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Hopf invariant for long-wavelength skyrmions in quantum Hall systems
for integer and fractional fillings

K. Sengupta and Victor M. Yakovenko
Department of Physics and Center for Superconductivity, University of Maryland, College Park, Maryland 20742-4111

~Received 28 February 2000!

We show that a Hopf term exists in the effective action of long-wavelength skyrmions in quantum Hall
systems for both odd integer and fractional filling factorsn51/(2s11), wheres is an integer. We evaluate the
prefactor of the Hopf term using the Green function method in the limit of strong external magnetic field using
a model of local interaction. The prefactor~N! of the Hopf term is found to be equal ton. The spin and charge
densities and hence the total spin and charge of the skyrmion are computed from the effective action. The total
spin is found to have a dominant contribution from the Berry term in the effective action and to increase with
the size of the skyrmion. The charge and the statistics of the skyrmion, on the other hand, are completely
determined by the prefactor of the Hopf term. Consequently, the skyrmions have chargene and are Fermions
~anyons! for odd integer~fractional! fillings. We also obtain the effective action of the skyrmions at finite
temperature. It is shown that at finite temperature, the value of the prefactor of the Hopf term depends on the
order in which the zero-momentum and zero-frequency limits are taken.
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I. INTRODUCTION

Two-dimensional~2D! electron gases are known to e
hibit a rich variety of interesting phenomena with variati
of particle density or magnetic field. The most strikin
among these phenomena are the integer and fractional q
tum Hall effects.1–5 Since these phenomena take place
very high-magnetic field, it may seem reasonable to th
that the presence of a Zeeman term in the Hamiltonian wo
preclude any dynamics for the spin degree of freedom. T
would have indeed been the case if the Landeg factor for the
electrons in the sample was close to the free-electron La
g factor. The lowest-lying excitations of the system wou
then be quasihole-quasiparticle pairs with opposite sp
However, as observed by Halperin,6 the Landeg factor for
electrons in Ga-As samples is much lower than the fr
electron Landeg factor. The Zeeman splitting for the elec
trons in these systems is, therefore, small compared to
the cyclotron energy and the typical Coulomb energy. A
result, the spin degrees of freedom become dynamica
spite of the presence of a strong external magnetic fi
Nevertheless, for certain filling fractions (n51,1/3), the
ground state of the system is ferromagnetic even in the l
of vanishing Zeeman energy because of the exchange i
action between the electrons. For these filling fractions,
lowest-lying excitations are topologically nontrivial sp
configurations called skyrmions.5,7,8 The spatial extent of
such configurations or skyrmions is determined by the re
tive strength of the Coulomb and Zeeman energies in
system. When the Zeeman energy is negligible compare
the Coulomb energy, the skyrmions have a large radius
are referred to as long-wavelength skyrmions. A small dev
tion from a ferromagnetic filling fraction creates such sk
mions with many electron spins reversed, which strongly
duces the spin polarization of the system. A clear signa
of such spin depolarization, suggesting skyrmionic spin c
figurations, has been observed experimentally at filling fac
PRB 620163-1829/2000/62~7!/4586~19!/$15.00
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n51.9,10 The experimental realization of skyrmions for fra
tional filling factors is much more difficult since it requires
very-low Lande g factor. Nevertheless, recently Leadle
et al.11 have observed signature of skyrmions atn51/3 by
reducing the Landeg factor of the sample by applying exte
nal pressure.

The spin configurations of the system can be charac
ized by a unit vector fieldd(x,y,t) that gives the direction of
the local spin. For long-wavelength skyrmions, the spa
time modulation of the spin configuration and hence thed
field is slow. Thus it is possible to derive a low-energy e
fective action for the skyrmions in terms ofd field gradients.
It is well known7,8,12that in quantum Hall ferromagnets, suc
a low-energy effective actionSFM would contain the Berry
and the usual gradient terms:

SFM5SBerry1SE, ~1a!

SBerry5
r0

2 E d2r dtB0 , ~1b!

SE52
k

2E d2r dt~“d!2, ~1c!

whereB0 is defined in Eq.~3!, r0 is the ground-state densit
andk is the spin stiffness constant. This is to be contras
with the effective action for antiferromagnetic system
which contains a term quadratic in the time derivative of t
unit vectord as shown by Wen and Zee13 and Haldane.14

If the ground state of the system does not have tim
reversal and parity invariance, the effective action may a
contain the Hopf term given by

SHopf5
N

32pE d2r dtemnlBmFnl , ~2!
4586 ©2000 The American Physical Society
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PRB 62 4587HOPF INVARIANT FOR LONG-WAVELENGTH . . .
whereemnl is the completely antisymmetric tensor, the pre
actor N is a topological invariant, andBm is an auxiliary
gauge field given by

Fmn5]mBn2]nBm5d•~]md3]nd!. ~3!

For antiferromagnetic systems, Wilczek and Zee have sh
that the topological invariantN determines the spin and th
statistics of the skyrmion.15 If N is an odd~even! integer, the
skyrmion is a Fermion~boson! with spin N/2. For fractional
N, the skyrmion is an anyon. However, as we shall see
Sec. V, the method of Ref. 15 leads to quite different co
clusions for the spin of the skyrmions in ferromagnetic s
tems due to the presence of the Berry term@Eq. ~1b!# in the
effective action. The charge and the statistics, on the o
hand, are still completely determined by the topological
variantN.

The presence of a Hopf term in the effective action
systems described by a unit vector fieldd is well known in
many different areas of condensed matter. It was initia
conjectured by Dzyaloshinskiiet al. that this term may exis
in the effective action of planar antiferromagnets.16 How-
ever, microscopic calculations showed that such a term
absent in the effective action of these systems becaus
symmetry requirements.13,14 There are, nonetheless, vario
other systems where symmetry requirements permit a n
zero topological term in the low-energy effective action.
few examples are He3-A films,17 lattice quantum Hall
systems,18 and quasi-one-dimensional organic conductor19

Recently, it has been suggested that the supercondu
phase in Sr2RuO4 has a spin-tripletp-wave pairing state with
broken parity and time-reversal symmetry similar to He3-A
films.20 Consequently, the corresponding low-ener
effective action of Sr2RuO4 is also expected to have a simila
topological term.21

Volovik and Yakovenko17,18 have derived an explicit ex
pression for the topological invariantN for a general class o
mean-field Fermionic models, with the electron Hamiltoni
of the form

Ĥ5Ĥ01s•d~r ,t !Ĥ1 , ~4!

wheres are the Pauli matrices acting on the spin indices
the electrons. This class includes the above mentio
systems.17–20 It was shown that the expression for the top
logical invariantN is

N52p TrS ]G0
21

]v
G0

]G0
21

]kx
G0

]G0
21

]ky
G0D , ~5!

where Tr denotes all integrations and matrix traces,kx ,ky
and v are the electron momenta and frequency, a
G0(kx ,ky ,v)5(v2Ĥ02szĤ11 ih Sgnv)21 is the unper-
turbed electron Green function. In principle, this treatm
should also hold for quantum Hall systems, since th
Hamiltonians can be cast into the same class of mean-
models~4!. However, sincekx and ky are no longer good
quantum numbers simultaneously in the presence of m
netic field, Eq.~5! cannot be directly applied to the prese
case. Nevertheless, if we compare the expression of the
pological invariantN to that of Hall conductivity in quantum
Hall systems,22
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sxy52p TrS ]G0

21

]v
G0

]G0
21

]fx
G0

]G0
21

]fy
G0D , ~6!

we find that expressions~5! and ~6! are similar except tha
the momenta (kx ,ky) are replaced by boundary phase para
eters (fx ,fy) and the integration over momenta are to
replaced by average over the boundary phases.23 In fact, as
we shall see,N is the same topological invariant that dete
mines the Hall conductivity in quantum Hall systems, a
properly modified, the formalism developed in Ref. 17 giv
exactly the same Eq.~6! for N.

Recently, there has been a lot of interest in finding
Hopf term in the effective action of long-wavelength sky
mions in quantum Hall systems atn51. Some of these
works24,25 use lowest Landau level~LLL ! projection tech-
nique to derive the Hopf term. However, it has been poin
out26 that the parameterization of the unit vectord in terms
of the Euler angles in Ref. 24 is questionable. This gave
to a subsequent controversy,27,28 which we aim to resolve.
Further, the validity of the LLL projection in the presen
context was also questioned by Iordanskii a
Plyasunov,29,30 who derived the prefactor of the Hopf term
by explicit term by term evaluation of the effective actio
starting from a mean-field Hamiltonian but without any LL
projection. A similar work, avoiding the LLL projection wa
later done by Ray.31 Although the end result for the prefacto
N is the same in all these works,24,25,29–31it is not quite clear
whether the result is an artifact of the simplicity of the mo
els or assumptions used. The aim of the present paper
point out the robustness of this result and to generalize it
fractional filling factorsn51/(2s11), where s is an integer
We also explicitly compute the spin and charge densities
the skyrmion, and hence its total spin and charge. It is sho
that the dominant contribution to the skyrmion spin com
from the Berry term in the action. The contribution to th
skyrmion spin from the Hopf term comes equally from t
bulk and the edge, but is small compared to the contribut
of the Berry term. This result coincides with the results o
tained by Baezet al. on a phenomenological basis.32 The
statistics of the skyrmion is also computed using the met
of Ref. 15 and is found to be determined by the prefactor
the Hopf term. Our result regarding the statistics corrob
rates the result obtained by Yang and Sondhi33 using a varia-
tional wave function for the skyrmion, but differs from tha
of Dziarmaga.34

The fate of the Hopf term at finite temperature is anoth
very interesting question. At zero temperature, it is poss
to carry out a derivative expansion of the polarization ten
and thus obtain an expression for the prefactor of the H
term in terms of the Green functions. However the situat
is much more tricky at finite temperature. It is we
known,35–38at least in the case of U~1! gauge fields~electro-
magnetic field!, that the polarization tensor becomes
nonanalytic function of frequency and momentum at fin
temperature and a derivative expansion cannot be carried
unambiguously. The zero-frequency zero-momentum li
(p0→0,p→0) depends on the order in which the limits a
taken. This order is generally chosen from physical cons
eration and depends on the system of interest. In particu
in quantum Hall systems, the prefactor of the Chern-Sim
term ~the equivalent of the Hopf term for Abelian gaug
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4588 PRB 62K. SENGUPTA AND VICTOR M. YAKOVENKO
fields! which determines the Hall conductivity depends
the order in which the zero-frequency and the ze
momentum limits are taken. In this paper, we use imagin
time Matsubara formalism to derive an effective action
skyrmions at finite temperature andn51. We show that,
analogous to the Chern-Simons term for the Abelian ga
fields, it is in general not possible to obtain a local Hopf te
in position space at finite temperature. Nevertheless, one
still obtain a rather simple effective action for skyrmions
momentum space. We evaluate the prefactor of the H
term in both the dynamic (p/po→0) and the static (po /p
→0) limit. In the static limit, the prefactor depends on tem
perature, while in the dynamic limit, it is independent
temperature and has the same value as at zero tempera

The organization of the paper is as follows. In Sec. II,
derive the effective action at zero temperature and obtain
expression for the prefactorN in terms of the Green func
tions. In Sec. III, the value of this prefactor is evaluated.
Sec. IV, we derive expressions for spin and charge dens
and obtain the total spin and charge of the skyrmion. T
statistics of the skyrmion is obtained in Sec. V. These res
are generalized for fractional fillings in Sec. VI. In Sec. V
we derive the effective action at finite temperature and ob
the prefactor of the Hopf term for both the static and t
dynamic limits. This is followed by conclusion in Sec. VII
Some details of the calculations are sketched in Append
A–C.

