Bessel function, andxmn is thenth root
of Jm(xdw/2)50 in order to satisfy the boundary condition
The eigenvaluel corresponding to the wavefunction in Eq
~17! is then given bylmn5axmn

2 .
For the general situation whereaÞb, there are no ana

lytic solutions and the eigenvalues can only be deriv
through numerical methods. In the following, numerical s
lutions to this particular eigenvalue problem are obtained
transforming the differential equation Eq.~15! into a corre-
sponding difference equation, and the resulting Hamilton
matrix can be solved numerically to high accuracy with t
aid of computers.

First, due to the cylindrical boundary conditionu(r
5dw/2)[0, it is advantageous to express Eq.~15! in terms
of cylindrical coordinates:

]2u

]x2
5cos2u

]2u

]r 2
12

cosu sinu

r 2

]u

]u
22

cosu sinu

r

]2u

]r ]u

1
sin2u

r

]u

]r
1

sin2u

r 2

]2u

]u2
~18!

]2u

]y2
5sin2u

]2u

]r 2
22

cosu sinu

r 2

]u

]u
12

cosu sinu

r

]2u

]r ]u

1
cos2u

r

]u

]r
1

cos2u

r 2

]2u

]u2
, ~19!

whereu is the polar angle to thex axis, andr is the perpen-
dicular distance to thez axis in cylindrical coordinates. To
transform Eq.~15! into a difference equation, we create
mesh consisting ofM concentric circles andN sectors within
the wire cross section, as shown in Fig. 1. The polar coo
nates of theM3N grid points in this circular mesh are

~r m ,un!5~mdr ,ndu!,

m51,2, . . . ,M n50,1, . . . ,~N21! ~20!

wheredr 5dw/2M anddu52p/N are, respectively, the dis
tances between adjacent concentric circles and the a
spanned by each sector. With these assigned grid points
derivatives at (r ,u)5(r m ,un) in Eqs. ~18! and ~19! are ap-
proximated by
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]u

]r
.

1

2dr
~um11,n2um21,n!, ~21!

]u

]u
.

1

2du
~um,n112um,n21!, ~22!

]2u

]r 2
.

1

~dr !2
~um11,n1um21,n22um,n!, ~23!

]2u

]u2
.

1

~du!2
~um,n111um,n2122um,n!, ~24!

]2u

]r ]u
.

1

4~du!~dr !
~um11,n111um21,n21

2um11,n212um21,n11!, ~25!

where um,n5u(r m ,un) is the value of the wave function
u(r ,u) taken at the grid point (r m ,un). After substituting the
derivatives in Eqs.~18! and ~19! by their finite difference
counterparts in Eqs.~21!–~25!, we obtain a difference equa
tion of um,n of the form

lum,n5Amnum11,n1Bmnum21,n1Cmnum,n111Dmnum,n21

1Emn~um11,n111um21,n212um11,n212um21,n11!

1Fmnum,n , ~26!

where Amn ,Bmn , . . . ,Fmn are all functions of (m,n). For
the grid points at the outermost circle, the boundary con
tion requires thatuM ,n50 for all n, and therefore only the
(M21)3N difference relations that result from the oth
(M21)3N grid points need to be considered.

However, extra caution should be taken when apply
Eq. ~26! to grid points at the innermost circle (m51). Al-
though the origin was excluded from the grid points to av
infinite values for the coefficientsAmn ,Bmn , . . . , atr 50, it
is inevitable that the value ofu0,n at the origin is needed fo
the evaluation of Eq.~26! for grid points at the first concen
tric circle (m51). Fortunately, the value ofu0[u(0,u) can

FIG. 1. Schematic diagram of the grid points used to transfo
each differential equation into a difference equation. The mes
the circular wire cross section consists ofM concentric circles and
N sectors. In the figure above,M55 andN512.
i-

g

be estimated from its neighboring points using the origi
differential equation, Eq.~15!, in Cartesian coordinates
which, in the difference approximation, can be expressed

2lu05a
]2u

]x2 U
r 50

1b
]2u

]y2U
r 50

.a
@u~dr ,0!1u~dr ,p!22u0#

~dr !2

1b
@u~dr ,p/2!1u~dr ,3p/2!22u0#

~dr !2
~27!

at r 50, and thenu0 is solved as a linear combination o
wave-function valuesumn at adjacent points:

u05
a~u1,01u1,un5p!1b~u1,un5p/21u1,un53p/2!

~dr !2l12~a1b!

.
a~u1,01u1,un5p!1b~u1,un5p/21u1,un53p/2!

2~a1b!
~28!

when

~dr !2!
2~a1b!

l
. ~29!

Thus, we are able to express the (M21)3N difference
equations from Eq.~26! in a matrix form:

1
H (1,0)(1,0) ••• ••• H (1,0)(M21,N21)

A A

A A

A Ĥ A

A A

A A

A A

H (M21,N21)(1,0) ••• ••• H (M21,N21)(M21,N21)

2
31

u1,0

u1,1

A

u1,N21

u2,0

A

A

uM21,N21

2 5l1
u1,0

u1,1

A

u1,N21

u2,0

A

A

uM21,N21

2 , ~30!

whereĤ is the Hamiltonian matrix established from the c
efficients in Eqs.~26! and~28!, and the eigenvalues ofĤ can
be evaluated numerically using modern mathematical pa
ages. The number of eigenvalues obtained through this
merical method is equal to (M21)3N. However, higher

in
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eigenvalues usually have larger discrepancies and shou
discarded. The criterion for dependable eigenvalues can
determined by

l!
a1b

~dr !21~dwdu/2!2
. ~31!

