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We show that a Hopf term exists in the effective action of long-wavelength skyrmions in quantum Hall
systems for both odd integer and fractional filling factors1/(2s+ 1), wheresis an integer. We evaluate the
prefactor of the Hopf term using the Green function method in the limit of strong external magnetic field using
a model of local interaction. The prefactdt) of the Hopf term is found to be equal io The spin and charge
densities and hence the total spin and charge of the skyrmion are computed from the effective action. The total
spin is found to have a dominant contribution from the Berry term in the effective action and to increase with
the size of the skyrmion. The charge and the statistics of the skyrmion, on the other hand, are completely
determined by the prefactor of the Hopf term. Consequently, the skyrmions have cleeage are Fermions
(anyon$ for odd integer(fractiona) fillings. We also obtain the effective action of the skyrmions at finite
temperature. It is shown that at finite temperature, the value of the prefactor of the Hopf term depends on the
order in which the zero-momentum and zero-frequency limits are taken.

. INTRODUCTION v=121%The experimental realization of skyrmions for frac-
tional filling factors is much more difficult since it requires a
Two-dimensional(2D) electron gases are known to ex- very-low Lande g factor. Nevertheless, recently Leadley
hibit a rich variety of interesting phenomena with variation et al! have observed signature of skyrmionswat 1/3 by
of particle density or magnetic field. The most striking reducing the Landg factor of the sample by applying exter-
among these phenomena are the integer and fractional quaf@l pressure.
tum Hall effects!™® Since these phenomena take place at The spin configurations of the system can be character-
very high-magnetic field, it may seem reasonable to thinkzed by a unit vector fieldi(x,y,t) that gives the direction of
that the presence of a Zeeman term in the Hamiltonian would® local spin. For long-wavelength skyrmions, the space-
preclude any dynamics for the spin degree of freedom. Thiime modulation of the spin configuration and hence dhe
would have indeed been the case if the Lagdactor for the field is slow. Thus it is possible to derive a low-energy ef-
electrons in the sample was close to the free-electron Lam{g_ctlve action f?g‘f;e skyrmions in terms dffield gradients.
g factor. The lowest-lying excitations of the system would tis well known'™ t.hat n quantum Hall ferromagnets, such
then be quasihole-quasiparticle pairs with opposite spins;‘r?1 low-energy effective aCt'OsFM would contain the Berry
However, as observed by Halpefiihe Landeg factor for and the usual gradient terms:
electrons in Ga-As samples is much lower than the free-
electron Landeg factor. The Zeeman splitting for the elec- Sem= Sgerry ™ Sk (1a)
trons in these systems is, therefore, small compared to both
the cyclotron energy and the typical Coulomb energy. As a Po
. . . — 2
result, the spin degrees of freedom become dynamical, in SBerry_?f d°r dtBy, (1b)
spite of the presence of a strong external magnetic field.
Nevertheless, for certain filling fractionsv€1,1/3), the
ground state of the system is ferromagnetic even in the limit
of vanishing Zeeman energy because of the exchange inter-
action between the electrons. For these filling fractions, the

lowest-lying excitations are topologically nontrivial spin whereB, is defined in Eq(3), po is the ground-state density
configurations  called skyrm|(_)r?§: _The spatial extent of anq « is the spin stiffness constant. This is to be contrasted
such configurations or skyrmions is determined by the relayit the effective action for antiferromagnetic systems,
tive strength of the Coulomb and Zeeman energies in thgyhich contains a term quadratic in the time derivative of the
system. When the Zeeman energy is negligible comp'ared tOnit vectord as shown by Wen and ZEeand Haldané*

the Coulomb energy, the skyrmions have a large radius and |t the ground state of the system does not have time-

are referred to as long-wavelength skyrmions. A small deviazeyersal and parity invariance, the effective action may also
tion from a ferromagnetic filling fraction creates such skyr-qniain the Hopf term given by

mions with many electron spins reversed, which strongly re-

duces the spin polarization of the system. A clear signature

of such spin depolarization, suggesting skyrmionic spin con- _ N 2 Luvh

. . : . Shop=55= | drdte*”*B,F,,, 2
figurations, has been observed experimentally at filling factor 327 "

SE=—§f dr dt(Vd)?, (10
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wheree#*" is the completely antisymmetric tensor, the pref- h ﬁGal <7G51 (9G51
actor N is a topological invariant, an@®, is an auxiliary — Oxy=27Tr 3 0 0 Go/, (6)
gauge field given by e @ Ipx by

F o= 3,8, d,B,~d-(9,dxd,d). 3) we find that expression&) and (6) are similar except that

the momentak; ,k,) are replaced by boundary phase param-
For antiferromagnetic systems, Wilczek and Zee have show8ters @,,#,) and the integration over momenta are to be
that the topological invariarll determines the spin and the replaced by average over the boundary phdés fact, as
statistics of the skyrmiof® If N is an odd(even integer, the ~we shall seeN is the same topological invariant that deter-
skyrmion is a Fermioriboson with spin N/2. For fractional ~mines the Hall conductivity in quantum Hall systems, and
N, the Skyrmion is an anyon. However, as we shall see irproperly modified, the formalism developed in Ref. 17 gives
Sec. V, the method of Ref. 15 leads to quite different con€xactly the same Ed6) for N.
clusions for the spin of the skyrmions in ferromagnetic sys- Recently, there has been a lot of interest in finding the
tems due to the presence of the Berry t¢fn. (1b)] in the  Hopf term in the effective action of long-wavelength skyr-
effective action. The charge and the statistics, on the othghions in quantum Hall systems at=1. Some of these
hand, are still completely determined by the topological in-works"*® use lowest Landau levéLLL) projection tech-
variantN. nique to derive the Hopf term. However, it has been pointed
The presence of a Hopf term in the effective action ofOUl26 that the parameterization of the unit vectbin terms
systems described by a unit vector fields well known in of the Euler angles in Ref. 24 is questionable. This gave rise
many different areas of condensed matter. It was initiallyto @ subsequent controversy;® which we aim to resolve.
conjectured by Dzyaloshinskit al. that this term may exist Further, the validity of the LLL projection in the present
in the effective action of planar antiferromagnttsHow-  context was also questioned by lordanskii and
ever, microscopic calculations showed that such a term i®lyasunov®*®who derived the prefactor of the Hopf term
absent in the effective action of these systems because b¥ explicit term by term evaluation of the effective action,
symmetry requiremenfgjl4 There are, nonetheless, various starting from a mean-field Hamiltonian but without any LLL
other systems where symmetry requirements permit a norprojection. A similar work, avoiding the LLL projection was
zero topological term in the low-energy effective action. A later done by Ray" Although the end result for the prefactor
few examples are HeA ﬁ|ms,17 lattice quantum Hall N is the same in all these WOI’%,ZS’ZQ_SH'I is not quite clear
s;ystemsl,8 and quasi-one-dimensional organic conduct8rs. whether the result is an artifact of the simplicity of the mod-
Recently, it has been suggested that the superconductiridS or assumptions used. The aim of the present paper is to
phase in SIRuQ, has a spin-triplep-wave pairing state with point out the robustness of this result and to generalize it for
broken parity and time-reversal symmetry similar to®t4e  fractional filling factorsy=1/(2s+1), where s is an integer.
flms?° Consequently, the corresponding low-energyWe also explicitly compute the spin and charge densities of
effective action of SIRuQ, is also expected to have a similar the skyrmion, and hence its total spin and charge. It is shown
topological term?t that the dominant contribution to the skyrmion spin comes
Volovik and Yakovenkd’*8 have derived an exp”cit ex- from the Berry term in the action. The contribution to the
pression for the topological invariahtfor a general class of Skyrmion spin from the Hopf term comes equally from the
mean-field Fermionic models, with the electron Hamiltonianbulk and the edge, but is small compared to the contribution
of the form of the Berry term. This result coincides with the results ob-
tained by Baezet al. on a phenomenological basfsThe
H=Hqy+o-d(r,t)H,, (4)  statistics of the skyrmion is also computed using the method
of Ref. 15 and is found to be determined by the prefactor of
where o are the Pauli matrices acting on the spin indices ofthe Hopf term. Our result regarding the statistics corrobo-
the electrons. This class includes the above mentioneghtes the result obtained by Yang and Softiasing a varia-
systems.”~2°|t was shown that the expression for the topo-tional wave function for the skyrmion, but differs from that

logical invariantN is of Dziarmaga®*
N N N The fate of the Hopf term at finite temperature is another
Gy~ dGy~  dGqy very interesting question. At zero temperature, it is possible
N=27Tr 0 0 0 Gol, (5) y 94 p : p

to carry out a derivative expansion of the polarization tensor
and thus obtain an expression for the prefactor of the Hopf
where Tr denotes all integrations and matrix tradgsky,  term in terms of the Green functions. However the situation
and  are the electron momenta and frequency, ands much more tricky at finite temperature. It is well
Go(ky Ky, w)=(w—Ho—a,Hi+i7Sgnw) ! is the unper-  known®* *at least in the case of () gauge fieldgelectro-
turbed electron Green function. In principle, this treatmentmagnetic field, that the polarization tensor becomes a
should also hold for quantum Hall systems, since theimonanalytic function of frequency and momentum at finite
Hamiltonians can be cast into the same class of mean-fieltemperature and a derivative expansion cannot be carried out
models (4). However, sincek, and k, are no longer good unambiguously. The zero-frequency zero-momentum limit
guantum numbers simultaneously in the presence of madp,— 0,p—0) depends on the order in which the limits are
netic field, Eq.(5) cannot be directly applied to the present taken. This order is generally chosen from physical consid-
case. Nevertheless, if we compare the expression of the t@ration and depends on the system of interest. In particular,
pological invarianiN to that of Hall conductivity in quantum in quantum Hall systems, the prefactor of the Chern-Simons
Hall systems? term (the equivalent of the Hopf term for Abelian gauge

0 0
Jw gky 0 dk,
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fields) which determines the Hall conductivity depends on [f)—eA(r)]z
the order in which the zero-frequency and the zero- =
momentum limits are taken. In this paper, we use imaginary

time Matsubara formalism to derive an effective action foryere A is the vector potential corresponding to the external
skyrmions at finite temperature ang=1. We show that, magnetic fieldH,, d is the unit vector field that gives the
analogous to the Chern-Simons term for the Abelian gauggjrection of local sping are the Pauli matrices;y~ €%/l is
fields, it s in general not possible to obtain a local Hopf termyne ynical Coulomb energy of the system, dne- J1leH,

in position space at finite temperature. Nevertheless, one cag he magnetic length. In this treatment we shall neglect
still obtain a rather simple effective action for skyrmions in 7o man energyH,) and also assume that the characteristic

momentum space. We evaluate the prefactor of the HOpLyciotron energy is much greater than all other energy scales
term in both the dynamicp(p,—0) and the staticfl/P  jy the problem, i.e., we consider the regimgs y,>E,.

