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Lattice relaxations and hyperfine fields of heavy impurities in Fe
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We present first-principles calculations of the lattice relaxations and hyperfine fields of heavy impurities in
bcc Fe. We consider impurities of the 5sp and 6sp series, containing the largest atoms in the periodic table.
As an application we calculate the hyperfine fields of these impurities and in particular the effects of lattice
relaxations on these fields. The calculations are based on a full-potential Korringa-Kohn-Rostoker Green’s-
function method for defects and employ the local spin-density approximation for the exchange and correlation
effects. The nonspherical parts of the potential and the charge density are included in the calculations and the
forces are calculated by an ionic version of the Hellmann-Feynman theorem. The resulting lattice relaxations
are relatively small, even for the largest impurities considered. The comparison of the calculated hyperfine
fields with the experimental data shows that the inclusion of lattice relaxations improves the overall agreement
with experiment.
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I. INTRODUCTION

A point defect in a crystal, such as a vacancy or an
purity atom, presents not only a potential inhomogeneity,
also induces displacements of the neighboring host at
from their ideal lattice positions. These lattice relaxatio
are, in fact, long ranged and lead to a volume change of
crystal. Very complete information about this displacem
field can be obtained by diffuse x-ray/neutron-scattering
periments, but unfortunately very few systems have b
measured. Detailed information on many more systems
been obtained by extended x-ray-absorption fine-struc
~EXAFS! measurements, yielding reliable data for t
nearest-neighbor shifts. In addition, lattice parameter m
surements are available for many systems, giving direct
formation about the volume changes induced by the imp
ties. Many other defect properties, like solution energies
interaction properties, residual resistivities, and hyperfine
teraction properties are influenced by these lattice relaxat
and a detailed understanding of these properties is still
from complete.

The theoretical treatment of structural relaxations due
defects is a difficult task, in particular for transition-met
systems. In the past this problem has been mostly dealt
on a phenomenological basis, e.g., by applying models
lattice statics or by molecular dynamics with empirical p
tentials.Ab initio calculations have been restricted to sup
cell calculations or calculations for finite clusters.1 Recently
we performed systematicab initio calculations for transition-
metal impurities in copper2 and aluminum3 based on the
Korringa-Kohn-Rostoker~KKR! Green’s-function method
and obtained a very good agreement with EXAFS~Ref. 4!
and lattice parameter5,6 measurements. Typically the ob
tained relaxations in these systems are not very large, e.
Zr impurity in Cu, which as an atom is twice as big as C
shifts the nearest Cu neighbors by only 3.5% of the near
neighbor~NN! distance.2 This finding is in line with the gen-
PRB 620163-1829/2000/62~1!/452~9!/$15.00
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eral notion that for steric reasons relaxations in close-pac
metals are very small, considerably smaller than, e.g.,
defects in semiconductors where open structures like
mond or zinc blende prevail. In order to learn more about
size of the relaxations in metals, in particular, for very lar
impurity atoms, we present in this paper KKR calculatio
for impurities of the 5sp and 6sp series in bcc Fe. To thes
series belong atoms which have the largest atomic volu
of all elements in the periodic table. For instance, the no
gas atoms Xe and Rn have atomic volumes of 37 a
50.5 Å3, respectively, while the alkali metal atoms C
(71 Å 3) and Fr, the largest element with a volume
84 Å 3, are even larger, in particular, much larger than
with an atomic volume of 7.1 Å3. For these reasons als
particularly large lattice relaxations are to be expected.
these heavysp elements are characterized by very lar
positive solution enthalpies7 in Fe and thus they have
nearly vanishing solubility so that they can only be intr
duced into Fe by ion implantation at low temperatures.

The present calculations are motivated by rec
measurements8,9 of the hyperfine fields of Cs and in particu
lar of Fr in Fe, which were performed by the nuclear orie
tation ~NO! method and by nuclear magnetic resonance
oriented nuclei~NMR/ON! on Fe samples prepared by io
implantation at low temperatures. The measured hyper
field of Fr is a factor of 5 smaller than the previous KK
calculations10–12 predicted, which were, however, based
spherical potentials, i.e., using atomic sphere approxima
~ASA!, and neglected lattice relaxations. It is natural to
sume that the large relaxations induced by the Fr atom
the reason for this discrepancy. Thus, in addition to calcu
the lattice relaxations of these king-size atoms, the pres
paper aims at studying the effects of lattice relaxations on
hyperfine fields of these impurities in Fe.