Table I compares the lowest few eigenvalueslA and their
degeneracies derived from the analytic solutions andlN
from numerical solutions~with M564 andN540) for the
special casea5b where analytic solutions can also be o
tained. The numerical solutionslN are in excellent agree
ment with the analytic solutionslA , and the relative errors
are smaller than 0.5% for all the values listed in Table I.
increasing the number of concentric circlesM and sectorsN
simultaneously, even higher accuracy can be obtained.
aÞb, the numerical technique developed here provide
powerful approach to calculate the eigenvalues accura
and efficiently. In addition, wave functionsu(r ) for the
eigenstates can be readily derived by solving for the eig
vectors of the Hamiltonian matrixĤ.

C. Nonparabolic band structure in Bi nanowires

In the previous sections, we have developed solutions
the T-point holes with parabolic dispersion relations. At t
L points, however, the bands are highly nonparabolic du
the strong coupling between theL-point electrons and
holes,21 and this nonparabolic band structure must be ta
into account when determining the subband energy le
and the 1D dispersion relations for theL-point carriers. The
dispersion relation for theL-point bands is described by th
two-band Lax model,22 which can be written as

\2

2
k•a•k5E~k!S 11

E~k!

EgL
D ~32!

for the conduction band at theL point, wherea, is the in-
verse effective mass tensor at the band edge andEgL
(515 meV at 77 K, Ref. 5! is the direct band gap at theL
point. By the effective mass theorem, we obtain a differen
equation for the envelope functionC(r ) of theL-point elec-
trons:

2
\2

2
¹"a"¹C~r !5ES 11

E

EgL
DC~r !. ~33!

TABLE I. Comparisons of the lowest 4 eigenvalues of Eq.~15!
derived from analytic solutions and numerical calculations fora
5b. These eigenvalues correspond to the subband energy leve
theT-point holes for trigonal Bi nanowires (a516.95m0

21) with an
infinite potential height.

Analytic solution Numerical solution
lA(dw

2 /4a) lN(dw
2 /4a) Degeneracy

5.783 5.784 1
14.6812 14.669 2
26.374 26.262 2
30.4712 30.468 1
be
be

or
a
ly

n-

or

to

n
ls

l

We note that Eq.~33! will have the same form as the Schro¨-
dinger equation@Eq. ~8!# for parabolic carrier pockets, if we
define aprimitive energy

Ẽ[ES 11
E

EgL
D , ~34!

and the same procedures described in Secs. II A and II B
be applied to solve for thisprimitive energyẼ:

Ẽnm~kz!5 «̃nm1
\2kz

2

2m̃z

, ~35!

where «̃nm is the primitive subband energy andm̃z is the
primitive effective mass along the wire axis, in correspo
dence to Eq.~14!. The true quantized subband energy lev
and the 1D dispersion relations for each subband can be
rived readily by solvingE in Eq. ~34! as

Enm~kz!52
EgL

2
1

EgL

2
A114

Ẽnm~kz!

EgL
, ~36!

and the band edge energy of each subband is then give

«nm[Enm~kz50!

52
EgL

2
1

EgL

2
A11

4«̃nm

EgL

5~gnm21!
EgL

2
, ~37!

where

gnm[A11
4«̃nm

EgL
. ~38!

We note that the 1D dispersion relationEnm(kz) in Eq. ~36!
for each subband is more complicated than Eq.~14! and also
is nonparabolic. However, for energies near the subb
edge, it is a good approximation to treat the full dispers
relation in Eq. ~36! near the subband edge with a Tayl
expansion as

Enm~kz!52
EgL

2
1

EgL

2
A11

4«̃nm

EgL
1

2\2kz
2

m̃zEgL

.«nm1
\2kz

2

2mz,nm*
, ~39!

where

mz,nm* 5A11
4«̃nm

EgL
m̃z5gnmm̃z ~40!

is the transport effective mass along the wire axis for
corresponding subband. As indicated in Eq.~40!, the trans-
port effective massesmz,nm* increase with the subband edg
energy, and are different for every subband.

It should be noted that in deriving the nonparabolic d
persion relation Eq. ~32!, the far band contribution
(\2k2/2m0) is usually neglected when applyingk•p pertur-

of
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TABLE II. Calculated effective mass components of each carrier pocket for determining the band
ture in Bi nanowires at 77 K along the indicated crystallographic directions, based on the effective
parameters of bulk Bi given in Refs. 5 and 6. Thez8 direction is chosen along the wire axis. All mass valu
in this table are in units of the free electron mass,m0.

Mass component Trigonal Binary Bisectrix @011̄2# @101̄1#

mx8 0.1175 0.0023 0.0023 0.0029 0.0024
e2 pocketL(A) my8 0.0012 0.2659 0.0012 0.0012 0.0012

m̃z8
0.0052 0.0012 0.2630 0.2094 0.2542

mx8 0.1175 0.0023 0.0023 0.0016 0.0019
e2 pocketL(B) my8 0.0012 0.0016 0.0048 0.0125 0.0071

m̃z8
0.0052 0.1975 0.0666 0.0352 0.0526

mx8 0.1175 0.0023 0.0023 0.0016 0.0019
e2 pocketL(C) my8 0.0012 0.0016 0.0048 0.0125 0.0071

m̃z8
0.0052 0.1975 0.0666 0.0352 0.0526

mx8 0.0590 0.6340 0.6340 0.1593 0.3261
T-point hole pocket my8 0.0590 0.0590 0.0590 0.0590 0.0590

mz8 0.6340 0.0590 0.0590 0.2349 0.1147
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bation theory to bulk bismuth, due to the very small effect
masses at the 3D band edge for strongly coupled ba
However, for Bi nanowires where the 3DL-point energy
splits into many subbands, the far band contributions are
negligible for higher subbands where the effective masse
the subband edge are not small compared to the free ele
massm0. We therefore write the more complete express
to relatemz,mn* to m̃z :

1

mz,mn*
5

1

m0
1

1

gnmm̃z

. ~41!