—0) limit. In the static limit, the prefactor depends on tem-his  is the relevant regime for long-wavelength
perature, while in the dynamic limit, it is independent of skyrmions242°

temperature and has the same value as at zero temperature. To calculate the topological term in the action, it is con-

The organization of the paper is as follows. In Sec. Il, We,gnient to introduce the 22 local unitary SWU2) rotation

derive the effective action at zero temperature and obtain 3fhatrix U (r,t), that corresponds to the local rotationdf )
expression for the prefactdd in terms of the Green func- 0 the h,onlwogeneous fiekl= e, ’

tions. In Sec. lll, the value of this prefactor is evaluated. In

Sec. IV, we derive expressions for spin and charge densities u(r,t)o,Ur,t)=o-d(r,t). (9)
and obtain the total spin and charge of the skyrmion. The

statistics of the skyrmion is obtained in Sec. V. These resulté\fter the unitary transformation of the Fermi fielggr,t)
are generalized for fractional fillings in Sec. VI. In Sec. VII, = U~ Y(r,t)y(r,t), the action becomes

we derive the effective action at finite temperature and obtain

1~ yod(r,1) - 0 (8)

the prefactor of the Hopf term for both the static and the i int 5 + . int
dynamic limits. This is followed by conclusion in Sec. VIII. Sx'x. Q) ]Zf dordtx,(r,t)| idol — Qg (r,t)
Some details of the calculations are sketched in Appendices _
A-C. {[p—eA(N]1—Q"(r,n}?
2m
Il. EXPRESSION FOR N AT »=1
+ + egl r,t). 10
In this section, we derive the effective action at zero tem- Yooz €F abX b(r:t) (10

perature and from there obtain an expression for the prefac- ) ] ) . o
tor N in terms of the Green functions of the systemsat The new spinor fields(r,t) have their spin quantization
=1. Throughout the rest of the paper, natural uditsc ~ @xis alonge;, andQ,;” («=0,1,2) are the S(2) gauge fields
=1 are used. The convention of subscripts and superscripgiven by
are as follows. The Greek letters are used to denote space- 1 1
time indices and these can take valésl,? where 0 de- int_ -1 _ int_ jint

’ =—iU ', U)=z0-QT=-0;Q"™". 11
notes time component and 1 and 2 denote the two space Qu (9,U) 27 T D
directions. The letterg j, andk are used for the indices of
the Pauli matrices; and take valueél,2,3. The letters, b,
andc denote either space indices 1 and 2 or spinor indjces int int_ int_ (yint int_
and | . All repeated indices are summed over unless explic- Fn= 0y = 9,40, = O, X Q,7=0. (12
itly stated otherwise. We also use the following conventiongther, the rotation matrii satisfies the relatidf
for vectors and operators whenever needed. All contravariant

The ﬁeldsQ‘l’jt are pure gauge fields satisfying the relation

vectors are taken a¥*=(X%X) and all operators ag* 1

=(d% — V). The covariant counterparts of the contravariant i(¢9MU)U_1=§U'(—'3Md+d>< d,d), (13
vectors and operators are obtained by applying the metric

tensorg,,,=g*" = diag1,-1,-1.%° whereB,= Q3" is the auxiliary gauge field introduced in

The action for the system with a model local interactionggq. (3). The Hopf term can be expressed in terms of these

V(ri—r3)=7y08(r1—r;)* can be written using Hartree- auxiliary gauge field8,, (2) or equivalently in terms of the
Fock approximation &% gauge fields™ as
N

N in in in
S[I/IT,(//]ZJ d2r dt{//;(r,t)(iﬂd_H+6F|)abl,/fb(r,t), SHopf:Ef d?r dteﬂv)\ﬂﬂt.(ﬂthQ)\t)_ (14

™ The effective action for th€™ fields can now be obtained
by integrating out the spinor fields. For a slowly varyidg
where the Fermionic fielas is a two component spinof,is  field configuration, th&™ fields are small, and it is possible
the 2X2 unit matrix, g is the Fermi energy, anHl is the to carry out a gradient expansion of the effective action
mean-field Hamiltonian density of the system given by Sel QM] in the powers oQ™ and its derivatives. It is clear
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from Egs.(12) and(14) that the Hopf term originates from
the Q™) andQ™JQ™ terms in the expansion of the effec- N\/\<<:>/V\A
tive actionSg Q™.

To calculate the effective action, we first divide the action
into two partsS=Sy+ S;, whereS; andS,; are given by

sozfdzrdtx*(r,t) - , .
FIG. 1. Polarization bubble and triangular diagram. The wavy
lines represent the gauge fiel@s,, the solid lines represent the
x(r,t) Green functionG,, and the dots represent the vertic&s, l/é’a

[p—eA(r)]?

x| [ido+ erll = =5

|+’)/00'z

The unperturbed Green functi@y, is diagonal in the spin

1 : e A
_J' dzrdt)(T(r,t)E(H“Q'l'jt(r,t) space. It is given by

int GO O
+Q(r,HIT#) x(r,t), (15 Go=| y &/ (19
0
whereIl?=[p?—eA%(r)]I/m andI1°=1. The effective ac-
tion S Q™] is then given by whereG,, satisfies the following equations
D ye! (So+ S0 [p—eA(r) +al? .
- int J Dx'Dxe ' i (w+€F_ *70|Go(r1.r2,0)
eiSe Q1 = :<elsl>SO- (16) 2m
Dx'Dxe'S = 82(r1—15). (20)
At this stage, we introduce a unitary transformation on the The perturbation expansion is now straightforward. The
field variables of the form diagrams for the relevant terms in the effective action are
bl iyl shown in Fig. 1. The first term is the familiar polarization
X (1, 1) — ' P Exe Yy (1, ), (17 pubble and is given by
where ¢, and ¢, are constant parameters angdandL, are )
the dimensions of the system. Transformati@@) changes 1 (d%Ppdpo i Y jiint
the boundary conditions on the single-particle wave func-=272 ] 5 3 [Q,7(P,Po) Pfi"(P,P0) 2, (=P, — Po) ],
tions. We shall discuss its physical meaning in more detail in (21)

the next section. At this point, we may consider it to be a
mathematical trick used to facilitate computations. With thiswhere the tensoP{{" is given by
transformation, the action can be written as

do 1
2 PE (PP =g T [ Prscirags
So= | d =X (r,o) 4L T2

- r -1
[p—eA(r)+a]? G,
x| [0+ €]l = 51+ 700, | x(1,®), x| e, Ta, | Golr1.12,0)5
L 1
dwdp, [ Gy *
[ 2 ) —ip-r
S fdr (2mp2 X (eTP) | e 2( da | Sollz 1.0 Po) |
N
10 Gt (22)
_ int
X5 Q,A(f,po),—a R X(r,w), (18)

_ It is clear from the structure d§, that to get the relevant
where [ ...]: means  anticommutator, @ terms of the formQ™sQ™, we need to expan@/” to first

=(o, ¢>x/|-x,¢y/|-y) andGy is the unperturbed Green func- order in external momenta(p,). This expansion is carried
tion. Here we have omitted the quadratic ternQgin S;. It out in Appendix A. The result is
is easy to see that this term does not contribute to the Hopf
term in the effective action. The advantage of introducing the
parametersp, and ¢, also becomes clear from the expres- Sf-b““f d?rdtQ) M(r, t)a)\Q' Nty t),
sion of S,. The operatordI, and II, can now be conve-
niently expressed as the denvatlvesceg with respect to _ B B

