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We present first-principles calculations of the lattice relaxations and hyperfine fields of heavy impurities in
bcc Fe. We consider impurities of thep and 6p series, containing the largest atoms in the periodic table.
As an application we calculate the hyperfine fields of these impurities and in particular the effects of lattice
relaxations on these fields. The calculations are based on a full-potential Korringa-Kohn-Rostoker Green'’s-
function method for defects and employ the local spin-density approximation for the exchange and correlation
effects. The nonspherical parts of the potential and the charge density are included in the calculations and the
forces are calculated by an ionic version of the Hellmann-Feynman theorem. The resulting lattice relaxations
are relatively small, even for the largest impurities considered. The comparison of the calculated hyperfine
fields with the experimental data shows that the inclusion of lattice relaxations improves the overall agreement
with experiment.

[. INTRODUCTION eral notion that for steric reasons relaxations in close-packed
metals are very small, considerably smaller than, e.g., for
A point defect in a crystal, such as a vacancy or an im-defects in semiconductors where open structures like dia-

purity atom, presents not only a potential inhomogeneity, buffond or zinc blende prevail. In order to learn more about the

also induces displacements of the neighboring host atorrize of the relaxations in metals, in particular, for very large

from their ideal lattice positions. These lattice relaxationsMPUrty atoms, we present in this paper KKR calculations

in fact. | d and lead to a volume chan fthfor impurities of the Sp and 6p series in bcc Fe. To these
are, In fact, long ranged and lead to a volume change ot thgg, ;0. belong atoms which have the largest atomic volumes

