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Effects of field modulation on Aharonov-Bohm cages in a two-dimensional bipartite
periodic lattice

Gi-Yeong Oh*
Department of Basic Science, Hankyong National University, Kyonggi-do 456-749, Korea

~Received 22 February 2000!

We study the effects of field modulation on the energy spectrum of an electron in a two-dimensional
bipartite periodic lattice subject to a magnetic field. Dependence of the energy spectrum on both the period and
the strength of field modulation is discussed in detail. Our main finding is that introducing field modulation
drastically changes the energy spectrum and the localization properties of the system appearing in the absence
of field modulation; the degeneracies induced by a uniform magnetic field are broken and the resultant energy
spectrum shows a dispersive band structure, indicating that most of Aharonov-Bohm cages become un-
bounded. The effects of field modulation on the superconducting transition temperature and the critical current
in a wire network with the same geometry are also discussed.
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I. INTRODUCTION

The physics of magnetically induced frustration in a va
ety of two-dimensional~2D! structures including square,1–3

rectangular,4,5 triangular,6 honeycomb,7,8 aperiodic,9

quasiperiodic,10,11 fractal,12 and even random13 geometries
has attracted much interest in condensed-matter physic
several decades. Recently, Vidal and co-workers14 presented
a new localization mechanism induced by a uniform m
netic field for noninteracting electrons in a 2D bipartite p
riodic hexagonal structure~the so-calledT3 geometry!,
where the unit cell contains three sites, one sixfold coo
nated~called the ‘hub’ site! and two threefold coordinate
~called the ‘‘rim’’ sites!. Within the tight-binding~TB! ap-
proximation, they showed that, due to fully destructive qu
tum interference, the eigenstates at half a magnetic
quantum per elementary rhombus~briefly, half a flux! are
extremely localized and bounded in Aharonov-Bohm~AB!
cages. Very recently, Abilio and co-workers15 performed
transport measurements on a superconducting wire netw
with the T3 geometry and confirmed the field-induced loc
ization effect by observing a depression of the supercond
ing transition temperatureTc and the critical currentJc at
half a flux.

Since the calculations in Ref. 14 were performed un
the basic assumptions of~i! the perfectness and the infinit
size of theT3 geometry and~ii ! the spatial uniformity of the
magnetic field, it may be very interesting to address a qu
tion of what happens under the situations beyond the
assumptions. Of course, effects beyond the assumptio~i!
were already discussed by the authors of Ref. 14; the
domness~such as random modulations of hopping terms a
fluctuations in the tiling areas and in the transmission ma
along the edges!, which is inevitable in real systems, wa
expected to alter or even destroy the phase matching es
tial for the field-induced localization effect. In addition, th
authors of Ref. 15 argued that the incomplete suppressio
the experimentally observedJc at half a flux might be attrib-
uted to the network’s finite size. However, effects beyond
assumption~ii ! are not examined yet and remain an op
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question. Thus, in this paper, we would like to address
question and clarify the effects of a nonuniform magne
field on the energy spectrum and the transport propertie
the T3 geometry at rational fluxes, especially at half a flu
As a concrete and simple example, we consider a magn
field with a periodic modulation and investigate the effect
field modulation on the stability of AB cages and on t
characteristics ofTc andJc .

The contents of this paper are organized as follows.
eigenvalue equation taking into account field modulation
derived in Sec. II. Analytic and numerical results for th
effects of field modulation on the energy spectrum at ratio
fluxes and the localization properties of the eigenstates
half a flux are presented in Sec. III. The effects of fie
modulation onTc andJc of a superconducting wire networ
are also discussed in this section. Finally, Sec. IV is devo
to a summary.