The hyperfine fields of impurities in the ferromagne
hosts Fe, Co, and Ni have been extensively studied an
huge amount of experimental data exists.13,14Only data for a
few exotic impurities are missing, and in the case of F
452 ©2000 The American Physical Society



e
r
k
ys

iz

or
e
ie
d
e

iv
on
te
c

th
th

e
u-

t
n

io
v

o
o

f

n
th

na
in

R
o
nt
a

st
or
a
it
ng
n

a
ip
in

ap

nd
the
e
n-
m-
en-
r

toff

are
-
al’’
orn

an
The

ies
d.

d
ich
s-

by

nce

rgy
in
an
the
of

g
to
r
ed

on-

for
the
of

re
ther
The
ant
ion
hat
side

PRB 62 453LATTICE RELAXATIONS AND HYPERFINE FIELDS OF . . .
some have been added recently.8,9 Along eachsp series the
impurity hyperfine fields show a very systematic trend: th
are negative at the beginning of each series, rise to la
positive values at the end of series, and drop sharply bac
negative values at the beginning of the next row. This s
tematic trend was explained by the Kanamori group.15–17

These authors noted that the trend arises from the hybrid
tion of the impuritys and the hostd states into bondingsd
hybrids, which show a preferential occupation of the min
ity states, and into spin-split antibonding hybrids. At the b
ginning of each series only the bonding hybrids are occup
yielding negative fields. Later on also the spin-split antibon
ing peaks are occupied. Here the occupation of the low
lying antibonding peaks in the majority bands leads to
strong increase of the hyperfine fields with large posit
values at the end of the series, to be followed by a str
drop to negative values once the minority antibonding sta
are filled for the impurities with higher valency. The exa
position of the maximum hyperfine field depends on
bonding-antibonding splitting and thus on the strength of
hybridization between the impuritys and Fed states. Since
the hybridization should be strongly modified by lattice r
laxations, it is not too surprising that the KKR-ASA calc
lations, which did not consider displacement effects, led
unrealistically large values for the hyperfine fields of Cs a
Fr.

For the reasons above we calculated the lattice relaxat
and the resulting effects on the hyperfine fields for hea
impurities of the 5sp and 6sp series in Fe using a full-
potential KKR Green’s-function method. The organization
the paper is as follows. In Sec. II, the computational meth
is presented first for the bulk~Sec. II A! and then for the
impurity ~Sec. II B! problem. In Sec. III, the calculation o
impurity induced lattice relaxations around 5sp and 6sp im-
purities in bcc Fe are presented and discussed. Sectio
contains the results obtained for the hyperfine fields and
related discussion. Section V is a short summary.

II. THEORETICAL METHOD

Our calculations are based on the density-functio
theory with the exchange and correlation effects be
treated in the local spin-density approximation~LSDA!, for
which the parametrization of Vosko, Wilk, and Nusair18 to
the Monte Carlo data of Ceperley and Alder19 is used. The
calculations are performed using a full-potential KK
Green’s-function method for defects which is an all-electr
method and treats also the nonspherical parts of the pote
and the charge density correctly. The method takes the
vantage of a Green’s-function method to embed a clu
containing the impurity atom and a few disturbed neighb
ing host shells correctly in the ideal crystal, which is ide
for the case now studied, i.e., iron alloys in the dilute lim
Lattice statics methods are used to describe the longer ra
relaxations and to speed up the determination of the fi
positions of the atoms from theab initio forces, which are
calculated using an ionic version of the Hellmann-Feynm
theorem.2 This method was shown to give a realistic descr
tion of lattice relaxations around substitutional impurities
metals.2,3

The calculations are done using the scalar relativistic
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proximation, i.e., the spin-orbit coupling is neglected, a
the hyperfine fields are calculated both at the ideal and
fully relaxed positions in order to study the effect of lattic
relaxations on the fields. The theoretical LSDA lattice co
stant and the calculated Born–von Karman coupling para
eters of Fe are used in the calculations. An angular mom
tum cutoff l max54 is used for the Green’s function and fo
the radial functions, which implies a cutoff 2l max for the
expansion of the potentials and charge density and a cu
4l max for the shapes of the Wigner-Seits~WS! cells. The
space is devided into nonoverlapping WS cells, which
further divided into muffin-tin~MT! spheres and to the inter
stitial space outside the MT spheres and the ‘‘nonspheric
coupled radial equations are solved by using the second B
approximation for the nonspherical part of the potential.20 A
logarithmic radial mesh is used inside the MT spheres and
equally spaced radial mesh is used outside the spheres.
method proposed in Ref. 21 to cope with the discontinuit
arising from the sharp edges of the WS cells is employe

A. Bulk calculation

In our multiple-scattering KKR Green’s-function metho
the starting point is the free electron Green’s function wh
is analytically known. The Green’s function of the host cry
tal, G0(r ,r 8,E), is obtained by ak-space integration. After
this the electron densityn(r ) is obtained from the imaginary
parts of the site-diagonal elements of the Green’s function
an energy integration

n~r !52
1

pEEB

EF
Im@G0~r ,r ,E!#dE. ~1!