crystal. Very complete information about this displacementyc o ajements in the periodic table. For instance, the noble
field can be obtained by diffuse x-ray/neutron-scattering exy55 atoms Xe and Rn have atomic volumes ’Of 37 and
periments, but unfortunately very few systems have beegg g A3, respectively, while the alkali metal atoms Cs
measured. Detailed information on many more systems ha(s71 A3 and Fr, the largest element with a volume of
been obtained by extended x-ray-absorption fine-structurg4 A3 are even larger, in particular, much larger than Fe
(EXAFS) measurements, yielding reliable data for the;th an atomic volume of 7.1 A. For these reasons also
nearest-neighbor shifts. In addition, lattice parameter meaparticularly large lattice relaxations are to be expected. All
surements are available for many systems, giving direct inthese heavysp elements are characterized by very large
formation about the volume changes induced by the impuripositive solution enthalpiésin Fe and thus they have a
ties. Many other defect properties, like solution energies onearly vanishing solubility so that they can only be intro-
interaction properties, residual resistivities, and hyperfine induced into Fe by ion implantation at low temperatures.
teraction properties are influenced by these lattice relaxations The present calculations are motivated by recent
and a detailed understanding of these properties is still fameasurements of the hyperfine fields of Cs and in particu-
from complete. lar of Fr in Fe, which were performed by the nuclear orien-
The theoretical treatment of structural relaxations due taation (NO) method and by nuclear magnetic resonance on
defects is a difficult task, in particular for transition-metal oriented nucleiNMR/ON) on Fe samples prepared by ion
systems. In the past this problem has been mostly dealt witimplantation at low temperatures. The measured hyperfine
on a phenomenological basis, e.g., by applying models ofield of Fr is a factor of 5 smaller than the previous KKR
lattice statics or by molecular dynamics with empirical po- calculationd®~? predicted, which were, however, based on
tentials.Ab initio calculations have been restricted to super-spherical potentials, i.e., using atomic sphere approximation
cell calculations or calculations for finite clustérRecently  (ASA), and neglected lattice relaxations. It is natural to as-
we performed systematab initio calculations for transition- sume that the large relaxations induced by the Fr atom are
metal impurities in coppérand aluminur based on the the reason for this discrepancy. Thus, in addition to calculate
Korringa-Kohn-Rostoker(KKR) Green’s-function method the lattice relaxations of these king-size atoms, the present
and obtained a very good agreement with EXAR®f. 4  paper aims at studying the effects of lattice relaxations on the
and lattice parameté? measurements. Typically the ob- hyperfine fields of these impurities in Fe.
tained relaxations in these systems are not very large, e.g., a The hyperfine fields of impurities in the ferromagnetic
Zr impurity in Cu, which as an atom is twice as big as Cu,hosts Fe, Co, and Ni have been extensively studied and a
shifts the nearest Cu neighbors by only 3.5% of the neareshuge amount of experimental data exists* Only data for a
neighbor(NN) distance? This finding is in line with the gen- few exotic impurities are missing, and in the case of Fe,
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some have been added recefitlyAlong eachsp series the proximation, i.e., the spin-orbit coupling is neglected, and
impurity hyperfine fields show a very systematic trend: theythe hyperfine fields are calculated both at the ideal and the
are negative at the beginning of each series, rise to largkilly relaxed positions in order to study the effect of lattice
positive values at the end of series, and drop sharply back telaxations on the fields. The theoretical LSDA lattice con-
negative values at the beginning of the next row. This sysstant and the calculated Born—von Karman coupling param-
tematic trend was explained by the Kanamori grétd!  eters of Fe are used in the calculations. An angular momen-
These authors noted that the trend arises from the hybridizaum cutoffl ,,,=4 is used for the Green'’s function and for
tion of the impuritys and the hostl states into bondingd  the radial functions, which implies a cutoffl 2, for the
hybrids, which show a preferential occupation of the minor-expansion of the potentials and charge density and a cutoff
ity states, and into spin-split antibonding hybrids. At the be-4l .., for the shapes of the Wigner-Seifg/S) cells. The
ginning of each series only the bonding hybrids are occupiedpace is devided into nonoverlapping WS cells, which are
yielding negative fields. Later on also the spin-split antibondfurther divided into muffin-tinfMT) spheres and to the inter-
ing peaks are occupied. Here the occupation of the lowerstitial space outside the MT spheres and the “nonspherical”
lying antibonding peaks in the majority bands leads to acoupled radial equations are solved by using the second Born
strong increase of the hyperfine fields with large positiveapproximation for the nonspherical part of the poterfiiah
values at the end of the series, to be followed by a strongpgarithmic radial mesh is used inside the MT spheres and an
drop to negative values once the minority antibonding stateequally spaced radial mesh is used outside the spheres. The
are filled for the impurities with higher valency. The exact method proposed in Ref. 21 to cope with the discontinuities
position of the maximum hyperfine field depends on thearising from the sharp edges of the WS cells is employed.
bonding-antibonding splitting and thus on the strength of the
hybridization between the impurity and Fed states. Since
the hybridization should be strongly modified by lattice re-
laxations, it is not too surprising that the KKR-ASA calcu-  In our multiple-scattering KKR Green’s-function method
lations, which did not consider displacement effects, led tahe starting point is the free electron Green’s function which
unrealistically large values for the hyperfine fields of Cs ands analytically known. The Green'’s function of the host crys-
Fr. tal, GO(r,r’,E), is obtained by &-space integration. After
For the reasons above we calculated the lattice relaxatiortbis the electron density(r) is obtained from the imaginary
and the resulting effects on the hyperfine fields for heavyparts of the site-diagonal elements of the Green’s function by
impurities of the Sp and 6p series in Fe using a full- an energy integration
potential KKR Green’s-function method. The organization of
the paper is as follows. In Sec. Il, the computational method 1 (E
is presented first for the buliSec. Il A and then for the n(r)=-— _f FIm[GO(r,r,E)]d E. 1)
impurity (Sec. Il B problem. In Sec. Ill, the calculation of T JEg
impurity induced lattice relaxations aroundpand 6p im-