D. Band shifting and the semimetal-semiconductor transition
in Bi nanowires

Based on the band structure parameters of bulk bism
values ofmx8 , my8 , andmz8 ~or m̃z8) at 77 K for Bi nano-
wires oriented along the three principal crystallographic a
~trigonal, binary, and bisectrix directions!, and the preferen-
tial @011̄2# and @101̄1# growth directions@or ~0,0.8339,
0.5519! and~0,0.9503,0.3112!, respectively, in Cartesian co
ordinates defined by the binary (x), the bisectrix (y), and the
trigonal~z! axes# are given in Table II. In Table II and for the
following discussions, the threeL-point electron pockets in
Bi are denoted byLe(A), Le(B), and Le(C). The Le(A)
pocket is chosen as the one with its major axis lying close
a bisectrix axis, and the pocketsLe(B) and Le(C) are ob-
tained by rotating the pocketLe(A) by 120° and2120°
about the trigonal axis, respectively. For theL-point pockets,
Eqs. ~40! and ~41! should be used to include nonparabo
effects into the entries in Table II, while the parabolic a
proximation of Eq.~39! was used to describe the small e
ergy excursions fromkz850 for the dispersion along th
wire axis.

Since Bi nanowires with smaller wire diameters (,40
nm! tend to be oriented along the@011̄2# direction, the cal-
culated lowest subband energies for Bi quantum wires
ented along this preferred growth direction at 77 K a
shown in Fig. 2 as a function of wire diameter. For t
s.

ot
at
on
n

h,

s

o

-

i-

@011̄2# wires, the degeneracy at theL points is lifted, result-
ing in two inequivalent groups of carrier pockets: a sing
electron pocketLe(A) and two electron pocketsLe(B,C)
with the same symmetry and band parameters as each o
but different from those for theLe(A) pocket. Since the
Le(A) pocket has smaller mass components (mx8 , my8) in
the quantum confined directions than the electron pock
Le(B,C) ~see Table II!, the Le(A) pocket forms a higher
conduction subband, while the pocketsLe(B,C) form a two-
fold degenerate subband at a lower energy~see Fig. 2!. Be-
cause of the larger mass component along the wire
(mz8) for the electron pocketLe(A) than for Le(B,C), the
dispersion relation of theLe(A) subband has a smaller cu
vature~see Fig. 2!. The band edge of the lowest subband

FIG. 2. The subband structure at 77 K of Bi quantum wir

oriented along the@011̄2# growth direction, showing the energie
vs wire diameter of the highest subbands for theT-point hole carrier
pocket as well as for theL-point holes, and the lowest subbands f
the L-point electron pockets (A, B andC). The zero energy refers
to the conduction band edge in bulk Bi. Asdw decreases, the con
duction subbands move up in energy, while the valence subba
move down. Atdc549.0 nm, the lowest conduction subband ed
formed by theL(B,C) electrons crosses the highestT-point valence
subband edge, and a semimetal-semiconductor transition occu
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TABLE III. Calculated critical wire diametersdc for Bi nanowires oriented along various crystallograph
directions at 77 K. The predicted values of the critical wire diameters and the critical wire widths from
cyclotron effective mass approximation and the square wire approximation, respectively, are also inclu
comparison. The values in the table are given in units of nm.

Calculation method Trigonal Binary Bisectrix @101̄1# @011̄2#

Circular wire1 numerical 55.1 39.8 48.5 48.7 49.0
Square wire approx.a 52.1 34.5 41.3 NA NA
Cyclotron effective mass approx.b 33 20 44 45 NA

aReference 24.
bReference 12.
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n-
the Le(B,C) electrons increases with decreasing wire dia
eterdw , while the highest subband edges of theT-point and
L-point holes move downwards in energy. Fordw,49.0 nm,
the energy of the lowestL-point conduction subband edg
exceeds that of the highestT-point valence subband edg
indicating that these nanowires have become semicond
ing.

In addition to the wire diameter, the subband structure
the 1D Bi quantum wires is also strongly dependent on
wire orientation. The bisectrix wires and the@101̄1# wires
have the same symmetry as the@011̄2# wires, and, therefore
the three wire orientations~bisectrix, @101̄1#, and @011̄2#)
possess similar subband structures~see Fig. 2! with slightly
different critical wire diameters for the semimeta
semiconductor~SM-SC! transition. For the trigonal wires
the subband energies of the threeL-point electron pockets
remain degenerate for all wire diameters, and the crit
wire diameter for the SM-SC transition at 77 K occurs
dc555.1 nm. For binary wires, the electron pocketsLe(B,C)
form a twofold degenerate subband at a higher energy
the electron pocketLe(A) in contrast to Fig. 2. A more de
tailed study of the band structure of Bi nanowires for the
wire orientations is given in Ref. 23.

The calculated critical wire diametersdc for the SMSC
transition for Bi nanowires oriented along the three princi
crystallographic axes, the@011̄2#, and the@101̄1# directions
at 77 K are listed in Table III, in which the critical wire
width ac predicted by the square wire approximation24 and
the critical wire diameterdc obtained by the cyclotron effec
tive mass approximation12 for available directions are als
included for comparison.
-

ct-

f
e

l
t

an

e

l

It should be noted that sincedc is determined by the band
structure of crystalline Bi, which is strongly temperature d
pendent forT.80 K,25,26the critical wire diameterdc for the
SM-SC transition will also beT dependent at high tempera
tures (T.80 K!. TheT dependence ofdc has been calculated
using the best available values for the temperature dep
dence of the bismuth band parameters, which are give
Table IV. Figure 3 shows the resulting calculated critic
wire diameterdc for the SM-SC transition in Bi nanowires a
a function of temperature for different wire orientation
Since the overlap energyD0 between theL-point conduction
band and theT-point valence band and the effective ma
components of theL-point electrons both increase with tem
perature~see Table IV!, a smaller wire diameter is require
to achieve the transition at higher temperatures. At 300
the critical wire diameters where the SM-SC transition o
curs are estimated as 15.4, 11.2, 13.6, 14.0, and 13.6 nm
nanowires oriented along the trigonal, binary, bisectr

@011̄2#, and @101̄1# crystallographic directions, respec
tively.

