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Spin factor of de Haas–van Alphen oscillations in two-dimensional systems:
Effect of background density of states and chemical-potential oscillations

Masahiro Nakano
Department of Physics, Osaka Institute of Technology, Osaka 535, Japan

~Received 13 July 1999!

We study the spin-split de Haas–van Alphen oscillations in two-dimensional~2D! conductors whose density
of states~DOS! is made of two parts: one is a set of sharp Landau levels and another is a DOS unaffected by
the magnetic field. We call the latter the background DOS and denote it byrBG . We report the analytical
formula for the spin factors of all the harmonic components at absolute zero temperature; the formula is valid
for anyrBG and for anyg value of the quantized band. The obtained spin factors, in particular the ones of the
higher-harmonic components, depend complicatedly onrBG and g, and differ drastically from those in the
Lifshitz-Kosevich formula: the values ofg ~or the magnetic field angles! for which the spin factors become
zero vary withrBG .
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The de Haas–van Alphen~dHvA! effect in strongly two-
dimensional~2D! conductors is attracting much attentio
because such systems have been realized in several mo
lar conductors or in other kinds of substances such
Sr2RuO4, and because the dHvA effect in those syste
shows some peculiarities which are beyond the applicab
of the standard Lifshitz-Kosevich~LK ! formula.1,2

Although the LK formula has been successful in anal
ing the dHvA effect in ordinary three-dimensional~3D! con-
ductors, it cannot be applied to the 2D systems, because
formula is derived by neglecting the chemical potential
cillation ~CPO!. While the CPO is negligibly small in ordi
nary 3D systems, it is always substantial and cannot be
glected in 2D systems~even far from the quantum limit
i.e. , even if the number of occupied Landau levels is
small!.3,4 For example, in 2D systems having multiple clos
bands, novel combination frequency components app
solely owing to the CPO: this phenomenon has been not
first in Ref. 5, and investigated further recently.6–10

In this paper, we consider a perfectly 2D system11 having
multiple bands but only one fundamental frequency; i
only a single band of this system is Landau quantized, w
the other bands are unaffected by the magnetic field.
latter gives the density of states~DOS! independent of the
field, which we callthe background DOSand designate by
rBG. ~The model withrBG was first introduced in Ref. 8, an
has been used often in succeeding studies on the effect o
CPO.10,12–14!

The spin effect on the dHvA oscillation in this simple 2
system is unexpectedly complicated and drastically differ
from the one expressed in the LK formula, owing to t
CPO. We report the exact analytical expression for the s
effect of this system at absolute zero temperature (T50) in
the form of spin factors of all the harmonic components.

The CPO and, hence, the spin factors are sensitive
rBG, which serves as an electron reservoir. The two limits~i!
rBG→0 and ~ii ! rBG→` correspond, respectively, to th
cases of a single quantized band~i! with a fixed electron
number and~ii ! with a fixed chemical potential. The spi
effect in case~i! at T50 is given in Ref. 3. In case~ii !, it is
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expressed by the standard spin factors in the LK formu
irrespective of the dimensionality.

The results in the two limits are completely different. Th
purpose of this paper is to show the crossover of the s
effect, which occurs in an extremely complicated mann
with varying rBG from 0 to `, by giving the exact analytic
expression for the spin factors of all the harmonic comp
nents atT50. The applicability of our results is wider tha
expected from the simplicity of our model and the restricti
to T50, as explained later.

The same model as ours is investigated in Ref. 14, wh
gives approximate analytical expressions for the magnet
tion atTÞ0, but not in the form of spin factors. Spin facto
have been familiar and convenient tools in the analyses
the experimental results. Thus, our work, while restricted
T50, giving the exact spin factors, is useful and comp
ments Ref. 14.

We consider the following simple 2D two-band mode
One band has a simple parabolic dispersion given by

E~k!5
~\kx!