purities in bcc Fe are presented and discussed. Section IMere the energy integral extends over all occupied valence
contains the results obtained for the hyperfine fields and thgiates from a suitably chosen eneffy between the valence
related discussion. Section V is a short summary. band and the core states up to the Fermi endfgy By
using analytical properties of the Green'’s function the energy
integration in Eq(1) can be replaced by a contour integral in
the (uppey complex energy plane. This contour integral can
Our calculations are based on the density-functionabe evaluated with much fewer energy points, because the
theory with the exchange and correlation effects beingsharp structures of the Green’s function and the density of
treated in the local spin-density approximatitSDA), for  states(DOS) are smoothening out quite rapidly when going
which the parametrization of Vosko, Wilk, and Nusiito away from the real axis. In this work a recent extension to
the Monte Carlo data of Ceperley and Altfeis used. The finite temperature& based on a Fermi-Dirac distribution for
calculations are performed using a full-potential KKR the occupation function, is used. A half-rectangle-shaped
Green’s-function method for defects which is an all-electroncontour starting aEg and an electronic temperature of
method and treats also the nonspherical parts of the potentiad 800 K with five Matsubara points are used, so the horizon-
and the charge density correctly. The method takes the adal line extending to the infinity lies kT (=160 mRy)
vantage of a Green’s-function method to embed a clusteabove the real axis. In total 30 energy points are needed for
containing the impurity atom and a few disturbed neighborthe calculation of the valence states. The accuracy of the
ing host shells correctly in the ideal crystal, which is idealcontour integration was tested by doubling the number of
for the case now studied, i.e., iron alloys in the dilute limit. energy points and it was found to be better than “16lec-
Lattice statics methods are used to describe the longer rangéans for the partiak,p,d, ... charges.
relaxations and to speed up the determination of the final During the lattice constant minimization the MT sphere
positions of the atoms from thab initio forces, which are radius was kept constant. A radius of 1.8027 a.u. together
calculated using an ionic version of the Hellmann-Feynmarwith a semicore treatment described below was used. The
theoren? This method was shown to give a realistic descrip-same MT radius should be used for different lattice constant
tion of lattice relaxations around substitutional impurities invalues in order to avoid inaccuracies in the core calculation
metals®3 due to slightly different radial meshes and due to the fact that
The calculations are done using the scalar relativistic apthe core electrons are supposed to reside completely inside

A. Bulk calculation

Il. THEORETICAL METHOD
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the MT sphere. The minimization gave a value of 5.204 a.u. o120 F . - + ~ . T T

for the lattice constant and the bulk modulus was found to be No semicore @

2.6 Mbars. -0.122 k Scaled semicore W -
In our treatment the core electrons are assumed to reside Unscaled semicore [

completely inside the nonoverlapping MT spheres and they ~ -0.124 1

are calculated using spherically averaged potentials. The up- Z

permost core states of irons&and 3, fit just about inside a = Q126 r 1

MT sphere touching the WS cell boundaries, but, e.g., for § 0128 b |

early 3d metals these states extend over the MT radius. The + '

same situation occurs for the uppermost core states of the B 0130 F i

now studied heavy impurities in Fe and also for the e 3 %

and J core states when one is using a relatively small MT & -0.132 } 4

radius, which is needed when lattice relaxations are included. 2

So, these so-called “semicore” states should be included in -0.134 F -

the energy contour thereby treating them as valence states.

Papanikolaotet al? showed that for the earlydBand, in 0136 "

particular, for the early d impurities in Cu the inclusion of

the impurity semicore states in the energy contour is needed R S R S .

in order to get good forceghe Cu 3 and 3 electrons are 5.0 5.10 5.2 5.3 5.4

sufficiently localized not to cause any trouble§or the Lattice constant (a.u.)

present case, one cannot even converge the bulk Fe with the FIG. 1. Binding-energy curves for bec Fe using different
0 it -
3s and 3 treated as core states, when a 20% smaller thaQchemes to treat the semicore electr@see text The curve ob-

t.OUChmg MT s_phere dem.anded by the now calculated relat'ained using the energy correcti@) is not shown, because it prac-
tively large lattice relaxations is uséd.

. . . . tically coincides with the curve obtained by using scaled semicore.
The inclusion of the semicore states in the energy contour

is in principle straightforward within the KKR formalism,
one just extends the energy contour below the uppermo
core states. The semicore states are lying quite deep and ar
thus well localized and produce sharp peaks on the real en-

ergy axis. For an optimal integration of the semicore states a E= f Ene E)dE—E£ANq., 2
long rectangular contour with a large imaginary part Ejh( s¢
=1.0 Ry is used in this work. The semicore contour starts
6.2 Ry below the valence contour and it returns back to th h ded for int Th K d q
real axis where the valence contour starts. With about 502 9€ Ne€ded for Integer occupancy. 1he weak dependence

energy points for the semicore a similar accuracy as for th(?f the Fe”T“ level,E, on the proper number of §em|core
valence states is obtained. electrons is taken care by the second terBEgANg,
%EFn(EF)AEF .