II. EXPRESSION FOR N AT nÄ1

In this section, we derive the effective action at zero te
perature and from there obtain an expression for the pre
tor N in terms of the Green functions of the system atn
51. Throughout the rest of the paper, natural units\5c
51 are used. The convention of subscripts and supersc
are as follows. The Greek letters are used to denote sp
time indices and these can take values~0,1,2! where 0 de-
notes time component and 1 and 2 denote the two sp
directions. The lettersi, j, andk are used for the indices o
the Pauli matricess i and take values~1,2,3!. The lettersa, b,
andc denote either space indices 1 and 2 or spinor indice↑
and↓. All repeated indices are summed over unless exp
itly stated otherwise. We also use the following convent
for vectors and operators whenever needed. All contravar
vectors are taken asXm5(X0,X) and all operators as]m

5(]0,2,). The covariant counterparts of the contravaria
vectors and operators are obtained by applying the me
tensorgmn5gmn 5 diag~1,-1,-1!.39

The action for the system with a model local interacti
V(r12r2)5g0d(r12r2)40 can be written using Hartree
Fock approximation as29,30

S@c†,c#5E d2r dtca
†~r ,t !~ i ]0I 2H1eFI !abcb~r ,t !,

~7!

where the Fermionic fieldc is a two component spinor,I is
the 232 unit matrix,eF is the Fermi energy, andH is the
mean-field Hamiltonian density of the system given by
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@ p̂2eA~r !#2

2m
I 2g0d~r ,t !•s. ~8!

HereA is the vector potential corresponding to the exter
magnetic fieldH0 , d is the unit vector field that gives th
direction of local spin,s are the Pauli matrices,g0;e2/ l B is
the typical Coulomb energy of the system, andl B5A1/eH0
is the magnetic length. In this treatment we shall negl
Zeeman energy (Ez) and also assume that the characteris
cyclotron energy is much greater than all other energy sc
in the problem, i.e., we consider the regimevc@g0@Ez .
This is the relevant regime for long-waveleng
skyrmions.24,29

To calculate the topological term in the action, it is co
venient to introduce the 232 local unitary SU~2! rotation
matrixU(r ,t), that corresponds to the local rotation ofd(r ,t)
from the homogeneous fieldd5ez

U~r ,t !szU
21~r ,t !5s•d~r ,t !. ~9!

After the unitary transformation of the Fermi fieldsx(r ,t)
5U21(r ,t)c(r ,t), the action becomes

S@x†,x,Qm
int#5E d2rdtxa

†~r ,t !S i ]0I 2Q0
int~r ,t !

2
$@ p̂2eA~r !#I 2Qint~r ,t !%2

2m

1g0sz1eFI D
ab

xb~r ,t !. ~10!

The new spinor fieldsx(r ,t) have their spin quantization
axis alongez , andQm

int (m50,1,2) are the SU~2! gauge fields
given by

Qm
int52 iU 21~]mU !5

1

2
s•Vm

int5
1

2
s iVm

i int . ~11!

The fieldsVm
int are pure gauge fields satisfying the relatio

f mn
int 5]mVn

int2]nVm
int2Vm

int3Vn
int50. ~12!

Further, the rotation matrixU satisfies the relation17

i ~]mU !U215
1

2
s•~2Bmd1d3]md!, ~13!

where Bm5Vm
3int is the auxiliary gauge field introduced i

Eq. ~3!. The Hopf term can be expressed in terms of the
auxiliary gauge fieldsBm ~2! or equivalently in terms of the
gauge fieldsVm

int as

SHopf5
N

96p
E d2r dtemnlVm

int
•~Vn

int3Vl
int!. ~14!

The effective action for theQint fields can now be obtained
by integrating out the spinor fields. For a slowly varyingd
field configuration, theQint fields are small, and it is possibl
to carry out a gradient expansion of the effective act
Seff@Qint# in the powers ofQint and its derivatives. It is clea
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from Eqs.~12! and ~14! that the Hopf term originates from
the (Qint)3 andQint]Qint terms in the expansion of the effec
tive actionSeff@Qint#.

To calculate the effective action, we first divide the acti
into two partsS5S01S1, whereS0 andS1 are given by

S05E d2r dt x†~r ,t !

3S @ i ]01eF#I 2
@ p̂2eA~r !#2

2m
I 1g0szD x~r ,t !,

S152E d2r dt x†~r ,t !
1

2
~PmQm

int~r ,t !

1Qm
int~r ,t !Pm!x~r ,t !, ~15!

wherePa5@pa2eAa(r )#I /m and P05I . The effective ac-
tion Seff@Qint# is then given by

eiSeff[Q
int]5

E Dx†Dxei (S01S1)

E Dx†DxeiS0

5^eiS1&S0
. ~16!

At this stage, we introduce a unitary transformation on
field variables of the form

x~r ,t !→eifxx/Lxeifyy/Lyx~r ,t !, ~17!

wherefx andfy are constant parameters andLx andLy are
the dimensions of the system. Transformation~17! changes
the boundary conditions on the single-particle wave fu
tions. We shall discuss its physical meaning in more deta
the next section. At this point, we may consider it to be
mathematical trick used to facilitate computations. With t
transformation, the action can be written as

S05E d2r
dv

2p
x†~r ,v!

3S @v1eF#I 2
@ p̂2eA~r !1a#2

2m
I 1g0szD x~r ,v!,

S152E d2r
dvdp0

~2p!2
x†~r ,v1p0!

3S 1

2 FQm
int~r ,po!,

]G0
21

]am
G

1
D x~r ,v!, ~18!

where @ . . . #1 means anticommutator, am

5(v,fx /Lx ,fy /Ly), andG0 is the unperturbed Green func
tion. Here we have omitted the quadratic term inQa in S1. It
is easy to see that this term does not contribute to the H
term in the effective action. The advantage of introducing
parametersfx and fy also becomes clear from the expre
sion of S1. The operatorsPx and Py can now be conve-
niently expressed as the derivatives ofG0

21 with respect to
fx and fy . These parameters therefore take the place
momentakx and ky , which are no longer good quantum
numbers in a magnetic field.
e

-
n

s

pf
e

of

The unperturbed Green functionG0 is diagonal in the spin
space. It is given by

G05S G0
1 0

0 G0
2D , ~19!

whereG0
6 satisfies the following equations

S v1eF2
@ p̂2eA~r1!1a#2

2m
6g0DG0

6~r 1 ,r 2 ,v!

5d2~r 12r 2!. ~20!

The perturbation expansion is now straightforward. T
diagrams for the relevant terms in the effective action
shown in Fig. 1. The first term is the familiar polarizatio
bubble and is given by

S25
1

2E d2pdp0

~2p!3
@Vm

i int~p,p0!Pi j
mn~p,p0!Vn

j int~2p,2p0!#,

~21!

where the tensorPi j
mn is given by

Pi j
mn~p,p0!5

i

4LxLy
TrS E d2r 1 d2r 2

dv

2p

1

2

3Fs ie
ip•r1,S ]G0

21

]am
D

r1

G
1

G0~r 1 ,r 2 ,v!
1

2

3Fs je
2 ip•r2,S ]G0

21

]an
D

r2

G
1

G0~r 2 ,r 1 ,v1p0!D .

~22!

It is clear from the structure ofS2 that to get the relevan
terms of the formQint]Qint, we need to expandPi j

mn to first
order in external momenta (p,p0). This expansion is carried
out in Appendix A. The result is

S25
1

2
bi j

mnlE d2rdtVn
j int~r ,t !]lVm

i int~r ,t !,

bi j
mnl5

1

4LxLy
TrS s i

]G0
21

]am
G0s j

]G0
21

]an
G0

]G0
21

]al
G0D .

~23!

FIG. 1. Polarization bubble and triangular diagram. The wa
lines represent the gauge fieldsQm , the solid lines represent th
Green functionG0, and the dots represent the vertices]G0

21/]am .
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The other contribution to the Hopf term comes from t
triangular diagram shown in Fig. 1. This diagram involv
three Q fields. As Vm

int are pure gauge fields satisfyin
Eq. ~12!, a term withVm

int
•(Vn

int3Vl
int) is of the same orde

as aVm
int(]lVn

int) term. The contribution of these terms com
from the triangular diagram that is given by
th

o

on

it
e
-

d
on
S35
1

6E d2pd2q dp0 dq0

~2p!6
Ti jk

mnl~p,q,p0 ,q0!