9Gy* Gyt Gyt

¢y and ¢,. These parameters therefore take the place of N _ Tr( o 20 5 020 0
momentak, and k,, which are no longer good quantum 4L L, Ya, 0 da, 0 day O
numbers in a magnetic field. (23
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The other contribution to the Hopf term comes from the d2pd2q dpo %
triangular diagram shown in Fig. 1. This diagram involves S;= 6f f]ﬁf*(p d,Po0,Y0)
three Q fields. As Q'”‘ are pure gauge fields satisfying
Eq. (12), a term W|thQ'nt (Q"M™x QM is of the same order XQ;L'm(p'po)QJV'm(q’qo)Ql}fim(_p_q’_po_qo)’
as aﬂ'm(axﬂ'm) term. The contribution of these terms come 04
from the triangular diagram that is given by where (24)
|
THMN(P,0.P0.00) = | —Tr fdzr d?r,d%r do 1 oieP 7o Go(ry,r co)1
k 0:40 AL L 1 2 32 2 (?a,u, r o\f1,12; 2
Uy
9Gg * 1 _ 9Gy*
X | oeldrz Go(ra,r3,w+Po+0o)s| e '(PTA T3 Go(rz,ry,0+po) |- (25)
da, 2 dary
2l ral
|
For the relevant order, here we need to consider the Go aGgl
zeroth-order term in the expansion fi,* in powers of bi )= T Tf( Go(=70)7
external momenta. This can be done following the method Y v
outlined in Appendix A, and one gets G’l
XGO(’)’O) Gol(70) |+ (29
,u.v)\ 2 iint jint kint
S3==Cij fd rdtQ, N (r,t) Q1) Q) (), o 1 . 4Gy 75" Gy
$UTALL, | ey, C00) T,
i 9Gyt dGo dG, -1
N _ 70 _ o o Gy
cl 4LxLyTr( 7 e, % ga, ST G, 0] XGol(70) 0(7’0)) 30
(26)

The contribution to the Hopf term fror8, can therefore be
Having obtained the relevant terms in the effective actionyyritten as

we now evaluatef andbf"* . Let us first consideb{;" .

We first note thaG, is diagonal in the spinor space, since it 10, wnhr (1 it Lint
contains | andrs. Further, it is shown in Appendix B that the SZ_EJ dr dt{by ™[, H(r, ) 5,2, (r, 1)
coefficientsbf;”* satisfy bs"* = —b}** . From these proper- _ ,

ties it follows that all the terms Wltb"”‘ (23) fori#j either +Q2M(r,1)0,Q5™(r 1]

vanishes because of trace operatlon in spin indices or lead to
total derivatives that can be neglected. Hence there are only
three nonzero terms ihi’j”}‘. These are

+b4™ 02 M(r )5, Q3 M(r 1)} (31)

Next, let us conS|dec‘J“’" given by Eq.(26). Here we
notice that only those terms that have aJk() different pro-

ah_ 9Gy dGg*t duce nonzero contributions t&;. The other terms, as
by TaLL, moj—— GO( Y0) 0] ia, sketched in Appendix B, vanish either under trace operations
_1 in spin indices or under exchange of space-time indices of
%G 5 ,’J‘;’” So there are six nonvanishing terms and a little algebra
o 70) Go(¥0) | (27 shows that their contributions are equal. Thus one may write
where | takes values from 1 to 3, an@q(7y,) shows the mf d2r dthlnt (it QZIHI rt Qs.m rt
dependence of, on the parametey,. Using properties of Sa= Clz3 (r D, Y (.0,
o matrices, we get
J28 i T ( aGalG ( ) 5G61
Clog=77—Ir\og—— Yo) O
12)Go(70) = Go( = Y0) T1(2)s 128 4L, Yoa, 07V da,
9Gy*
3Go(v0) =Go(v0)03- (28) X60(70)03_ﬁa)\ Go()’o))- (32

Using these relations, it is now easy to eliminate hena-  Using the relationr,0,=i03 and the cyclic property under
trices from the expression dﬁf“’". The result is trace operation, one can now eliminate thenatrices to get
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1 9Gy* oGt aGet  aGat
MVN 0 _ — 0 a 0 a 0 a
ci) 4LXI_yTr(—a% Go(—%0) N zwagi Tr( G 8 g, G54, C8 )
3
3Gy 3Gy _ &0
X Py Go(v0) o Go(70) The expressions for the unperturbed Green functiepscan
v A

be obtained in terms of the single-particle eigenfunctions
= —psn (33)  and eigenenergies, as
Oen—e) . Bleer) )
w—(e,—€x)+in o— (e, —€r)—in ,
(38)

Sy=— b‘l“’"J d?r dtQ ", H) Q2 ™(r,H) Q3 "(r,b). G = }n) |n)<n|(
(34)

After some algebra, which is sketched in Appendix B, we
find that S; (34) exactly cancels the first two terms &
(312). It is shown in Appendix B that this cancelation i; in-
dependent of the explicit expressions of the coefficief Dt b /L.—eA(r)]?
and cty2 . Also, it is easy to see that the tenslmg‘”rt{is) (2 [Pat fallaeAr)] Iyo>|n>=e§|n>, (39
completely antisymmetric in space-time indicesi.). As a
result, we are left with

where e¢ is the Fermi energy. These single-particle eigen-
functions and eigenvalues satisfy

Y 2m

wherea can take values x and y. Substituting this form of the

Shop= S2+ S3 Green function in the expression fbdk we get
1 . . . aGgl) (aegl)
— T pMVA 2 1int, 2 int, 3int N=27i
5 b fd rdtQL(r,H 02 ™r, 003 M b). w ;ﬁ ; ( 7o) | Tady )
(35

Comparing Eqs(14) and(35) and using Eq(30) for b4,
we find an expression for the prefactdrof the Hopf term:

2mi

f do ( 0(er— €r) 0(er—€7) )
X +

w—(e—€p)+in ow—(en—€p)—in

4 n
N=—F€,,b5" =27 Tr

( O(e— er) O(ex—€f) )
X +
3

w—(e'—ep)tin o—(e'—€)—in

aG(;lG aG(;lG aG(;lG
do 2 g, Cap, °)

where we have substituted the expression b‘g)}‘x (30) to
obtain the last expression.

It is worthwhile to point out that the formal derivation of
the Hopf term in Sec. Il, Eq.36) does not depend crucially
on the model chosen. This is manifested in the fact that non[ﬁ . . .
of the cancellations of the various terms in the effective acin® Fermi ene_rg_y,.only the.= + term in the sum Com”.b.'
tion depend on explicit expression of the unperturbed GreeH€S: F_urther, Itis important to notice that the only sur\ﬂvmg
function, or equivalently on actual valueslof”™. The sym- (€rms in the frequency integral are the ones whgrende
metry properties ofo“™ required for these cancellations lie on the opposite sides of the Fermi energy, i.e., the

are quite general, and so the result holds for any model gpoles of the integrand lie on different halves of the complex
type (4). ’ w plane. Also, Eq(40) contains matrix elements of the mo-

mentum operatofl, = dG, */ da, .%° These matrix elements
IIl. EVALUATION OF N connect different Landau levels, and vanish between the
states of the same Landau level. This clearly points out that it
The expression for the prefactor of the Hopf teN1{36) is necessary to retain the wave functions for all Landau lev-
is essentially the same as the expression for the Hall condu@ls in the calculation. The use of the LLL-projected wave
tivity (6). Thus we follow the work of Nitet al*?to evaluate ~ functions in this case would yield an erroneous zero value

(36) a__ _
X( 0(en— €p) N O(er—e€p) ) . 40

w—(ey—€p)tin w—(eg—€p)—in

The frequency integral can now be evaluated in a straight-
rward manner. Since at zero temperature agglylie below

N. for N.2%%0
We notice that since the unperturbed Green fundBgns After evaluating the frequency integral, the expression for
diagonal in spin indices, Eq36) can be written as the integeN becomes

5 55,

abg |\ aby |\ ady |\ agy |

N=2mi X X | y(el—er)z n__2 (41)
e;<spe|+>e|: A
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Using the relations moves around a closed contour in the parameter space. But
since in this case, the ground state is separated by a finite

-1 . .
IGqy 4 energy gap from the excited states and is nondegenerate, the
L) =—(en—e)in J ’ (42 many-body ground-state wave function must return to itself
x) /i Px(y) y-nody g It
] S after traversing the contour. So, the value of the line integral
this can be further simplified to must be 2ri times an integer, which immediately tells us

an | an an | an that _N.must be an integer. The yalue of this integer can be
N=2mi > (<_ _> _<_ _> ) (43  explicitly evaluated by constructing the ground-state wave
n dby|ddy dpy | Iy function as a Slater determinant of the single-particle states
€n <€F (44) and by choosing a rectangular contour in the parameter

where |®g)=TI,|n) is the unperturbed many-body ground SPace. The calculation is straightforw#ré?and forv=1, it

state of the system. yields the valueN=1. o
So far, the derivatives in the expressionNofre formal, From the above discussion, it is clear that the above result

and it is not clear whyN has to be an invariant. To see this is not an artifact of the simple model chosen to describe the
point more clearly, we now consider the physical meaning ofYStem- The properties of the many-body ground state that
the parameterg, and ¢, . The ground state of the system in /& used to argue thatshould be an integer are the presence

this case is a Slater determinant of the single-particle state€f @ finite gap between the ground state and the other excited

which are solutions to Eq39). These states are constructed ;tates, and the nondegeneracy of the ground-state wave func-
by Niu et al. in a slightly different contex® and are given tion. As long as these conditions are satisfied, the value of

by invariant N, which cannot be a continuous function of the
model parameters, must have the same value as that obtained
(X, y)=e 1 &Xxe oYL\ (x y), from the calculation based on this simple model. It can there-
fore be argued that this result is robust against the presence
, 5 of weak disorder ¢.7>1) in the system, which broadens
Wo(x,y)= > eMbrlsgifmiug(x—B13), (44  the Landau levels to bands but do not lead to the mixing of
m=-s different Landau levels. A more mathematically rigorous jus-
whereA ,=(2mn+ ¢,)/Ly, Bm=(2mm+ ¢,)/L,, anduyis ftification of this issue is given by Niet al?? and Ishikawa
the ground-state wave function for a harmonic oscillator.et al*® in the context of Hall conductivity in quantum Hall
From this, it is easy to check thak, is the solution to the systems.
Hamiltonian H with eigenvalues; . FurthermoreW,(x,y)
also satisfies the boundary conditions IV. SPIN, CHARGE, AND GAUGE INVARIANCE

o

In this section, we compute the spin and charge densities

— i dyaiyLy /12
Wa(XFLyy)=e2e¥TeWn(X,y), for the skyrmion, as well as its total charge and spin. To do

