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Theory of photoluminescence in semiconductors

K. Hannewald, S. Glutsch, and F. Bechstedt
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A theory is presented that relates the luminescence signal of a semiconductor to the current-density corre-
lation function. It allows the calculation of the luminescence spectrum for nonthermal carrier distributions by
means of solving the Bethe-Salpeter equation for the polarization. The present method passes important
consistency checks and overcomes some limitations and shortcomings of previous approaches. A detailed
comparison is made with previous results and numerical examples are presented to demonstrate the usefulness
of the present method.
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I. INTRODUCTION

Spontaneous emission, stimulated emission, and abs
tion in atoms and molecules have been studied since
early days of quantum mechanics.1 Although photolumines-
cence measurements are frequently used to characteriz
optical transitions in bulk semiconductors or in low
dimensional structures, very few works on a rigorous the
of luminescence in semiconductors have been publishe
far.

We shall briefly mention important milestones towards
theory of luminescence in semiconductors. Important th
retical contributions to understanding the spectral meas
ment of fluctuating quantities were made by Butcher a
Ogg.2 This theory was applied by Enderleinet al. to optical
processes in semiconductors and the statistical propertie
the secondary emission were traced back to correlation fu
tions of the electronic system.3 During the last fifteen years
the method of Green’s functions has been successfully
plied to optical properties in semiconductors, including Co
lomb interaction.4 Recent theoretical papers used these c
cepts for the description of the luminescence properties.5 The
effect of Coulomb interaction has been treated approxima
by truncating the Bethe-Salpeter equation first order in
Coulomb potential.6,7 Pereira and Henneberger calculated
luminescence spectrum by generalizing the Kubo-Mar
Schwinger relation for quasiequilibrium, when valence a
conduction electrons have equal temperatures but diffe
chemical potentials.8,9 Piermarocchiet al. found an exact so-
lution in the case when the Coulomb interaction is repla
by a constant in momentum space, but the result is limite
one-dimensional models.10,11 A different approach has bee
used by Kuhn and Rossi12 and by Kiraet al.,13,14who calcu-
late the change in the photon number by means of pho
assisted density matrices.

Despite the recent progress, the theoretical understan
of the luminescence from semiconductors is not yet satis
tory. Some solutions rely on restrictions of the theoreti
model or the quantum-statistical properties. Others do
allow for bound states or tend to produce artifacts. An i
portant problem is the calculation of the luminescence sig
for nonthermal distributions. Such distributions may arise
polar semiconductors, when the dominating relaxat
mechanism is LO-phonon scattering, or in low-dimensio
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semiconductors, because of bottleneck effects.
In this paper we present a rigorous formulation for t

luminescence signal in terms of current-density fluctuatio
Then the spontaneous emission, including Coulomb effe
can be derived by explicitly solving the Bethe-Salpeter eq
tion. This approach treats absorption and luminescence
equal footing and allows us to calculate the luminesce
spectrum for arbitrary nonthermal distributions.

The paper is organized as follows. After this introductio
in Sec. II we derive a relation between the luminescen
spectrum and the polarization function. In Sec. III we give
solution of the Bethe-Salpeter equation and an explicit
pression for the luminescence signal. We discuss some
portant properties and also examine previous results in
light of the new findings. To illustrate the usefulness of o
approach, numerical solutions will be presented in Sec.
A summary is given in Sec. V.

II. BASIC EQUATIONS

We follow the theory on measurement of fluctuatin
quantities by Butcher and Ogg,2 where the field amplitudes
are passed through a spectral filter and the intensity after
filter is measured during a time interval of lengthT, in the
limit T→`. As result, the measured signal is proportional
the integral of the spectrometer function and the autoco
lation function of the field amplitudes.

According to Enderleinet al.,3 the Poynting vector of the
electromagnetic radiation̂Ê3Ĥ& consists of a coherent pa

^Ê&3^Ĥ& and an incoherent part^DÊ3DĤ&. While the co-
herent part describes the propagation of macroscopic ele
magnetic fields, the incoherent part contains the second
emission. We therefore concentrate on the incoherent p
which results from the quantum fluctuationsDÊ5Ê2^Ê&
andDĤ5Ĥ2^Ĥ& of the electromagnetic field. If the sem
conductor is not coherently excited or in a resonator, all el
tromagnetic radiation is incoherent.

