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Effects of field modulation on Aharonov-Bohm cages in a two-dimensional bipartite
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We study the effects of field modulation on the energy spectrum of an electron in a two-dimensional
bipartite periodic lattice subject to a magnetic field. Dependence of the energy spectrum on both the period and
the strength of field modulation is discussed in detail. Our main finding is that introducing field modulation
drastically changes the energy spectrum and the localization properties of the system appearing in the absence
of field modulation; the degeneracies induced by a uniform magnetic field are broken and the resultant energy
spectrum shows a dispersive band structure, indicating that most of Aharonov-Bohm cages become un-
bounded. The effects of field modulation on the superconducting transition temperature and the critical current
in a wire network with the same geometry are also discussed.

I. INTRODUCTION question. Thus, in this paper, we would like to address the
question and clarify the effects of a nonuniform magnetic
The physics of magnetically induced frustration in a vari-field on the energy spectrum and the transport properties of

ety of two-dimensional(2D) structures including squate®  the T3 geometry at rational fluxes, especially at half a flux.
rectangulaf® triangular® honeycomb;® aperiodic®  As a concrete and simple example, we consider a magnetic

quasiperiodiéyoll fracta|,12 and even rando?ﬁ geometries field with a periOdiC modulation and investigate the effect of

has attracted much interest in condensed-matter physics fé!d modulation on the stability of AB cages and on the
several decades. Recently, Vidal and co-worKepsesented ~characteristics of . andJ. . _

a new localization mechanism induced by a uniform mag- . 1h€ contents of this paper are organized as follows. An
netic field for noninteracting electrons in a 2D bipartite pe_e|genvalue equation taking into account field modulation is

riodic hexagonal structurdthe so-calledT; geometry, d;afrlv;ad :f} Slgc' I:j' ,lAl:aIyUC ?r?d numerical rtesults tfort_thel
where the unit cell contains three sites, one sixfold coordi<ects ot ield moduration on Ihe energy spectrum at rationa

PR . fluxes and the localization properties of the eigenstates at
nated(called the ‘hub’ sit¢ and two threefold coordinated half a flux are presented in Sec. Ill. The effects of field
(called the “rim” siteg. Within the tight-binding(TB) ap- P .

S . modulation onT. andJ, of a superconducting wire network
proximation, they showed that, due to fully destructive quan- ¢ N b 9

. ) ) are also discussed in this section. Finally, Sec. IV is devoted

tum interference, the eigenstates at half a magnetic ﬂU)f0 a summary.

guantum per elementary rhombusriefly, half a fluy are

extremely localized and bounded in Aharonov-BokAB)

cages. Very recently, Abilio and co-workétsperformed

transport measurements on a superconducting wire network

with the T3 geometry and confirmed the field-induced local-  We consider an electron in a 2D rhombus tiling under a

ization effect by observing a depression of the superconducipatially modulated magnetic field as

ing transition temperatur@. and the critical currend, at

half a flux. . . éZ[Bo+ Bmod(x)]iv (1)
Since the calculations in Ref. 14 were performed under

the basic assumptions af) the perfectneSS and the infinite where BO (Bmod) denotes the unifornﬁmodu'ated part of

size of theT; geometry andii) the spatial uniformity of the  the applied magnetic field. Among possible types of modu-

magnetic field, it may be very interesting to address a quesated fields, we pay attention to the one-dimensiofidb)

tion of what happens under the situations beyond the tw@jne-modulated field as

assumptions. Of course, effects beyond the assumiijon

were already discussed by the authors of Ref. 14; the ran-

domnesgsuch as random modulations of hopping terms and Bmod X)= Blsin<

fluctuations in the tiling areas and in the transmission matrix

along the edges which is inevitable in real systems, was

Il. FIELD MODULATION
AND THE EIGENVALUE EQUATION

wx)
) (2

whereT, is the period of the modulation along thedirec-

tial for the field-induced localization effect. In addition, theegg’/”' Under the Landau gauge, the vector potential is given
(0]

authors of Ref. 15 argued that the incomplete suppression

the experimentally observel] at half a flux might be attrib- B.T 27X
uted to the network’s finite size. However, effects beyond the A= ( 0,Box— ﬁcos(
assumption(ii) are not examined yet and remain an open 27