II. FIELD MODULATION
AND THE EIGENVALUE EQUATION

We consider an electron in a 2D rhombus tiling unde
spatially modulated magnetic field as

BW 5@B01Bmod~x!# ẑ, ~1!

where B0 (Bmod) denotes the uniform~modulated! part of
the applied magnetic field. Among possible types of mod
lated fields, we pay attention to the one-dimensional~1D!
sine-modulated field as

Bmod~x!5B1sinS 2px

Tx
D , ~2!

whereTx is the period of the modulation along thex direc-
tion. Under the Landau gauge, the vector potential is giv
by

AW 5S 0,B0x2
B1Tx

2p
cosS 2px

Tx
D ,0D . ~3!
4567 ©2000 The American Physical Society
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The TB equation that describes an electron on a 2D lat
subject to a magnetic field reads

Ec i5(
j

t i j e
ig i j c j , ~4!

where t i j is the hopping integral between the neare
neighboring sitesi andj, and the phase factorg i j is given by

g i j 5
2p

f0
E

i

j

AW •ḋ lW, ~5!

f05hc/e being the magnetic flux quantum. For the sake
simplicity, we sett i j 51. The phase factor along thex direc-
tion in Fig. 1 is zero under the Landau gauge. Denoting
phase factor along the upward direction on the line 1(2,3
in Fig. 1 asg1(2,3,4), and using the wave function at a hu
site asc(x,y)5eikyyc(x), Eq. ~4! can be written as

~E226!c~x!5@ei (g41k)1ei (g31k)#cS x1
3a

2 D
1@e2i (g31k)1e2i (g21k)#c~x!1@ei (g21k)

1ei (g11k)#cS x2
3a

2 D1H.c., ~6!

wherek5A3kya/2.
Denotingcm5c(x) at x53ma/2, the phase factors ca

be written as

g15
3g

2 S m2
1

2D2
g

2
2K cosF3pa

Tx
S m2

5

6D G ,
g25

3g

2 S m2
1

2D1
g

2
2K cosF3pa

Tx
S m2

1

6D G ,
g35

3g

2 S m1
1

2D2
g

2
2K cosF3pa

Tx
S m1

1

6D G ,
g45

3g

2 S m1
1

2D1
g

2
2K cosF3pa

Tx
S m1

5

6D G , ~7!

where

g52p f 5
2pf

f0
, K5

gbTx
2

p2a2
sinS pa

2Tx
D , b5

B1

B0
, ~8!

FIG. 1. A portion of the 2D bipartite periodic tiling.
e
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f (5A3B0a2/2) being the uniform background magnet
flux through the elementary rhombus. Now let us define

mm
65

g26g1

2
, mm11

6 5
g46g3

2
, nm

65g36g2 , ~9!

and

l5
E226

4
. ~10!

Then, Eq.~6! can be reduced to a 1D equation, which is
generalized version of the eigenvalue equation derived
Ref. 14:

lcm5Am11cm111Cmcm1Amcm21 , ~11!

where

Am5cos~mm
2!cos~mm

11k!,

Cm5cos~nm
2!cos~nm

112k!, ~12!

with

mm
25

g

2
1K sinS pa

Tx
D sinF3pa

Tx
S m2

1

2D G ,
mm

15
3g

2 S m2
1

2D2K cosS pa

Tx
D cosF3pa

Tx
S m2

1

2D G ,
nm

25
g

2
12K sinS pa

2Tx
D sinS 3pma

Tx
D ,

nm
153gm22K cosS pa

2Tx
D cosS 3pma

Tx
D . ~13!

A close inspection of Eqs.~11!–~13! for a reduced ratio-
nal flux f 5p/q with mutual primesp and q enables us to
write the Bloch condition along thex direction as

cm1N5eiNhcm . ~14!

Here,h53kxa/2 andN is given by

N55
L.C.M.~2T,2q!, qÞ3q8,pÞ2p8

L.C.M.~2T,q!, qÞ3q8,p52p8

L.C.M.~2T,2q8!, q53q8,pÞ2p8

L.C.M.~2T,q8!, q53q8,p52p8

~15!

where

T5H Tx , TxÞ3Tx8

Tx8 , Tx53Tx8
~16!

q8, p8, andTx8 being integers. Using Eqs.~11! and~14!, we
obtain the characteristic matrix as
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S C1 A2 0 0 ••• A1e2 iNh

A2 C2 A3 0 ••• 0

0 A3 C3 A4 ••• 0

A A A A � A

A1eiNh 0 0 0 ••• CN

D . ~17!

Thus, by diagonalizing Eq.~17!, we can obtain 2N energy
eigenvalues$6(614l i)

1/2; i 51,2, . . . ,N% for a givenkW and
the full energy spectrum by sweeping all thekW points in the
magnetic Brillouin zone~MBZ!.