We assume temporal homogeneity and incorporate the
tection timeT in the Fourier expansions for fluctuating qua
tities:

DÊ~v!5 lim
T→`

1

AT
E

2T/2

1T/2

dte1 ivtDÊ~ t !. ~1!
4519 ©2000 The American Physical Society
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It is important to know that not all terms from the Poyntin
vector contribute to the measured intensity. In classical
chastics, for a given frequencyv.0, terms that oscillate
with exp(62ivt) will not appear in the signal, because of th
time average.2 For quantized fields, the operators also ne
to be in normal order and the part of the Poynting vect
which reflects the measurable intensity is equal to1

2 Ê(1)

3Ĥ(2)1H.c., where the superscripts6 denote the Fourier
components oscillating with exp(6ivt).15

According to Poynting’s theorem, the source term~diver-
gence! of the Pointing vector is equal to2 j•E, wherej is the
current density. Therefore, the emitted light power per f
quency and sample volumeV is equal to

p~v!52
1

2p

1

VE d3r ^D ĵ†~r ,v!•DÊ~r ,v!1H.c.& ~2!

and the total emitted power per volume is the positiv
frequency integral ofp(v). To evaluate expression~2!, we
express the operator of the electric field by the current
erator. In Coulomb gauge, it holds that

DÊ~r ,v!5 ivDÂ~r ,v!

5 ivm0E d3r 8e1 iv ur2r8u/c0
D ĵT~r 8,v!

4pur2r 8u
, ~3!

where m0 is the vacuum permeability,c0 is the vacuum
speed of light, and the subscriptT refers to the transvers
current density. In the optical limit of small photon wav
numbersv/c0, the exponential term can be expanded and
spectral power density takes the form

p~v!5
v2m0

4p2c0

1

VE d3rE d3r 8^D ĵT†~r ,v!•D ĵT~r 8,v!&.

~4!

From the explicit expression it follows thatp(v) is positive
semidefinite. By virtue of the definition~1! the above quan-
tity is equal to

p~v!5
v2m0

4p2c0

1

VE d3rE d3r 8E
2`

1`

dteiv(t2t8)

3^D ĵT~r ,t8!•D ĵT~r 8,t !&, ~5!

in accordance with the Wiener-Khintchine theorem.
We mention that the same result as above can be obta

by integrating the Poynting vector over the surface o
sphere. The Poynting vector also provides information ab
the angular dependence of the radiation3 and allows us to
derive a general expression of the luminescence signal.

The expressions considerably simplify if the medium
assumed to be isotropic. This is the case, e.g., for cubic s
conductors in the spherical approximation. Then the rest
tion to transverse currents is equivalent to summing over
out of three polarizations, for example,a5x,y ~linear polar-
ization! or a51,2 ~circular polarization!. If the current-
density operators are expressed by creation and annihila
operators of Bloch electrons, the current-density correla
function on the right-hand side of Eq.~5! takes the form
o-

d
r,

-

-

-

e

ed
a
ut

i-
c-
o

on
n

E d3rE d3r 8^D ĵ a
T~r ,t8!•D ĵ a

T~r 8,t !&

5
e2

m0
2 (

j 1 j 18 j 2 j 28
^ j 1u p̂au j 18&^ j 2u p̂au j 28&

3 (
k1k2

i\L21 j 1 j
18 j 2 j

28
~k1 ,t,k2 ,t8!, ~6!

where we have replaced the momentum matrix elements
their values at the band edge. The symbolse.0, m0 denote
the elementary charge and the electron mass, respecti
and L is the density correlation function, defined on th
Keldysh contour as

L j 1 j
18 j 2 j

28
~k1 ,t1 ,k2 ,t2!5

1

i\
@^Tr̂ j 1 j

18
~k1 ,t1!r̂ j 2 j

28
~k2 ,t2!&

2^r̂ j 1 j
18
~k1 ,t1!&^r̂ j 2 j

28
~k2 ,t2!&#,

~7!

where we used the abbreviationr̂ j j 8(k,t)5â j 8
† (k,t)â j (k,t)

andT denotes the time-ordering symbol. For interband tra
sitions under consideration, and no macroscopic polarizat
the second contribution in Eq.~7! is zero.