Here the energy integral extends over all occupied vale
states from a suitably chosen energyEB between the valence
band and the core states up to the Fermi energyEF . By
using analytical properties of the Green’s function the ene
integration in Eq.~1! can be replaced by a contour integral
the ~upper! complex energy plane. This contour integral c
be evaluated with much fewer energy points, because
sharp structures of the Green’s function and the density
states~DOS! are smoothening out quite rapidly when goin
away from the real axis. In this work a recent extension
finite temperatures,22 based on a Fermi-Dirac distribution fo
the occupation function, is used. A half-rectangle-shap
contour starting atEB and an electronic temperature ofT
5800 K with five Matsubara points are used, so the horiz
tal line extending to the infinity lies 10pkT ('160 mRy)
above the real axis. In total 30 energy points are needed
the calculation of the valence states. The accuracy of
contour integration was tested by doubling the number
energy points and it was found to be better than 1027 elec-
trons for the partials,p,d, . . . charges.

During the lattice constant minimization the MT sphe
radius was kept constant. A radius of 1.8027 a.u. toge
with a semicore treatment described below was used.
same MT radius should be used for different lattice const
values in order to avoid inaccuracies in the core calculat
due to slightly different radial meshes and due to the fact t
the core electrons are supposed to reside completely in
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454 PRB 62T. KORHONENet al.
the MT sphere. The minimization gave a value of 5.204 a
for the lattice constant and the bulk modulus was found to
2.6 Mbars.

In our treatment the core electrons are assumed to re
completely inside the nonoverlapping MT spheres and t
are calculated using spherically averaged potentials. The
permost core states of iron, 3s and 3p, fit just about inside a
MT sphere touching the WS cell boundaries, but, e.g.,
early 3d metals these states extend over the MT radius.
same situation occurs for the uppermost core states of
now studied heavy impurities in Fe and also for the Fes
and 3p core states when one is using a relatively small M
radius, which is needed when lattice relaxations are includ
So, these so-called ‘‘semicore’’ states should be included
the energy contour thereby treating them as valence st
Papanikolaouet al.2 showed that for the early 3d and, in
particular, for the early 4d impurities in Cu the inclusion of
the impurity semicore states in the energy contour is nee
in order to get good forces~the Cu 3s and 3p electrons are
sufficiently localized not to cause any troubles!. For the
present case, one cannot even converge the bulk Fe with
3s and 3p treated as core states, when a 20% smaller t
touching MT sphere demanded by the now calculated r
tively large lattice relaxations is used.23

The inclusion of the semicore states in the energy con
is in principle straightforward within the KKR formalism
one just extends the energy contour below the upperm
core states. The semicore states are lying quite deep an
thus well localized and produce sharp peaks on the real
ergy axis. For an optimal integration of the semicore state
long rectangular contour with a large imaginary part Im(E)
51.0 Ry is used in this work. The semicore contour sta
6.2 Ry below the valence contour and it returns back to
real axis where the valence contour starts. With about
energy points for the semicore a similar accuracy as for
valence states is obtained.

In actual calculations the treatment of the semicore e
trons of the host is not so straightforward since the cha
density and the DOS in each cell are calculated by a s
mation over angular momenta up to a cutoffl max. Due to this
cutoff the semicore charge shows slight deviations from
correct integer value, with a typical error of about 1023 elec-
trons. Due to the charge neutrality this error in the semic
charge is in the self-consistency iterations automatically b
anced by an opposite contribution in the valence charge
that the Fermi level will depend~weakly! on the semicore. In
the total-energy calculation this fact leads to an error in
single-particle energies of a few mRy in the present ca
Moreover this error systematically increases for smaller
tice constants due to the increasing overlap of the semi
orbitals. This is illustrated in Fig. 1, where the resulting tot
energy curve~unscaled semicore! yields a considerably
smaller lattice constant than, e.g., a calculation, where
semicore electrons are treated as core electrons~no semi-
core!. This problem does not occur in the real-space impu
calculations, because the Lloyd’s formula24 is used for the
evaluation of the single-particle energies and this includes
implicit summation over all angular momenta.

The above error can be corrected by using a renormal
semicore DOS,ñsc(E), in the energy calculation where th
DOS,nsc(E), is multiplied by a constant in order to obtain a
.
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integer semicore occupancy. The formula for the sing
particle energy,Esc5*scEnsc(E) dE, is then replaced by

Ẽsc5E
sc

Eñsc~E!dE2EFDNsc, ~2!

where DNsc represents the missing~or surplus! semicore
charge needed for integer occupancy. The weak depend
of the Fermi level,EF , on the proper number of semicor
electrons is taken care by the second term:EFDNsc
'EFn(EF)DEF .