III. RESULTS AND DISCUSSION

A. E-f diagram

When a periodic field modulation is introduced, a ne
length ~i.e., Tx) is added into two characteristic lengths, t
lattice constanta and the magnetic lengthl 5(\/eB0)1/2.
Thus, a subtle interplay among them can change the en
band structure and the localization properties of the sys
obtained in the absence of field modulation. We plot in F
2 theE-f diagrams without and with field modulation. In th
calculations, we tookTx53 and q5101(1<p<100), and
swept (20320)kW points in the MBZ. Comparing Fig. 2~b!
with Fig. 2~a!, we observe the following effects of fiel
modulation. First, the occurrence of overlapping betwe
neighboring subbands makes most of the small gaps clo
This phenomenon of subband broadening~or gap closing!
clearly appears for large values ofb and/orf. Second, intro-
ducing field modulation lowers the symmetry of the ener
spectrum. The translational symmetry@i.e., E( f 11)5E( f )#
and the reflection invariance aboutf 51/2 @i.e., E( f )5E(1
2 f )# appearing in a uniform magnetic field are no long
held in the presence of field modulation. Note, however, t
the energy spectrum still exhibits the symmetry with resp
to E50 and the reflection symmetry aboutf 50. The former
reflects the bipartite geometry of the rhombus tiling and

FIG. 2. Energy spectrum as a function off for Tx53. ~a! b
50.0, ~b! b50.3.
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latter implies that there is no way for an electron to disce
the direction of the magnetic field.

B. Energy dispersion at half a flux

Before proceeding further, it may be worth noting th
there are two types of localization effects in theT3 geometry.
One is the topological localization appearing atE50, which
originates from the local topology of the lattice.16 Since this
localization is well understood and independent of the m
netic field, we omit further discussion on this phenomen
The other is the uniform field-induced localization appear
at E56A6 at half a flux.14 We pay attention to how this
kind of localization is influenced by introducing field modu
lation. Note also that, owing to the reflection symmetry ab
E50, we pay attention to the energy spectrum only withE
.0 in the discussion below.

1. Case of TxÄ2

In this case,N54 and direct diagonalization of the (4
34) Hamiltonian matrix yields the following energy dispe
sion:

E~kx ,ky!56A664l6, ~18!

where

l65H S A1
2 1A2

2 1
A0

2

2 D 2

6FA0
2S A1

2 1A2
2 1

A0
2

4 D 2

14A1
2 A2

2 sin2~2h!G1/2J 1/2

, ~19!

with

A052sinS 4b

p D cos~2k!,

A656sinS 2b

p D cosS k7
p

4 D . ~20!

A close inspection of Eq.~18! shows that the upper an
lower edges of the energy dispersion withE.0 are given by

Eu5@614A2D1#1/2, Ed5@624A2D1#1/2, ~21!

and the bandwidth is given by

D54A3F12S 12
8D1

9 D 1/2G1/2

, ~22!

where

D15sin2S 2b

p D F112 cos2S 2b

p D G . ~23!

Equation~22! clearly shows that the bandwidth varies from
to 4A3 with varyingb. Note that this is a remarkable effec
of field modulation; the modulated field breaks the deg
eracy atE5A6, which appears in a uniform magnetic fie
and makes the energy spectrum dispersive.
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2. Case of TxÄ3

By means of a similar method for the case above, we h
the energy dispersion

E~kx ,ky!5H 6$664@D2f ~kx ,ky!#1/2%1/2

6$664@D2g~kx ,ky!#1/2%1/2,
~24!

where

f ~kx ,ky!5cos2h cos2k1sin2h sin2k,

g~kx ,ky!5sin2h cos2k1cos2h sin2k ~25!

and

D25sin2S 9A3b

4p D . ~26!