2

2mx
1

~\ky!2

2my
, ~1!

wherek5(kx ,ky) is the 2Dk vector. The massesmx andmy
must have the same sign, and we assume, without los
generality, that they are positive, i.e., that the band is
electron~not a hole! band.16 In the absence of a magnet
field, the DOS~per unit area! of this band for each spin is
given by

r~«!5r0 ~const for «.0!, ~2!

where

r05m/~2p\2!, m5Amxmy. ~3!

We will concern ourselves only with the ratio ofr0 to rBG;
hence only note thatr0}m.

Under a magnetic field whose strength isB and whose
angle from thez axis isu, this band is quantized; the Landa
levels are given by
45 ©2000 The American Physical Society
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E~n,s!5\vcS n1
1

2
1sg D

~for n50,1,2, . . . , and s56 1
2 ), ~4!

where

\vc5U\eBcosu

m U, g5Ug2 m

m0 cosuU ~5!

are the Landau level spacing~the cyclotron frequency mul
tiplied by \) and the normalized dimensionless gyroma
netic ratio, withg being theg value of this band andm0 the
bare electron mass.

The other band is assumed to be unaffected by magn
field, except for the Zeeman effect, i.e., not to be Land
quantized. The DOS of this band for each spin (s561/2) is
given by

r~«!5rBG ~const for «.Eb1sg̃\vc!, ~6!

where Eb is the band bottom energy atB50, and g̃
5umgBG/2m0 cosuu, with gBG being theg value of this un-
quantized band. The mass of this unquantized band,mBG, is
given byrBG5mBG/2p\2.

The most important parameter in this work is the ratio

G5rBG/r05mBG/m. ~7!

Also important isg ~or u and g). The crucial condition in
our analysis is that the total electron numberN must always
be kept constant.

The chemical potential atT50 and atB50 for a givenN,
designated bym0, is determined by

2r0m012rBG~m02Eb!5N. ~8!

In this work, we treat only the case far from the quantu
limit; i.e. , we assume thatm0 andm02Eb are much greate
than \vc , g\vc , and g̃\vc ; thus, the final results do no
depend onEb and g̃.

It is convenient to measure the magnetic field by

x52m0 /\vc52F/B, ~9!

where

F5U \S0

2pe cosuU, S05
2pmm0

\2
~10!

are the oscillation frequency and the cross-sectional are
the cylindrical Fermi surface.

The magnetization along the field direction is defined

M ~B,N!52
]DEtot

]B
, ~11!

whereDEtot is the variation of the ground-state energy of t
system:DEtot5Etot(B,N)2Etot(0,N). It is convenient to de-
fine a normalized magnetization as

M̃5C•M , where
1

C
5

2r0m0\e cosu

m
. ~12!
-

tic
u

of

After some calculation, we obtain the following formu
for the oscillatory part ofM̃ , with the spin factorRn given
below:

M̃osc~x!5 (
n51

`
21

np
Rn~g!sinnp~x21! ~13a!

5 (
n51

`
21

np
Rn~g!sin 2npS F

B
2

1

2D , ~13b!

This equation and Eq.~22!, the formula forRn(g), with
some definitions in Eqs.~17!, ~19!, and ~23! constitute the
main result of this work. To demonstrate the complicat
manner of the crossover with varyingG from 0 to `, we
depictR1 , R2, andR3 as a function ofg for several values of
G in Figs. 1–3.

Now, we briefly describe the derivation. First, the groun
state energy is obtained as

FIG. 1. R1(g) for seven values ofG. ~a! Solid line for G50,
dotted line 0.1, and dashed line 0.5 and~b! dash-dotted line 1.0,
dashed line 2.0, dotted line 10.0, and solid line`.