Another possibility to correct the error is to use the ren
malized semicore charge everywhere in the self-consiste
iterations, so that integer charges are also used in the do
counting terms. These additional corrections should be sm
since due to the extremal properties of the total energy
double counting terms are extremal against small variati
in the charge density. The result of this latter proced
~scaled semicore! is also illustrated in Fig. 1 and it is seen t
yield practically the same lattice constant as the ‘‘full core
treatment~no semicore! does, where larger MT spheres we
used to avoid the problems with semicore. The result us
the renormalized semicore DOS without a renormaliz
charge density, i.e., using only the energy correction~2!, is
not shown since it practically coincides with the ‘‘double
renormalized result.

B. Impurity calculation

When the host potential and the host Green’s function
known, the Green’s function for the impurity problem can
obtained from a Dyson equation in real space, being es
tially determined by the perturbation of the potential. Due
the efficient screening in metals, the size of the poten
perturbation is naturally restricted. In this work the potenti
of five neighboring shells of Fe atoms are allowed to

FIG. 1. Binding-energy curves for bcc Fe using differe
schemes to treat the semicore electrons~see text!. The curve ob-
tained using the energy correction~2! is not shown, because it prac
tically coincides with the curve obtained by using scaled semico
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PRB 62 455LATTICE RELAXATIONS AND HYPERFINE FIELDS OF . . .
perturbed, so that in total 59 perturbed potentials are re
culated self-consistently in the impurity iterations. Grou
theoretical methods based on theOh point group are used to
reduce the computational effort. To check if the chosen c
ter size was large enough, calculations for a Fr impurity w
performed using a larger cluster withN5169 perturbed po-
tentials, i.e., it contained the impurity and the first 11 neig
boring shells of Fe. Figure 2 shows the relaxation patte
around a Fr impurity and the induced volume changes of
host lattice for both cluster sizes. The relaxation patterns
the results of lattice statics simulations starting from theab
initio forces at the ideal positions and the volume chan
were calculated using the Kanzaki model described in S
III. It is seen, that the relaxation patterns around the impu
are practically the same, so the cluster sizeN559 is suffi-
ciently large to estimate the lattice relaxations around
largesp impurities. Also the hyperfine fields at the impuri
site do not differ between the two calculations, they a
within 1 T from each other both for the ideal and the fin
relaxed positions.

The treatment of lattice relaxations within the KK
Green’s-function formalism is somewhat complicated, b
cause the Green’s functions are represented as angular
mentum expansions around the corresponding lattice s
the host one around the unshifted~ideal! positions and the
impurity one around the new shifted positions. While t
reference Green’s function for such shifted~‘‘interstitial’’ !
positions can also be evaluated by a Brillouin-zone integ
tion, we use here a simpler method introduced by Lodde25

which is, however, limited to small displacements. In th
scheme, the Green’s function of the host crystal is tra
formed to the shifted positions by the so calledU transfor-
mation, which for small displacements couples an angu
momentum quantum numberl with l 61, so one has to in-
crease the angular momentum cutoff of the radial functio
e.g., froml max53 to l max54, which is the reason to use a

FIG. 2. Radial relaxation pattern around a Fr impurity calcula
by the lattice static model starting from theab initio forces. Clusters
with 59 and 169 perturbed potentials at ideal bcc lattice sites w
used. The evolution of the impurity induced relative volum
changesDV/V0 are also shown, when more and more NN shells
included in the sum~3!.
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high asl max54 cutoff in this work. To test the quality of the
U transformation, a calculation for a Fr impurity in Fe wa
also done with the so-called void method,26 where theU
transformation is done with a higherl cutoff than the self-
consistent parts of the calculation. Figure 3 shows the ca
lated lattice relaxation patterns around a Fr impurity obtain
using thel cutoffs l max54 andl max55 for the transformation
and a cutoffl max54 for the self-consistent parts. Both cas
refer to calculations, where the first NN and the second
shells were shifted radially outwards 5.0% and 2.9% of
NN distance, respectively, and the resultingab initio forces
were used as input to the lattice statics simulations. It is se
that theU transformation withl max54 is sufficiently accu-
rate for moderate relaxations, say, less than 10% of the
distance, which was also noted by Settels.26

To allow lattice relaxations, 20% smaller than touchi
MT spheres are used for the iron sites in all impurity calc
lations. For the impurity sites a touching MT radius is us
since these atoms are not moved. The Green’s function
the potential of the host crystal are recalculated for the 2
smaller MT sphere radius and the semicore contour
cussed in the last subsection is used. It was checked for
impurity that the core charge density~without the semicore
charge! was small enough at the sphere boundary, so that
treatment of the core electrons of the large impurity ato
was adequate within the relatively small MT sphere of h
crystal.