For the explicit calculation we will consider theG1c
→G15v transition in a zinc blende semiconductor witho
spin-orbit interaction assuming parabolic bands. This
equivalent to the model of a two-band semiconductor. T
nonvanishing momentum matrix elements are^cupxuv,X&
5^cupyuv,Y&5^cupzuv,Z&5pcv . We choose one valenc
band and identify the band indices in Eq.~6! as j 15 j 285c,
j 185 j 25v, which corresponds to positive frequencies.
prefactor~‘‘band-structure factor’’! f 54 appears because o
two polarizations and the spin degeneracy.

In order to keep resonant one-photon processes for w
Ec(k)2Ev(k)'\v but to take into account nonresona
transitions via static screening, we replace the density co
lation function byL5P/«, where the polarization functionP
is the irreducible part ofL and« is the static screening con
stant. With the abbreviationP5Pcvvc for the interband po-
larization function, the final result takes the form

p~v!5
f v2m0e2upcvu2

4p2c0«m0
2

1

V (
k1k2

i\P21~k1 ,k2 ,v!. ~8!

The relation between luminescence spectrum and the po
ization functionP21 appears in various forms in the litera
ture.

III. SOLUTION OF THE BETHE-SALPETER EQUATION

In this section we derive an explicit expression for t
polarization functionP21 in the presence of Coulomb inter
action between electrons and holes. This has to be done
ing the method of nonequilibrium Green’s functions. Gree
functions have been applied to various optical properties
semiconductors.4 By means of the Keldysh formalism, mos
of the concepts can be generalized to nonequilibrium. Fo
introduction, see, e.g., the textbook of Landau a
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Lifschitz.16 The fundamental equations for nonequilibriu
are also derived in the papers by Pereira and Henneberg7,8

The one-particle Green’s functions in Bloch represen
tion are defined as

Gj 1 j 2
~k1 ,t1 ,k2 ,t2!5

1

i\
^Tâ j 1

~k1 ,t1!â j 2

† ~k2 ,t2!&, ~9!

wheret denotes a time on the Keldysh contour, consisting
the ordinary timet and a Keldysh indexA which specifies the
branch on the Keldysh contour,2 for the upper branch and
1 for the lower branch. In fact, for each pair of band indic
j 1 , j 2, Eq. ~9! defines four functions, which can be consi
ered as matrix elementsGAB with respect to the Keldysh
indices, each one depending on two ordinary times.

In general, the one-particle Green’s functions have a co
plicated frequency dependence due to the correlation pa
the self energy. In the case of stationarity, when the corr
tion self-energy is assumed static, the elements ofG can be
expressed in terms of single-particle energiesEj and occu-
pation numbersf j according to:

Gj 1 j 221~k1 ,t1 ,k2 ,t2!

52
1

i\
eEj 1

(k1)(t12t2)/ i\ f j 1
~k1!d j 1 j 2

dk1k2
~10!

Gj 1 j 212~k1 ,t1 ,k2 ,t2!

5
1

i\
eEj 1

(k1)(t12t2)/ i\@12 f j 1
~k1!#d j 1 j 2

dk1k2
.

While the solution of the Bethe-Salpeter equation does
depend on the specific form ofG, the above approximation
allows us to derive a particularly simple expression for
luminescence signal in terms of an effective Hamiltonian

The backward integration in time on the lower branch
the Keldysh contour implies a product of the Keldysh ma
ces of the form (FG)AB5FA2G2B2FA1G1B . It is there-
fore useful to introduce upper indicesGA

B56GAB for B
57 and to adopt a sum convention for upper and low
indices. Then we obtain the ordinary matrix produ
(FG)A

B5FA
2G2

B1FA
1G1

B5:FA
CGC

B. For functions on
the Keldysh contour, it is common to define retarded a
advanced functions

F ret5F222F215F122F11, ~11!

Fadv5F222F125F212F11 ,

where F ret(t1 ,t2)50 for t1,t2 and Fadv(t1 ,t2)50 for t1
.t2. Furthermore, the above relations show that the e
ments of the Keldysh matrix are not independent of e
other.

The polarization function from the last section can be c
culated from the single-particle Green’s functions by me
of the Bethe-Salpeter equation~BSE!. In the ladder approxi-
mation with a statically screened potentialV, this equation
simplifies to an integral equation ink space,
.
-

f

-
of
a-

ot

e

-

r
t

d

-
h

l-
s

PA
B~k1 ,k2 ,v!5L0 A

B~k1 ,k2 ,v!

2
1

V (
k8k9

L0 A
C~k1 ,k8,v!