Based on the band structure derived for 1D Bi quant
wires, the carrier concentration for undoped Bi nanowi
has been calculated by adjusting the Fermi level so that
number of holes is equal to the number of electrons. Figu
shows the calculated total carrier densities of Bi nanowi
oriented along the@011̄2# growth direction as a function o
temperature for different wire diameters. Since the criti
wire diameterdc is temperature dependent, three differe
types of temperature dependences of the carrier densitie
predicted for Bi nanowires, depending on the wire diamete
For 10 nm Bi nanowires, which are always in the semico
TABLE IV. Temperature dependence of selected bulk Bi band structure parameters.

Parameters Temperature Dependence

Band overlap~meV!a
D05H238 ~T,80 K!

23820.044~T280!14.5831024~T280!227.3931026~T280!3 ~T.80 K!

L-point direct band gap~meV!b EgL513.612.131023T12.531024T2

L-point electron @me~T!# i j 5
@me~0!# i j

122.9431023T15.5631027T2

Effective mass componentsb,c,d

aReference 25.
bReference 26.
cReference 6.
dme(0) is the effective mass tensor atT50 K.
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ductor regime up to 300 K~see Fig. 3!, the carrier density
increases exponentially withT up to 300 K. On the other
hand, for 80 nm Bi nanowires, which remain in the semim
tallic regime even down to 0 K, the carrier density has
similar temperature dependence to that of bulk Bi. T
smaller carrier density of the 80 nm nanowires compared
bulk Bi arises because of the smaller overlap between
conduction and the valence bands in Bi nanowires as c
pared to bulk Bi. As for the 40 nm Bi nanowires, the tem
perature for the SM-SC transition is predicted to be arou
170 K for a @011̄2# nanowire ~see Fig. 3!. Thus, for T
<170 K, 40 nm Bi nanowires are in the semiconductor
gime, and the carrier density drops significantly with d
creasing temperature, while forT.170 K, the nanowires are
in the semimetal regime, and the carrier density has a sim
temperature dependence to that of bulk Bi. It should also
noted that for semiconducting wires, the slope of the cur
in Fig. 4 is approximately proportional to the band gap b

FIG. 3. Calculated critical wire diameterdc for the semimetal-
semiconductor transition as a function of temperature for Bi na
wires oriented along different directions.

FIG. 4. Calculated total carrier density~electrons and holes! of

Bi nanowires oriented along the@011̄2# direction as a function of
temperature for different wire diameters: 10 nm, 40 nm, and 80
in comparison to that for bulk Bi.
-
a
e
to
e
-
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-
-

ar
e
s
-

tween the conduction band and the valence band, while
semiconducting band gap increases with decreasingT for 40
nm Bi nanowires below 170 K. Therefore, the slope of t
curve for 40 nm Bi nanowires in Fig. 4 decreases with
creasingT.

III. THEORETICAL MODELING FOR
THERMOELECTRIC TRANSPORT PROPERTIES

A. Semiclassical transport model for Bi nanowires

The thermoelectric related transport coefficients of
nanowires can be obtained from a semiclassical mo
which is based on the Boltzmann transport equation. Fo
one-band system in a 1D quantum wire, importa
thermoelectric-related transport coefficients such as the e
trical conductivitys, the Seebeck coefficientS, and the ther-
mal conductivityke are derived as13,27

s5L (0), ~42!

S52
1

eT

L (1)

L (0)
, ~43!

ke5
1

e2T
S L (2)2

~L (1)!2

L (0) D , ~44!

whereT is the temperature and

L (a)5e2E 4dk

p2d2 S 2
d f

dED t~k!v~k!v~k!@E~k!2EF#a,

~45!

in which a50,1,2, E(k) is the carrier dispersion relation
t(k) is the relaxation time,EF is the Fermi energy, andf (E)
is the Fermi-Dirac distribution function. For a one-band sy
tem with a parabolic dispersion relation, the transport e
mentsL (a) in Eqs.~42!–~44! are derived as

L (0)5DF1

2
F21/2G , ~46!

L (1)5H ~kBT!DF3

2
F1

2
2

1

2
z* F21/2G ~for electrons!

2~kBT!DF3

2
F1

2
2

1

2
z* F21/2G ~for holes!,

~47!

L (2)5~kBT!2DF5

2
F3/223z* F1/21

1

2
z* 2F21/2G , ~48!

whereD is given by

D5
8e

p2dw
2 S 2m* kBT

\2 D 1/2

m, ~49!

in which m is the carrier mobility along the nanowire and

F j5E
0

` xjdx

e(x2z* )11
~50!

-

,
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denotes the Fermi-Dirac related functions, with fractional
dices j 52 1

2 , 1
2 , 3

2 , . . . . Thereduced chemical potentialz* is
defined as

z* 5H ~EF2«e
(0)!/kBT ~for electrons!,

~«h
(0)2EF!/kBT ~for holes!,

~51!

where«e
(0) and«h

(0) denotes the band edges for electrons a
holes, respectively.

For the Bi quantum wire system, there are many 1D s
bands due to the multiple carrier pockets at theL points and
the T point, and the quantum confinement–induced ba
splitting also forms a set of 1D subbands from a single b
in the bulk material. Therefore, when considering the tra
port properties of real 1D nanowire systems, contributio
from all of the subbands near the Fermi energy should
included, and theL (a)’s in Eqs. ~42!–~44! should be re-
placed by the sumL total

(a) 5( iL i
(a) of contributions from each

subband~labeled byi ) to obtain the various transport coe
ficients.