3Vm
i int~p,p0!Vn

j int~q,q0!Vl
k int~2p2q,2p02q0!,

~24!
where
Ti jk
mnl~p,q,p0 ,q0!5

i

4LxLy
TrS E d2r 1 d2r 2 d2r 3

dv

2p

1

2Fs ie
ip•r1,S ]G0

21

]am
D

r1

G
1

G0~r 1 ,r 2 ,v!
1

2

3Fs je
iq•r2,S ]G0

21

]an
D

r2

G
1

G0~r 2 ,r 3 ,v1p01qo!
1

2Fske
2 i (p1q)•r3,S ]G0

21

]al
D

r3

G
1

G0~r 3 ,r 1 ,v1p0!D . ~25!
ons
of

bra
rite

r

For the relevant order, here we need to consider
zeroth-order term in the expansion ofTi jk

mnl in powers of
external momenta. This can be done following the meth
outlined in Appendix A, and one gets

S35
1

6
ci jk

mnlE d2r dtVm
i int~r ,t !Vn

j int~r ,t !Vl
k int~r ,t !,

ci jk
mnl5

i

4LxLy
TrS s i

]G0
21

]am
G0s j

]G0
21

]an
G0sk

]G0
21

]al
G0D .

~26!

Having obtained the relevant terms in the effective acti
we now evaluateci jk

mnl andbi j
mnl . Let us first considerbi j

mnl .
We first note thatG0 is diagonal in the spinor space, since
contains I ands3. Further, it is shown in Appendix B that th
coefficientsbi j

mnl satisfybi j
mnl52bi j

nml . From these proper
ties it follows that all the terms withbi j

mnl ~23! for iÞ j either
vanishes because of trace operation in spin indices or lea
total derivatives that can be neglected. Hence there are
three nonzero terms inbi j

mnl . These are

bj
mnl5

1

4LxLy
TrS s j

]G0
21

]am
G0~g0!s j

] G0
21

]an

3G0~g0!
]G0

21

]al
G0~g0! D , ~27!

where j takes values from 1 to 3, andG0(g0) shows the
dependence ofG0 on the parameterg0. Using properties of
s matrices, we get

s1(2)G0~g0!5G0~2g0!s1(2) ,

s3G0~g0!5G0~g0!s3 . ~28!

Using these relations, it is now easy to eliminate thes ma-
trices from the expression ofbj

mnl . The result is
e

d

,

to
ly

b1(2)
mnl5

1

4LxLy
TrS ]G0

21

]am
G0~2g0!

]G0
21

]an

3G0~g0!
]G0

21

]al
G0~g0! D , ~29!

b3
mnl5

1

4LxLy
TrS ]G0

21

]am
G0~g0!

]G0
21

]an

3G0~g0!
]G0

21

]al
G0~g0! D . ~30!

The contribution to the Hopf term fromS2 can therefore be
written as

S25
1

2E d2r dt$b1
mnl@Vn

1 int~r ,t !]lVm
1 int~r ,t !

1Vn
2 int~r ,t !]lVm

2 int~r ,t !#

1b3
mnlVn

3 int~r ,t !]lVm
3 int~r ,t !%. ~31!

Next, let us considerci jk
mnl given by Eq.~26!. Here we

notice that only those terms that have all (i jk ) different pro-
duce nonzero contributions toS3. The other terms, as
sketched in Appendix B, vanish either under trace operati
in spin indices or under exchange of space-time indices
ci jk

mnl . So there are six nonvanishing terms and a little alge
shows that their contributions are equal. Thus one may w

S35c123
mnlE d2r dtVm

1 int~r ,t !Vn
2 int~r ,t !Vl

3 int~r ,t !,

c123
mnl5

i

4LxLy
Tr S s1

]G0
21

]am
G0~g0!s2

]G0
21

]an

3G0~g0!s3

]G0
21

]al
G0~g0! D . ~32!

Using the relations1s25 is3 and the cyclic property unde
trace operation, one can now eliminate thes matrices to get
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c123
mnl52

1

4LxLy
TrS ]G0

21

]am
G0~2g0!

3
]G0

21

]an
G0~g0!

]G0
21

]al
G0~g0! D

52b1
mnl , ~33!

S352b1
mnlE d2r dtVm

1int~r ,t !Vn
2 int~r ,t !Vl

3 int~r ,t !.

~34!

After some algebra, which is sketched in Appendix B,
find that S3 ~34! exactly cancels the first two terms ofS2
~31!. It is shown in Appendix B that this cancelation is in
dependent of the explicit expressions of the coefficientsb1(2)

mnl

and c123
mnl . Also, it is easy to see that the tensorb3

mnl is
completely antisymmetric in space-time indices (mnl). As a
result, we are left with

SHopf5S21S3

5
1

2
b3

mnlE d2r dtVm
1 int~r ,t !Vn

2 int~r ,t !Vl
3 int~r ,t !.

~35!

Comparing Eqs.~14! and ~35! and using Eq.~30! for b3
mnl ,

we find an expression for the prefactorN of the Hopf term:

N5
4p

3
emnlb3

mnl52p TrS ]G0
21

]v
G0

]G0
21

]fx
G0

]G0
21

]fy
G0D ,

~36!

where we have substituted the expression forb3
mnl ~30! to

obtain the last expression.
It is worthwhile to point out that the formal derivation o

the Hopf term in Sec. II, Eq.~36! does not depend cruciall
on the model chosen. This is manifested in the fact that n
of the cancellations of the various terms in the effective
tion depend on explicit expression of the unperturbed Gr
function, or equivalently on actual values ofbmnl. The sym-
metry properties ofbmnl required for these cancellation
are quite general, and so the result holds for any mode
type ~4!.

III. EVALUATION OF N

The expression for the prefactor of the Hopf termN ~36!
is essentially the same as the expression for the Hall con
tivity ~6!. Thus we follow the work of Niuet al.22 to evaluate
N.

We notice that since the unperturbed Green functionG0 is
diagonal in spin indices, Eq.~36! can be written as
e
-
n

of

c-

N52p (
a56

TrS ]G0
a21

]v
G0

a
]G0

a21

]fx
G0

a
]G0

a21

]fy
G0

aD .

~37!

The expressions for the unperturbed Green functionsG0
6 can

be obtained in terms of the single-particle eigenfunctionsun&
and eigenenergiesen

6 as

G0
65(

n
un&^nuS u~en

62eF!

v2~en
62eF!1 ih

1
u~eF2en

6!

v2~en
62eF!2 ih

D ,

~38!

whereeF is the Fermi energy. These single-particle eige
functions and eigenvalues satisfy

S (
a

@ p̂a1fa /La2eAa~r !#2

2m
7g0D un&5en

6un&, ~39!

wherea can take values x and y. Substituting this form of t
Green function in the expression forN, we get

N52p i (
a56

(
n,l

S ]G0
a21

]fx
D

nl

S ]G0
a21

]fy
D

ln

3E dv

2p i S u~en
a2eF!

v2~en
a2eF!1 ih

1
u~eF2en

a!

v2~en
a2eF!2 ih

D
3S u~e l

a2eF!

v2~e l
a2eF!1 ih

1
u~eF2e l

a!

v2~e l
a2eF!2 ih

D
3S u~en

a2eF!

v2~en
a2eF!1 ih

1
u~eF2en

a!

v2~en
a2eF!2 ih

D . ~40!

The frequency integral can now be evaluated in a straig
forward manner. Since at zero temperature onlye0

1 lie below
the Fermi energy, only thea51 term in the sum contrib-
utes. Further, it is important to notice that the only survivi
terms in the frequency integral are the ones whereen

1 ande l
1

lie on the opposite sides of the Fermi energyeF , i.e., the
poles of the integrand lie on different halves of the comp
v plane. Also, Eq.~40! contains matrix elements of the mo
mentum operatorPa5]G0

21/]aa .29 These matrix elements
connect different Landau levels, and vanish between
states of the same Landau level. This clearly points out th
is necessary to retain the wave functions for all Landau l
els in the calculation. The use of the LLL-projected wa
functions in this case would yield an erroneous zero va
for N.29,30

After evaluating the frequency integral, the expression
the integerN becomes
N52p i (
n

en
1

,eF

(
l

e l
1

.eF

F S ]G0
121

]fx
D

nl

S ]G0
121

]fy
D

ln

2S ]G0
121

]fx
D

ln

S ]G0
121

]fy
D

nl
G

~en
12e l

1!2
. ~41!
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Using the relations

S ]G0
121

]fx(y)
D

nl

52~en
12e l

1!K nU ] l

]fx(y)
L , ~42!

this can be further simplified to

N52p i (
n

en
1

,eF

S K ]n

]fx
U ]n

]fy
L 2 K ]n

]fy
U ]n

]fx
L D , ~43!

where uF0&5)nun& is the unperturbed many-body groun
state of the system.

So far, the derivatives in the expression ofN are formal,
and it is not clear whyN has to be an invariant. To see th
point more clearly, we now consider the physical meaning
the parametersfx andfy . The ground state of the system
this case is a Slater determinant of the single-particle sta
which are solutions to Eq.~39!. These states are construct
by Niu et al. in a slightly different context,22 and are given
by

cn~x,y!5e2 ifxx/Lxe2 ifyy/LyWn~x,y!,

Wn~x,y!5 (
m52`

`

eiLnbml B
2
eibmyu0~x2bml B

2 !, ~44!

whereLn5(2pn1fx)/Lx , bm5(2pm1fy)/Ly , andu0 is
the ground-state wave function for a harmonic oscillat
From this, it is easy to check thatcn is the solution to the
Hamiltonian H with eigenvaluese0

1 . Furthermore,Wn(x,y)
also satisfies the boundary conditions

Wn~x1Lx ,y!5eifxeiyLx / l B
2
Wn~x,y!,

Wn~x,y1Ly!5eifyWn~x,y!, ~45!

whereLx ,Ly are the dimensions of the system.
From these relations, it is clear that we can interpretfx

andfy as the boundary phase parameters of the system
the variation of these parameters means the variation of
boundary conditions for the ground-state wave function. F
lowing Niu et al.,22 we now argue that the value of the in
variant N is independent of the boundary condition chos
so that we can replace this expression by its average ove
possible boundary conditions. This allows us to write

N5
1

2p i E0

2p

dfxE
0

2p

dfyS K ]F0

]fy
U]F0

]fx
L 2 K ]F0

]fx
U]F0

]fy
L D .

~46!

It is easy to see from the condition~45! on the single-particle
wave functions that (2p,2p) and~0,0! are same point in the
f space. As a result, we can interpretN as a surface integra
over a closed surface in the parameter space, which ca
expressed as a line integral. This line integral is

N5
1

2p i R dfW •^F0u“fW F0&. ~47!