3V~k82k9!PC
B~k9,k2 ,v!, ~12!

where the frequencyv plays the role of a parameter. If th
screened Coulomb potential is not static, the solution is c
siderably more complicated, and very few solutions ha
been published so far.17 The functionL0 is defined as

L0 AB~k1 ,t1 ,k2 ,t2!

5L0 cvvc AB~k1 ,t1 ,k2 ,t2!

52 i\Gcc AB~k1 ,t1 ,k2 ,t2!Gvv BA~k2 ,t2 ,k1 ,t1!,

and is equal to the polarization function in the absence
Coulomb interaction. From the single-particle Green’s fun
tions ~10! one obtains

L0 2
1~k1 ,k2 ,v!52i f c~k1!@12 f v~k1!#

3pd@\v2Ec~k1!1Ev~k1!#dk1k2
,

~13!

L0 ret~k1 ,k2 ,v!5
f v~k1!2 f c~k1!

\~v1 i e!2Ec~k1!1Ev~k1!
dk1k2

,

L0 adv~k1 ,k2 ,v!5
f v~k1!2 f c~k1!

\~v2 i e!2Ec~k1!1Ev~k1!
dk1k2

.

Here,e510 is a positive infinitesimal. Physically and nu
merically, e.0 plays the role of a finite lifetime and th
delta function is replaced by a Lorentzian according
d(E)5 1

p (\e)/@E21(\e)2#.
The imaginary part of the retarded polarization function

responsible for the optical absorption/gain. From the defi
tion of the retarded function~11! it follows for the product of
two Keldysh matrices (FG)ret5F retGret. Applying this rule
to Eq. ~12! we find

Pret5L0 ret2L0 retVPret. ~14!

We shall briefly review different ways of solving Eq.~14! in
view of generalizations for the solution of the complete BS
~12!. First, a direct solution of the form

Pret5~L0 ret
21 1V!21 ~15!

is not possible in the general case, because the operatorL0 ret
is singular in the case of population inversion, i.e., iff c(k)
. f v(k) for somek. This problem can be avoided by takin
the inverse only of the first part ofL0 ret5@\(v1 i e)2Ec
1Ev#21 ( f v2 f c). This leads to the common expression

Pret52@H2\~v1 i e!#21 ~ f v2 f c!, ~16!

where

H~k1 ,k2!5@Ec~k1!2Ev~k1!#dk1k2

2@ f v~k1!2 f c~k1!#
1

V
V~k12k2!. ~17!
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This effective Hamiltonian is non-Hermitian unlessf v(k)
2 f c(k)5const. For simplicity, we also used some straig
forward matrix notation. For example,f v2 f c stands for a
diagonal matrix with elements@ f v(k1)2 f c(k1)#dk1k2

. An al-
ternative solution is found by iterating the BSE~14!. In this
casePret becomes

Pret5 (
n50

`

~2L0 retV!nL0 ret5~11L0 retV!21L0 ret.

~18!

The operator 11L0 retV is regular for eachv. The equiva-
lence of the solutions~16! and ~18! is obvious from the ex-
plicit expression ofL0 ret ~13!. Analogous relations can als
be established forPadv5Pret

† .
Now we proceed to solve the BSE~12! for the whole

Keldysh matrixP. Again, a solution in the formP5(L0
21

1V)21, in analogy to Eq.~15!, is not possible. For, by con
servation of difficulty, the operatorL0 is also singular. Its
determinant is equal toL0 retL0 adv and, therefore, propor
tional to (f c2 f v)2. Furthermore, a separate treatment off c
2 f v is not possible since none of the matrix elements ofL0
explicitly contains a factorf c2 f v . There is, in principle, a
cure for this problem: the Keldysh matrices in Eq.~12! can
be transformed into triangular form,16 and a retarded and
advanced function, both containing the factorf c2 f v , appear
in the corners.

The generalization of Eq.~18! is straightforward to give
immediately

P5~11L0 V!21L0 ~19!

and 11L0V is always regular. Even though Eq.~19! pro-
vides a method of calculatingP2

1, we shall also derive an
explicit expression, which allows us to analytically dedu
important properties.

From the definition of retarded and advanced functio
~11! it follows that (FG)2

15F retG2
11F2

1Gadv, which
can be generalized by recursion to the product of any num
of Keldysh matrices. Application to the BSE~12! yields

P2
15L02

1

2L02
1VL0 adv2L0 retVL0 2

1

1L0 2
1VL0 advVL0 adv1L0 retVL0 2

1VL0 adv

1L0 retVL0 retVL0 2
1

7••• . ~20!

