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Theory of photoluminescence in semiconductors
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A theory is presented that relates the luminescence signal of a semiconductor to the current-density corre-
lation function. It allows the calculation of the luminescence spectrum for nonthermal carrier distributions by
means of solving the Bethe-Salpeter equation for the polarization. The present method passes important
consistency checks and overcomes some limitations and shortcomings of previous approaches. A detailed
comparison is made with previous results and numerical examples are presented to demonstrate the usefulness
of the present method.

[. INTRODUCTION semiconductors, because of bottleneck effects.
In this paper we present a rigorous formulation for the

Spontaneous emission, stimulated emission, and absorpiminescence signal in terms of current-density fluctuations.
tion in atoms and molecules have been studied since th&hen the spontaneous emission, including Coulomb effects,
early days of quantum mechanitélthough photolumines- can be derived by explicitly solving the Bethe-Salpeter equa-
cence measurements are frequently used to characterize th@n. This approach treats absorption and luminescence on
optical transitions in bulk semiconductors or in low- equal footing and allows us to calculate the luminescence
dimensional structures, very few works on a rigorous theorysPectrum for arbitrary nonthermal distributions.
of luminescence in semiconductors have been published so The paper is organized as follows. After this introduction,
far. in Sec. Il we derive a relation between the luminescence

We shall briefly mention important milestones towards asPectrum and the polarization function. In Sec. Ill we give a
theory of luminescence in semiconductors. Important theosolution of the Bethe-Salpeter equation and an explicit ex-
retical contributions to understanding the spectral measurdression for the luminescence signal. We discuss some im-
ment of fluctuating quantities were made by Butcher andPortant properties and also examine previous results in the
Ogg2 This theory was app“ed by Enderlegt al. to Optica' I|ght of the new f|.nd|ngs. TO I||UST[rate the Usefuln.ess of our
processes in semiconductors and the statistical properties 8PProach, numerical solutions will be presented in Sec. IV.
the secondary emission were traced back to correlation fund summary is given in Sec. V.
tions of the electronic systefDuring the last fifteen years,
the method of Green’s functions has been successfully ap- Il. BASIC EQUATIONS
plied to optical properties in semiconductors, including Cou-

lomb interactiorf: Recent theoretical papers used these con- Wiz_t_follzw Bthte htheoryd %né mﬁasurtehme]:c_ntl dOf quI(_:ttug\tmg
cepts for the description of the luminescence propertigse quantiies by butcher an gwnhere the field amplitudes

effect of Coulomb interaction has been treated approximatel e pgssed through a_spectr_al filtgr and the intensi_ty after the
by truncating the Bethe-Salpeter equation first order in th _|It¢r is measured during a time mteryal Of. IengThln_the
Coulomb potentiaf:” Pereira and Henneberger calculated the Mt T—- AS result, the measured signal is proportional to
luminescence spectrum by generalizing the Kubo-Martin-the. mtegrall of the spectrometer function and the autocorre-
Schwinger relation for quasiequilibrium, when valence anolat'orl funcpon of the f|e!d ampglltudes. .

conduction electrons have equal temperatures but different According to EnderIe|r?t a[., the Poynting vector of the
chemical potential&® Piermarocchet al. found an exact so-  €lectromagnetic radiatiofE < H) consists of a coherent part
lution in the case when the Coulomb interaction is replacedE) X (H) and an incoherent pa¢AEX AH). While the co-

by a constant in momentum space, but the result is limited thierent part describes the propagation of macroscopic electro-
one-dimensional model8:'* A different approach has been magnetic fields, the incoherent part contains the secondary
used by Kuhn and Ros$iand by Kiraet al,'*'*who calcu-  emission. We therefore concentrate on the incoherent part,

late the change in the photon number by means of photoRyhich results from the quantum fluctuationsE = E—(E)

assisted density matrices. andAH=H—(H) of the electromagnetic field. If the semi-