Sincefx and fy are parameters in the Hamiltonian, th
line integral in Eq.~47! can be interpreted as the Berry
phase41 picked up by the ground-state wave function as
f

s,

.

o,
he
l-

,
all

be

t

moves around a closed contour in the parameter space.
since in this case, the ground state is separated by a fi
energy gap from the excited states and is nondegenerate
many-body ground-state wave function must return to its
after traversing the contour. So, the value of the line integ
must be 2p i times an integer, which immediately tells u
that N must be an integer. The value of this integer can
explicitly evaluated by constructing the ground-state wa
function as a Slater determinant of the single-particle sta
~44! and by choosing a rectangular contour in the param
space. The calculation is straightforward22,42and forn51, it
yields the valueN51.

From the above discussion, it is clear that the above re
is not an artifact of the simple model chosen to describe
system. The properties of the many-body ground state
we used to argue thatN should be an integer are the presen
of a finite gap between the ground state and the other exc
states, and the nondegeneracy of the ground-state wave
tion. As long as these conditions are satisfied, the value
invariant N, which cannot be a continuous function of th
model parameters, must have the same value as that obta
from the calculation based on this simple model. It can the
fore be argued that this result is robust against the prese
of weak disorder (vct@1) in the system, which broaden
the Landau levels to bands but do not lead to the mixing
different Landau levels. A more mathematically rigorous ju
tification of this issue is given by Niuet al.22 and Ishikawa
et al.43 in the context of Hall conductivity in quantum Ha
systems.

IV. SPIN, CHARGE, AND GAUGE INVARIANCE

In this section, we compute the spin and charge dens
for the skyrmion, as well as its total charge and spin. To
this, for reasons that will become clear later, we first consi
the gauge invariance of our effective action. We have m
tioned before that theB fields introduced in Eq.~3! are aux-
iliary gauge fields. The gauge transformation here cor
sponds to an arbitrary space-time-dependent rotation of
spin-quantization reference frame about the locald axis,
since such a rotation does not change the physical state o
system. It can be easily seen that under such a transforma
UL5ei /2(s•d)L(x,y,t), the auxiliary fieldBm transform as

Bm→Bm1]mL. ~48!

The action~2!, however, is not invariant under this tran
formation. It acquires an additional surface term

dS52
N

16p R dla dt~Ba]0L2B0]aL!, ~49!

wheredla is the length element along the edge, andr de-
notes integration along the edge. From now on, we s
assume a rectangular boundary for simplicity.

Such a noninvariance of the bulk action under gau
transformation is well known for both Abelian and no
Abelian gauge theories with Chern-Simons term in nonco
pact space.44 The most well-known example for the Abelia
case is the effective action for integer and fractional quant
Hall states:Seff5(sxy/4)*d2rdtemnlAm

emFnl
em. This nonin-

variance is merely a statement that in a space with bound
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the bulk effective action is not the complete action for t
problem, and we must add the edge actionSedge, so that the
total actionStotal5Sbulk1Sedge is gauge invariant. In case o
quantum Hall states, such a consideration leads to gap
edge excitations.45 As we shall see, in our case, consideri
the edge action is absolutely crucial for determining the c
rect value of the contribution of the Hopf term to the to
spin of the skyrmion.

The 111D edge effective action that we need to co
struct, must transform under the gauge transformation~48! in
such a manner so as to cancel the gauge noninvariant ter
the bulk action:

dSedge5
N

16p R dla dt~Ba]0L2B0]aL!. ~50!

The simplest edge action that achieves this can be writte
terms of a boson field h representing the edg
excitations.32,44

Sedge5 R dla dt@~Dth!22k~Dah!2#

1
N

16p R dla dt~Ba]0h2B0]ah!. ~51!

In Eq. ~51!, Dm is the covariant derivative defined asDm
5(]m2Bm), k is a real parameter, and the boson fieldh
transforms under the gauge transformation~48! as h→h
1L. It is easy to check that under these conditions the fi
term of the edge action is invariant under gauge transfor
tion, while the second term produces the correct extra t
dSedge, which cancels gauge contribution of the bulk actio
so that the total actionStotal remains gauge invariant.

Next, we proceed to compute the spin density of the sk
mion. The easiest way to do this is to consider the respo
of the system to arbitrary rotation by an infinitesimal so
angleu(r ,t). The action after such a rotation can be writt
as

S@c,c†,d,Qm#

5E d2r dtca
†~r ,t !S @ i ]01eF#I 2Q0

2
$@ p̂2eA~r !#I 2Q~r ,t !%2

2m
1g0s•dD

ab

cb~r ,t !,

~52!

where Qm52 iU 21(]mU)5s•]mu(r ,t)/2 and U

5ei /2s̄• ū( r̄,t). So, a variation of the effective action with re
spect to]0u(r ,t) gives the spinJ of the skyrmion:

J5E d2r dt
dSeff

d@]0u~r ,t !#
. ~53!

To compute the effective action, we again rotate the
homogeneousd field to a homogeneous configuration (d
5ez) and proceed in the same manner as the previous
tion. The difference is that now the internal gauge fieldQm

int

is replaced by the total gauge fieldQm
total5Qm

int1U21Qm
u U.

The details of the computations are essentially the same
ss

r-
l

-

of

in

st
a-
m
,

r-
se

-

c-

in

the previous section, especially the cancellation of the diff
ent terms are exactly the same since the field tensorf mn ~3!
corresponding toQm

total is zero. After some algebra, it can b
seen that the form of both the edge and the bulk effec
actions remain the same, with the auxiliary fieldsBm and the
scalar fieldh replaced by

Bm→Bm1d•]mu,

Fmn→Fmn1]md•]nu2]nd•]mu,

h→h1d~`!•u, ~54!

whered(`)5ez is the constant unit vector at the edge. T
total actionStotal now is the sum of the bulk and the edg
actions. There are two terms contributing to the spin of
skyrmion in the bulk. The first term is linear inB fields and
has the same origin as the Berry term in Eq.~1b!, while the
second term is the Hopf term. The relevant part of the eff
tive action is

Sbulk5
r0

2 E d2r dt~B01d•]0u!1
N

32pE d2r dt emnl

3~Bm1d•]mu!~Fnl12]nd•]lu!,

Sedge5
N

16p R dla dt$@]0h1d~`!•]0u#@Ba1d~`!•]au#

2@]ah1d~`!•]au#@B01d~`!•]0u#%. ~55!

The variation of Eq.~55! with respect to]0u(r ,t) gives the
spin of the skyrmion relative to the ferromagnetic grou
state:

J5JBerry1JHopf1Jedge, ~56a!

JBerry5
r0

2 E d2r ~d2ez!, ~56b!

JHopf5
N

16pE d2r eab0@]ad3]bd1]a~dBb!#, ~56c!

Jedge5
Nd~`!

16p R dla eab0Bb . ~56d!

The first term in Eq.~56a! comes from the Berry term in the
action ~55!, while the second and the third terms are con
butions to the skyrmion spin from the Hopf and the ed
terms. We first analyze the latter contribution. The first te
in the integrand ofJHopf ~56c! is the contribution to the loca
spin density of the skyrmion from the Hopf term and is giv
by j0(r ,t)5(N/16p)eab0]ad3]bd. This local spin density is
directed along the locald vector and is a total derivative, s
it produces no net contribution to the total spin of the sk
mion. The net contribution of the Hopf term to the total sp
therefore comes from the second term inJHopf and fromJedge

~56d!. Using the expression for the topological chargeQtop
5(1/4p)*d2r d•(]xd3]yd) and Eq.~3!, it is easy to see
that each of these terms contribute equally to the total sk
mion spin. The total contribution to the skyrmion spin fro
the Hopf term is thereforeNd(`)Qtop/2. It is directed along
d(`)5ez and for a skyrmion with unit topological charg
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Qtop51 has the magnitude of 1/2 atn51. Since the last term
in the expression of the spin density comes fromSedge, we
see that it is crucial to include the edge action in the cal
lation of the contribution of the Hopf term to the total spi
Omitting the edge action would give only half of the actu
result.

Next, we consider the contribution to the skyrmion sp
from the Berry term~56b!. This contribution is clearly pro-
portional to the number of flipped spin in the skyrmion
state, and increases with the size of the skyrmion.12 So in the
case of a long-wavelength skyrmion, the Berry term p
duces dominant contribution to the skyrmion spin. The ex
value of this contribution, unlike the contribution due to t
Hopf term, is not a universal number, but depends on
details of the field configuration. So we conclude that
spin of the skyrmion in quantum Hall ferromagnets, as m
sured as a response to an external field, is not quantize
integral or fractional multiples of 1/2. This is in contrast
the case of skyrmions in antiferromagnetic systems, wh
have a universal value of the spin completely determined
the coefficient of the Hopf term.

Finally, we compute the charge density and the to
charge of the skyrmion. To do this, we compute the respo
of the system to an external electromagnetic potentialAm

em.
The action, in presence of an external electromagnetic po
tial, can be written as

S@c,c†,d,Am
em#

5E d2r dt ca
†~r ,t !S @ i ]02eA0

em~r ,t !1eF#I

2
@ p̂2eA~r !2eAem~r ,t !#2

2m
I 1g0s•dD

ab

cb~r ,t !,

~57!

and the charge densityr of the skyrmion can be obtained b
varying the effective action, with respect toA0

em.
To calculate the effective action, we follow the procedu

of Sec. II noting thatAm
em is a U~1! gauge field added to th

SU~2! gauge fieldQm
int . Taking into account that the unpe

turbed Green functionG0 is diagonal in spin space, we fin
that any term inS2 of the formAm

em]nVl
1(2)int vanishes due to

the trace operation in spin indices. Similarly, it can be sho
that all terms involving the product ofAm

em and V int in S3

also vanishes. So the cancellation of the terms inS2 andS3
follows exactly in the same way as in Sec. II, and finally w
are left with the effective action

Seff@Bm ,Am
em#5

N

32pE d2r dt emnlBmFnl

1
N1e

8p E d2r dt emnlBmFnl
em

1
Ne2

8p E d2r dt emnlAm
emFnl

em, ~58!

where the coefficientN1 is given by
-

l

-
ct

e
e
-
to

h
y

l
se

n-

n

N152p TrS s3

]G0
21

]v
G0

]G0
21

]fx
G0

]G0
21

]fy
G0D . ~59!