After rearranging the power series,

P2
15 (

n50

`

~2L0 retV!nL0 2
1 (

n50

`

~2VL0 adv!
n

5~11L0 retV!21L0 2
1~11VL0 adv!

21, ~21!

using the definition of the effective Hamiltonian~17! and the
form of L0 2

1 ~13!, we obtain the result

P2
152i @H2\~v1 i e!#21\e f c~12 f v!

3@H2\~v1 i e!#21 †. ~22!

The explicit expressions allow us to deduce some gen
properties. First, the operator2 iP2

1 is positive semidefi-
nite. It is thus guaranteed that the luminescence signa
-

s

er

al

is

non-negative. Second, the elements of the Keldysh ma
for P fulfill the compatibility relations~11!. This is because
an analogous relation to Eq.~21! can also be established fo
P1

2 and for the differencePret2Padv ~but not for Pret and
Padv separately!.

Another conclusion can be drawn: the differencePret
2Padv, responsible for absorption/stimulated emission, c
be expressed as

Pret2Padv522i @H2\~v1 i e!#21\e~ f c2 f v!

3@H2\~v1 i e!#21†. ~23!

Equations~22! and ~23! generalize the expressions for th
free-particle caseL0, in a nonobvious way.

An important point is the validity of the Kubo-Martin
Schwinger~KMS! relation, which connects the elements ofP
by the Bose functiong and can be viewed as the pendant
the relation between the Einstein coefficients. The solut
~21! preserves the KMS relation, i.e., ifL0 2

1

52g(\v)(L0 ret2L0 adv), then P2
152g(\v)(Pret

2Padv). However, as a consequence of the approxim
Green’s functions~10!, the KMS relation forL0 ~13! is ful-
filled only in the limit e510. In order to take into accoun
effects of dynamic correlation, the exchange-correlation s
energy has to be calculated in T-matrix approximation, c
sistently with the ladder approximation for the BSE. In th
case, the illustrative concept of an effective Hamiltonian b
comes void.

It is worthwhile to discuss the relationship between p
vious results and the results of this paper. In early publi
tions on this subject,6,7 a truncation of the BSE according t

P2
15L0 2

12L0 retVL0 2
12L0 2

1VL0 adv ~24!

was proposed for high densities and the difference to
free-particle luminescence was expressed by a Coulomb
hancement factor. Besides the fact that this approxima
does not allow for bound states, the truncation of Dyson
Bethe-Salpeter equations is never recommended because
tendency to produce artifacts.

Pereira and Henneberger8,9 used the KMS relation to cal
culateP2

1 from Pret2Padv for quasiequilibrium. By calcu-
lating the chemical potentials in a T-matrix approximatio
consistently with the BSE, a positive luminescence signa
obtained. For quasiequilibrium, the approach in Refs. 8 an
is comparable to the present approach, but also allows
effects of dynamic correlation.

For one-dimensional systems, when the Coulomb pot
tial is approximated by a constant ink space~delta function
in real space!, thek1 sum inP(k1 ,k2 ,v) can be carried out
and Eq.~12! goes over into an algebraic equation. This h
been done successfully by Piermarocchiet al.10 These au-
thors also calculated the self-energy in T-matrix approxim
tion, which is important for the discussion of densit
dependent broadening and band-gap renormalization
quantum wires.11

From the equations-of-motion for photon-assisted den
matrices, Kuhn and Rossi derived an expression for
spontaneous emission of the form12
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p~v!}2 i
1

V (
k1k2

$@H2\~v1 i e!#21

3~k1 ,k2! f c~k2!@12 f v~k2!#2H.c.%, ~25!

which corresponds to the approximation

P2
15@H2\~v1 i e!#21f c~12 f v!

2 f c~12 f v!@H2\~v1 i e!#21 †. ~26!

The same result is obtained using the semiconductor lu
nescence equations13,14 with the unrenormalized source ter
proportional tof c(12 f v). It is worthwhile to note that ex-
pression~26! contains only part of the terms of Eq.~21!. It
does also not guarantee a positive luminescence signal, a
will see in the next section.