An inspection of Eq.~24! shows that the upper and lowe
edges of the energy dispersion withE.0 are given by

Eu5@614A2D2#1/2, Ed5@624A2D2#1/2, ~27!

and the bandwidth is given by the same form as Eq.~22!
with replacingD1 by D2, which varies from 0 to 4A2 with
varying b. We plot in Fig. 3 the energy spectrum as a fun
tion of b, where the vertical lines are results obtained
numerically diagonalizing Eq.~17! and the boundary curve
are obtained directly from Eq.~27!. The inset shows theb
dependence of the energy spectrum up tob56. The forma-
tion of a dispersive energy spectrum instead of a highly
generate point spectrum can be clearly seen in the figur

Another remarkable effect of field modulation can
found in the density of states~DOS!. We plot in Fig. 4 the

FIG. 3. Energy spectrum as a function ofb for f 51/2 andTx

53.

FIG. 4. Density of states forf 51/2 andTx53. ~a! b50.0, ~b!
b50.3, ~c! b50.6, ~d! b50.9.
e
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DOS for several values ofb. The DOS forb50 consists of
a d-function peak atE5A6, as elucidated in Ref. 14. How
ever, whenbÞ0, the DOS atE5A6 vanishes andE5A6
becomes an edge that connects the two subbands w
DOS’s exhibit the well-known pagoda shapes with a log
rithmic singularity in the middle of the subbands. The fo
mation of a dispersive energy spectrum and the vanishin
the DOS atE5A6 indicate that the modulated field make
most of AB cages unbounded, which in turn implies that t
transport properties of the system at half a flux will exhi
quite different behaviors from those under a uniform ma
netic field.

3. Case of TxÐ4

As an example to illustrate the fact that the energy sp
trum sensitively depends not only onb but alsoTx , we plot
in Fig. 5 the energy spectrum forTx54 as a function ofb. In
this case,N58 and there are eight subbands withE.0,
some of which may overlap or may have finite gaps betw
them depending onb. Figure 5 shows that the number o
distinguishable subbands runs from 1 to 6 with increasingb
up to 1. We found that the occurrence of subband splitt
~or gap opening! is a generic feature of the energy spectru
at half a flux for Tx>4. We also found that the subban
splitting occurs more easily whenTxÞ3Tx8 than whenTx

53Tx8 .
The Tx dependence of the DOS also exhibits an intere

ing feature. For illustrative purposes, we plot in Fig. 6 t
DOS for Tx54 for several values ofb. It can be seen tha
E5A6 locates near an edge of a subband for small value
b, while it locates in a subband for large values ofb. Note,
however, that even in the latter case the DOS atE5A6 is
still negligibly small compared with the integrated DOS a
will have a very little effect on the transport properties of t
system, if any.

C. Energy dispersion at generic rational fluxes

Theb dependence of the energy spectra for generic ra
nals f exhibits a behavior similar to the case off 51/2; the
phenomena of subband broadening and gap opening are
neric features under the modulated field. We show an
ample in Fig. 7, where the energy spectrum withE.0 is
plotted for f 52/3 andTx54. Whenb50, the energy spec
trum consists of two subbands that touch each other aE

FIG. 5. Energy spectrum as a function ofb for f 51/2 andTx

54.
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50, resulting in a gapless single-band structure.14 However,
when the field modulation is turned on, a gap opens betw
the two subbands. Besides, with increasingb, there occurs
further splitting of each subband into several sub-subba
as well as the gap closing and reopening.

D. Effect of b on TC in a wire network

Now we are in position to discuss the effects of fie
modulation onTc andJc in a wire network. In the case of th
T3 geometry,Tc( f ) is directly related to the edge eigenvalu
of Eq. ~11! by2,15

12
Tc~ f !

Tc~0!
5CFarccosS Ee~ f !

A18
D G 2

, ~28!

whereC is a constant that is proportional to the square of
superconducting coherence length at zero temperature
Ee( f ) is the edge eigenvalue at a rational fluxf. For simplic-
ity, we setC51.

We plot in Fig. 8 the phase boundaries for a system w
Tx53. In the calculations, we tookq5101 (1<p<100). It
can be clearly seen that the phase boundary forb50 is

FIG. 6. Density of states forf 51/2 andTx54. ~a! b50.0, ~b!
b50.3, ~c! b50.6, ~d! b50.9.