In actual calculations the treatment of the semicore elec- Anoth ibility t tth is t th
trons of the host is not so straightforward since the charge \nother possibility to correct the error s to use the renor-
alized semicore charge everywhere in the self-consistency

density and the DOS in each cell are calculated by a sun'f?[1 i that int h | d'in the doubi
mation over angular momenta up to a culgff,. Due to this lterations, so that integer charges are aiso used in the double

cutoff the semicore charge shows slight deviations from thé:_ounting terms. These additional cprrections should be small,
correct integer value, with a typical error of about 2@lec- since due to the extremal properties of the total energy the

trons. Due to the charge neutrality this error in the semicoréjOUbIe counting terms are extremal against small variations

charge is in the self-consistency iterations automatically bal)" the charge density. The result of this latter procedure

anced by an opposite contribution in the valence charge, S(&,caled semicopds also illustrated in Fig. 1 and it is seen to

that the Fermi level will depentiveakly) on the semicore. In yield practically the same lattice constant as the “full core”

the total-energy calculation this fact leads to an error in théreatmem(no_ semicorgdoes, where Iarger MT spheres were

single-particle energies of a few mRy in the present caseused to av0|q the probllems with Semicore. The result using
Moreover this error systematically increases for smaller Iat-thhe rrengrr:ailgze;j semilﬁorenlDCt)hS w:}th:)ut arrren%:]niahzed
tice constants due to the increasing overlap of the semicor% ? gk? w?n Siny, ﬁ ;JS tig (I)I y ine ig € %tr?cihec“d ’ §| N
orbitals. This is illustrated in Fig. 1, where the resulting tOtal_reonoSrmOalizeSd r(;iultp actically coincides € “double

energy curve(unscaled semicoyeyields a considerably '

smaller lattice constant than, e.g., a calculation, where the

semicore electrons are treated as core electfonssemi- B. Impurity calculation
core). This problem does not occur in the real-space impurity  \when the host potential and the host Green’s function are
calculations, because the Lloyd's formtflas used for the  known, the Green’s function for the impurity problem can be
evaluation of the single-particle energies and this includes agptained from a Dyson equation in real space, being essen-
implicit summation over all angular momenta. _ tially determined by the perturbation of the potential. Due to
The above error can be corrected by using a renormalizeghe “efficient screening in metals, the size of the potential
semicore DOSn¢{E), in the energy calculation where the perturbation is naturally restricted. In this work the potentials
DOS,ng{E), is multiplied by a constant in order to obtain an of five neighboring shells of Fe atoms are allowed to be

integer semicore occupancy. The formula for the single-
grticle energyE.= [ < ENs{E) dE, is then replaced by