W (X,y+Ly) =€ W (X.y). 45 this, for rea.sons.that will become c!ear Iatgr, we first consider
n(XytLy) YWa(Xy) (45) the gauge invariance of our effective action. We have men-
wherelL, L, are the dimensions of the system. tioned before that th8 fields introduced in Eq(3) are aux-

From these relations, it is clear that we can interpgt iliary gauge fields. The gauge transformation here corre-
and ¢, as the boundary phase parameters of the system. Ssponds to an arbitrary space-time-dependent rotation of the
the variation of these parameters means the variation of thgpin-quantization reference frame about the lodahxis,
boundary conditions for the ground-state wave function. Folsince such a rotation does not change the physical state of the
lowing Niu et al,??> we now argue that the value of the in- system. It can be easily seen that under such a transformation
variantN is independent of the boundary condition chosenU , =e"2(@ DAY ' the auxiliary fieldB,, transform as
so that we can replace this expression by its average over all

possible boundary conditions. This allows us to write B,—B,t+d,A. (48)
1 (2w 2m ELONEION FONEION The action(2), however, is not invariant under this trans-
N=>— . d(ﬁxfo déy oy 9\ | db ]| formation. It acquires an additional surface term
y X X y

(46) N
It is easy to see from the conditigA5) on the single-particle 6S=— 167 % dla dt(BadoA —Bodal), (49

wave functions that (#2,27) and(0,0) are same point in the .
¢ space. As a result, we can interpheis a surface integral Wheredl, is the length element along the edge, gnde-
over a closed surface in the parameter space, which can @tes integration along the edge. From now on, we shall

expressed as a line integral. This line integral is assume a rectangular boundary for simplicity.
Such a noninvariance of the bulk action under gauge

1 - transformation is well known for both Abelian and non-
N= 2o ﬁ; dep-(Po|V §Po)- (47 Abelian gauge theories with Chern-Simons term in noncom-
pact spacé? The most well-known example for the Abelian
Since ¢, and ¢, are parameters in the Hamiltonian, the case is the effective action for integer and fractional quantum
line integral in Eq.(47) can be interpreted as the Berry’s Hall states:Seffz((rxy/4)fd2rdte"“AfL”F$T. This nonin-
phasé' picked up by the ground-state wave function as itvariance is merely a statement that in a space with boundary,
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the bulk effective action is not the complete action for thethe previous section, especially the cancellation of the differ-
problem, and we must add the edge actfg,., so that the ent terms are exactly the same since the field tehspi(3)
total actionSya= Spuict Sedge IS gauge invariant. In case of corresponding t@f“’" is zero. After some algebra, it can be
quantum Hall states, such a consideration leads to gaplesgeen that the form of both the edge and the bulk effective
edge excitation®> As we shall see, in our case, consideringactions remain the same, with the auxiliary fieRisand the
the edge action is absolutely crucial for determining the corscalar fields replaced by
rect value of the contribution of the Hopf term to the total
spin of the skyrmion.

The 1+ 1D edge effective action that we need to con-
struct, must transform under the gauge transformgd@nin
such a manner so as to cancel the gauge noninvariant term of
the bulk action:

BMHBM-I-d' (9#0,
F.,—F,+d,d-9,6-49,d-3,0,

n—n+d(»)- 6, (54)

whered(«) =g, is the constant unit vector at the edge. The
total actionS,, now is the sum of the bulk and the edge
actions. There are two terms contributing to the spin of the

The simplest edge action that achieves this can be written igkyrmion in the bulk. The first term is linear B fields and
terms of a boson field 7 representing the edge has the same origin as the Berry term in Etp), while the
excitations2:44 second term is the Hopf term. The relevant part of the effec-

tive action is

N
5Sedge:E é dladt( BaaoA_ BoaaA) (50)

S=3gdldtD2—D2 N
edge a [( tn) K( a77) ] Sbulk:%J’ d2rdt(BO+d-<900)+ EJ d?r dt e**™

N
+ 16m fﬁ dl, dt(B,don—Bgdam). (51 X(B,+d-d,0)(F,\+2d,d-9,0),
In Eq. (51), D, is the covariant derivative defined &,
=(d,—B,), « is a real parameter, and the boson fiejd
transforms under the gauge transformati@®) as »— 7
+A. Itis easy to check that under these conditions the first —[dan+d()-3,0][Bo+d(=)- 3]} (55

term of the edge action is invariant under gauge transformarye variation of Eq(55) with respect tado8(r,t) gives the

tion, While.the second term produpes_the correct extra .terrgpin of the skyrmion relative to the ferromagnetic ground
0Seqger Which cancels gauge contribution of the bulk action, gi4te-

so that the total actiof,, remains gauge invariant.

N
Suaoe 5= $ Ala QL0+ (=) G00[B+d=) - 0,01

Next, we proceed to compute the spin density of the skyr- J=JgBerry jHopf jedge (56a
mion. The easiest way to do this is to consider the response
of the system to arbitrary rotation by an infinitesimal solid Berry_ PO [ o
angle@(r,t). The action after such a rotation can be written J :7f dr(d—e,), (56b)
as
N
S['r//! dfT,d,Qy,] JHopf:EJ dzr fabo[ &adX &bd"' (?a(de)]., (560)
= [ ar o] fiag+ ecn -y Nd(=)
edge_ ab0
) 2 J 167 fﬁ dl, €e*By,. (56d
—eA I — . . .
_ {ilp—eA)]I —Q(r.D} + yog.d) Pp(r,1), The first term in Eq(56a comes from the Berry term in the
2m ab action (55), while the second and the third terms are contri-
(52) butions to the skyrmion spin from the Hopf and the edge
- terms. We first analyze the latter contribution. The first term
where  Q,=-iU"*(9,U)=0-9,0r1)/2 and U  jnthe integrand 08" (560 is the contribution to the local

=g/2700) g0 a variation of the effective action with re-
spect todyé(r,t) gives the spin) of the skyrmion:

spin density of the skyrmion from the Hopf term and is given
by jo(r,t)=(N/167) 2™ 3,d X d,d. This local spin density is
directed along the local vector and is a total derivative, so
‘]:f d2r dt 2 it produces no net contribution to the total spin of the skyr-
O[dgl(r,t)]" mion. The net contribution of the Hopf term to the total spin
therefore comes from the second terndit*’ and fromJedee
To compute the effective action, we again rotate the in{56q). Using the expression for the topological cha@g,
homogeneousl field to a homogeneous configuratiod (= (1/4+)[d?r d- (d,dX dyd) and Eq.(3), it is easy to see
=¢,) and proceed in the same manner as the previous seghat each of these terms contribute equally to the total skyr-

Seff (53)

tion. The difference is that now the internal gauge ﬁ@lﬁt
is replaced by the total gauge fie@?™®= Q)"+ U *Q/U.

mion spin. The total contribution to the skyrmion spin from
the Hopf term is therefordld(=0) Q2. It is directed along

The details of the computations are essentially the same as d{(«)=¢e, and for a skyrmion with unit topological charge
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aGot  9Gyt  9Gy*

Qup=1 has the magnitude of 1/2 at=1. Since the last term
T3 G 0 g GO Y

in the expression of the spin density comes fr8ge we Ny =27 Tr
see that it is crucial to include the edge action in the calcu-
lation of the contribution of the Hopf term to the total spin. Since the unperturbed ground state is completely spin polar-
Omitting the edge action would give only half of the actualized, it can be easily seen thit;=N. The variation with
result. respect toA§™ now gives the charge density

Next, we consider the contribution to the skyrmion spin

Gol. (59

from the Berry term(56b). This contribution is clearly pro- OSes Ne
portional to the number of flipped spin in the skyrmionic p(r.t)= SAem = 7,4 (axdxayd). (60
state, and increases with the size of the skyrnifd®o in the 0/ pem_g

case of a long-wavelength skyrmion, the Berry term pro-

duces dominant contribution to the skyrmion spin. The exacf "€ €lectric charge densit$0) is found to be proportional
value of this contribution, unlike the contribution due to the O the topological charge density. The space integral of this

Hopf term, is not a universal number, but depends on th&harge density gives the total charge of the skyrmion, given

details of the field configuration. So we conclude that the®Y

spin of the skyrmion in quantum Hall ferromagnets, as mea- Ne

sured as a response to an external field, is not quantized to Qem:_f d?r d- (9, dx dyd) =NeQgp. (61)

integral or fractional multiples of 1/2. This is in contrast to am

the case of skyrmions in antiferromagnetic systems, whic

have a universal value of the spin completely determined b

the c;oefﬂuent of the Hopf term. ) refactorN has fractional value leading to fractional charge
Finally, we compute the charge density and the totak,. o skyrmion.

charge of the skyrmion. To do this, we compute the response

of the system to an external electromagnetic potemfﬁl.

feor v=1, the skyrmion withQ,,,=1 therefore carries a
%hargee. For fractional filling, as we shall see in Sec. VI, the

; . ! V. STATISTICS
The action, in presence of an external electromagnetic poten-
tial, can be written as In this section, we outline the argument of Wilczek and
Ze€e” to obtain spin, charge, and statistics of skyrmions in
S, ,/,‘r,d,A/em quantum Hall ferromagnets. For this purpose, let us recall
that the effective action of a skyrmion in quantum Hall fer-
5 . . om romagnets is given by Eq$la and (2). First, we compute
Zf dordt a(r,t)| [ido—eAy (r,t) + €]l the z component of the spin of the skyrmion. For this pur-
pose, we introduce an adiabatic time evolution that corre-
[p—eA(r)—eA®™(r,t)]? sponds to a rotation of the field in the XY plane about the
- om I+ vyoo-d| ¢y(r,t),  center of the skyrmion, such that the wave function returns to
ab itself after timeT. The phase acquired by the skyrmion wave

(57)  function ¢ in the process is

and the charge densipy of the skyrmion can be obtained by y(r,T) — /0 AU (Lgerry+ Le+ Lop) W(r,0), (62
varying the effective action, with respect A§™.

