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We study the spin-split de Haas—van Alphen oscillations in two-dimensi@Balconductors whose density
of stateg(DOSY) is made of two parts: one is a set of sharp Landau levels and another is a DOS unaffected by
the magnetic field. We call the latter the background DOS and denote by We report the analytical
formula for the spin factors of all the harmonic components at absolute zero temperature; the formula is valid
for any pgg and for anyg value of the quantized band. The obtained spin factors, in particular the ones of the
higher-harmonic components, depend complicatedlypgg and g, and differ drastically from those in the
Lifshitz-Kosevich formula: the values af (or the magnetic field angle$or which the spin factors become
zero vary withpgg.

The de Haas—van AlpheHvA) effect in strongly two-  expressed by the standard spin factors in the LK formula,
dimensional(2D) conductors is attracting much attention, irrespective of the dimensionality.
because such systems have been realized in several molecu-The results in the two limits are completely different. The
lar conductors or in other kinds of substances such apurpose of this paper is to show the crossover of the spin
Sr,Ru0,, and because the dHvA effect in those systemgffect, which occurs in an extremely complicated manner,
shows some peculiarities which are beyond the applicabilityVith varying pgg from 0 to <, by giving the exact analytic
of the standard Lifshitz-KosevicfLK ) formulal? expression for the spin factors of all the harmonic compo-
Although the LK formula has been successful in analyz-Nents atf=0. The applicability of our results is wider than
ing the dHVA effect in ordinary three-dimensior8D) con- expected from the simplicity of our model and the restriction

ductors, it cannot be applied to the 2D systems, because tﬁ%T:O’ as ekaﬂn?d later. - wated in Ref hich
formula is derived by neglecting the chemical potential os- . The same Model as ours IS mvestlgate In Ref. 14, w e
cillation (CPO. While the CPO is negligibly small in ordi- gives approximate analytical expressions for the magnetiza-

narv 3D svstems. it is alwavs substantial and cannot be nti_on atT+0, but not in the form of spin factors. Spin factors
y 3B Sy ' Y - D€ Nave been familiar and convenient tools in the analyses of
glected in 2D systemsgeven far from the quantum limit,

the experimental results. Thus, our work, while restricted to

e (33v4en if the numper of occupied L"’F”da“ Ieyels IS nOLI'=O, giving the exact spin factors, is useful and comple-
smal).>" For example, in 2D systems having multiple closed ants Ref. 14

bands, novel combination frequency components appear \ye consider the following simple 2D two-band model:

solely owing to the CPO: this phenomenon has been noticeg) e pand has a simple parabolic dispersion given by
first in Ref. 5, and investigated further recerftiy°

In this paper, we consider a perfectly 2D systéimaving (k)2 (fik,)?
multiple bands but only one fundamental frequency; i.e., Ek)= y
only a single band of this system is Landau quantized, while

the other bands are unaffected by the magnetic field. Thﬁ/herekz(kx,ky) is the 2Dk vector. The masses, andm,
latter gives the density of stat¢®OS) independent of the myst have the same sign, and we assume, without loss of
field, which we callthe background DO@nd designate by generality, that they are positive, i.e., that the band is an
pec- (The model withpgg was first introduced in Ref. 8, and  electron(not a hol@ band®® In the absence of a magnetic
has been used often in succeeding studies on the effect of thig|d, the DOS(per unit arep of this band for each spin is
CPO!o2-1§ given by

The spin effect on the dHVA oscillation in this simple 2D
system is unexpectedly complicated and drastically different p(e)=py (constfor e>0), 2)
from the one expressed in the LK formula, owing to the
CPO. We report the exact analytical expression for the spimhere
effect of this system at absolute zero temperatdre Q) in
the form of spin factors of all the harmonic components. po=m/(27h?), m= \/mxmy_ (3

The CPO and, hence, the spin factors are sensitive to
pec, Which serves as an electron reservoir. The two lifijts  We will concern ourselves only with the ratio pf to pgg;
pec—0 and (ii) pgg—0o° correspond, respectively, to the hence only note thgigocm.
cases of a single quantized bafig with a fixed electron Under a magnetic field whose strengthBsand whose
number and(ii) with a fixed chemical potential. The spin angle from thez axis is 6, this band is quantized; the Landau
effect in casdi) at T=0 is given in Ref. 3. In caséi), it is levels are given by

, @

2my 2m,
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1
E(n,o)=hw, n+§+0'y
(for n=0,1,2..., ando==*3), (4
where
B heBcosd g m 5
QT m | 772 mpcose ®)

are the Landau level spacirithe cyclotron frequency mul-
tiplied by #) and the normalized dimensionless gyromag-
netic ratio, withg being theg value of this band andh, the
bare electron mass.