Since the unperturbed ground state is completely spin po
ized, it can be easily seen thatN15N. The variation with
respect toA0

em now gives the charge densityr

r~r ,t !5S dSeff

dA0
emD

A
m
em50

5
Ne

4p
d•~]xd3]yd!. ~60!

The electric charge density~60! is found to be proportiona
to the topological charge density. The space integral of
charge density gives the total charge of the skyrmion, giv
by

Qem5
Ne

4pE d2r d•~]xd3]yd!5NeQtop. ~61!

For n51, the skyrmion withQtop51 therefore carries a
chargee. For fractional filling, as we shall see in Sec. VI, th
prefactorN has fractional value leading to fractional char
for the skyrmion.

V. STATISTICS

In this section, we outline the argument of Wilczek a
Zee15 to obtain spin, charge, and statistics of skyrmions
quantum Hall ferromagnets. For this purpose, let us re
that the effective action of a skyrmion in quantum Hall fe
romagnets is given by Eqs.~1a! and ~2!. First, we compute
the z component of the spin of the skyrmion. For this pu
pose, we introduce an adiabatic time evolution that cor
sponds to a rotation of thed field in the XY plane about the
center of the skyrmion, such that the wave function return
itself after timeT. The phase acquired by the skyrmion wa
function c in the process is

c~r ,T!5ei *0
T dt*d2r (LBerry1LE1LHopf)c~r ,0!, ~62!

where LBerry5r0B0/2, LE52k2(“d)2, and LHopf
5N/32pemnlBmFnl are the Lagrangians corresponding
SFM ~1a! and SHopf ~2!. But such a time evolution also cor
responds to rotation of the skyrmion spin by 2p around the z
axis in the spin space.15,46 So the phase picked up by th
wave function in this process must be exp(2piJz), whereJz is
the z component of the skyrmion spin. SoJz must be given
by

Jz5
1

2pE0

T

dtE d2r ~LBerry1LE1LHopf!. ~63!

To compute the phase picked up by the skyrmion wave fu
tion, we now make a specific choice for thed field
configuration:46

d~r ,t !5cos@g~ ur u!#ez1sin@g~ ur u!#$cos@f1f0~ t !#er

1sin@f1f0~ t !#ef%, ~64!

wheref is the azimuthal angle, cos@g(ur u)#5(r 22L2)/(r 2

1L2), L is a parameter depending on the skyrmion radi
and f(t) is chosen to be 2pt/T to ensure that thed field
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configuration returns to itself after a time T. With this choi
of d field configuration,Qtop51 and the fieldsBm can be
represented as

Bm5$11cos@g~ ur u!#%]m~f1f0~ t !!. ~65!

Using Eqs.~62! and ~65!, it can be seen that the phas
picked up by the skyrmion has three distinct contributio
The contribution from the second termLE gives the usual
factor exp(iET), whereE is the skyrmion energy. The othe
two contributions to the phase comes fromLBerry, andLHopf ,
which are given by

uBerry
s 52p

r0

2 E d2r $11cos@g~ ur u!#%,

uHopf
s 52p

N

8pE d2r $11cos@g~ ur u!#%Fxy~r !, ~66!

whereFxy(r )5“3B(r ). From Eqs.~62!, ~63!, and~66!, we
get the expression for thez component of the spin of the
skyrmion, over and above the ferromagnetic background
be

Jz5
r0

2 E d2r $cos@g~ ur u!#21%

1
N

8pE d2r $11cos@g~ ur u!#%Fxy~r !. ~67!

The first term in the expression for the spin, represents
contribution of the Berry term to the skyrmion spin and
contribution can be seen to be same as Eq.~56b!. The second
term comes from the Hopf term in the action. The contrib
tion of the second term can be directly evaluated by comp
ing Fxy using the expression ofBm in Eq. ~65!. After some
algebra, one obtains this contribution to beN/2 and so the
spin is given by

Jz5
r0

2 E d2r @~d2ez!•ez#1
N

2
, ~68!

which agrees to the expression of the spin obtained in the
section. It is to be noted that the Berry term in the effect
action of ferromagnets is linear in time derivative. So
contribution to the phase and hence to the skyrmion s
does not vanish in the adiabatic limit. In contrast, the eff
tive action of antiferromagnets13,14 has a term quadratic in
time derivative. The contribution of this term vanishes as 1T
in the adiabatic limit,15 and hence the only contribution t
the spin of the skyrmions in antiferromagnetic syste
comes from the Hopf term.

Next, we compute the charge of the skyrmion. To do th
we rotate the skyrmion adiabatically around a circle of rad
R0 in the XY plane and compute the phase picked up by
skyrmion. Since the skyrmion is a charged object and
have a magnetic fieldH0 perpendicular to the plane, th
phased picked up by the skyrmion wave function must
given by exp(ie*F/F0), where F is the magnetic flux
through the circle,e* is the skyrmion charge, andF0
5p/e is the flux quantum. On the other hand, this rotati
can again be thought as an adiabatic time evolution of
.

to

e

-
t-

st
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,
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e
e

e

e

skyrmion wave function. So using Eq.~62!, we can obtain an
expression for the charge of the skyrmion to be

e* 5
F0

F E
0

T

dtE d2r ~LBerry1LHopf!, ~69!

wherer denotes coordinates as measured from the cente
the circle.

To evaluate the integral in Eq.~69!, we first rewrite the
expression of theBm fields in terms of complex coordinate
as

Bm5~11cos$g@ uz2Z0~ t !u#%!]m$ ln@z2Z0~ t !#

2 ln@ uz2Z0~ t !u#%, ~70!

wherez5x1 iy , and Z(t)5X01 iY0 represents the coordi
nates of the center of the skyrmion and the time evolution
such that the skyrmion rotates once around the circle in t
T, i.e.,Z(T)5Z(0). Then the contribution of the Berry term
to the phase is

uBerry
c 5

r0

2 E d2zE
0

T

~11cos$g@ uz2Z0~ t !u#%!] t ln@z2Z0~ t !#

5r0i E d2z R dZ0

1

z2Z0~ t !
1

r0

2
i E d2z

3E
0

T

~cos$g@ uz2Z0~ t !u#%21!
] tZ0~ t !

z2Z0~ t !
. ~71!

The evaluation of the first term on the right-hand side of E
~71! is straightforward and gives 2p2R0

2r0. To evaluate the
second term, we interchange the order of integration,
shift the integration variable toz85z2Z0. Then the
space integral can be written as*duz8u$cos@g(uz8u)#
21%*df8exp(2if8). Since the integrand$cos@g(uz8u)#21%
vanishes at infinity, thez8 integral converges, and hence in
tegration overf8 yields a zero result. So, the net contrib
tion from the Berry term to the charge comes from the fi
term. The contribution from the Hopf term to the phase c
be written as

uHopf
c 5

N

16pE d2zE
0

T

~11cos$g@ uz2Z0~ t !u#%!Fxy

3@ uz2Z0~ t !u#
1

z2Z0~ t !
] tZ0~ t !. ~72!

SinceFxy is a localized function that vanishes at infinity,
can be shown, following similar logic as in the case of t
Berry term, that the contribution of the Hopf term to th
phase vanishes. So we finally get

e* 5
F0

F
2p2R0

2r05Ne, ~73!

where in the last step we have used the relationr0

5N/2p l B
2 . This result agrees to that of Yang and Sondh33

obtained by explicitly computing the Berry phase using
variational wave function.

It is to be noted, that the contribution to the charge of t
skyrmion, within this prescription, comes from the Ber
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term in the action. On the other hand, when we calculated
charge of the skyrmion as a response of the effective ac
to an external electromagnetic field in Sec. IV, we found t
the charge of the skyrmion is a consequence of the coup
of the Hopf term to the external electromagnetic field. T
apparent contradiction can be resolved in the following w
Skyrmions in quantum Hall ferromagnets have a nonz
electric charge and consequently couple to electromagn
fields. Now, let us consider the effective action of a sk
mion in presence of a constant magnetic fieldH0 in the z
direction. The coupling of the Hopf term in the effectiv
action to this field would give us a term

Sem5
Ne

8pE d2r dt emnlBmFnl
em,

5
NeH0

4p E d2r dt B0

5
r0

2 E d2r dt B0

5SBerry. ~74!

So, we see that the Berry term in the effective action
skyrmions in quantum Hall ferromagnets is a consequenc
the nonzero electric charge of the skyrmions and the p
ence of a constant magnetic fieldH0 in the system. Therefore
it is not surprising that the contribution to the charge, o
tained by rotating the skyrmion, comes from the Berry ter
It is to be noted that in antiferromagnetic system like He3-A
films,17 the skyrmions are electrically neutral and hence
do not have a Berry term in their effective action.

Finally, we compute the statistical phase picked up due
exchange of two skyrmions. To calculate this statisti
phase, the first skyrmion is adiabatically rotated aroun
circle of radiusR0 with the second skyrmion at the cente
The statistical phase is then defined as theadditional phase
picked up by the wave function of the first skyrmion due
presence of the second skyrmion at the center. The radiu
the circle is chosen to be much larger than the radii of b
the skyrmions, so that these skyrmions can be assumed
noninteracting. In this case, the totald field due to the skyr-
mions are given byd5d11d22z, where superscripts 1 an
2 refer to the first and the second skyrmion, respectiv
Consequently the Lagrangian of the two-skyrmion syst
can be shown to be given by

L5LBerry1LHopf ,

LBerry5
r0

2
@B0

1~r2R0!1B0
2~r !#,

LHopf5
N

32p
emnl@Bm

1 ~r2R0!1Bm
2 ~r !#

3@Fnl
1 ~r2R0!1Fnl

2 ~r !#. ~75!

From the Lagrangian, it is clear that the additional pha
appears due to the cross termN/32pemnlBm

1 (r2R0)Fnl
2 (r )

in the Lagrangian. The Berry term, being linear inB fields,
e
n
t
g

s
.
o
tic
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f
of
s-

-
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e

to
l
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h
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e

do not contribute to the statistical phase. The contribution
the statistical phase therefore comes from the Hopf term
is given by

ustat5
Ni

16pE d2z~11cos$g@ uz2Z0~ t !u#%!

3Fxy
2 ~z! R 1

z2Z0~ t !
. ~76!