,0) . 3
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¥ ¢ (=\3Bya?/2) being the uniform background magnetic
flux through the elementary rhombus. Now let us define

s _YeEYL o L Vet s

Mm 2 ’ Mm+1= 2 ’ Vri:ﬂy3i72! (9)
X and
=8 10
T S 0
1 2 3 4 Then, Eq.(6) can be reduced to a 1D equation, which is a
i N N generalized version of the eigenvalue equation derived in
FIG. 1. A portion of the 2D bipartite periodic tiling. Ref. 14:
The TB equation that describes an electron on a 2D lattice _
subject to a magnetic field reads Am=Ame1¥m+ 1+ Cotfm+ Amibn-1, (1D
where

El/fizz tijeiyijl//j. (4) B N
! Am=COo pp)COL y + k),
where t;; is the hopping integral between the nearest-

neighboring sites andj, and the phase factax; is given by Cm=cog v,,)cog v, + 2k), (12)
27 (i .. ;
vy="g | Al 5
1
1
¢o=hcle being the magnetic flux quantum. For the sake of M;=%+K sin 7_T|_—a sin 3.:_Ta m-— 5”
X X

simplicity, we settj;=1. The phase factor along tiedirec-
tion in Fig. 1 is zero under the Landau gauge. Denoting the

phase factor along the upward direction on the line 1(2,3,4) L 3y 1 Ta 37a 1
in Fig. 1 asy;(2,34), and using the wave function at a hub Hm=7% | M= 5 —Kco T, co T, m=sl
site asy(x,y) =e"Wy(x), Eq. (4) can be written as
' ‘ 3a Y [ ma)\  [3mma
(EZ_6)¢,(X):[el(y4+K)+el(73+K)]¢(X+? Vm—§+2K SIN| Z_TX SN TX ,
+[e?057 )+ €202 9]y () + [ 02 o ood 7| 37ma s
| 3a vy, =3ym—2K co o7, co T ) (13
+e 0ty x——|+Hc, (6)

A close inspection of Eqg11)—(13) for a reduced ratio-

wherexk= \/§kya/2. nal flux f=p/q with mutual primesp and g enables us to
Denoting ¢,= ¥(x) at x=3ma/2, the phase factors can write the Bloch condition along the direction as

be written as

i . =eN7y . 14
3’)/ 1 y 3ra 5 ¢m+N wm ( )
Vi=5 | M—5|—5— K cos -=l _ N
2 2) 2 | Ty 6/ | Here, »=3k,a/2 andN is given by
37( 1\ v [37a 1)’ L.C.M.(2T,2q), q#3q’,p#2p’
Yo=—75"| M— 5|+ 5 —Kcos -=l
2 2] 2 L Tx 6/ - L.C.M.(2T,q), q#3q',p=2p’ 15
3y A 37a 1\] L.C.M.(2T,29"), g=3q9',p#2p’
Y3 7 m+§ —E—KCOE- TX m+€ _, LCM(ZT,q,), q:3q/,p:2p/
3y[ 1) y [3ral 5\ where
V4= m+§ +§—Kcos - m+5 , (7)
- : T,, T,#3T,
T= 16
where T T=3T (16)
y=2mf= 277¢), K YPTx ma . B= E (8) q’, p’, andT, being integers. Using Eqéll) and(14), we
bo m?a? |\ 2Ty B obtain the characteristic matrix as
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FIG. 2. Energy spectrum as a function fofor T,=3. (a) 8
=0.0,(b) B=0.3.

C, A, 0 O Ae N7

A, C, A; 0O - 0

0 A; C3 A, --- 0 (17
AN 0 0 0 --- Cn

Thus, by diagonalizing Eq.17), we can obtain Rl energy
eigenvalueg = (6+4\)Y%i=1,2, ... N} for a givenk and

the full energy spectrum by sweeping all tl?lepoint5 in the
magnetic Brillouin zonéMBZ).