Desp|te_ the recent Progress, the theorepcal underSta}nd'%nductor is not coherently excited or in a resonator, all elec-
of the luminescence from semiconductors is not yet satisfa fomagnetic radiation is incoherent

tory. Some solutions rely on restrictions of the theoretical We assume temporal homogeneity and incorporate the de-

model or the quantum-statistical properties. chers do.nottection timeT in the Fourier expansions for fluctuating quan-
allow for bound states or tend to produce artifacts. An im- ities

portant problem is the calculation of the luminescence signaﬁ '

for nonthermal distributions. Such distributions may arise in 1 [+

polar semiconductors, when the dominating relaxation AE(w)= lim _f dte™TtAE(t). (1)
mechanism is LO-phonon scattering, or in low-dimensional T T =112
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It is important to know that not all terms from the Poynting . R

vector contribute to the measured intensity. In classical sto- f dst d3r/ (AL (r 1) - AJL(r' 1)

chastics, for a given frequenay>0, terms that oscillate

with exp(+2iwt) will not appear in the signal, because of the e? . .

time averagé.For quantized fields, the operators also need == 2 , (JalPaliD(i2lPaliz)
0 JlJ 1]2]2

to be in normal order and the part of the Poynting vector,
which reflects the measurable intensity is equal%%‘” _
X H(")+H.c., where the superscripts denote the Fourier XkEk L ir,05(Ka ke 1), ©)
components oscillating with expfwt).*® vz

According to Poynting's theorem, the source tediver-  where we have replaced the momentum matrix elements by
gence of the Pointing vector is equal tej - E, wherej is the  their values at the band edge. The symhmisO, m, denote
current density. Therefore, the emitted light power per frethe elementary charge and the electron mass, respectively,
quency and sample volunfe is equal to and L is the density correlation function, defined on the

Keldysh contour as
11 R N
P(0)== 35— | °r(AJT(r,w) AE(r,w)+Hc) (2 1. .

lejijzjé(klyElak2aEZ):mRijlji(klvEl)ijjé(kZaEZ))
and the total emitted power per volume is the positive-

frequency integral op(w). To evaluate expressiof®), we _<I’3jlji(k1vtl)><;j2jé(k21t2)>]a
express the operator of the electric field by the current op- - -
erator. In Coulomb gauge, it holds that (7)
AE(r ) =i wAA(T o) where we used the abbreviatigy; (k,t)=a], (k,t)a;(k,t)
' ’ andT denotes the time-ordering symbol. For interband tran-

AJ’T(rf,w) sitions under consideration, and no macroscopic polarization,
(3)  the second contribution in Eq7) is zero.
For the explicit calculation we will consider thE,.

where u, is the vacuum permeabilityc, is the vacuum —I'1s fransition in a zinc blende semiconductor without
speed of light, and the subscrifitrefers to the transverse SPin-orbit interaction assuming parabolic bands. This is
current density. In the optical limit of small photon wave €quivalent to the model of a two-band semiconductor. The
numbersw/c,, the exponential term can be expanded and thé&l0nvanishing momentum matrix elements dap,|v, X)

spectral power density takes the form =(clpylv,Y)=(c|p,v,Z)=pc,. We choose one valence
band and identify the band indices in E6) asj,;=js=c,

. H _r!
:IwMOf d3r/e+|w|r r'llcg ,
4afr—r’|

w’uy 1 . . - o j1=i»=v, which corresponds to positive frequencies. A
p(w)=— ﬁJ d fj d ' (A)T(r,w) - Aj (1, @)). prefactor(“band-structure factor} f=4 appears because of
4mCo two polarizations and the spin degeneracy.
) In order to keep resonant one-photon processes for which

From the explicit expression it follows tha(w) is positive  Ec(k) —E,(k)~% but to take into account nonresonant
semidefinite. By virtue of the definitio(l) the above quan- transitions via static screening, we replace the density corre-

tity is equal to lation function byL = P/e, where the polarization functiop
is the irreducible part of ande is the static screening con-
w’pg 1 to stant. With the abbreviatioR=P,,. for the interband po-
plw)=—7 ﬁf deJ d3r’f dtg“t=t) larization function, the final result takes the form
41 Co —o
x(A'AT(r t')-AjT(r’ t)) (5) fow?uno€?|pe,|* 1 .
1, J(r'n), P(w)=————— > ihP__.(ky,ky,@). (8)