To calculate the effective action, we follow the procedure
of Sec. Il noting thaA7™ is a U(1) gauge field added to the
SU(2) gauge fieIdQ'L“. Taking into account that the unper-
turbed Green functios, is diagonal in spin space, we find __."" ; 46 ’
that any term ir§, of the formA%™9,0; )™ vanishes due to a/);\sl el?u;hc?i osnp:l:] ti]ri)sa fo . ei: r‘;hue stptr)] s Seing)ﬁ\(/jhgrp o Jbzyisthe

the trace operation in spin indices. Similarly, it can be shown[h - : :
; e z component of the skyrmion spin. must be given
that all terms involving the product o&7™ and Q™ in S; by P y pin. 59 g

also vanishes. So the cancellation of the termS,irand S5

Where LBerry: poBolz, LE: - KZ(Vd)Z, and LHopf
=N/327re“’”‘B#FM are the Lagrangians corresponding to
Sem (18 and Sy (2). But such a time evolution also cor-
responds to rotation of the skyrmion spin by 2round the z

follows exactly in the same way as in Sec. Il, and finally we 1 (T

are left with the effective action JZ:EL dtJ dzr(LBerrer Le+ Lop) - (63
. N ) N To compute the phase picked up by the skyrmion wave func-
Ser By 'Aum]:@f dr dt "B, F.n tion, we now make a specific choice for the field
configuration*®
+ €[ g2 gy enmnp pom .
8 € Puln d(r,t)=cog y(|r)Je,+sin y(|r|) [{cog ¢+ ¢o(t)]&:

+sin ¢+ do(t) ey}, (64)

Ne?
+——| d’rdter™ ASTEEN (58
877f rdte A FX (59 where ¢ is the azimuthal angle, cpg]r|)]=(r>—A?)/(r?
+A?), A is a parameter depending on the skyrmion radius,
where the coefficieni, is given by and ¢(t) is chosen to be 2t/T to ensure that thel field
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configuration returns to itself after a time T. With this choice skyrmion wave function. So using E(2), we can obtain an
of d field configuration,Q,,,=1 and the fieldsB, can be expression for the charge of the skyrmion to be
represented as

* CDO T 2
B ={L1+co$ ¥(|rN1}d,(b+ o). (65) =3 fo dt J d°r (Lgerry ™ L vop), (69)

Using Egs.(62) and (65), it can be seen that the phase wherer denotes coordinates as measured from the center of
picked up by the skyrmion has three distinct contributionsthe circle.

The contribution from the second terhy gives the usual To evaluate the integral in E@69), we first rewrite the
factor exp(ET), whereE is the skyrmion energy. The other expression of th&,, fields in terms of complex coordinates
two contributions to the phase comes frag,, andL yqps, as

hich [ b
Hen A ey B, =(1+cogy[|z—=Zo(t)|THd,{In[z—Zo(1)]

G272 | Pr(1+ 081111, ~Inf|z=Zo(0)1}, (70

wherez=x+iy, andZ(t)=Xqy+1Y represents the coordi-
s N ) nates of the center of the skyrmion and the time evolution is
9H0pf:277gf d*r{1+cod ¥([rDIFx(r), (66  sych that the skyrmion rotates once around the circle in time
T, i.e.,Z(T)=2(0). Then the contribution of the Berry term
whereF,,(r) =V XB(r). From Eqs(62), (63), and(66), we  to the phase is
get the expression for the component of the spin of the

skyrmion, over and above the ferromagnetic background, to T
be ’ PO a2 | 072 1+ cotstle—Za(ul Iz Zo(0)]
Jf%J d?r{cog y(|rD]1-1} =pOiJ d?z fﬁ dzoﬁJr%iJ d?z
N
+gf d2r{1+cof ¥(|I)IFy(r).  (67) ><fOT(cos{y[|z—Zo(t)|]}—l)%. 1

The first term in the expression for the spin, represents th&he evaluation of the first term on the right-hand side of Eq.
contribution of the Berry term to the skyrmion spin and its (71) is straightforward and gives®R3p,. To evaluate the
contribution can be seen to be same as(Efb. The second second term, we interchange the order of integration, and
term comes from the Hopf term in the action. The contribu-shift the integration variable toz’=z—Z, Then the
tion of the second term can be directly evaluated by computspace integral can be written agd|z’|{cogw|Z)]
ing Fy, using the expression @, in Eq. (65). After some  —11fd¢'exp(—ig'). Since the integrandcod |z )]—1}
algebra, one obtains this contribution to Né& and so the yanishes at infinity, the’ integral converges, and hence in-

spin is given by tegration overg’ yields a zero result. So, the net contribu-
N tion from the Berry term to the charge comes from the first
_Po term. The contribution from the Hopf term to the phase can
J,==| d*[(d—e)-&]+ =, 68 p p
22 f [d=e)-el+3 (69 be written as

which agrees to the expression of the spin obtained in the last N T

section. It is to be noted that the Berry term in the effective EOPf:FJ dZZf (1+cogy[|z—Zo(1)[1})Fyy
action of ferromagnets is linear in time derivative. So its m 0
contribution to the phase and hence to the skyrmion spin 1
does not vanish in the adiabatic limit. In contrast, the effec- X[|z—Zo(V)|]—=—=
tive action of antiferromagnét$!* has a term quadratic in Z=Zo(1)
time derivative. The contribution of this term vanishes & 1/ ginceF, . is a localized function that vanishes at infinity, it
in the adiabatic limit> and hence the only contribution 10 can pe shown. following similar logic as in the case of the
the spin of the skyrmions in antiferromagnetic systemsgerry term, that the contribution of the Hopf term to the

AZo(t). (72)

comes from the Hopf term. _ _ phase vanishes. So we finally get
Next, we compute the charge of the skyrmion. To do this,
we rotate the skyrmion adiabatically around a circle of radius Do, ,
Ro in the XY plane and compute the phase picked up by the e* = 27 Ropo=Ne, (73

skyrmion. Since the skyrmion is a charged object and we

have a magnetic field, perpendicular to the plane, the where in the last step we have used the relatjgn
phased picked up by the skyrmion wave function must be= N/27T|ZB. This result agrees to that of Yang and Sontihi,
given by expie*®/dy), where & is the magnetic flux obtained by explicitly computing the Berry phase using a
through the circle,e* is the skyrmion charge, and, variational wave function.

=q/e is the flux quantum. On the other hand, this rotation It is to be noted, that the contribution to the charge of the
can again be thought as an adiabatic time evolution of thekyrmion, within this prescription, comes from the Berry
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term in the action. On the other hand, when we calculated thdo not contribute to the statistical phase. The contribution to
charge of the skyrmion as a response of the effective actiothe statistical phase therefore comes from the Hopf term and
to an external electromagnetic field in Sec. 1V, we found thats given by

the charge of the skyrmion is a consequence of the coupling

of the Hopf term to the external electromagnetic field. This Ni

apparent contradiction can be resolved in the following way. I

Spksrmions in quantum Hall ferromagnets have a ngnze}r/o ‘95“’“:@] d?z(1+cogy[|z=Zo(1)[1})

electric charge and consequently couple to electromagnetic
fields. Now, let us consider the effective action of a skyr-
mion in presence of a constant magnetic fielg in the z
direction. The coupling of the Hopf term in the effective
action to this field would give us a term

1
2
X ny(Z) § m (76)

Since the integrand in Eq76) is nonzero only within the
Ne radius of the second skyrmion at the center, where (1
Sem:gj d?r dt "B, F3, +C(_)s{y[|z—Zo(t)|]}) is a constant, the contour integral can be
easily evaluated and we finally gét.,—N. The statistics
of the skyrmion is, therefore, completely determined by the

= NeHOJ d?r dt By coefficient of the Hopf term. Consequently, the skyrmions
™ would be Fermions for odd integer fillings and, as we shall
Po [ see in the next section, anyons for fractional filling factors
=5 d“r dt By v=1/(2s+1). Our result for the skyrmion statistics here
agrees to that of Yang and Sondfibut contradicts that of
= Stery- (74  Dziarmaga*