here ANg. represents the missinfpr surplug semicore
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FIG. 2. Radial relaxation pattern around a Fr impurity calculated 1.0 15 2.0 2.5 3.0 3.5
by the lattice static model starting from thb initio forces. Clusters Distance from the impurity (a)
with 59 and 169 perturbed potentials at ideal bcc lattice sites were . . . . .
used. The evolution of the impurity induced relative volume FIG. 3. Results of ha_rmonlp model_ s_lr_nulatlons, 1£p=0 in
changes\V/V,, are also shown, when more and more NN shells aret_he Kanzaki modgl, starting with theb initio forces from calc_ula- _
included in the sunf3). tlons,_where the first and the second NN shells around a_Fr impurity
are displaced outwards-5.0% and+2.9% of the NN distance,
respectively. Shown are the radial displacement patterns obtained
perturbed, so that in total 59 perturbed potentials are recalising thel cutoffs| ;=4 andl =5 in theU transformation(see
culated self-consistently in the impurity iterations. Group-text).
theoretical methods based on ¢ point group are used to
reduce the computational effort. To check if the chosen clushigh asl,,=4 cutoff in this work. To test the quality of the
ter size was large enough, calculations for a Fr impurity werdJ transformation, a calculation for a Fr impurity in Fe was
performed using a larger cluster with=169 perturbed po- also done with the so-called void meth@dwhere theU
tentials, i.e., it contained the impurity and the first 11 neigh-transformation is done with a highércutoff than the self-
boring shells of Fe. Figure 2 shows the relaxation patternsonsistent parts of the calculation. Figure 3 shows the calcu-
around a Fr impurity and the induced volume changes of théated lattice relaxation patterns around a Fr impurity obtained
host lattice for both cluster sizes. The relaxation patterns argsing thel cutoffs| ,.,=4 andl =5 for the transformation
the results of lattice statics simulations starting from éle  and a cutoffl ,,,,=4 for the self-consistent parts. Both cases
initio forces at the ideal positions and the volume changesefer to calculations, where the first NN and the second NN
were calculated using the Kanzaki model described in Seshells were shifted radially outwards 5.0% and 2.9% of the
1. It is seen, that the relaxation patterns around the impurityNN distance, respectively, and the resultiy initio forces
are practically the same, so the cluster dire 59 is suffi-  were used as input to the lattice statics simulations. It is seen,
ciently large to estimate the lattice relaxations around théhat theU transformation withl ,,,,=4 is sufficiently accu-
large sp impurities. Also the hyperfine fields at the impurity rate for moderate relaxations, say, less than 10% of the NN
site do not differ between the two calculations, they aredistance, which was also noted by Setféls.
within 1 T from each other both for the ideal and the final To allow lattice relaxations, 20% smaller than touching
relaxed positions. MT spheres are used for the iron sites in all impurity calcu-
The treatment of lattice relaxations within the KKR lations. For the impurity sites a touching MT radius is used
Green’'s-function formalism is somewhat complicated, be-since these atoms are not moved. The Green’s function and
cause the Green’s functions are represented as angular mitke potential of the host crystal are recalculated for the 20%
mentum expansions around the corresponding lattice sitesmaller MT sphere radius and the semicore contour dis-
the host one around the unshiftéideal positions and the cussed in the last subsection is used. It was checked for each
impurity one around the new shifted positions. While theimpurity that the core charge densityithout the semicore
reference Green’s function for such shiftétnterstitial” )  charge was small enough at the sphere boundary, so that the
positions can also be evaluated by a Brillouin-zone integratreatment of the core electrons of the large impurity atoms
tion, we use here a simpler method introduced by Loddler, was adequate within the relatively small MT sphere of host
which is, however, limited to small displacements. In thiscrystal.
scheme, the Green’s function of the host crystal is trans-
formed to the shifted positions by the so callddransfor- [l. IMPURITY INDUCED LATTICE RELAXATIONS
mation, which for small displacements couples an angular IN bcc Fe
momentum quantum numbémwith 1+1, so one has to in-
crease the angular momentum cutoff of the radial functions, In order to accelerate the determination of the equilibrium
e.g., froml,,=3 to |l ,,=4, which is the reason to use as atomic positions from theab initio forces, lattice statics
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FIG. 4. Calculated phonon spectrum of bcc ir@olid lines. c 1} “’.,o -
The experimental points{) are from Ref. 28 and the thin dashed 0",.-“ ..... °
lines are a Born—von Karman fit to the experimental data. 0 o’

Cd In Sn Sb Te | Xe Cs Ba La
method as described in Ref. 2 based on the Kanzaki Hg TI Pb Bi Po At Rn Fr Ra Ac
method’ is used. In the harmonic approximation the dis-
placement patters” is related to the force distributioR" FIG. 5. Calculated relaxation of the firsiquaresand the sec-

' . ircles NN shell i
by F'=3_,&"'s" whered denotes the coupling-constant ond (circles shells around §p and 6p impurities in iron

matrix of the defect system. By splitting this up into the . I
coupling-constant matrixb, of the ideal crystal and the second NN bcc iron shells around substitutionalpSand

; _ 6sp impurities. For the Sp impurities the first NN atoms
= + -
gziingefikfe;ndu:reed b)élet:iieddefe(k;)i[: Frfb 02 Ai)r’mt,r;?, KT:: relax outwards 3.0—4.5% of the NN distance whereas for the
n’=0