. . . N 4m2coem? QKK
in accordance with the Wiener-Khintchine theorem. T *0&Mo 12

We mention that the same result as above can be obtainefhe relation between luminescence spectrum and the polar-

by integrating the Poynting vector over the surface of &zation functionP__ appears in various forms in the litera-
sphere. The Poynting vector also provides information abougyre.

the angular dependence of the radiatiamd allows us to
derive a general expression of the luminescence signal.
The expressions considerably simplify if the medium is
assumed to be isotropic. This is the case, e.g., for cubic semi- In this section we derive an explicit expression for the
conductors in the spherical approximation. Then the restricpolarization functiorP_ , in the presence of Coulomb inter-
tion to transverse currents is equivalent to summing over twaction between electrons and holes. This has to be done us-
out of three polarizations, for example=x,y (linear polar-  ing the method of nonequilibrium Green'’s functions. Green'’s
ization) or a=+,— (circular polarization If the current- functions have been applied to various optical properties in
density operators are expressed by creation and annihilatiemiconductor$.By means of the Keldysh formalism, most
operators of Bloch electrons, the current-density correlatiomf the concepts can be generalized to nonequilibrium. For an
function on the right-hand side of E¢p) takes the form introduction, see, e.g., the textbook of Landau and

IIl. SOLUTION OF THE BETHE-SALPETER EQUATION
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Lifschitz.'® The fundamental equations for nonequilibrium PAB(Ky Ky, w)=LgaB(K; Ky, @)
are also derived in the papers by Pereira and Hennebgftger.
The one-particle Green’s functions in Bloch representa- _ i

> LoaS(ky k' o)

tion are defined as Q S

XV(k'—K"PE(K" ky,0), (12

where the frequencw plays the role of a parameter. If the
screened Coulomb potential is not static, the solution is con-
wheret denotes a time on the Keldysh contour, consisting ofsiderably more complicated, and very few solutions have
the ordinary time and a Keldysh indea which specifies the been published so faf. The functionL, is defined as

branch on the Keldysh contour, for the upper branch and

+ for the lower branch. In fact, for each pair of band indices Loas(K1,t1,K2,t2)

j1.12, EQ. (9) defines four functions, which can be consid- =Loeyoc aa(Kiit1 Ko t0)

ered as matrix elemeniS,g with respect to the Keldysh

indices, each one depending on two ordinary times. =—ihG¢c pp(K1,t1,K2,12) Gy Ba(K2 b2 K1, t1),

In general, the one-particle Green'’s functions have a com;
plicated frequency dependence due to the correlation part
the self energy. In the case of stationarity, when the correlaﬁ
tion self-energy is assumed static, the element& achin be
expressed in terms of single-particle enerdigsand occu- Lo_"(Ky,Ko,@)=2i fo(k)[1—f,(Ky)]
pation numberd; according to:

1 . -
Gy (Keity ke, tp) = E<Taj1(k1{1)3}2(k2{2)>a €)

d is equal to the polarization function in the absence of
oulomb interaction. From the single-particle Green’s func-
ons (10) one obtains

Xaolhw—Ec(ky)+E, (K1) ]k,
Gjj,—+ (K1 ty ko tp) (13

1 )
=~ ZeFkt-ling (k)5 5, (10) _ f, (K1) —fe(ky)
i% J1 11127 K1Kp LOret(klaKer) ﬁ(w+i6)_Ec(k1)+Ey(k1) SLPE

Gjj+—(Ki,ty Ko tp) fu(ky) —fe(ky)
e Lo ke ke, )= )+ £, (k) ke
Cc v

1 :
= EeEjl(kl)(tl_tz)/'ﬁ[l—fjl(kl)]5jljz5klk2- Here,e=+0 is a positive infinitesimal. Physically and nu-
merically, e>0 plays the role of a finite lifetime and the