The other band is assumed to be unaffected by magnet

field, except for the Zeeman effect, i.e., not to be Landau

guantized. The DOS of this band for each spir(*1/2) is
given by

(6)

where &, is the band bottom energy @=0, and y
=|mggg/2my cosd|, with ggg being theg value of this un-
guantized band. The mass of this unquantized band,, is
giVen bypBG: mBG/Z’iThZ.

The most important parameter in this work is the ratio

(@)

Also important isy (or # andg). The crucial condition in
our analysis is that the total electron numbemust always
be kept constant.

The chemical potential &t=0 and aB=0 for a givenN,
designated by, is determined by

p(e)=pge (constfor e>&+oyho,),

G=pgc/po=Mps/M.

€S)

In this work, we treat only the case far from the quantum
limit; i.e. , we assume that, and uo— &, are much greater
thanfw., yhw., andyho.; thus, the final results do not

depend or€, and’y.
It is convenient to measure the magnetic field by

2potot2psa( o~ Ep) =N.

X=2uglhw.=2F/B, 9)
where
Sy 2mmug
F_‘ZWECOSH T 2 (10

are the oscillation frequency and the cross-sectional area of

the cylindrical Fermi surface.
The magnetization along the field direction is defined by

M(B.N)=——2

11

whereAE, is the variation of the ground-state energy of the

system:AE,,= E(B,N) — E;(O,N). It is convenient to de-
fine a normalized magnetization as

1

where ==

2p0,uoﬁe cosé
C - .

M=C-M,
m

12
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Spin Factor R(Y)

ic

FIG. 1. Ry(y) for seven values 06. (a) Solid line for G=0,
dotted line 0.1, and dashed line 0.5 affl dash-dotted line 1.0,
dashed line 2.0, dotted line 10.0, and solid line

After some calculation, we obtain the following formula

for the oscillatory part oM, with the spin factolR,, given
below:

o0

Mosc(x) = E

n=1

;—;Rn(y)sinnw(x—l) (133

co-1 _ F 1
=n§=‘,lERn(y)sm2nrr g—z , (l3b)

This equation and Eq(22), the formula forR,(vy), with
some definitions in Eq917), (19), and (23) constitute the
main result of this work. To demonstrate the complicated
manner of the crossover with varying from 0 to o, we
depictR;, R,, andR; as a function ofy for several values of
G in Figs. 1-3.

Now, we briefly describe the derivation. First, the ground-
state energy is obtained as

< o R

Spin Factor Rx(Y)

FIG. 2. R,(y) for seven values 06. (a) Solid line for G=0,
dotted line 0.1, and dashed line 0.5 afWl dash-dotted line 1.0,
dashed line 2.0, dotted line 10.0, and solid line
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] (a) ] = = —

1 671> "o (19

0] . If [y] is odd, we obtainL (x) by replacings with 1— & and
] exchangingé for # in Eq. (18).

] The Fourier coefficients defined by

I 1 T o

Spin Factor R3(7)
I

a
L,(x)= Oy) +nZl ay(y)cognmx), (209
1
an(y)=2f L, (x)cognmx)dx, (20b)
0
] | N N N N 1 N N N N ! . .
0 q 5 are obtained as follow§for n=1:
Y an(7)=(=1)"(nm) " 2Ry(), (21)
FIG. 3. Ry(y) for 14 values ofG. (a) The largerR;(0), the  \yhere
smallerG, for G=0, 0.1, 0.2, 0.4, 0.5, 0.6, and 0.8: FGr=0.5,
R3(y) =0 (cons}; the lines for 0 and 0.1 are difficult to distinguish. -1 (G+1)?
(b) The smallefR3(0), the snaller G, for G=1.0, 1.5, 2.0, 3.5, 5.0, Rn(y)= nm qu( Y) (22)
10.0, andke. .
and
fiwe)? Yhw,)? . .
AE = pofi w2l (x)— p°(74 o) _ pBG(74 o Sy(y)=sin(nmé)+(—1)"sin(nmy) (for even [72) \
23
(14
—( N eoj H
where the last two terms are the Zeeman energy gain of the =(=1)"sin(nm¢) +sin(nm7)  (for odd [7]()2'3b)
respective bands; the functiob,(x) is described below.
Second, the normalized magnetization is derived as Note thatR,, as well asa, andS,, is a periodic function of