» larger Gsp atoms the relaxations are somewhat lar@eb—
—2n/(AP)"™ s . In the calculations the changes of the cou-5.3%). Surprisingly, the NN relaxations are largest for the
pling constants are restricted to the first two NN shellstri- and tetravalent impurities and become somewhat smaller
around the defect. The force patte®f is then applied on a for the impurities at the end of the series. The relaxations of
hypothetical ideal lattice described by the calculated couthe second nearest neighbors increase about linearly with the
pling constantsb, of the host and the displacements of all valence and are at the end of thp series, i.e., at the begin-
atoms are determined iteratively. The resulting positishs ning of the next row in the periodic table, even larger than
are then used in the neab initio study and the whole pro- the relaxations of the first neighbors. In this valence region
cedure is repeated until the displacements are convergethe impurities of the Sp and 6 p series are seen to relax the
Only the first two NN shells are allowed to relax in tab  neighboring atoms about the same amount.
initio calculations and the rest of the atoms are kept at the The systematic trend for the relaxations of the first and
ideal positions to improve the embedding of the impuritysecond NN shells becomes clearer, when one considers the
cluster into the host crystal. In the densely packed bcc latticéorces on atoms in different shells. Figure 6 shows the forces
of iron, only these two NN shells have significant relax- on the first three neighboring shells around the impurities,
ations, the forces on further atoms are small and they relagalculated at the ideal lattice positions. The third NN forces
only a little (see Figs. 2, 3, and)6 (triangles are multiplied by a factor of 10 in the figure and
The ideal crystal coupling constants were determined byare seen to be more than an order of magnitude smaller than
using a cluster of 59 perturbed iron potentials where the centhe forces on the firstsquaresand secondcircles NN at-
tral atom was shifted along tH®01] direction by a small oms. The same is true for the longer ranged forces. The NN
amount(0.5% of the lattice constantForce constants up to forces are largest for the tri- and tetravalent impurities and
five NN couplings were calculated from tlad initio forces  then reduce to about 50% at the end of the series. Contrary to
and from these the dynamical matrix and the phonon speahis the forces on the second neighbors are very small at the
trum were constructed. The calculated phonon spectrurbeginning and very large at the end of the series. This be-
(solid line) and the experimental neutron-scattering &fata havior of the first and second NN forces is counterintuitive to
(open circleg are shown in Fig. 4. The thin dashed line is ausual size arguments, from which one would always expect
Born—von Karman fit to the experimental points. The calcu-the NN forces to dominate. The third and further NN relax-
lated phonon frequencies are a little bit too high but this isations are much smaller than the relaxations of the two NN
expected since the LSDA gives a lattice constant that ishells. One gets some idea of these further reaching distor-
somewhat smaller than the experimental one and it also ovetions by looking at Fig. 2, where lattice distortions around a
estimates the bulk modulus. These are known to be the typFr impurity are shown. The distortion is seen to go rather far
cal drawbacks of the (SIDA when one considers the cohe- away from the impurity and is seen to expand the lattice
sive properties of the transition metals. Also the bump alonddisplacements are outwajdsvhereas the calculateb ini-
the lineI"-X arising from the second NN interactions seemstio forces are not always pointing outwards for every shell
to be an artifact of the LSDA calculation. included in the impurity cluster. This is due to the Friedel
Figure 5 shows the calculated relaxation of the first andbscillations occuring in the iron host, so that the charge per-
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changesAV/V, (percent of the elementary volumg, of Fe) in-
80 F i duced by the 5p (H) and 6p () impurities.
o | | around this value. The calculated relative volume changes
) AV/V, obtained from the Kanzaki model are presented in
40 2" NN . Fig. 7 (V, is the elementary volume of FkeThese changes
[ . 1 can also be experimentally obtained from lattice parameter
o A measurements but for the most now studied defects the low
201 o S 7 solubility (if any) makes these measurements impossible.
o Yoo \" The volume changes follow the trend seen from the forces on
OfFz—a—=— the first and second neighbors, since the forces on the further
3NN x10 away atoms are small. Therefore the curves for the volume
20 1 changes show a two-peak structure, which is very pro-
e nounced for the §p series but somewhat smeared out for the
Hg TI Pb Bi Po At Rn Fr Ra Ac 6sp series. The first peak is due to maximum of the NN

forces at the beginning of the series, the second and larger
FIG. 6. Theab initio forces on the first three NN shells around peak obtains the largest contribution from the second NN
5spand Gp impurities. The forces correspond to ideal lattice sitesforces being largest at the beginning of the next row. The

and the third NN forces are multiplied by 10 in the plot. largest volume changes are about U@ which are really
' ' ' small compared to the huge atomic volumes of these impu-
turbations have an decaying oscillatory character. rities, which are, e.g., for Cs or Fr, up to 10—-12 times larger

The Kanzaki force$y can be used to determine the vol- than that of Fe. This behavior is very different from the one
ume change of the latticdV induced by an impurity and it found for 3d and 4d impurities in Cu, for which the volume
is given by’ changes scale reasonably well with the atomic volumes of
the impurities introduced into the Cu host by substitution. In

1 N oo terms of elasticity language one could therefore classify the
Av= 3K ; Fe R, 3 sp impurities as highly compressible.
whereK is the bulk modulus of the ideal crystal aR? are IV. HYPERFINE FIELDS OF IMPURITIES IN bcc Fe

the lattice vectors. The largest contribution to the sum in Eq.