Since the integrand in Eq.~76! is nonzero only within the
radius of the second skyrmion at the center, where
1cos$g@uz2Z0(t)u#%) is a constant, the contour integral can
easily evaluated and we finally getustat5Np. The statistics
of the skyrmion is, therefore, completely determined by
coefficient of the Hopf term. Consequently, the skyrmio
would be Fermions for odd integer fillings and, as we sh
see in the next section, anyons for fractional filling facto
n51/(2s11). Our result for the skyrmion statistics he
agrees to that of Yang and Sondhi,33 but contradicts that of
Dziarmaga.34

The spin and the statistics obtained for the skyrmion
apparently not in accordance with the spin-statistics theor
However, it must be noted that the skyrmions in quant
Hall ferromagnets move against a nontrivial spin bac
ground. As a result, the measurement of skyrmion spin, a
response to the external magnetic field, always has a co
bution from the background. This renders the definition
the spin-quantum number for the skyrmions somewhat a
trary. This situation is to be contrasted with the skyrmion
antiferromagnetic systems like He3-A films, where the
ground state has no net spin and the skyrmion has a w
defined spin-quantum number in accordance with the s
statistics theorem.

VI. FRACTIONAL FILLING

The results of the previous section can be generalize
the case of fractional fillings. This is most easily done with
the framework of Chern-Simons~CS! theory for fractional
quantum Hall states.47,48 Within this framework, the elec-
trons, apart from their mutual interaction, are also coupled
a CS gauge field and the coupling constant of the CS fiel
chosen so that an even number of flux quanta gets attach
each electron. The resultant composite fermions then fill
an integer number of Landau level at the mean-field lev
Thus fractional quantum Hall effect for the electrons tur
out to be integer quantum Hall effect for the composite f
mions. In this paper, we shall consider only those filli
fractions where the unperturbed ground state is known to
fully spin polarized. Such filling fractions are given byn
51/(112s)49 wheres is an integer, 2s flux quanta are at-
tached to each electron, and the resultant composite ferm
fill up one Landau level. In what follows, we neglect th
correlation effects between the composite fermions.

We shall now generalize the results of the earlier secti
The procedure is mostly similar to that of the earlier sectio
and we shall only point out the essential differences. We s
with the mean-field effective action~7! which now reads
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S@c†,c,Am
cs#

5E d2r dt ca
†~r ,t !S @ i ]02A0

cs~r ,t !1eF#I

2
@ p̂2Aeff~r !2Acs#2

2m
I 1g0d~r ,t !•sD

ab

cb~r ,t !

1
1

16psE d2r dt emnlAm
cs~r ,t !Fnl

cs ~r ,t !, ~77!
g

on
-
ia

e
sp

in
he
l-

e

wherec are two component composite fermion spinor field
HereAcs means fluctuations of the CS fields from the me
value^Acs&. The effective vector potentialAeff is then given
by Aeff5eA1^Acs& and the last term in the action is th
usual CS term withFmn

cs 5]mAn
cs2]nAm

cs. The effective mag-
netic field experienced by the composite fermions areHeff

5H0 /(112s).
We now introduce SU~2! rotation matrixU(r ,t) and the

parametersfx and fy exactly in the same fashion. Afte
these transformations the actionS@x†,x,Qm ,Am

cs# can be
written as
S5S01S11Scs,

S05E d2r
dv

2p
xa

†~r ,v!S ~v1eF!I 2
@ p̂2eAeff~r !1a#2

2m
I 1g0szD

ab

xb~r ,v!,

S152E d2r
dvdp0

~2p!2
xa

†~r ,v1p0!S 1

2 F ~Qm
int1Am

csI !,
]G0

21

]am
G

1
D

ab

xb~r ,v!,

Scs5
1

16psE d2r dtemnlAm
cs~r ,t !Fnl

cs ~r ,t !. ~78!
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So, we find that the effect of fluctuations of the CS gau
fields is to modify the basic interaction vertexS1 by chang-
ing Qm

int to Qm
eff5Qm

int1Am
csI . To obtain the effective action

for the skyrmion, we therefore integrate out the fermi
fields and expand in powers ofQm

eff . The relevant terms con
tributing to the Hopf term are again given by the same d
grams in Fig. 1 withQint replaced byQeff. The crucial point
that makes the calculation of these relevant terms simpl
that the unperturbed Green functions are diagonal in the
space. As a result, any term inS2 that has the form
Am

cs]nVl
1(2)int vanishes due to the trace operation in spin

dices. Similarly, it can be shown that all terms involving t
product ofAm

cs andV int in S3 also vanishes. So, the cance
lation of the terms inS2 andS3 follows exactly in the same
way as in Sec. II, and finally we are left with the effectiv
action

Seff@Bm ,Am
cs#5

N2

32pE d2r dt emnlBmFnl

1
N3

8pE d2r dt emnlAm
csFnl

1S N2

8p
1

1

16psD E d2r dt emnlAm
csFnl

cs ,

~79!

where the coefficientsN2 andN3 are given by
e

-

is
in

-

N252p Tr S ]G0
21

]v
G0

]G0
21

]fx
G0

]G0
21

]fy
G0D ,

N352p TrS s3

]G0
21

]v
G0

]G0
21

]fx
G0

]G0
21

]fy
G0D . ~80!

Since the unperturbed ground state for the composite
mions is completely spin polarized, it can be easily seen
N25N3. Also since the composite fermions fill up exact
one effective Landau level for the considered filling fra
tions, the arguments of Sec. III can again be carried thro
to getN25N351. Using these results and integrating out t
CS gauge fields,48 we finally get

SHopf5
n

32pE d2r dt emnlBmFnl , ~81!

wheren51/(112s) is the filling fraction.
So, all the results of the previous sections can be ge

alized by replacing the value ofN by n. The skyrmions are
anyons carrying a chargeenQtop. This coincides with
the results obtained by Baezet al.32 using a phenomeno
logical approach.

There are a couple of points that are worth mention
here. First, the same results may be obtained using the
malism of spin-allowed CS theory.49 The calculations follow
exactly the same lines for the filling fractions discussed he
and are therefore not repeated. Second, although the the
ical derivations are exactly the same as in the case of inte
filling, fractional fillings are achieved at much stronger e



h

yr
e

ns.
al-

the

me

to

4598 PRB 62K. SENGUPTA AND VICTOR M. YAKOVENKO
ternal fields, which means that experimental observation
skyrmions for fractional fillings will require samples wit
very low Landeg factor. Recently, however, Leadleyet al.11

have observed evidence of spin depolarization nearn51/3
by reducing the Landeg factor of the sample by applying
external pressure.

VII. FINITE TEMPERATURE

In this section, we derive the effective action for the sk
mions at finite temperature atn51. We shall also assum
a
t

n
bi
-
a
m

nc
tiv
s

of

-

that disorder is negligible, i.e.,vct@1, and the temperature
T51/b is small enough so that one can neglect phono
Throughout this section, we shall use the Matsubara form
ism. We use natural units\5c5kB51 and all other con-
ventions listed in Sec. III remain the same except for
replacementt→2 i t.

The action for the system can be written using the sa
model of local interaction as in Sec. II@Eqs.~7! and~8!#, but
with i * dt replaced by2*0

b dt. Following steps identical to
those in Sec. II, we then integrate out the Fermionic fields
obtain the effective action given by
een
Seff5S21S3 ,

S25
1

2E d2p

~2p!2

1

b (
ipn

@Vm
1 int~p,ipn!P1

mn~p,ipn!Vn
1 int~2p,2 ipn!1Vm

2 int~p,ipn!P2
mn~p,ipn!

3Vn
2 int~2p,2 ipn!1Vm

3 int~p,ipn!P3
mn~p,ipn!Vn

3 int~2p,2 ipn!#

S35E d2p d2q d2l

~2p!6

1

b2 (
ipn ,iqn

T123
mnl~p,q,ipn ,iqn!Vm

1 int~p,ipn!Vn
2 int~q,iqn!Vl

3 int~2p2q,2 ipn2 iqn! , ~82!

where pn and qn are the Matsubara frequencies, andPi
mn and T123

mnl can be expressed in terms of the unperturbed Gr
functionsG0 as

Pi
mn~p,ipn!5

21

4LxLy
TrS E d2r 1d2r 2

1

b (
ivn

1

2Fs ie
ip•r1,S ]G0

21

]am
D

r1

G
1

G0~r 1 ,r 2 ,ivn!

3
1

2Fs ie
2 ip•r2,S ]G0

21

]an
D

r2

G
1

G0~r 2 ,r 1 ,ivn1 ipn!D ,

T123
mnl~p,q,ipn ,iqn!5

i

4LxLy
TrS E d2r 1 d2r 2 d2r 3

1

b (
ivn

1

2Fs1eip•r1,S ]G0
21

]am
D

r1

G
1

G0~r 1 ,r 2 ,ivn!

3
1

2Fs2eiq•r2,S ]G0
21

]an
D

r2

G
1

G0~r 2 ,r 3 ,ivn1 iqn!
1

2Fs3e2 i (p1q)•r3,S ]G0
21

]al
D

r3

G
1

G0~r 3 ,r 1 ,ivn2 ipn!D .

~83!
en,
w-
nce.
-
out
ture
o-
ld
First, we consider the terms in the effective action th
containT123

mnl , P1
mn , and P2

mn . It can be easily shown tha
each of these terms are analytic functions ofp and p0. The
reason for this analyticity is simple. Each of these functio
contain a product of two or three Green functions in com
nation of G0

6G0
7 or G0

6G0
6G0

7 . As a result, the energy ei
genvalues in the denominator of these Green functions
different even when their Landau-level indices are the sa
and this restores the analyticity of these functions. Si
these functions are analytic, we can carry out a deriva
expansion similar to the zero-temperature case. This lead
t

s
-

re
e
e
e
to

cancellation of the first two terms ofS2 and S3 up to the
required order.