The spin and the statistics obtained for the skyrmion is

So, we see that the Berry term in the effective action ofapparently not in accordance with the spin-statistics theorem.
skyrmions in quantum Hall ferromagnets is a consequence dlowever, it must be noted that the skyrmions in quantum
the nonzero electric charge of the skyrmions and the presHall ferromagnets move against a nontrivial spin back-
ence of a constant magnetic fiélg) in the system. Therefore ground. As a result, the measurement of skyrmion spin, as a
it is not surprising that the contribution to the charge, ob-response to the external magnetic field, always has a contri-
tained by rotating the skyrmion, comes from the Berry term.bution from the background. This renders the definition of
It is to be noted that in antiferromagnetic system liket%  the spin-quantum number for the skyrmions somewhat arbi-
films,!” the skyrmions are electrically neutral and hence wetrary. This situation is to be contrasted with the skyrmion in
do not have a Berry term in their effective action. antiferromagnetic systems like P& films, where the

Finally, we compute the statistical phase picked up due tground state has no net spin and the skyrmion has a well-
exchange of two skyrmions. To calculate this statisticaldefined spin-quantum number in accordance with the spin-
phase, the first skyrmion is adiabatically rotated around a&tatistics theorem.
circle of radiusR, with the second skyrmion at the center.
The statistical phase is then defined as ddéditional phase
picked up by the wave function of the first skyrmion due to VI. FRACTIONAL FILLING
presence of the second skyrmion at the center. The radius of ) ) )
the circle is chosen to be much larger than the radii of both "€ results of the previous section can be generalized to

the skyrmions, so that these skyrmions can be assumed to tjee case of fractional fiIIingg,. This is most easily dong within
noninteracting. In this case, the totafield due to the skyr- (e framework of Chern-Simon&S) theory for fractional

mions are given byl=d!+ d?— 7, where superscripts 1 and guantum Hall state 48 Within this framework, the elec-
2 refer to the first and the se(':ond skyrmion respectivelytrons' apart from their mutual interaction, are also coupled to

Consequently the Lagrangian of the two-skyrmion systen‘? CS gauge field and the coupling constant of the CS field is
can be shown to be given by chosen so that an even number of flux quanta gets attached to

each electron. The resultant composite fermions then fill up
an integer number of Landau level at the mean-field level.
Thus fractional quantum Hall effect for the electrons turns
out to be integer quantum Hall effect for the composite fer-
I—Berry:@[Bé(r_RO)+Bg(r)]a mioqs. In this paper, we shall consider only those filling
2 fractions where the unperturbed ground state is known to be
fully spin polarized. Such filling fractions are given hy

L= I-Berry"_ LHopf-

N 5 =1/(1+2s)* wheres is an integer, 8 flux quanta are at-
L topr= 35— € [BL(r =Ro) + BL(1] tached to each electron, and the resultant composite fermions
fill up one Landau level. In what follows, we neglect the
X[FL (r=Rg)+F3(r)]. (75  correlation effects between the composite fermions.

We shall now generalize the results of the earlier section.
From the Lagrangian, it is clear that the additional phaserhe procedure is mostly similar to that of the earlier sections,
appears due to the cross teNr/B27re”””Bl1L(r — RO)Fﬁx(r) and we shall only point out the essential differences. We start
in the Lagrangian. The Berry term, being linearBrfields,  with the mean-field effective actiof¥) which now reads
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Sy, ¢’AZS] whereys are two component composite fermion spinor fields.
Here A®® means fluctuations of the CS fields from the mean
value(A%). The effective vector potentia®" is then given

=f d?r dt z,b;(r,t)([iﬁo— gr,t)+eg]l by A®T=eA+(A%) and the last term in the action is the
usual CS term wittF 5, = d,A®— 9,A7. The effective mag-
netic field experienced by the composite fermions ldgg
Pp(r,1) =Hy/(1+2s).

b We now introduce S(2) rotation matrixU(r,t) and the

parametersp, and ¢, exactly in the same fashion. After

1 i i T c
+ jd2rdteMV”ACS(r,t)Ffji(r,t), 77 the_:se transformations the actidj xy ,X,QM,A;] can be
16ms # written as

[p—A*(r) -~ A%J?
Bl 2m

[+ yod(r,t)- o’)

a

S=80+Sl+scs,
do [p—eA*f(r)+a]®
Sozfdzrz)(;(r,w) (o+ep)l — >m I+ y00,| xp(r,w),
ab
dwdp, 1 G *
S :_f er Xf(r:w"'p )<_|:(QIN+ACSI)1— Xb(riw)’
il (277)2 a 0/} o Iz " da, o)
1 2 MV A C cs
Ses=1gog | T dte* AT HFR(rY). (78

So, we find that the effect of fluctuations of the CS gauge

fields is to modify the basic interaction vert& by chang- No,=27Tr (
ing Q'L“ to Qiﬁ: Q':t+ A1, To obtain the effective action

for the skyrmion, we therefore integrate out the fermion

fields and expand in powers Qlﬁﬁ. The relevant terms con- N3=277Tr<
tributing to the Hopf term are again given by the same dia-

grams in Fig. 1 withQ"™ replaced byQ®". The crucial point . .
that makes the calculation of these relevant terms simple is Since the unperturbed ground state for the composite Fer-

that the unperturbed Green functions are diagonal in the spif'o"s 1S completely spin polanze@, It can be gasﬂy seen that
space. As a result, any term i8, that has the form 2= Ns. A!so since the composite fermlqns fill up exactly
A;s&vﬂi(z)im vanishes due to the trace operation in spin in-one effective Landau level for the considered filling frac-

dices. Similarly, it can be shown that all terms involving thetlons’ the_arggments_ of Sec. Il can agaln.be carr_led through
s int : to getN,=N3z=1. Using these results and integrating out the
product of A, and Q™ in S; also vanishes. So, the cancel- CS gauge field& we finally get
lation of the terms irS, and S; follows exactly in the same '
way as in Sec. Il, and finally we are left with the effective v
d _ 2 28
action SHopf—@f drdt e#"B,F,,, (81

Gyt 9G,t  9G,*t
0 GO GO '
dw Idy ° by

. aGglG aGgle aGglG -
S 0w % apy Cagp, °)

wherev=1/(1+2s) is the filling fraction.
S.(B Acs]:&f d2r dt e“" B F So, all the results of the previous sections can be gener-
efil P ud ™ 30 v alized by replacing the value of by ». The skyrmions are
N anyons carrying a chargevQ,,. This coincides with
+_3f d?r dt e“™ASF the results obtained by Baest al>? using a phenomeno-
8 pey logical approach.
There are a couple of points that are worth mentioning
)f d?r dt e*" ASFSS | here. First, the same results may be obtained using the for-
e malism of spin-allowed CS theofy.The calculations follow
(79 exactly the same lines for the filling fractions discussed here,
and are therefore not repeated. Second, although the theoret-
ical derivations are exactly the same as in the case of integer
where the coefficientdl, andN; are given by filling, fractional fillings are achieved at much stronger ex-

N

O [
87 16ws
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ternal fields, which means that experimental observation othat disorder is negligible, i.eq.7>1, and the temperature
skyrmions for fractional fillings will require samples with T=1/8 is small enough so that one can neglect phonons.

very low Landeg factor. Recently, however, Leadley al !
have observed evidence of spin depolarization nead/3
by reducing the Landg factor of the sample by applying

Throughout this section, we shall use the Matsubara formal-
ism. We use natural units=c=kg=1 and all other con-
ventions listed in Sec. Ill remain the same except for the

replacement— —ir.

The action for the system can be written using the same
model of local interaction as in Sec.[Egs.(7) and(8)], but
with i [ dt replaced by— fgdr. Following steps identical to

In this section, we derive the effective action for the skyr-those in Sec. Il, we then integrate out the Fermionic fields to
mions at finite temperature at=1. We shall also assume obtain the effective action given by

external pressure.

VII. FINITE TEMPERATURE

Seii= S+ S;,

10 d?p 1
S=5 J(zq:;ZBE [ ™(p,ipn) PL (P,ipn) Q) (=P, —ipn) + Q2 ™(p,ip,) PE(p,ipy)

X Q2™ —p,—ip) + Q3 ™(p,ip) P4 (pipn) Q3 ™(—p,—ipy)]

d’p d’q d?l 1
(2m)®

= | “me

where p, and g, are the Matsubara frequencies, aRfl” and T4,2
functionsGg as

T4 (P, 0iPn. 100 Q% (p.ipa) Q2 ™(0,iq,) Q3 ™(—p—a,—ip, (82

Ei _iqn),

BZ ipp

can be expressed in terms of the unperturbed Green

P (p,ipn)=

Go(rq,rz,iop)

-1 11 9Gy*
2 2 ] ip-r
4|_XLyTr( f der.d<r, — B |§wn {Ue 1,( o )

o
4Gyt
da, |,

r
Uy

1 ip-r
XE O'le 2,

Go(rz,rl,iwn+ipn)) y

9Gy*
da, ;

1 _
Go(rz,rs,iwn+iqn)§[ age'<p+q>~r3,(

2l

EE

fon 2

Go(ry,ra,iwy)

9Gy*
ﬂa)\

TANP,Q,ipn,i0,) = | —Tr fdzr d?r, d?r ! oeP
123 ns'Yn 4L>(Ly 1 2 35 B

aGol)
Jda,
;