Ill. RESULTS AND DISCUSSION
A. E-f diagram

When a periodic field modulation is introduced, a new
length(i.e., T) is added into two characteristic lengths, the

lattice constanta and the magnetic length=(%/eBy) .
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latter implies that there is no way for an electron to discern
the direction of the magnetic field.

B. Energy dispersion at half a flux

Before proceeding further, it may be worth noting that
there are two types of localization effects in thegeometry.
One is the topological localization appearingsat 0, which
originates from the local topology of the lattit&Since this
localization is well understood and independent of the mag-
netic field, we omit further discussion on this phenomenon.
The other is the uniform field-induced localization appearing
at E=+./6 at half a flux}* We pay attention to how this
kind of localization is influenced by introducing field modu-
lation. Note also that, owing to the reflection symmetry about
E=0, we pay attention to the energy spectrum only vith
>0 in the discussion below.

1. Case of T=2

In this caseN=4 and direct diagonalization of the (4
X 4) Hamiltonian matrix yields the following energy disper-
sion:

E(ky,ky)=* 64N, (18
where
A2 2 A2 2
A= Ai+A2_+?O i[Ag Ai+A2_+Z°
1/2\ 1/2
+4AiA2_sin2(2n)} ] , (19
with
Ag= —Ssi 45 2
o= —Ssin - cog2«),
(2B ™
A.==*sinl—|cog k¥—|. (20
T 4

A close inspection of Eq(18) shows that the upper and

Thus, a subtle interplay among them can change the energy,, o, edges of the energy dispersion with-0 are given by
band structure and the localization properties of the system

obtained in the absence of field modulation. We plot in Fig.
2 theE-f diagrams without and with field modulation. In the

calculations, we tookl,=3 andq=101(1<p=<100), and
swept (20 20)I2 points in the MBZ. Comparing Fig.(B)

with Fig. 2(a), we observe the following effects of field
modulation. First, the occurrence of overlapping between

neighboring subbands makes most of the small gaps closed.

This phenomenon of subband broadeniog gap closing

clearly appears for large values gfand/orf. Second, intro-
ducing field modulation lowers the symmetry of the energy

spectrum. The translational symmefiye., E(f+1)=E(f)]
and the reflection invariance abofs= 1/2 [i.e., E(f)=E(1

E,=[6+4\2D,]"? E4=[6-4y2D,]*3 (21
and the bandwidth is given by
8D 1/211/2
A=4ﬁ{1—(1—71) } , (22
where
2 2
D1=sin2(—'8 1+2 cod —'8” (23
T o

—f)] appearing in a uniform magnetic field are no longerEquation(22) clearly shows that the bandwidth varies from 0
held in the presence of field modulation. Note, however, thato 4/3 with varying 8. Note that this is a remarkable effect
the energy spectrum still exhibits the symmetry with respecof field modulation; the modulated field breaks the degen-

to E=0 and the reflection symmetry abdut 0. The former

eracy atE= /6, which appears in a uniform magnetic field

reflects the bipartite geometry of the rhombus tiling and theand makes the energy spectrum dispersive.
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FIG. 3. Energy spectrum as a function @ffor f=1/2 andT, FIG. 5. Energy spectrum as a function gffor f=1/2 andT,
h =4,
2. Case of T=3

DOS for several values g8. The DOS for8=0 consists of
By means of a similar method for the case above, we havg s.-function peak aE= /6, as elucidated in Ref. 14. How-

the energy dispersion ever, wheng#0, the DOS atE= /6 vanishes and =6
i{6i4[D2f(kX,ky)]1/z}1/2 beco’mes an edge that connects the two subbands whose
E(ky, k)= P (24) DOS.S e?<h|b|t the .weII—knoyvn pagoda shapes with a loga-
V7| {64 Dog(ky k) 1M, rithmic singularity in the middle of the subbands. The for-
where mation of a dispersive energy spectrum and the vanishing of
the DOS atE= /6 indicate that the modulated field makes
f(ke,Ky)=co n codk+sirt g sirx, most of AB cages unbounded, which in turn implies that the
transport properties of the system at half a flux will exhibit
9(ky ky) = sir? cosk +cos 7 sirfx (25  quite different behaviors from those under a uniform mag-
netic field.
and
3. Case of =4
D2=sin2(@ : (26) . i
A7 As an example to illustrate the fact that the energy spec-