The procedure for obtaining the effective action has be
until now, similar to that in the zero-temperature case. Ho
ever, at this stage, we come across an important differe
At finite temperature,P3

mn turns out to be a nonanalytic func
tion of frequency and momenta, so that we cannot carry
a derivative expansion analogous to the zero-tempera
case to obtain the Hopf term. This nonanalyticity of the p
larization bubble is well known in finite temperature fie
theory and many-body theory.35–37To see exactly where this
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nonanalyticity appears, we computeP3
mn(p,p0). The method

of this computation is sketched in Appendix C. The resul

P3
00~p,p0!5upu2P0~p,p0!,

P3
i0~p,p0!5pip0P0~p,p0!1 i e i0 j pjP1~p,p0!,
nd

n

om
f

y
n

-

s
P3

i j ~p,p0!5p0
2P0~p,p0!1 i e i j 0p0P1~p,p0!

1~ upu2d i j 2pipj !P2~p,p0!, ~84!

where the functionsP0 , P1, andP2 are given by
P0~p,p0!5
2 l B

2

4 (
n50

`

(
n850

n

(
a56

Cnn8
a

~p0!
n8!

n!
e

2upu2l B
2

2 S upu2l B
2

2 D n2n821

Ln8
n2n8S upu2l B

2

2 D ,

P1~p,p0!5
2 l Bvc

1/2

8Am
(
n50

`

(
n850

n

(
a56

Cnn8
a

~p0!
n8!

n!
e

2upu2l B
2

2 S upu2l B
2

2 D n2n821

Ln8
n2n8S upu2l B

2

2 D F upu2l B
2

2 H Ln8
n2n8S upu2l B

2

2 D
12Ln821

n2n811S upu2l B
2

2 D J 2~n2n8!Ln8
n2n8S upu2l B

2

2 D G ,
P2~p,p0!5

2 l B
2

16m (
n50

`

(
n850

n

(
a56

Cnn8
a

~p0!
n8!

n!
e

2upu2l B
2

2 S upu2l B
2

2 D n2n821H Ln8
n2n8S upu2l B

2

2 D 12Ln821
n2n811S upu2l B

2

2 D J
3F upu2l B

2

2 H Ln8
n2n8S upu2l B

2

2 D 12Ln821
n2n811S upu2l B

2

2 D J 2~n2n8!Ln8
n2n8S upu2l B

2

2 D G , ~85!
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wheren andn8 are Landau-level indices,f is the fermi dis-
tribution function, f n

a is shorthand notation forf (en
a),en

a are
the energy eigenvalues given byen

a5(n1 1
2 )vc

1ag0 , Ln8
n2n8 is the associated Laugurre polynomial, a

Cnn8
a is given by

Cnn8
a

~p0!5S ~ f n
a2 f n8

a
!vc~n2n8!

p0
22vc

2~n2n8!2 D if p0Þ0,

52dnn8S ] f ~z!

]z D
z5e

n
a

if p050. ~86!

From Eq.~85!, it can be shown that the functionsP1 and
P2 are nonanalytic at the origin. The value of these functio
in the limit p→0 depends on whetherp0 is set to zero before
or after the limit is taken. This nonanalytic nature arises fr
the contribution of then5n8 term in the expression o
Cnn8

a (p0). Further,P0 ,P1 and P2 do not either diverge or
approach zero asp andp0→0, irrespective of how the limit
p→0,p0→0 is taken. So, it can be inferred from Eqs.~82!,
~84!, and ~85! that in the long-wavelength low-frequenc
limit, the relevant leading order term in the effective actio
is given by

Seff5
1

2E d2p dp0

~2p!3
emnlBm

int~p,p0!ipl

3P1~p,p0!Bn
int~2p,2p0!, ~87!

where we have expressedVm
3 int fields in terms of the gauge

fields Bm
int using Eq.~13!. If we could have taken an unam
s

,

biguousp→0,p0→0 limit for P1, Eq. ~87! would reduce to
a local effective action in position space similar to Eq.~2!.
However, such a limit does not exist and in general it is n
possible to obtain a simple effective action in position spa
Nevertheless, as shown above, it is still possible to obta
rather simple effective action in momentum space.

Although, it is not possible to take an unambiguous ze
frequency zero-momentum limit of the effective action~87!,
one can still infer the fate of the prefactorN at finite tem-
perature from physical considerations. To elucidate t
point, let us consider the Hall conductivity~which is the
Chern number! in these systems at finite temperature and
absence of disorder. If we attempt to compute the term in
effective action giving rise to the Hall conductivity, we fin
that we obtain an identical nonanalytic polarization ten
and the effective action is again given by

Seff
Hall5

e2

2 E d2p dp0

~2p!3
emnlAm

em~p,p0!ipl

3P1~p,p0!An
em~2p,2p0!. ~88!

To obtain the dc Hall conductivity as a response of the s
tem to an external field from this effective action, we mu
now specify the dc limit. There are two different limits po
sible. In the dynamic limit, we measure the response of
system to a spatially homogeneous but very slowly ti
varying external field. In this case, to compute the respon
we first setp50 and then take the limitp0→0. On the other
hand, in the static limit, we measure the response of
system with respect to a static but weakly spatially inhom
geneous field and consequently first setp050 and then take
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thep→0 limit. It is well known that at finite temperature th
conductivities in the static and the dynamic limits a
different.50–52

Similarly, the prefactor of the Hopf term, which contrib
utes in part to the spin of the skyrmion, can be looked up
as the response of the system to the external magnetic fie17

In particular, part of the z component of the spin (Jz
Hopf) can

be obtained from the Hopf term as a response to an exte
magnetic field in the z direction. It can be easily seen, t
the Hopf term in the effective action of the system with t
external magnetic field (Hz

ext) is given by Eq.~87! with Bm
int

replaced byBm
total5Bm

int1Hz
ext. The contribution from the

Hopf term to the z component of the spin of the skyrmi
can then be computed from this action as a response o
system to the external magnetic fieldHz

ext. To compute this,
we must again specify the dc limit. In the dynamic lim
relevant for spatially homogeneous magnetic field with we
temporal variation, a simple calculation leads toJz

Hopf

5Ndynamic/2, where

Ndynamic516p lim
p0→0

P1~0,p0!5N51. ~89!

The prefactor of the Hopf term remains the same as the z
temperature value in the dynamic limit. In the static lim
appropriate for static but weakly spatially varying magne
field, we getJz

Hopf5Nstatic/2, where

Nstatic516p lim
p→0

P1~p,0!

512bvc(
n50

`

(
a56

S n1
1

2D f n
a~12 f n

a!. ~90!

The prefactor of the Hopf term becomes a function of te
perature in the static limit. The temperature dependenc
Nstatic is shown in Fig. 2. As expected,Nstatic5Ndynamic at T
50 and reduces to zero at high temperature (T/vc@1). The
temperature dependence ofNdynamic and Nstatic is similar to
that of the dynamic and static Hall conductivities in the
systems.50–52

FIG. 2. Temperature dependence ofNstatic.
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VIII. CONCLUSION

The present paper generalizes the derivation of the H
term in earlier works17–19 to quantum Hall systems. We fin
that althoughkx andky are no longer good quantum numbe
simultaneously, it is possible to replace the integration o
these wave vectors by averaging over phases of the boun
conditions. This procedure is well known and is very use
in determining the quantized Hall conductivity, which is e
sentially given by the same topological invariant.22,42 The
prefactor of the Hopf term~N! is found to be the filling factor
(n).

The value of N obtained agrees to the previou
result24,25,29for the integer filling case. The method used he
is, however, quite different and more powerful. It does n
need either the assumption of lowest Landau-le
projection24,25 or laborious term by term evaluation of th
effective action.29 Furthermore it provides a simple physic
argument in terms of Berry’s phase as to why the prefac
the Hopf term, has to be an integer. It is pointed out that t
is a general result, and not a consequence of the simplicit
the model assumed. Our method also does not require
rameterization of the SU~2! rotation matrixU in terms of the
Euler angles and therefore avoids any ambiguity that m
arise from such a procedure.26,28 The generalization of this
method to the case of fractional filling factorsn51/(2s
11) is straightforward. The results obtained are in agr
ment with the results of Baezet al.32 obtained using the phe
nomenological approach.

The expressions for the spin and charge densities of
skyrmion are obtained from the effective action. The con
bution to the spin density comes from both the Berry te
and the Hopf term in the effective action. In the case of
long-wavelength skyrmions, the contribution due to t
former dominates. The total spin of the skyrmion, therefo
depends on the system details. The charge and the stat
of the skyrmion, on the other hand, is completely determin
by the prefactor of the Hopf term. The charge for a skyrmi
with Qtop51 is shown to bene and the statistical phase i
found to benp. Consequently, the skyrmions are Fermio
~anyons! for odd integer~fractional! fillings.

We also obtain an effective action for the skyrmion
finite temperature. It is shown that it is not, in general, po
sible to obtain a local Hopf term in position space at fin
temperature because of the nonanalyticity ofP3

mn(p,p0).
However, it is possible to derive a rather simple effecti
action for the system in the momentum space. One can
choose static or dynamic limits based on physical reason
and find the value of the Hopf invariant in these limits. In t
dynamic limit, the prefactor of the Hopf term is independe
of temperature and has the same value as at zero temper
while in the static limit it becomes a function of temperatu

To conclude, we derive the prefactor of the Hopf term
the effective action of skyrmions in quantum Hall system
for both integer and fractional fillings. This prefactor~N! is
found to ben. This suggests that the skyrmion withQtop
51 have chargene and statistical phasenp. On the other
hand, the dominant contribution to the spin of the skyrmi
comes from the Berry term in the effective action. As a
sult, the spin of the skyrmion depends on system parame
and increases with the size of the skyrmion. We also disc
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the fate of the Hopf term at finite temperature. At finite te
perature, it is in general not possible to obtain a local H
term in position space. However, it is possible to obtain
effective action in the momentum space and to obtain
value of the prefactor of the Hopf term from this action in t
static and the dynamic limit.
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APPENDIX A

In this appendix, we briefly outline the calculation of th
relevant term in the action from the expression
Pi j

mn(p,p0). For the relevant term in the effective action, w
need to retain the first-order term in expansion ofPi j

mn(p,p0).
We start from the expression ofPi j

mn in Eq. ~22! which is

Pi j
mn~p,p0!5

i

4LxLy
TrS E d2r 1 d2r 2

dv

2p

1

2

3Fs ie
ip•r1,S ]G0

21

]am
D

r1

G
1

G0~r 1 ,r 2 ,v!
1

2

3Fs je
2 ip•r2,S ]G0

21

]an
D

r2

G
1

G0~r 2 ,r 1 ,v1p0!D ,

~A1!

whereG0 is the unperturbed Green function. Using the Fo
rier transform of the Green functions,
th
-
f
n
e

f

-

G0~k1 ,k2 ,v!5E d2r 1 d2r 2 ei (k1•r12k2•r2)G0~r1 ,r2 ,v!,

Eq. ~A1! can be written in Fourier space as

Pi j
mn~p,p0!5

i

4LxLy
TrE d2k1 d2k2 dv

~2p!5 Fs i S ]G0
21

]am
D

k11p/2

3G0~k1 ,k2 ,v!s j S ]G0
21

]an
D

k21p/2

3G0~k21p,k11p,v1p0!G . ~A2!