Another physical quantity of interest in thermoelectric a
plications for Bi quantum wire systems is the lattice therm
conductivitykL, which, together with the electronic therm
conductivityke , determines the total thermal conductivity
the system. The lattice thermal conductivity in the 1D s
tems has been studied by using the Boltzmann equation
phonons and considering the diffusive and specular pho
scattering at the wire boundary.28 The calculated results
showed thatkL decreases significantly below the bulk val
for small diameters. In this study, we use a simpler appro
to estimatekL for Bi nanowire systems as follows. From th
kinetic theory, the thermal conductivity of phonons is giv
by29

kL5
1

3
Cvv l , ~52!

whereCv is the heat capacity per unit volume,v is the sound
velocity, andl is the mean free path for phonons. We no
that the wide band-gap host material that confines elect
cannot confine the phonon paths, and thus, because of a
tic mismatch, phonons will be scattered when they mo
across the wire boundary. Therefore, if the phonon mean
path l B in bulk Bi is greater than the wire diameterdw , then
l andkL are mainly limited by the predominant phonon sc
tering at the wire boundary, and the lattice thermal cond
tivity of the quantum wire system is obtaine
approximately3,30 by setting l 5dw and using Eq.~52!. On
the other hand, the bulk value ofkL is used for a conserva
tive estimation of the thermal conductivity of Bi nanowi
systems ifdw is larger thanl B .

B. Calculation of Z1DT of Bi nanowires at 77 K

The efficiency of a thermoelectric material is measured
the dimensionless figure of merit31

ZT5
S2sT

k
, ~53!
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where k5ke1kL is the total thermal conductivity due t
both electron and phonons. In the following, we calculate
Z1DT for Bi nanowires at 77 K by using the general forma
ism derived in Sec. III A.

Since the mobility tensors for electrons and holes are
isotropic, the mobilitym l̂ for carriers traveling along the wire
axis depends on the wire orientation, andm l̂ is given by

m l̂ 5~ l̂•m21
• l̂ !21 ~54!

where l̂ is the unit vector along the wire axis. Equation~54!
follows from the general definition of the carrier mobility i
terms ofm5et/m* and from Matthiessen’s rule summin
1/t i for each scattering processi.32 Table V lists the mobili-
ties along the wire calculated using Eq.~54! for each carrier
pocket in Bi nanowires at 77 K for various wir
orientations.33

The lattice thermal conductivity in bulk Bi is also aniso
tropic, andkL, l̂ along the wire axis is given by

kL, l̂ 5 l̂•kL• l̂5cos2ukL,'1sin2ukL,i , ~55!

wherekL,i and kL,' are the thermal conductivities paralle
and perpendicular to the trigonal axis, respectively, andu is
the angle between the wire axis and the trigonal axis. T
measured values ofkL,' andkL,i of bulk Bi at 77 K are 13.2
and 9.9 W/mK,25 respectively. For Bi at 77 K, the heat ca
pacityCv.1.003 J K21 cm23,34 and the estimated sound ve
locitiesv along the selected directions are listed in Table V
which are extrapolated from measured values.35,36

Using the general formalism presented in Sec. III A forS,
s, ke , andkL, l̂ and the above discussion to account for t
multiple carrier pockets and their anisotropy, the thermoel
tric figure of meritZ1DT has been calculated. Figure 5 show
the calculatedZ1DT for n-type Bi nanowires oriented alon
the trigonal axis at 77 K as a function of donor concentrat
Nd for three different diameters. We note that the value
Z1DT for a given Nd increases drastically with decreasin
wire diameterdw , and the maximumZ1DT for each diameter
occurs at an optimized donor concentrationNd(opt) , which

TABLE V. Calculated mobility along the wire for each carrie
pocket in Bi nanowires with various wire orientations at 77
based on experimental values of bulk Bi in Ref. 33. The values
given in m2 V21 s21.

Mobility Trigonal Binary Bisectrix @101̄1# @011̄2#

e2 pocketA 25.93 68.11 1.08 1.10 1.32
e2 pocketB 25.93 1.42 4.11 5.21 7.59
e2 pocketC 25.93 1.42 4.11 5.21 7.59
Hole pocket 2.10 11.84 11.84 8.17 4.91

TABLE VI. The sound velocitiesv ~in 105 cm/s! of Bi at 77 K
along the three principal axes and other selected directions.
values are interpolated from the measured results at 1.6 K~Ref. 35!
and 300 K~Ref. 36!.

Orientation Trigonal Binary Bisectrix @101̄1# @011̄2#

v (105 cm/s! 2.01 2.60 2.67 2.45 2.24
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increases somewhat asdw decreases. For 5 nm Bi nanowire
oriented along the trigonal axis at 77 K, the maximum c
culated Z1DT is about 6 with an optimizedNd(opt).1018

cm23. The value ofZ1DT also strongly depends on the wir
orientation due to the anisotropic nature of the Bi band str
ture and of the thermal properties. Figure 6 shows the ca
latedZ1DT at 77 K as a function ofNd for 10 nm Bi nanow-
ires oriented in different directions. For 10 nm Bi nanowir
at 77 K, the trigonal nanowires have the highest optim
Z1DT, which is about 2.0, while bisectrix wires have th
lowest optimalZ1DT.0.4. This optimalZ1DT increases as
the wire orientation is varied from the bisectrix axis closer
the trigonal axis, as shown for@101̄1# and@011̄2# nanowires
~see Fig. 6! which, respectively, make an angle of 71.9° a
56.5° with respect to the trigonal axis. The optimum carr
concentrationsNd(opt) and the correspondingZ1DT of n-type
Bi nanowires at 77 K are listed in Table VII for various wir
diameters and orientations. Figure 7 shows the calcula
optimal Z1DT at 77 K as a function ofdw for n-type Bi

FIG. 5. CalculatedZ1DT for n-type Bi nanowires oriented alon
the trigonal axis at 77 K as a function of donor concentration
three different wire diameters.