(3) is coming from the first two NN shells around the impu-  In the nonrelativistic theory the hyperfine field is deter-
rity as can bee seen from Fig. 2, where the evolutiodf ~ mined by the Fermi contact interaction and given by

is plotted shell by shell together with the radial displacement
fields for the clusters containing 59 and 169 perturbed poten-
tials. It is seen that the first two NN shells make the main

contribution to the volume change and the contribution of the
further shells seems to be averaged out, so that the first twwherem(r=0) is the magnetization density at the nucleus.
shells determine mainly the size of the volume change anth this work the calculation of the hyperfine field is based on
the further shells seem to create some small oscillation8reit’'s formulaZ® which is the correct relativistic expression

8
th=?m(r=0), (4)
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for hyperfine fields. We calculate the hyperfine fields by us- - r r r r r r T 7
ing the relativistic generalizatidf of the contact term and | ASA - - - - A ]
neglect the orbital contribution in line with the scalar relativ- FP: ideal —e— R

istic approximation used in our calculations. Since the con- FP: relaxed —a— \
sideredsp impurities have no genuine magnetic moments, Bxpt. 4 '

the orbital contributions should be very small. Moreover the 100 .
dipolar contributions vanish for the impurities due to the

cubic symmetry of their surroundings. For the magnetic im-

purities, e.g., transition-metal atoms, the local magnetic mo-

ments give rise to large core polarization contributions to the S0r 1
hyperfine field, which, however, practically vanish fep

impurities. Nevertheless, also here small core polarizations

arise, which are included in the calculation. The major con- 0 /

tribution for the “nonmagnetic’sp impurities arises from QA/ 9
the valence hyperfine field. Calculations have shown, that \
this field scales with the local moment of the impuritieg? e s

which is induced by the hybridization of the impurity states 2  -50 F 7
with the spin dependertt orbitals of the nearest neighbors. 5 Cd In Sn Sb Te | Xe Cs Ba La
Thus the valence hyperfine field is basically caused by the & . . &
population difference between the spin-up and spin-downva- & 500 F ASA - ---- , 1
lences states, but not by the spin polarization of the radial T FP: ideal —e—

swave functions in the core region, which determines the 400 b FP: fe'Exe? —z—
hyperfine fields of the core electrons. Xpt
The calculated hyperfine fields of thesp and &p sub-

L . o . . . 300 F b
stitutional impurities in bcc Fe are compared with experi-
ments and earlier KKR-ASA calculations in Fig. 8. Present
full-potential KKR values are the solid lines with filled 200 F 1
squares for the final relaxed positions and with solid circles
for the ideal lattice positions. The KKR-ASA values taken 100 -
from Ref. 12 are shown with dashed lines and the experi-

mental one$®134with open triangles. 0
Let us first concentrate on the calculations performed
without lattice relaxations. It is seen that both the full-
potential and the ASA calculations give almost identical hy-
perfine fields at the beginning of the series up to the rare-gas

-100

atoms. Contrary to this, at the beginning of each row in the -200 f 1
periodic table the ASA trend differs considerably from the e ——
full-potential one. This is the critical region within each row, Hg Tl Pb Bi Po At Rn Fr Ra Ac