While the solution of the Bethe-Salpeter equation does nofi€!fa function 'S replaczed by a Lorentzian according to

depend on the specific form @&, the above approximation o(E) == (he) [[E™+(he)”]. o o

allows us to derive a particularly simple expression for the 1h€ imaginary part of the retarded polarization function is

luminescence signal in terms of an effective Hamiltonian. €SPonsible for the optical absorption/gain. From the defini-
The backward integration in time on the lower branch ontion of the retarde_d functiofil) it follows for th_e product of

the Keldysh contour implies a product of the Keldysh matri-\W0 Keldysh matricesRG) ei= FretGrer- Applying this rule

ces of the form EG) = Fa G g—Fa:Gup. It is there-  t© EQ.(12) we find

fore useful to introduce upper indic€3,"=*+G,g for B _ _

=7 and to adopt a sum convention for upper and lower Pre=Lo e Lo et/ Pret: (14

indices. Then we obtain the ordinary matrix productWe shall briefly review different ways of solving E@.4) in

(FG)AB=F, G_B+F,"G,B=:F,CG.B. For functions on  view of generalizations for the solution of the complete BSE

the Keldysh contour, it is common to define retarded and12). First, a direct solution of the form

advanced functions

Pre= (Lo rert V) (15
FreeFo——F_ i =F, —F,,, (11 is not possible in the general case, because the opérgigr
is singular in the case of population inversion, i.e.f k)
Faq=F__ —F. =F_,—F, ., >f,(k) for somek. This problem can be avoided by taking

the inverse only of the first part dfy =[%(w+i€)—E,

_1 . .
where Fot;,t,) =0 for t;<t, and Faufty,t;)=0 for t; +E,] *(f,—f.). This leads to the common expression
>t,. Furthermore, the above relations show that the ele-

— i)t
ments of the Keldysh matrix are not independent of each Pre= ~[H=A(o+ie)] 7 (f, o), (16)
other. where
The polarization function from the last section can be cal-
culated from the single-particle Green’s functions by means H(ky,ko) =[Ec(kq) —E, (K1) 16k,

of the Bethe-Salpeter equatigBSE). In the ladder approxi-
mation with a statically screened potent\g| this equation

1
simplifies to an integral equation k space, ~Hfu(k) = Telky ] Viki—ka). (17)
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non-negative. Second, the elements of the Keldysh matrix

—f.(k)=const. For simplicity, we also used some straight-for P fulfill the compatibility relations(11). This is because

forward matrix notation. For examplé,—f. stands for a
diagonal matrix with elemen{d,(k;) — fc(kl)]5klk2- An al-

ternative solution is found by iterating the BSE4). In this
caseP, becomes

Prec= nZO (—Lo retV)nLO re=(1+Lo retv)_ll—o ret:
(18

The operator LV is regular for eachn. The equiva-
lence of the solution§16) and (18) is obvious from the ex-
plicit expression ol ¢ (13). Analogous relations can also
be established foP 4= P,

Now we proceed to solve the BSE2) for the whole
Keldysh matrixP. Again, a solution in the fornP=(L51
+V) 1, in analogy to Eq(15), is not possible. For, by con-
servation of difficulty, the operatdr, is also singular. Its
determinant is equal th g Llqaqy @and, therefore, propor-
tional to (f,—f,)2. Furthermore, a separate treatmentf of
—f, is not possible since none of the matrix elements of
explicitly contains a factof.—f,. There is, in principle, a
cure for this problem: the Keldysh matrices in Ef2) can
be transformed into triangular forti,and a retarded and
advanced function, both containing the factgrf, , appear
in the corners.

The generalization of Eq18) is straightforward to give
immediately

P=(1+LoV) L, (19

and 1+LyV is always regular. Even though E@L9) pro-
vides a method of calculating_", we shall also derive an

explicit expression, which allows us to analytically deduce

important properties.

From the definition of retarded and advanced functions

(11) it follows that (FG)_*=FG_"+F_"G,q,, Which

can be generalized by recursion to the product of any number

of Keldysh matrices. Application to the BSE2) yields
P_t=Ly "
—Lo-"V&loa~LoreVLlo-"
+Lo - "VLoaaVLoaat Lo reVLo - VLo aay
+LoreVLloreVLlo "
Fooel (20
After rearranging the power series,

Pf=n§0 (—Lo retv)”LanZo (—VLoa)"

=(1+LoV) Lo_"(1+VLloaw L (2D

using the definition of the effective Hamiltoni&h7) and the
form of Ly _ " (13), we obtain the result

P_*=2i[H—f(w+ie)] Yef(1—T,)

X[H—A(w+ie)] 1T (22

an analogous relation to ER1) can also be established for
P, ™ and for the differencé®— P,q, (but not for P, and
P.qv Separately.