trum sensitively depends not only ghbut alsoT,, we plot
in Fig. 5 the energy spectrum fog,=4 as a function of3. In
this case,N=8 and there are eight subbands wih0,
E,=[6+4\2D,]¥2 Ey=[6—4\2D,]¥2 (27 Some of which may ove_rlap or may have finite gaps between
them depending omB. Figure 5 shows that the number of
and the bandwidth is given by the same form as &2  distinguishable subbands runs from 1 to 6 with increaging
with replacingD; by D, which varies from 0 to 42 with up to 1. We found that the occurrence of subband splitting
varying 8. We plot in Fig. 3 the energy spectrum as a func-(or gap openingis a generic feature of the energy spectrum
tion of B, where the vertical lines are results obtained byat half a flux for T,=4. We also found that the subband
numerically diagonalizing Eq17) and the boundary curves splitting occurs more easily whef,# 3T, than whenT,
are obtained directly from Ed27). The inset shows th@ =3T].
dependence of the energy spectrum upte6. The forma- The T, dependence of the DOS also exhibits an interest-
tion of a dispersive energy spectrum instead of a highly deing feature. For illustrative purposes, we plot in Fig. 6 the
generate point spectrum can be clearly seen in the figure. pos for T,=4 for several values of. It can be seen that
Another remarkable effect of field modulation can beg— /g |ocates near an edge of a subband for small values of
found in the density of state®0S). We plot in Fig. 4 the 5 \ypile it locates in a subband for large values@fNote,
: : : : however, that even in the latter case the DOE at\/6 is
a still negligibly small compared with the integrated DOS and
b will have a very little effect on the transport properties of the
system, if any.

An inspection of Eq.(24) shows that the upper and lower
edges of the energy dispersion wk»0 are given by

¢ C. Energy dispersion at generic rational fluxes

The B dependence of the energy spectra for generic ratio-
nalsf exhibits a behavior similar to the case fof 1/2; the
, . | phenomena of subband broadening and gap opening are ge-
0 5 neric features under the modulated field. We show an ex-
ample in Fig. 7, where the energy spectrum wih-0 is

FIG. 4. Density of states fof=1/2 andT,=3. (a) 8=0.0,(b)  plotted forf=2/3 andT,=4. Wheng=0, the energy spec-
B=0.3,(c) B=0.6,(d) 3=0.9. trum consists of two subbands that touch each othef at

DOS (Arbitrary Unit)
Q
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(d) ous line: =0, dashed line=0.3, dotted line;3=0.6.
A symmetric abouf=1/2 and distinct downward cusps occur
M,_AJ\.AH J4 , at low-order rationalsf=1/3, 2/3, 1/6, 5/6, 2/9, and 7/9.
0 5 Besides, an upward cusp existsfat1/2, which reflects the

E field-induced localization properties of the eigenstates at half

FIG. 6. Density of states fof=1/2 andT,=4. (a) 8=0.0, (b) a flux, as demonstrated in Ref. 15. However, when the field

5=0.3,(c) B=0.6,(d) =0.9. modulation is introduced, the phase boundary exhibits sev-
eral distinctive features from the case =0 as follows.

=0, resulting in a gapless single-band structdrelowever, ~ First, the phase boundary becomes asymmetric with respect
when the field modulation is turned on, a gap opens betweet® f =1/2, which reflects the breaking of the reflection invari-
the two subbands. Besides, with increasjhigthere occurs ~ance of the energy spectrum abéet1/2. Second, the phase
further splitting of each subband into several sub-subbancdgoundary forf=1/3 severely changes in a nontrivial way
as well as the gap closing and reopening. even for small values g8, while the boundary fof<1/3 is
less influenced even by large values ®f To put it con-
cretely, of the cusps at strong commensurate fields exhibited
in the absence of field modulation, the cuspd atl/3 and

Now we are in position to discuss the effects of field 1/6 are still clearly visible, while the cusp &t 5/6 becomes
modulation onf; andJ. in a wire network. In the case of the jnvisible by introducing field modulation. Meanwhile, the
T3 geometry,T(f) is directly related to the edge eigenvalue cusp atf=2/3 is visible (invisible) at 8=0,0.6 (3=0.3).