FIG. 6. CalculatedZ1DT at 77 K as a function of donor concen
tration Nd for 10 nmn-type Bi nanowires oriented in different di

rections: trigonal, binary bisectrix,@101̄1#, and@011̄2#.
-

-
u-

l

r

ed

nanowires with various orientations, which shows a ra
increase inZ1DT with decreasingdw .

Although binary wires have a smaller critical wire diam
eterdc for the SMSC transition than bisectrix wires~see Fig.
3!, they have a higher optimalZ1DT than bisectrix wires at
the same wire diameter~see Fig. 7!. The dependence of th
optimal Z1DT on the wire orientation can be qualitative
explained by a simple argument considering the depende
of Z1DT on the effective mass in a 1D system. First, we n
that the optimal Fermi energy for the maximumZ1DT is
usually below but very close to the lowest conduction su
band edge.13 Therefore, for semiconducting Bi nanowire
with Fermi energiesEF close to the optimal Fermi level, th
system can be approximately described by a one-band m
at low temperatures, in which the thermal energykBT is
much smaller than the band gap and adjacent subband s
rations. Since the Seebeck coefficient in a one-band sys
is fairly independent of the band structure and is determi
by the position ofEF only, the dependence ofZ1DT on the
carrier effective mass is only influenced by the electri
conductivitys and the electronic contribution to the therm
conductivity ke . At this Fermi energy range,ke is usually
small due to the low carrier densities, and the total therm
conductivity is dominated by the lattice thermal conduct
ity. For a 1D system, the carrier densityn is proportional to
Am* and to the degeneracy factorg of the lowest subband
so that the conductivity, which can be written ass
5ne2t/m* in a one-band system, will be proportional

TABLE VII. The optimum carrier concentrationsNd(opt) ~in 1018

cm23) and the correspondingZ1DT of n-type Bi nanowires calcu-
lated at 77 K for various wire diameters and orientations.

Wire 5 nm 10 nm 40 nm
Orientation Nd(opt) Z1DT Nd(opt) Z1DT Nd(opt) Z1DT

Trigonal 0.96 6.36 0.81 2.0 0.38 0.31
Binary 0.35 3.68 0.28 1.14 0.56 0.13

Bisectrix 4.1 2.21 1.78 0.40 4.97 0.03

@101̄1# 3.21 2.69 1.57 0.51 2.57 0.04

@011̄2# 2.07 3.41 1.33 0.70 2.73 0.06

r

FIG. 7. CalculatedZ1DT at 77 K as a function ofdw for n-type
Bi nanowires oriented along different directions.



-
l,
b
th

iv

ca

tio

i-

ble

m-

3D

nts

the

-

n
es

o-

the

the

en

4620 PRB 62YU-MING LIN, XIANGZHONG SUN, AND M. S. DRESSELHAUS
(gm* 21/2). Therefore, the optimalZ1DT is roughly propor-
tional to e[(gm* 21/2) in a 1D transport system. The rela
tive values ofe for Bi nanowires oriented along the trigona
binary, and bisectrix directions are calculated to
1:0.69:0.19, respectively, which agrees quite well with
relative values of the calculated optimalZ1DT of 1:0.57:0.2
for 10 nm Bi nanowires in these three directions~see Table
VII !. It should be noted that, due to the transport effect
mass approximation Eq.~6!, instead of Eq.~4! or ~12!, which
was used in the square wire approximation, the previous
culation by Sunet al.gave rise to a higherZ1DT for bisectrix
Bi nanowires than for binary wires.15,24

For a comparison, the optimum acceptor concentra
Na(opt) and the correspondingZ1DT for p-type Bi nanowires
are calculated and listed in Table VIII for various wire d

TABLE VIII. The optimum carrier concentrationsNa(opt) ~in
1018 cm23) and the correspondingZ1DT of p-type Bi nanowires
calculated at 77 K for various wire diameters and crystalline ori
tations.

Wire 5 nm 10 nm 40 nm
Orientation Na(opt) Z1DT Na(opt) Z1DT Na(opt) Z1DT

Trigonal 0.96 6.36 12.9 0.72 6.2 0.17
Binary 0.79 1.78 10.3 0.16 7.9 0.05
Bisectrix 0.74 0.32 0.19 0.40 0.50 0.07

@101̄1# 1.04 1.16 0.43 0.19 0.63 0.05

@011̄2# 2.59 2.46 0.58 0.18 0.75 0.03
e
e

e

l-

n

ameters and orientations. Compared with the results in Ta
VII for n-type Bi nanowires, we note thatp-type Bi nano-
wires of the samedw , in general, have a much lowerZ1DT.
The asymmetric behavior betweenn-type and p-type Bi
nanowires is discussed in the following section.

C. Effect of T-point holes on the thermoelectric properties
of Bi nanowires

In Bi nanowires, due to the presence ofT-point holes that
dominate the transport phenomena forp-type Bi nanowires
in most situations, the transport properties exhibit an asy
metric behavior for n-type and p-type nanowires. The
T-point holes, which are also anisotropic, have a larger
effective mass component (;0.634m0) along the trigonal
direction, and smaller effective mass compone
(;0.059m0) for the binary and the bisectrix directions.5 The
different anisotropy of theT-point holes relative to the
L-point carriers further complicates the dependence of
thermoelectric properties on the wire orientation.