Another conclusion can be drawn: the differenPg,
—P.qv, responsible for absorption/stimulated emission, can
be expressed as

Pret— Pagv=—2i[H—#(w+ie)] the(fo—T,)

X[H-fi(w+ie)] . (23
Equations(22) and (23) generalize the expressions for the
free-particle casé g, in a nonobvious way.

An important point is the validity of the Kubo-Martin-
Schwingen KMS) relation, which connects the elementsof
by the Bose functiory and can be viewed as the pendant to
the relation between the Einstein coefficients. The solution
(21) preserves the KMS relation, i.e., ifLg_"
=—9(fo)(LorerLoad, then P_"=—-g(hw)(P
—P,q). However, as a consequence of the approximate
Green’s functiong10), the KMS relation forlL, (13) is ful-
filled only in the limit e=+0. In order to take into account
effects of dynamic correlation, the exchange-correlation self-
energy has to be calculated in T-matrix approximation, con-
sistently with the ladder approximation for the BSE. In this
case, the illustrative concept of an effective Hamiltonian be-
comes void.

It is worthwhile to discuss the relationship between pre-
vious results and the results of this paper. In early publica-
tions on this subje&, a truncation of the BSE according to

P,+:L07+_L0ret\/Loer_LOerVLOadv (24)

was proposed for high densities and the difference to the
free-particle luminescence was expressed by a Coulomb en-
hancement factor. Besides the fact that this approximation
does not allow for bound states, the truncation of Dyson or
Bethe-Salpeter equations is never recommended because of a
tendency to produce artifacts.

Pereira and Henneber§éused the KMS relation to cal-
culateP_" from P,¢— Paq, for quasiequilibrium. By calcu-
lating the chemical potentials in a T-matrix approximation,
consistently with the BSE, a positive luminescence signal is
obtained. For quasiequilibrium, the approach in Refs. 8 and 9
is comparable to the present approach, but also allows for
effects of dynamic correlation.

For one-dimensional systems, when the Coulomb poten-
tial is approximated by a constant knspace(delta function
in real spacg thek; sum inP(k;,k,,w) can be carried out
and Eq.(12) goes over into an algebraic equation. This has
been done successfully by Piermarocehiall® These au-
thors also calculated the self-energy in T-matrix approxima-
tion, which is important for the discussion of density-
dependent broadening and band-gap renormalization in
quantum wires?!

The explicit expressions allow us to deduce some general From the equations-of-motion for photon-assisted density

properties. First, the operateriP _" is positive semidefi-

matrices, Kuhn and Rossi derived an expression for the

nite. It is thus guaranteed that the luminescence signal ispontaneous emission of the fofm
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TABLE |. Parameters of the calculation.

p(w)oc—i% > {[H-fi(o+ie)]
kika

Case p Te Ty E,—Eq AE, ksag
X (ky k) fe(k)[1—T,(kp)]—H.c}, (25 a 10°cm® 77K 77K 0.77
6 —3
which corresponds to the approximation b 1016 om ~ 300K 300K 0.40
c 10 cm 77 K 300 K 0.61
Pt —[H—fi(w+ie)] Hy(1-T,) d 10% cm 3 18.8 meV 4.7 meV 0.71
e 10°cm3 56.4 meV 4.7 meV 0.40

—f(1—f)[H-A(w+ie)] 1" (26)

The same result is obtained using the semiconductor lumi- 1

nescence equatiolis*with the unrenormalized source term a(0)xi= X [Pref Ky Ko, 0)—Pag( Ky Ky, 0)] (29)
proportional tof (1—1f,). It is worthwhile to note that ex- O &,

pression(26) contains only part of the terms of ER1). It
does also not guarantee a positive luminescence signal, as
will see in the next section.