III. IMPURITY INDUCED LATTICE RELAXATIONS
IN bcc Fe

In order to accelerate the determination of the equilibriu
atomic positions from theab initio forces, lattice statics

d

re

e

FIG. 3. Results of harmonic model simulations, i.e.,DF50 in
the Kanzaki model, starting with theab initio forces from calcula-
tions, where the first and the second NN shells around a Fr impu
are displaced outwards15.0% and12.9% of the NN distance,
respectively. Shown are the radial displacement patterns obta
using thel cutoffs l max54 andl max55 in theU transformation~see
text!.
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456 PRB 62T. KORHONENet al.
method as described in Ref. 2 based on the Kanz
method27 is used. In the harmonic approximation the d
placement patternsn8 is related to the force distributionFn

by Fn5(n8F
nn8sn8, whereF denotes the coupling-consta

matrix of the defect system. By splitting this up into th
coupling-constant matrixF0 of the ideal crystal and the
changesDF induced by the defect,F5F01DF, the Kan-

zaki forces are defined by FK
n 5(n8F0

nn8sn85Fn

2(n8(DF)nn8sn8. In the calculations the changes of the co
pling constants are restricted to the first two NN she
around the defect. The force patternFK

n is then applied on a
hypothetical ideal lattice described by the calculated c
pling constantsF0 of the host and the displacements of
atoms are determined iteratively. The resulting positionssn

are then used in the nextab initio study and the whole pro
cedure is repeated until the displacements are conver
Only the first two NN shells are allowed to relax in theab
initio calculations and the rest of the atoms are kept at
ideal positions to improve the embedding of the impur
cluster into the host crystal. In the densely packed bcc lat
of iron, only these two NN shells have significant rela
ations, the forces on further atoms are small and they re
only a little ~see Figs. 2, 3, and 6!.

The ideal crystal coupling constants were determined
using a cluster of 59 perturbed iron potentials where the c
tral atom was shifted along the@001# direction by a small
amount~0.5% of the lattice constant!. Force constants up to
five NN couplings were calculated from theab initio forces
and from these the dynamical matrix and the phonon sp
trum were constructed. The calculated phonon spect
~solid line! and the experimental neutron-scattering dat28

~open circles! are shown in Fig. 4. The thin dashed line is
Born–von Karman fit to the experimental points. The calc
lated phonon frequencies are a little bit too high but this
expected since the LSDA gives a lattice constant tha
somewhat smaller than the experimental one and it also o
estimates the bulk modulus. These are known to be the t
cal drawbacks of the L~S!DA when one considers the cohe
sive properties of the transition metals. Also the bump alo
the lineG-X arising from the second NN interactions see
to be an artifact of the LSDA calculation.

Figure 5 shows the calculated relaxation of the first a

FIG. 4. Calculated phonon spectrum of bcc iron~solid lines!.
The experimental points (s) are from Ref. 28 and the thin dashe
lines are a Born–von Karman fit to the experimental data.
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second NN bcc iron shells around substitutional 5sp and
6sp impurities. For the 5sp impurities the first NN atoms
relax outwards 3.0–4.5% of the NN distance whereas for
larger 6sp atoms the relaxations are somewhat larger~3.5–
5.3%!. Surprisingly, the NN relaxations are largest for t
tri- and tetravalent impurities and become somewhat sma
for the impurities at the end of the series. The relaxations
the second nearest neighbors increase about linearly with
valence and are at the end of thesp series, i.e., at the begin
ning of the next row in the periodic table, even larger th
the relaxations of the first neighbors. In this valence reg
the impurities of the 5sp and 6sp series are seen to relax th
neighboring atoms about the same amount.

The systematic trend for the relaxations of the first a
second NN shells becomes clearer, when one considers
forces on atoms in different shells. Figure 6 shows the for
on the first three neighboring shells around the impuriti
calculated at the ideal lattice positions. The third NN forc
~triangles! are multiplied by a factor of 10 in the figure an
are seen to be more than an order of magnitude smaller
the forces on the first~squares! and second~circles! NN at-
oms. The same is true for the longer ranged forces. The
forces are largest for the tri- and tetravalent impurities a
then reduce to about 50% at the end of the series. Contra
this the forces on the second neighbors are very small at
beginning and very large at the end of the series. This
havior of the first and second NN forces is counterintuitive
usual size arguments, from which one would always exp
the NN forces to dominate. The third and further NN rela
ations are much smaller than the relaxations of the two
shells. One gets some idea of these further reaching dis
tions by looking at Fig. 2, where lattice distortions around
Fr impurity are shown. The distortion is seen to go rather
away from the impurity and is seen to expand the latt
~displacements are outwards!, whereas the calculatedab ini-
tio forces are not always pointing outwards for every sh
included in the impurity cluster. This is due to the Fried
oscillations occuring in the iron host, so that the charge p