Ly

!
2

UzeiQ‘r2,<

GO(errlviwn_ipn))-

r
2], 3l

(83

First, we consider the terms in the effective action thatcancellation of the first two terms &, and S; up to the
contain T4, , P4”, and P4”. It can be easily shown that required order.
each of these terms are analytic functiongpadind pg. The The procedure for obtaining the effective action has been,
reason for this analyticity is simple. Each of these functionguntil now, similar to that in the zero-temperature case. How-
contain a product of two or three Green functions in combi-ever, at this stage, we come across an important difference.
nation of Gy G4 or G, G, G, . As a result, the energy ei- At finite temperatureP5" turns out to be a nonanalytic func-
genvalues in the denominator of these Green functions aréon of frequency and momenta, so that we cannot carry out
different even when their Landau-level indices are the sama derivative expansion analogous to the zero-temperature
and this restores the analyticity of these functions. Sincease to obtain the Hopf term. This nonanalyticity of the po-
these functions are analytic, we can carry out a derivativéarization bubble is well known in finite temperature field
expansion similar to the zero-temperature case. This leads theory and many-body theofy=>"To see exactly where this
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nonanalyticity appears, we compR4”(p,py). The method P (p,po)=palo(p,Po) +ie€%poll(p,po)
of this computation is sketched in Appendix C. The result is )
00 ) +(|pl*8ij — pip;) (P, Po) (84)
P3(p.po) = [p|“Ilo(P, Po).
P(p,po) = PiPollo(p,po) +i€'® piTT1(p,Po), where the function$ly, 114, andIl, are given by

—|§ ® n i n'l SEH |p|2I§ n-n'-1 L |p|2|§
Ho(p,po)=Tn20 20 azi Con(Po) 7€ 2 ( 5 Lo 5 )
_IB“’EI:J2 - . @ n'! 7|p|2|é |p|2|ZB oot n—-n’ |p|2|28 |p|2|§ n—-n’ |p|2|é
Hl(p,po)—S—\/aFo 'Zzo azi Cnnr(po)ﬁe 2 > Lo 2 5| Ln 5
212 212
—n'+1 |p| IB , —n’ |p| lB
+2L:’nl+( 2 )]_(n_n)L:’n(T '
-3 5 2 B B T A R BT T A - K T
Mo(P.Po) = 1 2, 2 2 CawlPopre 2| =5 L = e
2|2 , 2|2 , 2|2 , 2|2
X —|p|2 B[ o <|p|2 = +2L2,”1“<—|p|2 B)]—(n—n’)LQ,” (—|p|2 B” (85)

wheren andn’ are Landau-level indices,is the fermi dis-  biguousp— 0,p,— 0 limit for I1,, Eq. (87) would reduce to
tribution function,f) is shorthand notation fof(ey), e, are  a local effective action in position space similar to E2).
the energy eigenvalues given bye®=(n+3)w. However, such a limit does not exist and in general it is not
" is the associated Laugurre polynomial, and possible to obtain a simple effectjvg ac.tion in position space.
Nevertheless, as shown above, it is still possible to obtain a
rather simple effective action in momentum space.
0 ea , Although, it is not possible to take an unambiguous zero-
(Po :( (fi—fr)o(n—n’) if po#0 frequency zero-momentum limit of the effective acti@),
p%—wﬁ(n—n’)z ' one can still infer the fate of the prefactbr at finite tem-
perature from physical considerations. To elucidate this
df(z) _ point, let us consider the Hall conductivitiyvhich is the
=- nn'(T) if po=0. (86)  Chern numberin these systems at finite temperature and in
z=e) absence of disorder. If we attempt to compute the term in the
effective action giving rise to the Hall conductivity, we find

From Eq.(89), it can be shown that the functiofib, and 5t we obtain an identical nonanalytic polarization tensor
I, are nonanalytic at the origin. The value of these functions;§ the effective action is again given by

in the limit p— 0 depends on whethey, is set to zero before
or after the limit is taken. This nonanalytic nature arises from

+avyy, L"

n!
C, . is given by

Ca

nn’

the contribution of then=n’ term in the expression of Ha":e_zf d?p dpofwaem( )i

Cr ./ (Po). Further,IIy,IT; andII, do not either diverge or et — 2 (2m)° w (PPo)IPy
approach zero as and py— 0, irrespective of how the limit o

p—0,p0—0 is taken. So, it can be inferred from Eq82), XI11(p,po) A (=P, = Po)- (88)

(84), and (85) that in the long-wavelength low-frequency ) o

limit, the relevant leading order term in the effective action, TO obtain the dc Hall conductivity as a response of the sys-

is given by tem to an external field from this effective action, we must
now specify the dc limit. There are two different limits pos-

1(d’pdp noint _ sible. In the dynamic limit, we measure the response of the

effzzf 53 €*"*B, (P, Po)ipy system to a spatially homogeneous but very slowly time

(2m) varying external field. In this case, to compute the response,
XT11(p,po)B™(—p,—po), @7  We first sep=0 and then take the limjto— 0. On the other

_ hand, in the static limit, we measure the response of the
where we have expresséb‘;'m fields in terms of the gauge system with respect to a static but weakly spatially inhomo-
fields B'L“ using Eq.(13). If we could have taken an unam- geneous field and consequently first pgt=0 and then take
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1.0 , . VIIl. CONCLUSION

The present paper generalizes the derivation of the Hopf
08 | ] term in earlier work¥ ~*°to quantum Hall systems. We find
that althougtk, andk, are no longer good quantum numbers
simultaneously, it is possible to replace the integration over
081 1 these wave vectors by averaging over phases of the boundary
conditions. This procedure is well known and is very useful
in determining the quantized Hall conductivity, which is es-
sentially given by the same topological invaridht? The
prefactor of the Hopf terniN) is found to be the filling factor
02 1 (v).

The value of N obtained agrees to the previous
result*?>2%or the integer filling case. The method used here

N static

04

00 - = 5 is, however, quite different and more powerful. It does not
T, need either the assumption of lowest Landau-level

projectiorf®?® or laborious term by term evaluation of the

FIG. 2. Temperature dependenceNyac. effective actiorf’ Furthermore it provides a simple physical

argument in terms of Berry’s phase as to why the prefactor,
thep—0 limit. It is well known that at finite temperature the the Hopf term, has to be an integer. It is pointed out that this
conductivities in the static and the dynamic limits areis a general result, and not a consequence of the simplicity of
different>0-52 the model assumed. Our method also does not require pa-

Similarly, the prefactor of the Hopf term, which contrib- rameterization of the S@) rotation matrixU in terms of the
utes in part to the spin of the skyrmion, can be looked uportuler angles and therefore avoids any ambiguity that may
as the response of the system to the external magnetic field arise from such a procedut®&?® The generalization of this
In particular, part of the z component of the spﬂi’ﬁ(pf can method to the case of fractional filling factoss=1/(2s
be obtained from the Hopf term as a response to an externat 1) is straightforward. The results obtained are in agree-
magnetic field in the z direction. It can be easily seen, thatnent with the results of Baeat al*? obtained using the phe-
the Hopf term in the effective action of the system with thenomenological approach.
external magnetic fieldH<*) is given by Eq.(87) with Biﬁt The expressions for the spin and charge densities of the
replaced bnyta': Bi:ur H®'. The contribution from the skyrmion are obtained from the effective action. The contri-
Hopf term to the z component of the spin of the skyrmionbution to the spin density comes from both the Berry term
can then be computed from this action as a response of tHd the Hopf term in the effective action. In the case of the
system to the external magnetic fi¢#§'. To compute this, long-wavelength skyrmions, the contribution due to the
we must again specify the dc limit. In the dynamic limit, former dominates. The total spin of the skyrmion, therefqre_,
relevant for spatially homogeneous magnetic field with weakléPpends on the system details. The charge and the statistics
temporal variation, a simple calculation leads ﬂ}iopf of the skyrmion, on the other hand, is completely determmed
=N /2, where by the prefactor of the Hopf term. The charge for a skyrmion

dynamic & f 4 . .

with Q=1 is shown to beve and the statistical phase is
found to bevw. Consequently, the skyrmions are Fermions
(anyons for odd integer(fractiona) fillings.

We also obtain an effective action for the skyrmion at
finite temperature. It is shown that it is not, in general, pos-
%ible to obtain a local Hopf term in position space at finite
temperature because of the nonanalyticity Rf”(p,po).
However, it is possible to derive a rather simple effective
action for the system in the momentum space. One can then
choose static or dynamic limits based on physical reasoning

Ndynamic: 16 lim 11,(0,po) =N=1. (89
po—0

The prefactor of the Hopf term remains the same as the zer
temperature value in the dynamic limit. In the static limit,
appropriate for static but weakly spatially varying magnetic
field, we getd}°P'=Ng.i/2, where

Nstatic= 167 lim I1;(p,0) and find the value of the Hopf invariant in these limits. In the
p—0 dynamic limit, the prefactor of the Hopf term is independent
o 1 of temperature and has the same value as at zero temperature
=1-Bw.>, ( n+ _) fe(1—f£2). (90  Wwhilein the static limit it becomes a function of temperature.
n=0 a==* 2 To conclude, we derive the prefactor of the Hopf term in

the effective action of skyrmions in quantum Hall systems
The prefactor of the Hopf term becomes a function of tem-for both integer and fractional fillings. This prefact@) is
perature in the static limit. The temperature dependence dbund to bev. This suggests that the skyrmion wi,
Nstatic IS shown in Fig. 2. As expecte®gic= Ngynamicat T =1 have chargee and statistical phasew. On the other
=0 and reduces to zero at high temperaturéw(>1). The  hand, the dominant contribution to the spin of the skyrmion
temperature dependence Mfynamic and Ngic is similar to - comes from the Berry term in the effective action. As a re-
that of the dynamic and static Hall conductivities in thesesult, the spin of the skyrmion depends on system parameters
systems? 52 and increases with the size of the skyrmion. We also discuss
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the fate of the Hopf term at finite temperature. At finite tem- ,
perature, it is in general not possible to obtain a local Hopf GO(kl1k2-w):f d?ry d?rp el e G (ry 1, ),
term in position space. However, it is possible to obtain an

effective action in the momentum space and to obtain th&d- (A1) can be written in Fourier space as

value of the prefactor of the Hopf term from this action in the

. 2 2 -1
static and the dynamic limit. PAY(p, o) = : T f dk, d%kz de _ 9Go )
! aL,L (2m)° 9% [\ sz
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APPENDIX A X Go(ka+p,ki+p,0+pg) |- (A2)