\ﬁgd the luminescence spectrum

1
plw)x—ig > P-"(kikz,0). (30)
IV. EXAMPLES kikz

As luminescence is always related to the presence of The explicit calculations are done with GaAs parameters
electron-hole pairs, the effective Hamiltoni&h?7) is non- Eq(0K)=1.52 eV, m,=0.067m,, m,=0.442n,, and &
Hermitian and no simple analytical expression can be given=13.1, leading to an exciton binding energyg=4.7 meV
in terms of eigenvalues and eigenfunctions. On the otheind Bohr radiusag=12 nm. We consider different situa-
hand, the numerical calculations are not difficult at all; whentions describing photoexcited semiconductors: electrons and
the Hilbert space is properly discretized, the application oholes at the same temperatumiasiequilibriuny, electrons
the operatoH ~* is transformed into the solution of a linear and holes at different temperature, and strongly nonthermal
set of equations. Prior to treating specific examples, we alsgistributions with high-excess energy. Nonthermal distribu-
did some consistency checks: we verified that K@) and  tions arise for optical excitation high above the band edge
(23) give identical results for the absorption and that theand can be determined solving kinetic equatibhBor sim-
numerical results of Eq(19) and Eq.(22) for the lumines-  plicity we assume Gaussian distributions centered at
cence are identical. electron-hole-pair energl, with a width AE,.

The results of the previous section are rather general and Taple | shows the parameters of the calculations for five
do not depend on the specific form of the potent@nd the  different examples: the electron-hole-pair dengityelectron
band dispersiong;. In order to model realistic situations, and hole temperaturég, andT,,, mean value of the electron
we take into account screening and band-gap renormalizgnergy E,, energetic widthAE,, and the Thomas-Fermi
tion. We use Thomas-Fermi screening, which can be genekcreening wave number as calculated from E2f). Ex-

alized to nonthermal distributiorts: amples a—b correspond to a quasiequilibrium at 77 K and
300 K, respectively. In example c, the temperatures of the

V(k) = e? e e? 2 2 df;(k) two Fermi gases are different: 77 K for electrons and 300 K
= ooe (K21 kD)’ ST e (S0 O % dE(K) for holes. Such a situation may occur when the relaxation is

faster for one species than for the other. Examples d—e refer
to strongly nonthermal states with different excess energies.

The band dispersions in the effective Hamiltonidrr) are  To study the influence of the carrier distribution, the

renormalized accordingl§: electron-hole-pair density was chosen to be the same for all
examples. According to Eq27), a carrier distribution to-
2k #2K? wards higher energies leads to a smaller screening wave
Ec(K)—E,(K)=E4+ WJFZ_mh number. In all cases, the excitation is below the Mott transi-
© tion.

1 ) ) ) The optical absorption according to E9) for examples
tq 2 V(K=k")[f (k") =fe(k")—1] a—e is plotted in Fig. 1 as a solid line. For comparison, the
k absorption spectrum of the semiconductor in ground state is

1 e? shown as a dashed curve. The absorption near the band edge
+ a > V(k=k') =——F——|. is strongly correlated with the screening wave num(see
K’ eos|kK—K'| Table ). It is plausible that the oscillator strength of the

(28)  exciton is reduced with increasirig. The correlation be-
tween exciton position and screening wave number is due to
For the calculation of the Thomas-Fermi screening wavethe fact that the Coulomb-hole tefthird line of Eq.(28)] is
number(27) we use the unrenormalized dispersions, becausthe dominant contribution to the band-gap renormalization.
the main effect of the band-gap renormalization is a shift ofAs there is no population inversion in any of the examples,
the band edges. With the results for the polarization functiorthere is no stimulated emission. For the highly-excited, non-
from the last section we calculate the absorption coefficienthermal carriergsd—e), the carrier distribution manifests itself
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FIG. 1. Absorptiona vs energyE=%w for examples(@)—(e).

Lo lati ¢ ; ble 1. Dashed line: FIG. 2. Luminescencp vs energyE =% w for examplega)—(e)
Solid '”?e- caleu atlon§ or param.eters rom Table |. Dashe Ine'according to Table I. Solid line: exact solution of the B&R).
absorption of the semiconductor in ground state.