FIG. 5. Calculated relaxation of the first~squares! and the sec-
ond ~circles! NN shells around 5sp and 6sp impurities in iron.
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turbations have an decaying oscillatory character.
The Kanzaki forcesFK

n can be used to determine the vo
ume change of the latticeDV induced by an impurity and i
is given by27

DV5
1

3K (
n

FK
n
•Rn, ~3!

whereK is the bulk modulus of the ideal crystal andRn are
the lattice vectors. The largest contribution to the sum in
~3! is coming from the first two NN shells around the imp
rity as can bee seen from Fig. 2, where the evolution ofDV
is plotted shell by shell together with the radial displacem
fields for the clusters containing 59 and 169 perturbed po
tials. It is seen that the first two NN shells make the m
contribution to the volume change and the contribution of
further shells seems to be averaged out, so that the first
shells determine mainly the size of the volume change
the further shells seem to create some small oscillati

FIG. 6. Theab initio forces on the first three NN shells aroun
5sp and 6sp impurities. The forces correspond to ideal lattice si
and the third NN forces are multiplied by 10 in the plot.
.

t
n-
n
e
o
d
s

around this value. The calculated relative volume chan
DV/V0 obtained from the Kanzaki model are presented
Fig. 7 (V0 is the elementary volume of Fe!. These changes
can also be experimentally obtained from lattice parame
measurements but for the most now studied defects the
solubility ~if any! makes these measurements impossib
The volume changes follow the trend seen from the forces
the first and second neighbors, since the forces on the fur
away atoms are small. Therefore the curves for the volu
changes show a two-peak structure, which is very p
nounced for the 5sp series but somewhat smeared out for t
6sp series. The first peak is due to maximum of the N
forces at the beginning of the series, the second and la
peak obtains the largest contribution from the second
forces being largest at the beginning of the next row. T
largest volume changes are about 0.9V0, which are really
small compared to the huge atomic volumes of these im
rities, which are, e.g., for Cs or Fr, up to 10–12 times larg
than that of Fe. This behavior is very different from the o
found for 3d and 4d impurities in Cu, for which the volume
changes scale reasonably well with the atomic volumes
the impurities introduced into the Cu host by substitution.
terms of elasticity language one could therefore classify
sp impurities as highly compressible.

IV. HYPERFINE FIELDS OF IMPURITIES IN bcc Fe

In the nonrelativistic theory the hyperfine field is dete
mined by the Fermi contact interaction and given by

Hhf5
8p

3
m~r50!, ~4!

wherem(r50) is the magnetization density at the nucleu
In this work the calculation of the hyperfine field is based
Breit’s formula,29 which is the correct relativistic expressio

FIG. 7. Impurity induced volume changes in bcc Fe calcula
using the Kanzaki model~3!. Shown are the relative volume
changesDV/V0 ~percent of the elementary volumeV0 of Fe! in-
duced by the 5sp (j) and 6sp (h) impurities.
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for hyperfine fields. We calculate the hyperfine fields by
ing the relativistic generalization30 of the contact term and
neglect the orbital contribution in line with the scalar relat
istic approximation used in our calculations. Since the c
sideredsp impurities have no genuine magnetic momen
the orbital contributions should be very small. Moreover t
dipolar contributions vanish for the impurities due to t
cubic symmetry of their surroundings. For the magnetic i
purities, e.g., transition-metal atoms, the local magnetic m
ments give rise to large core polarization contributions to
hyperfine field, which, however, practically vanish forsp
impurities. Nevertheless, also here small core polarizati
arise, which are included in the calculation. The major c
tribution for the ‘‘nonmagnetic’’sp impurities arises from
the valence hyperfine field. Calculations have shown,
this field scales with the locals moment of the impurities,30

which is induced by the hybridization of the impurity stat
with the spin dependentd orbitals of the nearest neighbor
Thus the valence hyperfine field is basically caused by
population difference between the spin-up and spin-down
lences states, but not by the spin polarization of the rad
s-wave functions in the core region, which determines
hyperfine fields of the core electrons.