o oo ke ek s s, FG. . Hperine et of e sl
. . - Eurltles in bcc Fe. Shown are the present full-potential values with
of the CalCUIatlpns COl.J!d beco”.‘e very important. In partlcu-(.) and without @) lattice relaxations and the ASA results
lar for the _alkah impurities the dlffergnces between ASA and(dashed lingof Akai et al. (Ref. 12. The experimental points/{)
full-potential results are unexpectingly large. Partly this,.q taken from Refs. 8, 9. 13, and 14.
might arise from the importance of nonspherical contribu-
tions to the potential. However, partly this could also arisethe agreement between experiment and theory is excellent.
from the improvements of the spherical potential parts, e.g.However, in view of the errors for the neighboring element
by including the full charge density in the evaluation of thewe have to consider this as a coincidence. Nevertheless, it is
spherical potential. A relevant improvement could also beseen that the inclusion of lattice relaxations improves the
the treatment of the semicore states as valence states, sirmgreement with the experiment, even if the relaxation effects
for the alkali metals the semicore states are very shallow. lare substantially smaller than we originally expected.
can be seen from Fig. 8 that the inclusion of lattice relax- In order to search for possible errors in the theoretical
ations substantially improves the agreement with the experitreatment it is important to realize that the LSDA is not very
ment. This is particularly true for thep impurities in the good for bcc Fe. In the full-potential description the lattice
first half of the series, where the hyperfine field is increaseaonstant is 3.6% smaller than the experimental one and also
due to lattice relaxations. On the other hand, for the lafer the calculated spin moment of 2,0p is substantially
impurities the experimental hyperfine fields for tyeimpu-  smaller than the experimental one of 245 On the other
rities are not that well reproduced. In thesfp series the hand, it is known that the generalized gradient approxima-
calculated hyperfine field of Cs is much too large. In tlsp6 tions (GGA) give a much better description of these proper-
series there are large discrepancies for At and Rn as well d&s, i.e., a nearly perfect lattice constant and magnetic mo-
for Ra and Ac. On the other hand, for the Fr impurity, thement. Actually, parallel to this work Cottenier and H¥as
hyperfine field of which has only recently been measuredgalculated hyperfine fields ofddand S p impurities in bcc
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iron by using a GGA. However, they used a very differenttrons and it was shown how to implement the calculation of
method compared to the KKR Green’s-function method usedhe semicore states in the KKR Green’s-function formalism.
in this work, namely a full-potential linearized augmented The calculated lattice relaxations around tlep%nd Gp
plane-wave methotFLAPW) and they modeled the impuri- impurities were found to be relatively small, for the first and
ties by using a supercell geometry. The FLARWBGA re- second NN shells less than 6% of the NN distance. The
sults for the hyperfine fields of thesp impurities compare further relaxations were calculated using lattice statics meth-
well with the KKR+LSDA values(given in bracketg all ods and they were found to be much smaller, for the third
values in tesla: Cd-44 (—31), In =35 (—26), Sn—15 NN shells a factor of 5 smaller than for the first two shells.
(—13), Sb 22(11), Te 68(48), | 129 (122, Xe 162(135). We found the interesting trend that at the beginning of each

In order to simulate the lattice expansion caused by thep series the force on the NN Fe atoms dominates, while at
GGA calculations using the LSDA and the experimental lat-the end of the series the force of the second NN atoms are
tice constant of Fe were performed, leading to an Fe momenarger than the NN forces. We have also estimated the impu-
of 2.18ug. This simulation is supported by recent KKR rity induced volume changes of the lattice by using the Kan-
results? showing that for the same lattice constant the LSDAzaki method. The volume change induced by sipampuri-
and the GGA yield the same moments, so that also similaties was found to be around 60-95%, surprisingly small in
hyperfine fields are expected. The hyperfine fields of the latgiew of the king-size atomic volumes of the elements. Along
6sp impurities Rn, Fr, Ra, and Ac did not change much withthe series the volume change exhibits a two-peak structure,
the lattice constant. Only the absolute values increasetesulting from the dominating contributions from the first
slightly, which is probably due to the increased host mag-and second NN shells.
netic moment. Also the impurity induced forces did not The calculated hyperfine fields o8P and 6sp substitu-
change much and lattice statics simulations gave practicalltional impurities reproduce the experimentally observed
the same lattice distortions for the both lattice constant valtrend qualitatively well and also the quantitative agreement
ues. The above-mentioned results of Cottenier and Haasis good for the most of the impurities. The correct treatment
also support this observation. The hyperfine fields calculatedf the semicore electrons of these large impurity atoms were
with the FLAPW using the GGA for thesp impurities are  found to be important and this probably explains the largest
slightly larger than our results. They also did some calculadisagreement of the previous KKR-ASA calculations with
tions using both the LSDA and the GGA, but their resultsexperiments. In general the full-potential treatment improves
show that for the elements Cd—Xe changes are small. Théhe agreement with experiment and is, of course, mandatory
GGA is seen to increase the absolute values of the hyperfifer an accurate calculation of forces and relaxations. The
fields slightly when compared to the LSDA ones calculatednclusion of lattice relaxations in the calculations was also
using the smaller LSDA lattice constant. Thus unfortunatelyseen to improve the overall agreement of the calculated re-
we cannot pin down the origin for the large errors in thesults with experiments, nevertheless leaving large discrepan-
hyperfine fields of the late & impurities. We can only cies for Xe, Cs, At, and Rn impurities, the origin of which is
speculate that this might be an LSDA error or an error arisnot understood.
ing from the neglect of the spin-orbit coupling or maybe the
experimental data are not sufficiently accurate.
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