IV. EXAMPLES

As luminescence is always related to the presence
electron-hole pairs, the effective Hamiltonian~17! is non-
Hermitian and no simple analytical expression can be gi
in terms of eigenvalues and eigenfunctions. On the ot
hand, the numerical calculations are not difficult at all; wh
the Hilbert space is properly discretized, the application
the operatorH21 is transformed into the solution of a linea
set of equations. Prior to treating specific examples, we
did some consistency checks: we verified that Eqs.~16! and
~23! give identical results for the absorption and that t
numerical results of Eq.~19! and Eq.~22! for the lumines-
cence are identical.

The results of the previous section are rather general
do not depend on the specific form of the potentialV and the
band dispersionsEj . In order to model realistic situations
we take into account screening and band-gap renorma
tion. We use Thomas-Fermi screening, which can be ge
alized to nonthermal distributions:18

V~k!5
e2

«0«~k21ks
2!

; ks
252

e2

«0« (
j 5c,v

2

V (
k

d f j~k!

dEj~k!
.

~27!

The band dispersions in the effective Hamiltonian~17! are
renormalized accordingly:4

Ec~k!2Ev~k!5Eg1
\2k2

2me
1

\2k2

2mh

1
1

V (
k8

V~k2k8!@ f v~k8!2 f c~k8!21#

1
1

V (
k8

FV~k2k8!2
e2

«0«uk2k8u2
G .

~28!

For the calculation of the Thomas-Fermi screening wa
number~27! we use the unrenormalized dispersions, beca
the main effect of the band-gap renormalization is a shift
the band edges. With the results for the polarization funct
from the last section we calculate the absorption coeffici
i-

we

of

n
er
n
f

o

nd

a-
r-

-
se
f
n
t

a~v!} i
1

V (
k1k2

@Pret~k1 ,k2 ,v!2Padv~k1 ,k2 ,v!# ~29!

and the luminescence spectrum

p~v!}2 i
1

V (
k1k2

P2
1~k1 ,k2 ,v!. ~30!

The explicit calculations are done with GaAs paramet
Eg(0K)51.52 eV, me50.067m0 , mh50.442m0, and «
513.1, leading to an exciton binding energyEB54.7 meV
and Bohr radiusaB512 nm. We consider different situa
tions describing photoexcited semiconductors: electrons
holes at the same temperature~quasiequilibrium!, electrons
and holes at different temperature, and strongly nonther
distributions with high-excess energy. Nonthermal distrib
tions arise for optical excitation high above the band ed
and can be determined solving kinetic equations.19 For sim-
plicity we assume Gaussian distributions centered
electron-hole-pair energyEp with a width DEp .

Table I shows the parameters of the calculations for fi
different examples: the electron-hole-pair densityr, electron
and hole temperaturesTe andTh , mean value of the electron
energy Ep , energetic widthDEp , and the Thomas-Ferm
screening wave number as calculated from Eq.~27!. Ex-
amples a–b correspond to a quasiequilibrium at 77 K a
300 K, respectively. In example c, the temperatures of
two Fermi gases are different: 77 K for electrons and 300
for holes. Such a situation may occur when the relaxatio
faster for one species than for the other. Examples d–e r
to strongly nonthermal states with different excess energ
To study the influence of the carrier distribution, th
electron-hole-pair density was chosen to be the same fo
examples. According to Eq.~27!, a carrier distribution to-
wards higher energies leads to a smaller screening w
number. In all cases, the excitation is below the Mott tran
tion.

The optical absorption according to Eq.~29! for examples
a–e is plotted in Fig. 1 as a solid line. For comparison,
absorption spectrum of the semiconductor in ground stat
shown as a dashed curve. The absorption near the band
is strongly correlated with the screening wave number~see
Table I!. It is plausible that the oscillator strength of th
exciton is reduced with increasingks . The correlation be-
tween exciton position and screening wave number is du
the fact that the Coulomb-hole term@third line of Eq.~28!# is
the dominant contribution to the band-gap renormalizati
As there is no population inversion in any of the exampl
there is no stimulated emission. For the highly-excited, n
thermal carriers~d–e!, the carrier distribution manifests itse

TABLE I. Parameters of the calculation.

Case r Te Th Ep2Eg DEp ksaB

a 1016 cm23 77 K 77 K 0.77
b 1016 cm23 300 K 300 K 0.40
c 1016 cm23 77 K 300 K 0.61
d 1016 cm23 18.8 meV 4.7 meV 0.71
e 1016 cm23 56.4 meV 4.7 meV 0.40
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as differential gain, combined with a small induced abso
tion at the high-energy shoulder.