Next, we carry out a Taylor expansion ofPmn in powers of
the external frequency and momentumpl , wherel can take
values~0,1,2!. After some tedious but straightforward ma
nipulations we finally obtain

Pi j
mn~p,Q,p0!5

2 ipl

4LxLy
E d2k1 d2k2 d2k3 dv

~2p!7

3TrFs i S ]G0
21

]am
D

k1

G0~k1 ,k2 ,v!s j

3S ]G0
21

]an
D

k2

G0~k2 ,k3 ,v!

3S ]G0
21

]al
D

k3

G0~k3 ,k1 ,v!G , ~A3!

where we have used the identities following from Eq.~20!
]G0~k1 ,k2 ,v!

]k1
a

1
]G0~k1 ,k2 ,v!

]k2
a

5E d2k3

~2p!2
G0~k1 ,k3 ,v!S ]G0

21

]aa
D

k3

G0~k3 ,k2 ,v!,

~A4!
]G0~k1 ,k2 ,v!

]v
52E d2k3

~2p!2
G0~k1 ,k3 ,v!S ]G0

21

]a0
D

k3

G0~k3 ,k2 ,v!.
ld

he

-
r

Substituting the expression ofPi j
mn in Eq. ~21!, and trans-

forming back to real space, we obtain forS2

S25
1

2
bi j

mnlE d2r dt Vn
j int~r ,t !]lVm

i int~r ,t !, ~A5!

where the tensorbi j
mnl is given by

bi j
mnl5

1

4LxLy
TrS s i

]G0
21

]am
G0s j

]G0
21

]an
G0

]G0
21

]al
G0D .

~A6!

This procedure can be similarly carried out to obtain
 e

zeroth-order term in expansion ofTi jk
mnl , which contributes to

S3. The manipulations are straightforward and directly yie
Eq. ~26!.

APPENDIX B

In this section, we sketch the derivation of some of t
properties of the tensorsbi j

mnl andci jk
mnl , which lead to can-

cellation of the termsS2 andS3 in the effective action. We
begin with the tensorci jk

mnl . It is easy to see from the expres
sion of ci jk

mnl in Eq. ~26!, that all components of this tenso
that have odd number ofs1 or s2 matrices vanish by trace
operation. So the only possible nonzero terms inS3 are of the
form
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S35
1

6
ci j 3

mnlE d2r dt Vm
i int~r ,t !Vn

j int~r ,t !Vl
3 int~r ,t !,

~B1!

where the indicesi andj are such thats is j5I or 6 is3. We
first consider the case wherei 5 j . Let us perform a gauge
transformation onS3, which corresponds, as we have seen
Sec. IV, to a rotation about the locald axis. Under such a
transformation,Vl

3 int→Vl
3 int1]lL and the actionS3 picks

up an extra term

dS35
1

6
cii 3

mnlE d2r dt Vm
i int~r ,t !Vn

i int~r ,t !]lL~r ,t !.

~B2!

It therefore follows that for the action to be gauge invaria
dS3, must vanish for alli and consequently we must hav
cii 3

mnl52cii 3
nml . The property cii 3

mnl52cii 3
nml can also be

checked by explicit evaluation of the coefficientcii 3
mnl . As a

result, the terms inS3 with identical spin indices vanish. Thi
can be seen by interchanging the indicesm andn in Eq. ~B1!
for terms with i 5 j and k53. So the only nonvanishing
terms inS3 are those with all different spin indices. Furthe
more, sincec123

mnl52b1
mnl ~34!, S3 can be expressed as

S352
1

2
b1

mnlE d2r dt Vl
3 int~Vm

1 intVn
2 int2Vm

2 intVn
1 int!.

~B3!

Next, we demonstrate the cancellation of the terms inS2
andS3. We begin with the first term ofS2 in Eq. ~31!. Using
Eq. ~12!, this term can be expressed as

S2
15

1

2
b1

mnlE d2r dt@Vn
1 int~]mVl

1 int2Vl
2 intVm

3 int

1Vl
3 intVm

2 int!#

5
1

2
b1

mnlE d2rdt@2Vl
1 int~]mVn

1 int!

2Vn
1 intVl

2 intVm
3 int1Vn

1 intVl
3 intVm

2 int#, ~B4!

where in the last step we have integrated the first term inS2
1

by parts. Using Eq.~12!, it can be seen after some algeb
that Eq.~B4! can be expressed as

S2
15

1

2E d2r dtH b1
mnl@Vm

3 intVn
2 intVl

1 int1Vm
3 intVn

1 intVl
2 int

2Vm
2 intVn

1 intVl
3 int#2~b1

mnl1b1
nml!FVl

1 int~]nVm
1 int!

1
1

2
Vm

3 intVn
2 intVl

1 intG J . ~B5!

An identical calculation for the second term in Eq.~31!
yields
,

S2
25

1

2E d2r dtH b1
mnl@Vm

1 intVn
3 intVl

2 int1Vm
1 intVn

2 intVl
3 int

2Vm
3 intVn

2 intVl
1 int#2~b1

mnl1b1
nml!FVl

2 int~]nVm
2 int!

1
1

2
Vm

1 intVn
3 intVl

2 intG J . ~B6!

Using Eqs.~B5!, ~B6!, and~B3!, after some straightforward
algebra, one obtains

S2
11S2

21S352
1

2
~b1

mnl1b1
nml!E d2rdtFVl

1 int~]nVm
1 int!

1Vl
2 int~]nVm

2 int!2
1

2
~Vm

3 intVn
2 intVl

1 int

1Vm
1 intVn

3 intVl
2 int2Vm

3 intVn
1 intVl

2 int!G .
~B7!

The gauge invariance of the effective action then requ
that the terms on the right-hand side of Eq.~B7! be invariant
under the gauge transformationVm

3 int→Vm
3 int1]mL, which

leads to the conditionb1
mnl52b1

nml . Consequently, the firs
two terms in S2 exactly cancelS3. The propertyb1

mnl5

2b1
nml can also be checked by explicit evaluation of t

coefficientb1
mnl . However, it is to be noted that this proper

and the consequent cancellation of terms inS2 and S3 fol-
lows from general gauge invariance requirement and d
not depend on the details of the explicit expressions of
coefficientsb1

mnl .

APPENDIX C

In this section, we sketch the method of computation
the finite temperature polarization tensorP3

mn which is
given by

P3
mn~p,p0!5

21

4LxLy
TrS E d2r 1 d2r 2

1

b (
ivn

1

2

3Fs3eip•r1,S ]G0
21

]am
D

r1

G
1

G0~r 1 ,r 2 ,ivn!
1

2

3Fs3e2 ip•r2,S ]G0
21

]an
D

r2

G
1

3G0~r 2,r 1 ,ivn1 ipn!D . ~C1!

The evaluation ofP3
mn is tedious but straightforward. Her

we shall only show the derivation ofP3
00 explicitly. After

evaluating the matrix trace, we can writeP3
00 as
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P3
005

21

4 E d2r 1 d2r 2 eip•(r12r2)
1

b (
ivn

@G0
1~r 1 ,r 2 ,ivn!

3G0
1~r 1 ,r 2 ,ivn1 ipn!1G0

2~r 1 ,r 2 ,ivn!

3G0
2~r 1 ,r 2 ,ivn1 ipn!#. ~C2!

The Green FunctionsG0
6 is easily obtained as solution of Eq

~20! exactly as in the zero-temperature case in terms of
single-particle eigenfunctions and energies~39! by replacing
v→ ivn :

G0
65

un&^nu

ivn2en
6

. ~C3!

Using Eq. ~C3!, it is straightforward to perform the fre
quency sums in Eq.~C2!. After carrying out the frequency
sum, we perform an analytic continuation to real frequen
( ipn→po1 ih). It is crucial that the analytic continuation i
performed after the frequency sums are carried out. A
result, one gets

P3
0052

1

4 (
n50

`

(
n850

`

(
a56

f n
a2 f n8

a

p02vc~n2n8!1 ih
^nueip•r1un8&

3^n8ue2 ip•r2un& if p0Þ0,

5
1

4 (
n50

`

(
n850

`

(
a56

dnn8S 2
] f ~z!

]z D
z5e

n
a
^nueip•r1un8&

3^n8ue2 ip•r2un& if p050, ~C4!
.

:

d

ys

v

y-

or
e

y

a

where f n
a is shorthand notation forf (en

a) and en
a are the

energy eigenvalues given byen
a5en1ag0.

Using the expression for the Landau wave functio
^nur &,48,50 we get forn>n8

^nueip•r1un8&5An8!

n!
e2

upu2l B
2

4 ~px1 ipy!n2n8Ln8
n2n8S upu2l B

2

2 D ,

~C5!

whereLn8
n2n8 are the associated Laugurre polynomials.

Using Eq.~C5!, it is now a matter of straightforward al
gebraic manipulations to obtain an expression forP3

00. It is
to be noted that in Eq.~C4! one needs to separate the term
in the sum withn>n8 from the terms withn<n8 and inter-
changen andn8 in the latter. This gives the final expressio
for P3

00 as

P3
005upu2P0~p,p0!,

P0~p,p0!5
2 l B

2

4 (
n50

`

(
n850

n

(
a56

Cnn8
a

~p0!
n8!

n!

3e
2upu2l B

2

2 S upu2l B
2

2 D n2m21

Ln8
n2n8S upu2l B

2

2 D ,

~C6!

whereCnn8
a (p0) is defined in Eq.~86!. The other components

of P3
mn can be computed in an identical manner and in t

way we obtain Eqs.~84! and ~85!.
tt.
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