v with period 2, while their absolute values have period 1

- , hog Y2+ Gy? and depend only od. One might think that it is better to
M=1L,(x)— “o L,(x)— —a | (19 define the spin factors a@3(y)=R,(¥)/Rn(0). This does
not work well, however, since it happens thi(0)=0 for
and third, its oscillatory part is well approximated by some G generally[only for n=1, R,(0)~1 for any G].
_ Hence, our definition oR,, and our representation of formula
M osc=L (%), (16)  (13) seem the most appropriate ones.
) _ In the limits G—0 andG—«, we obtain
because we are assuming that the number of occupied Lan-
dau levels is large, i.e.fiw./up<l, while L (x) and limR,(y)=—{5+(—1)"(1—05)} (foreven[y])
L (x)=dL,/dx are of order unity. G—0
The functionL ,(x) is an even periodic function of with (243

period 2, and is also a periodic function pfwith period 2. i 1\n _
We denote the integer part ofby [ v], and denote its frac- =-{(-1e+(1=9)}  (foroad [Y])(’24b)
tional part by

which completes the partial result in Ref. 15, and

o=vy—[vl (17) _
lim R,(y)=cognmy), (25
If [y] is even G-

which reproduces the well-known spin factor for eatin
x> (for xe[0,5]) (183  the LK formula.
As a function ofy, limg_gR,(7y) and limg_.R,(y) are
similar only forn=1 (Fig. 1). [In the figures, the spin factors

, G+1
4L (x)= 0"+

=8+ (1-6)°— (G+1){x—(1-9)}? R,(7) are depicted only for one period<0y<2.] For n

(for xe[n,1—£]) (18b) =2, they are qualitatively differer(Figs. 2 and 3 For ex-

ample, lims_oRs(v)=—1 (cons}, whereas lig_...R5(7y)

G+1 =cos 2ry. Between the two limits, we can see tHj(y)
=(1-6)%+ (x—1)? andR3(y) change their form continuously but drastically. In

G particular, note that the values of which satisfiesR,(y)

(for xe[1—¢,1]), (180 =0 varies generally with varying (the exceptions are

=0.5 and 1.5 fon= odd): this fact is specifically important
where in analyzing the experimental results.



48 BRIEF REPORTS PRB 62

Now we begin a discussion. The consthtondition has approximated by zero for the lightest band, but are large
been crucial in our analysis. This condition is realized,enough to wipe out the quantized structure in the DOS of the
within a bulk 2D conductor, by the long-range Coulomb in- heavier bands. Therefore, the results of this work can be
teraction which strongly keeps electrical neutrality. Thus,applied to the interpretation of many of the dHvA experi-
even if a sample is grounded, this condition holds in thements on strongly 2D conductors at appropriate tempera-
bulk. This implicitly incorporated Coulomb interaction and tures, and enable us to determine thealue of the lightest
the Pauli exclusion principle make things complicated andcand.
interesting, whereas our model is only a one-body problem. In future studies, however, we must incorporatand 7

The spin effect can be investigated most systematically bjegitimately. It is certain that we cannot factorize the
the angular dependence of the oscillation amplitudes, besffect of spin and temperature as in the LK formula like
causey(cosd) L. However, in the real strongly 2D sub- R&(y,B)-R}(T,B), but that we can only obtain a single fac-
stances, not only the spin effect, but also the Yamaiji effector R,(y,T,B).
affects the angular dependerté®!® Hence, we must be  Finally, whereas no electronic correlation is incorporated
careful to be aware of both effects in practical analy§Else  in our model, what is pointed out in this work is of great
Yamaji effect is an effect caused by the very weak but finitesignificance also in the study of correlated systems. For an
three dimensionality of the systerff$.With this care, our investigation of correlated systems can be performed only
results enable us to obtain tigevalue of the quantized band after a complete understanding of uncorrelated systems.
by analyzing the angular dependence of the spin factors. In conclusion, we have obtained an exact analytical for-

The origin of finiteG can be not only the coexisting open mula for the spin factor®,(v) for an arbitrary background
bands, but also the coexisting closed bands whose masses aemnsity of statepgg at T=0. Our results indicate that, in
much heavier than that of the lightest band. Let us denote thanalyzing the experimental results, one must always pay
temperature and lifetime by and 7. If 4/7 andkgT are  close attention to the fact that the spin factors in the 2D
much less than the Landau level spacing of the lightest banslystems are completely different from those in the LK for-
but are much greater than those of the other bands, then it lmula and complicatedly and sensitively depend on the values

possible that & and T are small enough for them to be of pgg and yoxg/cosé.
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