The corresponding luminescence spectra can be see
Fig. 2. The results of the exact solution~22! correspond to
the solid line. As the total intensities are different for ea
example, individual y-axis scalings have been chosen.
the thermal distributions~a–c!, the main contribution to the
luminescence stems from the exciton and there is a
nounced high-energy shoulder. The spectrum~c! in case of
different electron and hole temperatures, 77 K and 300
respectively, is similar to the spectra for quasiequilibriu
and is somewhat in-between the spectra for 77 K~a! and 300
K ~b!. Nevertheless, the luminescence in case~c! could not
be calculated by means of the KMS relation. The nonther
distributions~d–e! are characterized by a luminescence s
nal from the continuum region. The maximum of the lum
nescence is near the change from differential gain to dif
ential absorption. In contrast, the contribution from t
exciton is vanishingly small, but would be seen in a logari
mic plot.

We now discuss the approximate solutions. The solut
in first order inV @Eq. ~24!# ~dashed curve! goes over in the
exact solution for high energies. For the thermal distributio
this approximation completely fails, since the truncation
the BSE removes the bound states. In contrast, for the n
thermal distributions, the result of this approximation giv
qualitatively the correct result, because the contribution
the bound states is suppressed. Even though the approx
tion ~24! does not guarantee that2 iP2

1 is positive
semidefinite, a positive luminescence spectrum was obse
in all cases.

FIG. 1. Absorptiona vs energyE5\v for examples~a!–~e!.
Solid line: calculations for parameters from Table I. Dashed li
absorption of the semiconductor in ground state.
-

in

or
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al
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n-
s
f
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In the approximation~25! ~dotted line!, the overall inten-
sity is not correlated with the overall intensity of the exa
solution, although for free-particles equations~22! and ~26!
give identical results. Nevertheless, for thermal distributio
of carriers, where the exciton is dominant, the correct qu
tative behavior is observed. However, there are also reg
where the signal is slightly negative, even for quasiequil
rium situations~a!. For nonthermal distributions with high
excess energy~d–e!, this approximation completely fails: a
negative signal is observed, which is of the same order as
positive signal, and the contribution of the exciton is dras
cally overestimated. A significant improvement is the calc
lation of the source term in a second Born approximation14

In this case, the result is much closer to the exact solutio20

It is not yet clear whether the inclusion of Coulomb scatt
ing in all orders would give the same result as Eq.~22!.

V. SUMMARY

In this paper we have derived a relation between the
minescence signal, the current-density correlation funct
and the polarization function. The Bethe-Salpeter equa
for P2

1 was exactly solved for static screening. This allow
us to calculate the luminescence signal for an arbitrary n
thermal distribution of carriers. The solution complies wi
the Kubo-Martin-Schwinger relation for thermal equilibriu
and the compatibility relations relations between the com
nents of the Keldysh matrix. Furthermore, it is guarante
that the luminescence signal is non-negative.

Numerical studies were done for various thermal and n

:
FIG. 2. Luminescencep vs energyE5\v for examples~a!–~e!

according to Table I. Solid line: exact solution of the BSE~22!.
Dashed line: solution of the BSE in first order@Eq. ~24!#. Dotted
line: result from Eq.~25!. The y axes are individually normalized



r
tio

n
u

m
s

re
th
is
e

ud

the
d

uc-
ous
nc-
tion

nd

PRB 62 4525THEORY OF PHOTOLUMINESCENCE IN SEMICONDUCTORS
thermal distributions and the comparison was made with p
vious solutions. The solution of the Bethe-Salpeter equa
first order in the Coulomb interaction by Jahnkeet al. and
Pereira and Henneberger gives a reasonable agreeme
case that the luminescence signal stems from continu
states, but fails when the signal from the exciton is the do
nating one. The solution by means of photon-assisted den
matrices with unrenormalized source term gives the cor
qualitative behavior when the signal is dominated by
exciton contribution, but completely fails when the signal
dominated by continuum states. Furthermore, the lumin
cence spectrum may become negative.

The formalism presented can be generalized to incl
di

,

e-
n

t in
m
i-
ity
ct
e

s-

e

microscopic polarization, i.e., nondiagonal elements of
density matrix, which is important for coherently excite
semiconductors. The application to low-dimensional str
tures is also straightforward. At present, there is no rigor
proof for the equivalence of both approaches, Green’s fu
tions and photon-assisted density matrices. This ques
will be the subject of future research.
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