The calculated hyperfine fields of the 5sp and 6sp sub-
stitutional impurities in bcc Fe are compared with expe
ments and earlier KKR-ASA calculations in Fig. 8. Prese
full-potential KKR values are the solid lines with fille
squares for the final relaxed positions and with solid circ
for the ideal lattice positions. The KKR-ASA values take
from Ref. 12 are shown with dashed lines and the exp
mental ones8,9,13,14with open triangles.

Let us first concentrate on the calculations perform
without lattice relaxations. It is seen that both the fu
potential and the ASA calculations give almost identical h
perfine fields at the beginning of the series up to the rare
atoms. Contrary to this, at the beginning of each row in
periodic table the ASA trend differs considerably from t
full-potential one. This is the critical region within each row
where the hyperfine fields change dramatically betw
neighboring elements and where therefore numerical de
of the calculations could become very important. In partic
lar for the alkali impurities the differences between ASA a
full-potential results are unexpectingly large. Partly th
might arise from the importance of nonspherical contrib
tions to the potential. However, partly this could also ar
from the improvements of the spherical potential parts, e
by including the full charge density in the evaluation of t
spherical potential. A relevant improvement could also
the treatment of the semicore states as valence states,
for the alkali metals the semicore states are very shallow
can be seen from Fig. 8 that the inclusion of lattice rela
ations substantially improves the agreement with the exp
ment. This is particularly true for thesp impurities in the
first half of the series, where the hyperfine field is increa
due to lattice relaxations. On the other hand, for the latersp
impurities the experimental hyperfine fields for thesp impu-
rities are not that well reproduced. In the 5sp series the
calculated hyperfine field of Cs is much too large. In the 6sp
series there are large discrepancies for At and Rn as we
for Ra and Ac. On the other hand, for the Fr impurity, t
hyperfine field of which has only recently been measur
-
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the agreement between experiment and theory is excel
However, in view of the errors for the neighboring eleme
we have to consider this as a coincidence. Nevertheless,
seen that the inclusion of lattice relaxations improves
agreement with the experiment, even if the relaxation effe
are substantially smaller than we originally expected.

In order to search for possible errors in the theoreti
treatment it is important to realize that the LSDA is not ve
good for bcc Fe. In the full-potential description the latti
constant is 3.6% smaller than the experimental one and
the calculated spin moment of 2.00mB is substantially
smaller than the experimental one of 2.15mB . On the other
hand, it is known that the generalized gradient approxim
tions ~GGA! give a much better description of these prop
ties, i.e., a nearly perfect lattice constant and magnetic
ment. Actually, parallel to this work Cottenier and Haas31

calculated hyperfine fields of 4d and 5sp impurities in bcc

FIG. 8. Hyperfine fields of the 5sp and 6sp substitutional im-
purities in bcc Fe. Shown are the present full-potential values w
(j) and without (d) lattice relaxations and the ASA result
~dashed line! of Akai et al. ~Ref. 12!. The experimental points (n)
are taken from Refs. 8, 9, 13, and 14.
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iron by using a GGA. However, they used a very differe
method compared to the KKR Green’s-function method u
in this work, namely a full-potential linearized augment
plane-wave method~FLAPW! and they modeled the impuri
ties by using a supercell geometry. The FLAPW1GGA re-
sults for the hyperfine fields of the 5sp impurities compare
well with the KKR1LSDA values ~given in brackets!, all
values in tesla: Cd244 (231), In 235 (226), Sn 215
(213), Sb 22~11!, Te 68~48!, I 129 ~122!, Xe 162~135!.

In order to simulate the lattice expansion caused by
GGA calculations using the LSDA and the experimental l
tice constant of Fe were performed, leading to an Fe mom
of 2.18mB . This simulation is supported by recent KK
results32 showing that for the same lattice constant the LSD
and the GGA yield the same moments, so that also sim
hyperfine fields are expected. The hyperfine fields of the
6sp impurities Rn, Fr, Ra, and Ac did not change much w
the lattice constant. Only the absolute values increa
slightly, which is probably due to the increased host m
netic moment. Also the impurity induced forces did n
change much and lattice statics simulations gave practic
the same lattice distortions for the both lattice constant v
ues. The above-mentioned results of Cottenier and Ha31

also support this observation. The hyperfine fields calcula
with the FLAPW using the GGA for the 5sp impurities are
slightly larger than our results. They also did some calcu
tions using both the LSDA and the GGA, but their resu
show that for the elements Cd–Xe changes are small.
GGA is seen to increase the absolute values of the hype
fields slightly when compared to the LSDA ones calcula
using the smaller LSDA lattice constant. Thus unfortunat
we cannot pin down the origin for the large errors in t
hyperfine fields of the late 6sp impurities. We can only
speculate that this might be an LSDA error or an error a
ing from the neglect of the spin-orbit coupling or maybe t
experimental data are not sufficiently accurate.