Dashed line: solution of the BSE in first ordgq. (24)]. Dotted
line: result from Eq(25). The y axes are individually normalized.
as differential gain, combined with a small induced absorp-
tion at the high-energy shoulder. In the approximatior(25) (dotted ling, the overall inten-
The corresponding luminescence spectra can be seen §y is not correlated with the overall intensity of the exact
Fig. 2. The results of the exact soluti¢B2) correspond to  solution, although for free-particles equatioi@?) and (26)
the solid line. As the total intensities are different for eachgive identical results. Nevertheless, for thermal distributions
example, individual y-axis scalings have been chosen. Fof carriers, where the exciton is dominant, the correct quali-
the thermal distributionga—0, the main contribution to the tative behavior is observed. However, there are also regions
luminescence stems from the exciton and there is a proyhere the signal is slightly negative, even for quasiequilib-
nounced high-energy shoulder. The spectii@nin case of rjum situations(a). For nonthermal distributions with high-
different electron and hole temperatures, 77 K and 300 Kexcess energyd—e), this approximation completely fails: a
respectively, is similar to the spectra for quasiequilibrium,negative signal is observed, which is of the same order as the
and is somewhat in-between the spectra for 7(&Kkand 300  positive signal, and the contribution of the exciton is drasti-
K (b). Nevertheless, the luminescence in césecould not  cally overestimated. A significant improvement is the calcu-
be calculated by means of the KMS relation. The nonthermalation of the source term in a second Born approximatfon.
distributions(d—¢) are characterized by a luminescence sig-in this case, the result is much closer to the exact soldfion.
nal from the continuum region. The maximum of the lumi- |t js not yet clear whether the inclusion of Coulomb scatter-

nescence iS near the Change from diﬁerential gain to differ'i'ng in a" Orders W0u|d give the same result as m)
ential absorption. In contrast, the contribution from the

exciton is vanishingly small, but would be seen in a logarith-
mic plot.

We now discuss the approximate solutions. The solution In this paper we have derived a relation between the lu-
in first order inV [Eq. (24)] (dashed cunjegoes over in the minescence signal, the current-density correlation function
exact solution for high energies. For the thermal distributionsand the polarization function. The Bethe-Salpeter equation
this approximation completely fails, since the truncation offor P_" was exactly solved for static screening. This allows
the BSE removes the bound states. In contrast, for the noms to calculate the luminescence signal for an arbitrary non-
thermal distributions, the result of this approximation givesthermal distribution of carriers. The solution complies with
qualitatively the correct result, because the contribution othe Kubo-Martin-Schwinger relation for thermal equilibrium
the bound states is suppressed. Even though the approximand the compatibility relations relations between the compo-
tion (24) does not guarantee thatiP_" is positive nents of the Keldysh matrix. Furthermore, it is guaranteed
semidefinite, a positive luminescence spectrum was observehat the luminescence signal is non-negative.
in all cases. Numerical studies were done for various thermal and non-

V. SUMMARY
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thermal distributions and the comparison was made with premicroscopic polarization, i.e., nondiagonal elements of the
vious solutions. The solution of the Bethe-Salpeter equationlensity matrix, which is important for coherently excited

first order in the Coulomb interaction by Jahnéeal. and  semiconductors. The application to low-dimensional struc-
Pereira and Henneberger gives a reasonable agreementtiites is also straightforward. At present, there is no rigorous
case that the luminescence signal stems from continuurproof for the equivalence of both approaches, Green’s func-

states, but fails when the signal from the exciton is the domitions and photon-assisted density matrices. This question
nating one. The solution by means of photon-assisted densityjj|| be the subject of future research.

matrices with unrenormalized source term gives the correct

qualitative behavior when the signal is dominated by the

exciton contribution, but completely fails when the signal is

dominated by continuum states. Furthermore, the lumines-

cence spectrum may become negative. The authors are indebted to S. W. Koch, L. Scolfaro, and
The formalism presented can be generalized to includ®.-G. Welsch for helpful discussions.
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