D. Effect of B on T¢ in a wire network

of Eq. (11) by**™ Third, with increasings, the T.(f) depression up té<4/5
5 decreases independently Bf. The 8 dependence of th&,

To(f) Eo(f) depression at=1/2 is shown in Fig. 9, where a monotonic

1- W:C arccosé /18 ] , (28)  decrease of 2 T (f)/T.(0) is clearly seen. Meanwhile, the

amount of theT. depression fof =4/5 is inconsistent with

whereC is a constant that is proportional to the square of thehe modulation strength. Fourth, the cuspfat1/2 moves

superconductmg coherence length at zero temperature af@wnward by introducing a field modulation, which is the
Eo(f) is the edge eigenvalue at a rational fusor simplic- ~ Most remarkable effect of field modulation @p. This phe-

ity, we setC=1. nomenon indicates that the localization properties of the sys-
We p|0t in F|g 8 the phase boundaries for a system W|'[Hem at f=1/2 becomes similar to those at other rational

T =3. In the calculations, we tom 101 (1< p< 100) It fluxes (SUCh asf=1/3, 1/2, 1/6, 5/6) in which the 6|gen-

can be clearly seen that the phase boundarydetO is

5 T T T

Reduced T¢

Modulation Strength

Modulation Strength
FIG. 9. 1-T(f)/T,(0) as a function of3 for f =1/2. Continu-

FIG. 7. Energy spectrum as a function gffor f=2/3 andT, ous line: T,=2, long-dashed lineT,=3, short-dashed lineT,
=4. =4,
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states exhibit an extended nature. Fifth, the valuéwlfiere  and the strength of field modulation. The formation of a dis-
the maximalT; depression is achieved lowers@sncreases. persive energy spectrum in turn has been shown to crucially
Now, let us briefly discuss the effect of field modulation influence the superconducting transition temperature and the
on the critical currentl(f), which is closely related to the critical current of the wire network.
band curvatureg®Eq(f)/dk?, near the band edge. Wheh Before concluding this paper, we would like to make a
=0, due to the absence of dispersive stalel,=1/2) van- few remarks. First, though we treated only fhggeometry
ishes completely, as discussed in Ref. 15. However, whein this paper, we expect that the field-induced localization
B#0, the formation of a dispersive band structure makegproperties of therl, geometry* will undergo similar effects
?Eq(f)/0k?#0, and hencel (f=1/2) will have a finite of field modulation. Second, for the sake of simplicity in the
value, which is another remarkable effect of field modula-calculation, we dealt with a simple case where the period of
tion. field modulation is commensurate with the lattice period.
The energy spectrum may exhibit more complicated band
IV. SUMMARY structures when the two length scales are incommensurate
with each other. Finally, note that the magnetic flux treated
We have studied the effects of field modulation on thejn this paper is neither uniform nor random but periodic.
energy spectrum of an electron in a 2D bipartite periodicThys, the effects of a random magnetic flux is still an open
lattice subject to a magnetic field and on the superconductinguestion, and it would be interesting to study whether or not
transition temperature in a wire network with the same JgeAB cages remain bounded and/or how the localization prop-
ometry. We have shown that the energy spectrum sensitivelyrties of the system are influenced by introducing a random
depends on both the period and the strength of field modujux. Our naive expectation is that switching on a random
lation. Our main finding is that the field-induced localization fjyx at f = 1/2 will induce an energy band of localized states.
properties of the lattice at half a flux are drastically changed

by introducing field modulation; the modulated field breaks
the degeneracy induced by a uniform magnetic field to make
the energy spectrum dispersive, where the number of distin- This work was financially supported by Hankyong Na-
guishable subbands sensitively depends on both the peridbnal University, Korea, through the program year of 1999.
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