In this appendix, we briefly outline the calculation of the
relevant term in the action from the expression ofNext, we carry out a Taylor expansion Bf*” in powers of
P{i"(p,po). For the relevant term in the effective action, we the external frequency and momentpy, whereh can take
need to retain the first-order term in expansiomPdf(p,po).  values(0,1,2. After some tedious but straightforward ma-

We start from the expression 8" in Eq. (22) which is nipulations we finally obtain
dw 1 —|px f d?k; d?k, d?k; dw
;LV 2 2 _
[ - 9Gy*
i 3G, * 1 XTr 0'»( ° ) Go(K1,Kz, @) 0]
. - olK1,K2,
X O'ielp rl,( 0aﬂ ) Go(rl,rz,(l))z ! &a,u k1 !
L fl,
[ 3Gyt X aGgl) Go(ky . k3, 0)
0 olK2,K3,w
X O-Je P rZ( aa,v) Go(r21r11w+p0) ﬁay k2
2],
Gyt
(A1) X Ja, ) Go(ks,k1.w)l, (A3)
whereG is the unperturbed Green function. Using the Fou- ks
rier transform of the Green functions, where we have used the identities following from E20)

-1

0
) Go(kslkzyw),
a k3

9Go(ky, k>, 9Go(ky k>, d?k G
o(kq,kz w)+ o(kq,ko w):f 3 Go(kl,ks,w)<

ok K5 (27)? d

(A4)

dGo(K1,Kz, )

Jw

d%ks G‘l
:_J Go(ky, k3, )| ——| Gop(kz, ks, ).
(277)2 @ |

3

Substituting the expression &;" in Eq. (21), and trans-  zeroth-order term in expansion iifj‘k”” , Which contributes to
forming back to real space, we obtam By S;. The manipulations are straightforward and directly yield
Eq. (26).

szng{;“f d?rdt QL ™(r,)8,Q}"(r,t),  (A5)
APPENDIX B
In this section, we sketch the derivation of some of the
properties of the tensots”™ andc/i" , which lead to can-
1 1 1 cellation of the termsS, and S; in the effective action. We
bHvA = 1 Tr( o; 9Go o0 9Go 0‘760 ol begin with the tensocfj‘k“ It is easy to see from the expres-
UooaLL da, Voa, 77 day sion of ¢y™ in Eq. (26), that all components of this tensor
(AB)  that have odd number af, or o, matrices vanish by trace
operation. So the only possible nonzero termS4mre of the
This procedure can be similarly carried out to obtain theform

where the tensolo{}”" is given by
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1 . A . . . A
83 ﬁg)\f dzr dt QI |nt(r ) Q j |nt(r t)Qg |m(r t), S§:§f dzr dt[ biw)\[Q;LLthE |ntQ}2\ int Qimtﬂi |ntQ;3\ int
(B1)

_Qiintﬂi intQ)l\ iﬂt] _ (biu/)\_i__ bz,u)\) Q)Z\ int(&yﬂiiﬂt)

where the indices andj are such thatrio;=1 or *io3. We
first consider the case where=j. Let us perform a gauge

transformation org;, which corresponds, as we have seen in 4= Ql .er, IntQZ IntH (B6)
Sec. 1V, to a rotation about the locdlaxis. Under such a 2"

transformation 3 ™— Q3™+ 9, A and the actiorS; picks

up an extra term Using Egs.(B5), (B6), and(B3), after some straightforward

algebra, one obtains

5S;= ﬁgkf d?r dt Q},"(r, ) QL ™(r,t) 9, A(r ). 1 _ _
(B2) s;+s§+53:_§(bff“+b{f“)f dzrdt[ﬂi (5,0,

It therefore follows that for the action to be gauge invariant,
6S3, must vanish for ali and consequently we must have
clsh=—cl4N . The property cts*=—c!4 can also be
checked by explicit evaluation of the coefficiariy* . As a L lintg3intg2int_ )3 intey 1 intc)2 im)}
result, the terms S, with identical spin indices vanish. This wo STy TR S

can be seen by interchanging the indigeandv in Eq. (B1) (B7)
for terms withi=j and k=3. So the only nonvanishing
terms inS; are those with all different spin indices. Further-
more, sincectya=—bt"™ (34), S; can be expressed as

) ) 1 ) ) .
+ Qi |nt([7yﬂi|nt) _ E(Qilntﬂi |ntQ}1\ int

The gauge invariance of the effective action then requires
that the terms on the right-hand side of E§7) be invariant
under the gauge transformatiéd’ ™—Q3 "™+ 4, A, which

Si= - 1b,wxf dr dt 03 M(OLIMQ2 M- 2 Mo Ling leads to the conditiob’** = b”‘”‘ Consequently, the first
2 two terms inS, exactly cancelS;. The propertybs**=
(B3) —by** can also be checked by explicit evaluation of the

coefﬁcientb‘l“’x . However, it is to be noted that this property
Next, we demonstrate the cancellation of the termS§;n  and the consequent cancellation of termsSinand S; fol-
andsS;. We begin with the first term o6, in Eq. (31). Using  lows from general gauge invariance requirement and does
Eq. (12), this term can be expressed as not depend on the details of the explicit expressions of the
coefficientsb’ ™ .

1 . . . _
Szlzibiu/)\f d2r dt[QZ]L) Int(&MQi Int_Qi Intﬂilnt PPENDIX
+ Q3 intﬂz int . . .

Q] In this section, we sketch the method of computation of
the finite temperature polarization tens®4” which is
_1 WU\ 2 _olint 1int given by
—Zb1 dordt[— Q5 (9,0, ™)

it 2 int 3 i it 3 Nt 2 i -1 11
_er/lmﬂi Imﬂimt""ﬁ};mtﬂf |ntQi|nt]’ (B4) P’g”(p,po) T TI’( f dzrlderEA E
iwp

where in the last step we have integrated the first ten&}in i .
by parts. Using Eq(12), it can be seen after some algebra | oogipr (ﬁGO )
;

GO(rlirZIiwn)E

that Eqg.(B4) can be expressed as da,
Uy
Szl_l er dt b,uv)\[QE: intQZ intgl int+ 93 inth intQZ int [ —ip-r aGal
- 2 1 y7 v A I v A X o3€ 2, Ja
14 2 .

_ Qiih’[ﬂ]]; intﬂi int] _ (b,iuz)\_F bIM)\)

Q% int(aVQ’:LLLint) - -

XGO(r2|r1||wn+|pn) . (Cl)
+%Qiint912} iﬂtQ;I\. int“ . (BS)
The evaluation ofP4” is tedious but straightforward. Here

An identical calculation for the second term in E@1)  we shall only show the derivation d?3° explicitly. After
yields evaluating the matrix trace, we can writd° as
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0o 1 , 1 _ where f{ is shorthand notation fof(e;) and e;, are the
PP=—"| d2r d?r,eP (17D Z > [G(ry,riw,) i i =
374 B85 0 energy eigenvalues given = e, + a .
" Using the expression for the Landau wave functions

X G (rq,Fp,iwn+ipn)+ Gy (ry,ra,iopn) (n|r),*®>%we get forn=n’
XGq (ry,ro,iwy+ipy)]. (C2 ) n't P23 (|p|2|2>
. . . . nje'Pin’y=\/—e” 77 +i nnL ,
The Green Function§ is easily obtained as solution of Eq. (n| n") n! —5 (pxtipy) 2
(20) exactly as in the zero-temperature case in terms of the (C5)
single-particle eigenfunctions and energi@9) by replacing
w—lwy: WhereLn " are the associated Laugurre polynomials.
| | Usmg Eq.(C5H), it is now a matter of straightforward al-
Gi= _n)nl (c3  9gebraic manipulations to obtain an expressionfgf. It is
iw,— e,; to be noted that in Eq.C4) one needs to separate the terms

in the sum withn=n" from the terms witm=n’ and inter-

changen andn’ in the latter. This gives the final expression
00

Jor P3” as

Using Eq. (C3), it is straightforward to perform the fre-
quency sums in EqC2). After carrying out the frequency
sum, we perform an analytic continuation to real frequenc
(iph,—pot+in). Itis crucial that the analytic continuation is PY0— | p| 2T o )
performed after the frequency sums are carried out. As a 3 = [PI"Ho(P:Po),
result, one gets

Ié co0 . n’t
1 5L et MolpPo) =~ 2 2 2, Cin(Porr
P33 3 L (nleP i) o
4 7=o =0 =% Pg— wc(n—n')+|7] \p\zl |p|2|§ n—m—1 , |p|2|23
. n—n
x(n'le”™"2jn) if po#0, e ( 2 ) t ( 2 )
» o Co6)
1 f(2) i (
— _ p-r ’
4 Z ,2::0 ,g‘i 5””'( 0z )Z=Ea<n|e in") whereC, ,(po) is defined in Eq(86). The other components
_ " of P4” can be computed in an identical manner and in this
x(n'|e”'P"n) if py=0, (C4  way we obtain Eqs(84) and(85).
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