FIG. 7. Energy spectrum as a function ofb for f 52/3 andTx

54.
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symmetric aboutf 51/2 and distinct downward cusps occ
at low-order rationalsf 51/3, 2/3, 1/6, 5/6, 2/9, and 7/9
Besides, an upward cusp exists atf 51/2, which reflects the
field-induced localization properties of the eigenstates at
a flux, as demonstrated in Ref. 15. However, when the fi
modulation is introduced, the phase boundary exhibits s
eral distinctive features from the case ofb50 as follows.
First, the phase boundary becomes asymmetric with res
to f 51/2, which reflects the breaking of the reflection inva
ance of the energy spectrum aboutf 51/2. Second, the phas
boundary for f >1/3 severely changes in a nontrivial wa
even for small values ofb, while the boundary forf <1/3 is
less influenced even by large values ofb. To put it con-
cretely, of the cusps at strong commensurate fields exhib
in the absence of field modulation, the cusps atf 51/3 and
1/6 are still clearly visible, while the cusp atf 55/6 becomes
invisible by introducing field modulation. Meanwhile, th
cusp at f 52/3 is visible ~invisible! at b50,0.6 (b50.3).
Third, with increasingb, the Tc( f ) depression up tof <4/5
decreases independently ofTx . Theb dependence of theTc
depression atf 51/2 is shown in Fig. 9, where a monoton
decrease of 12Tc( f )/Tc(0) is clearly seen. Meanwhile, th
amount of theTc depression forf >4/5 is inconsistent with
the modulation strength. Fourth, the cusp atf 51/2 moves
downward by introducing a field modulation, which is th
most remarkable effect of field modulation onTc . This phe-
nomenon indicates that the localization properties of the s
tem at f 51/2 becomes similar to those at other ration
fluxes ~such asf 51/3, 1/2, 1/6, 5/6) in which the eigen

FIG. 8. 12Tc( f )/Tc(0) as a function off for Tx53. Continu-
ous line:b50, dashed line:b50.3, dotted line:b50.6.

FIG. 9. 12Tc( f )/Tc(0) as a function ofb for f 51/2. Continu-
ous line: Tx52, long-dashed line:Tx53, short-dashed line:Tx

54.
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states exhibit an extended nature. Fifth, the value off where
the maximalTc depression is achieved lowers asb increases.

Now, let us briefly discuss the effect of field modulatio
on the critical currentJc( f ), which is closely related to the
band curvature,]2Ee( f )/]k2, near the band edge. Whenb
50, due to the absence of dispersive states,Jc( f 51/2) van-
ishes completely, as discussed in Ref. 15. However, w
bÞ0, the formation of a dispersive band structure ma
]2Ee( f )/]k2Þ0, and henceJc( f 51/2) will have a finite
value, which is another remarkable effect of field modu
tion.

IV. SUMMARY

We have studied the effects of field modulation on t
energy spectrum of an electron in a 2D bipartite perio
lattice subject to a magnetic field and on the superconduc
transition temperature in a wire network with the same
ometry. We have shown that the energy spectrum sensiti
depends on both the period and the strength of field mo
lation. Our main finding is that the field-induced localizatio
properties of the lattice at half a flux are drastically chang
by introducing field modulation; the modulated field brea
the degeneracy induced by a uniform magnetic field to m
the energy spectrum dispersive, where the number of dis
guishable subbands sensitively depends on both the pe
y

.

n
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c
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ly
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d

e
n-
od

and the strength of field modulation. The formation of a d
persive energy spectrum in turn has been shown to cruc
influence the superconducting transition temperature and
critical current of the wire network.

Before concluding this paper, we would like to make
few remarks. First, though we treated only theT3 geometry
in this paper, we expect that the field-induced localizat
properties of theT4 geometry14 will undergo similar effects
of field modulation. Second, for the sake of simplicity in th
calculation, we dealt with a simple case where the period
field modulation is commensurate with the lattice perio
The energy spectrum may exhibit more complicated ba
structures when the two length scales are incommensu
with each other. Finally, note that the magnetic flux trea
in this paper is neither uniform nor random but period
Thus, the effects of a random magnetic flux is still an op
question, and it would be interesting to study whether or
AB cages remain bounded and/or how the localization pr
erties of the system are influenced by introducing a rand
flux. Our naive expectation is that switching on a rando
flux at f 51/2 will induce an energy band of localized state
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