To reveal the effect of theT-point holes on the thermo
electric properties of Bi nanowires, we first presentZ1DT
results for trigonal Bi wires, in which the three electro
pockets at theL points become degenerate. The solid curv
in Fig. 8 show the calculatedZ1DT at 77 K as a function of
EF for 40 nm, 20 nm, 10 nm, and 5 nm trigonal Bi nan
wires, where the zero of energy refers to theL-point conduc-
tion band edge of bulk Bi. The highest subband edges of
T-point holes and of theL-point holes are denoted by«h(T)

(0)

and«h(L)
(0) , respectively, and the lowest subband edge of

-

l

-

t

,
of
s

es

d
,

FIG. 8. CalculatedZ1DT as a
function of the chemical potentia
~or Fermi energy! at 77 K for ~a!
40 nm,~b! 20 nm,~c! 10 nm, and
~d! 5 nm Bi nanowires oriented
along the trigonal direction. The
zero in energy refers to the con
duction band edge in bulk Bi.
«h(T)

(0) and«h(L)
(0) denote the highes

subband edge of theT-point holes
and L-point holes, respectively
and the lowest subband edge
the L-point electrons is labeled a
«e(L)

(0) . The solid curves are the
Z1DT calculated with both the
T-point holes andL-point holes
present, and the dashed curv
show theZ1DT when there are no
T-point holes. For 5 nm Bi
nanowires, the solid and dashe
curves coincide with each other
indicating that theT-point holes
have a negligible effect on the
transport properties.
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L-point electrons is labeled by«e(L)
(0) . The calculatedZ1DT

curves usually have two or more extremal values: the
tremalZ1DT with a higherEF corresponds to optimaln-type
nanowires, while the extremalZ1DT with a lowerEF belongs
to optimalp-type nanowires. The curves for 40 nm to 10 n
nanowires show an asymmetric behavior for thep-type wires
compared ton-type wires as expected@see Figs. 8~a!–~c!#,
although 5 nm Bi nanowires exhibit a symmetric behav
for n-type andp-type nanowires@see Fig. 8~d!#, as discussed
below. The calculatedZ1DT, assuming that there were n
T-point holes for the corresponding Bi nanowires, is a
sketched in Fig. 8 by the dashed curves, showing a symm
in Z1DT for the n-type andp-type counterparts due to th
symmetric band structures of theL-point electrons and the
L-point holes.

For 40 nm trigonal nanowires at 77 K,«h(T)
(0) is only about

15 meV below«e(L)
(0) . The optimized Fermi energy for 40 nm

n-type nanowires is located within the conduction band, a
is not far from the valence band edge«h(T)

(0) , compared to the
77 K thermal energykBT (;6 meV!. Therefore, the pres
ence of theT-point holes partly cancels the contribution
the electrons to the thermopowerS and the optimalZ1DT is
slightly reduced with respect to the dashed curve@see Fig.
8~a!#. We also note that although both theZ1DT of the
dashed and solid curves decrease asEF decreases from the
optimized value, the solid curve decays faster due to
increasing influence of theT-point holes. The adverse influ
ence of theT-point holes onZ1DT for n-type Bi nanowires
becomes less significant asdw decreases, so that theT-point
valence band is pushed further away from the conduc
band. As shown in Figs. 8~b!–~d!, the T-point holes have
essentially no effect onZ1DT for 5 nm to 20 nmn-type Bi
nanowires.

TheT-point holes play a more important role in determi
ing the behavior ofZ1DT of p-type Bi nanowires than for
their n-type counterparts. For Bi nanowires with diameters
40 nm to 10 nm, theT-point holes and theL-point holes,
respectively, mainly contribute to the twoZ1DT extrema@see
the solid curves in Figs. 8~a!–~c!# near the subband edge
«h(T)

(0) and «h(L)
(0) . For trigonal nanowires, theT-point holes

have a large effective mass component along the trans
direction, and therefore theT-point holes by themselves wil
give rise to a small value ofZ1DT and thus are undesirabl
for p-type thermoelectric applications. For example, for
nm Bi nanowires shown in Fig. 8~c!, theZ1DT variation with
EF.«h(T)

(0) arises essentially from theT-point holes only, and
the value of thisZ1DT extremum is merely;0.14, which is
much smaller than the optimal value of;2 for n-type trigo-
nal wires. In addition, even though theL-point holes are
favorable forp-type thermoelectric materials, just like th
L-point electrons, the presence of heavy-massT-point holes
reduces the overall thermoelectric performance significan
As shown in Figs. 8~a!–~c!, the values of the optimalZ1DT
with EF.«h(L)

(0) are only about 0.17, 0.35, and 0.7 for 40 n
20 nm, and 10 nmp-type nanowires, respectively, whic
would otherwise be;0.32, 0.74, and 2.0 if there were n
T-point holes.

For 5 nm Bi nanowires, however, the thermoelectric p
formance is essentially independent of the presence
T-point holes, as shown in Fig. 8~d! where the solid curve
-
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coincides with the dashed curve. The dramatically differ
behavior inZ1DT of 5 nm Bi nanowires relative to that of th
larger diameter wires is due to the subband crossing of«h(T)

(0)

and«h(L)
(0) in trigonal Bi nanowires of very smalldw . For Bi

nanowires oriented along the trigonal direction, theT-point
holes have the smallest effective mass compone
(;0.059m0) in the confined directions~the binary and the
bisectrix directions!, while the carriers in theL-point pockets
have one of the largest effective mass compone
(;0.11m0) in the confined directions. Since band shiftin
due to the quantum confinement effect is approximately p
portional to the inverse of the mass component in the c
fined directions,«h(T)

(0) will move downwards faster than«h(L)
(0)

asdw decreases. In addition, the nonparabolic band struc
also tends to reduce the band shifting of theT-point holes
because of the increasing effective masses away from
band edge. Therefore, at a certain wire diameter (<6 nm!,
«h(T)

(0) crosses«h(L)
(0) , and the highest valence subband

formed by theL-point holes. The suppression of theT-point
holes with respect to«h(L)

(0) results in nearly symmetric con
duction and valence bands, and the influence of theT-point
holes is therefore negligible for the range ofEF of greatest
interest@see Fig. 8~d!#.