V. CONCLUSIONS

We have performed first-principles full-potential calcul
tions of the lattice relaxations and the hyperfine fields
heavy sp impurities in iron. The treatment of these larg
impurities demands a correct treatment of the semicore e
ou
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trons and it was shown how to implement the calculation
the semicore states in the KKR Green’s-function formalis

The calculated lattice relaxations around the 5sp and 6sp
impurities were found to be relatively small, for the first an
second NN shells less than 6% of the NN distance. T
further relaxations were calculated using lattice statics me
ods and they were found to be much smaller, for the th
NN shells a factor of 5 smaller than for the first two shel
We found the interesting trend that at the beginning of e
sp series the force on the NN Fe atoms dominates, while
the end of the series the force of the second NN atoms
larger than the NN forces. We have also estimated the im
rity induced volume changes of the lattice by using the Ka
zaki method. The volume change induced by thesp impuri-
ties was found to be around 60–95%, surprisingly small
view of the king-size atomic volumes of the elements. Alo
the series the volume change exhibits a two-peak struct
resulting from the dominating contributions from the fir
and second NN shells.

The calculated hyperfine fields of 5sp and 6sp substitu-
tional impurities reproduce the experimentally observ
trend qualitatively well and also the quantitative agreem
is good for the most of the impurities. The correct treatm
of the semicore electrons of these large impurity atoms w
found to be important and this probably explains the larg
disagreement of the previous KKR-ASA calculations w
experiments. In general the full-potential treatment improv
the agreement with experiment and is, of course, manda
for an accurate calculation of forces and relaxations. T
inclusion of lattice relaxations in the calculations was a
seen to improve the overall agreement of the calculated
sults with experiments, nevertheless leaving large discrep
cies for Xe, Cs, At, and Rn impurities, the origin of which
not understood.
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12H. Akai, M. Akai, S. Blügel, B. Drittler, H. Ebert, K. Terakura, R
Zeller, and P. H. Dederichs, Prog. Theor. Phys. Suppl.101, 11
~1990!.

13K. S. Krane, Hyperfine Interact.15Õ16, 1069~1983!.
14G. N. Rao, Hyperfine Interact.24-25, 1119~1985!.



ta

y

n

id

hs

ys

s
als
ul
le

r-
on-

r,

B

460 PRB 62T. KORHONENet al.
15H. Katayama-Yoshida, K. Terakura, and J. Kanamori, Solid S
Commun.29, 431 ~1979!.

16H. Katayama-Yoshida, K. Terakura, and J. Kanamori, J. Ph
Soc. Jpn.46, 822 ~1979!; 48, 1504~1980!; 49, 972 ~1980!.

17J. Kanamori, H. Katayama-Yoshida, and K. Terakura, Hyperfi
Interact.8, 573 ~1981!; 9, 363 ~1981!.

18S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys.58, 1200
~1980!.

19D. M. Ceperley and B. J. Alder, Phys. Rev. Lett.45, 566 ~1980!.
20B. Drittler, M. Weinert, R. Zeller, and P. H. Dederichs, Sol

State Commun.79, 31 ~1991!.
21T. Korhonen, N. Papanikolaou, R. Zeller, and P. H. Dederic

Philos. Mag. B78, 429 ~1998!.
22K. Wildberger, P. Lang, R. Zeller, and P. H. Dederichs, Ph

Rev. B52, 11 502~1995!.
23Here we have used the same space division for the cluster a

the bulk, so the ideal crystal WS cells are used. One could
make a new Voronoi construction for the cluster, so one co
use somewhat larger spheres, but the impurity semicore prob
remains still for the very large impurity cores.
te

s.

e

,

.

for
o

d
m

24Lloyd’s formula is an extension of Friedel’s sum rule to a pe
turbed cluster in a crystal. See P. Lloyd, Proc. Phys. Soc. L
don90, 207 ~1967!; 90, 217 ~1967!. For its use within the KKR
Green’s-function method, see B. Drittler, M. Weinert, R. Zelle
and P. H. Dederichs, Phys. Rev. B39, 930 ~1989!

25A. Lodder, J. Phys. F: Met. Phys.6, 1885~1976!.
26A. Settels, Ph.D. thesis, RWTH Aachen, 1999.
27G. Leibfried and N. Breuer,Point Defects in Metals I~Springer,

Berlin, 1978!.
28Metals: Phonon States, Electron States and Fermi Surfaces,ed-

ited by K.-H. Hellwege and J. L. Olsen, Landolt-Bo¨rnstein, New
Series, Group III, Vol. 13, Pt. a~Springer-Verlag, Berlin, 1981!,
p. 180.

29G. Breit, Phys. Rev.35, 1447~1930!.
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