Figure 9 shows the calculatedZ1DT as a function of ac-
ceptor dopant concentrationsNa at 77 K for p-type trigonal
Bi nanowires with differentdw , and the dashed curves sho
the results for the corresponding wires assuming noT-point
holes. The results for 5 nmp-type Bi nanowires are depicte
in the insert figure for clarity. We note that with the presen
of T-point holes in addition to theL-point holes, the dopan
concentrationsNa required for the optimalZ1DT for 10 nm
and 40 nm Bi nanowires are much higher than that for th
n-type counterparts~see Fig. 5!, and the optimizedNa are
;1.331019 cm23 and 6.231018 cm23 for 10 nm and 40 nm
nanowires, respectively.

For binary and bisectrix Bi nanowires, theT-point holes
have identical subband structures due to symmetry. In th
two wire orientations, theT-point holes have one of the
smallest effective mass components along the transpor
rection and the largest mass component lying in the confi

FIG. 9. CalculatedZ1DT for p-type Bi nanowires of different
diameters oriented along the trigonal axis at 77 K as a function
acceptor dopant concentrationNa . The dashed curves represent t
results assuming there are noT-point holes. The inset showsZ1DT
calculated as a function ofNa for 5 nm nanowires.
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plane. Since the thermoelectric performance for one band
roughly proportional to (m* )21/2, wherem* is the effective
mass along the transport direction, theT-point holes are
more favorable forp-type thermoelectric applications in the
binary and the bisectrix wires rather than for the trigon
wires, though still much inferior to theL-point carriers.

We also note that, unlike trigonal wires, the band crossi
between«h(T)

(0) and «h(L)
(0) is not observed for the binary and

bisectrix wires for wire diameters down to 5 nm.23 This is
due to the smaller band shifting for theT-point holes in
binary and bisectrix wires owing to the heavier effectiv
mass in the confined directions. Therefore, for 5 nm bina
and bisectrix wires, theT-point holes still play a crucial role
in determining the overallZ1DT in the p-type range.23 How-
ever, it should be pointed out that for binary wires, the ba
crossing of«h(L)

(0) and «h(T)
(0) is predicted for wire diameters

slightly below 5 nm, so thatn-type andp-type binary nano-
wires with ultrasmall wire diameters will have symmetri
performance. As for bisectrix wires, such a band crossing
very unlikely, because the very small effective mass comp
nent of theL-point pockets (;0.0023m0) in the confined
directions will move the band edge of theL-point holes
down much faster than that of theT-point holes.

In general, for Bi nanowires oriented in other direction
~binary, bisectrix, @101̄1#, and @011̄2# directions!, the
T-point holes exhibit a similar adverse effect on theZ1DT for
trigonal Bi nanowires discussed above,23 and a detailed study
on these wire orientations can be found in Ref. 23. It
interesting to point out that, since the band structure wou
become symmetric if there were noT-point holes, the opti-
mal Z1DT and the corresponding acceptor concentrati
Na(opt) for p-type Bi nanowires in this case can be referred
the values ofn-type Bi nanowires in Table VII, except for
large wire diameters (.40 nm! where the optimal perfor-
mance ofn-type Bi nanowires are affected by theT-point
holes. By comparing the results in Tables VII and VIII, w
note that a significant enhancement inZ1DT can be achieved
if the T-point holes can be removed or suppressed to
below theL-point holes. One possible approach to this is
introduce an appropriate amount of antimony~Sb! into Bi to
form Bi12xSbx alloys.16 It is observed that, for Sb concen
trations 0.075,x,0.18, theT-point holes will lie below the
L-point valence band edge in energy,37 and the superior
properties of theL-point holes can be utilized for practica
thermoelectric applications.

IV. CONCLUSIONS

In this paper, we presented a theoretical model for cyl
drical Bi nanowires, which considers explicitly the aniso
is

l

g

y

d

is
-

s
ld

n

e

-

tropic carrier pockets and the nonparabolic features of
L-point bands in Bi. A numerical solution is developed
describe the subband structure of Bi quantum wires. T
critical wire diameterdc for the semimetal-semiconducto
transition in Bi nanowires at 77 K is then calculated, whi
is found to be between 39 nm and 55 nm, depending on
crystal orientation of the wire axis. The comparison of ourdc

~or wire widths ac) and those predicted by two previou
approximation models shows that significant discrepanc
are caused by the anisotropic carrier pockets in Bi when
anisotropy is not properly taken into account. Because of
T-dependent band structure in bulk Bi,dc decreases with
increasingT.

The thermoelectric figure of meritZ1DT is investigated for
Bi nanowires, based on the semiclassical transport model
the band structure model, and the results show that sm
diameter Bi nanowires (dw<10 nm!, when properly doped
are potentially good thermoelectric materials withZ1DT.1.
The effect of theT-point holes on the thermoelectric perfo
mance has also been discussed, and it is found thatZ1DT can
be significantly enhanced, especially forp-type nanowires, if
theT-point holes are removed or suppressed, which can p
sibly be achieved by Sb doping.

In this paper, we have mainly focused on the theoreti
study. Recently, temperature-dependent resistance mea
ments have been reliably performed for as-prepared and
liberately doped Bi nanowire arrays of different diamete
The experimental results are consistent with the predicti
based on the theoretical model developed in this comm
cation. A detailed comparison is given in Ref. 11. Howev
the measurements of other transport properties of Bi nan
ires ~such as the Seebeck coefficient and the thermal con
tivity ! are more challenging, and so far, no experimentalZT
values for Bi nanowires systems are available to the auth
knowledge. Efforts are being made to improve the measu
ments of these quantities so that reproducible experime
results can be obtained and the experimentalZT values of Bi
nanowires can be determined.
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