FIG. 2. R2(g) for seven values ofG. ~a! Solid line for G50,
dotted line 0.1, and dashed line 0.5 and~b! dash-dotted line 1.0,
dashed line 2.0, dotted line 10.0, and solid line`.
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DEtot5r0\vc
2Lg~x!2

r0~g\vc!
2

4
2

rBG~ g̃\vc!
2

4
,

~14!

where the last two terms are the Zeeman energy gain of
respective bands; the functionLg(x) is described below.
Second, the normalized magnetization is derived as

M̃5H Lg8~x!2
\vc

m0
S Lg~x!2

g21Gg̃2

4
D J , ~15!

and third, its oscillatory part is well approximated by

M̃osc5Lg8~x!, ~16!

because we are assuming that the number of occupied
dau levels is large, i.e.,\vc /m0!1, while Lg(x) and
Lg8(x)5dLg /dx are of order unity.

The functionLg(x) is an even periodic function ofx with
period 2, and is also a periodic function ofg with period 2.
We denote the integer part ofg by @g#, and denote its frac-
tional part by

d5g2@g#. ~17!

If @g# is even,

4Lg~x!5d21
G11

G
x2 ~ for xP@0,h#! ~18a!

5d21~12d!22~G11!$x2~12d!%2

~ for xP@h,12j#! ~18b!

5~12d!21
G11

G
~x21!2

~ for xP@12j,1# !, ~18c!

where

FIG. 3. R3(g) for 14 values ofG. ~a! The largerR3(0), the
smallerG, for G50, 0.1, 0.2, 0.4, 0.5, 0.6, and 0.8: ForG50.5,
R3(g)50 ~const!; the lines for 0 and 0.1 are difficult to distinguish
~b! The smallerR3(0), the smaller G, for G51.0, 1.5, 2.0, 3.5, 5.0
10.0, and̀ .
he

n-

j5
G

G11
d, h5

G

G11
~12d!. ~19!

If @g# is odd, we obtainLg(x) by replacingd with 12d and
exchangingj for h in Eq. ~18!.

The Fourier coefficients defined by

Lg~x!5
a0~g!

2
1 (

n51

`

an~g!cos~npx!, ~20a!

an~g!52E
0

1

Lg~x!cos~npx!dx, ~20b!

are obtained as follows17 for n>1:

an~g!5~21!n~np!22Rn~g!, ~21!

where

Rn~g!5
21

~np!

~G11!2

G
Sn~g! ~22!

and

Sn~g!5sin~npj!1~21!n sin~nph! ~for even @g#)
~23a!

5~21!n sin~npj!1sin~nph! ~for odd @g#).
~23b!

Note thatRn , as well asan andSn , is a periodic function of
g with period 2, while their absolute values have period
and depend only ond. One might think that it is better to
define the spin factors asRS

n(g)[Rn(g)/Rn(0). This does
not work well, however, since it happens thatRn(0)50 for
some G generally @only for n51, Rn(0)'1 for any G#.
Hence, our definition ofRn and our representation of formul
~13! seem the most appropriate ones.

In the limits G→0 andG→`, we obtain

lim
G→0

Rn~g!52$d1~21!n~12d!% ~for even@g#)

~24a!

52$~21!nd1~12d!% ~for odd @g#),
~24b!

which completes the partial result in Ref. 15, and

lim
G→`

Rn~g!5cos~npg!, ~25!

which reproduces the well-known spin factor for eachn in
the LK formula.

As a function ofg, limG→0Rn(g) and limG→`Rn(g) are
similar only forn51 ~Fig. 1!. @In the figures, the spin factor
Rn(g) are depicted only for one period, 0<g<2.# For n
>2, they are qualitatively different~Figs. 2 and 3!. For ex-
ample, limG→0R2(g)521 ~const!, whereas limG→`R2(g)
5cos 2pg. Between the two limits, we can see thatR2(g)
andR3(g) change their form continuously but drastically.
particular, note that the values ofg which satisfiesRn(g)
50 varies generally with varyingG ~the exceptions areg
50.5 and 1.5 forn5 odd!: this fact is specifically importan
in analyzing the experimental results.



d
n-
us
th
d
n
m
b
b
-
ec

it

d
.
n
s
t

an
it

e

rge
the
be

ri-
ra-

e
ke
-

ed
at

an
nly

or-

pay
2D
r-

lues

48 PRB 62BRIEF REPORTS
Now we begin a discussion. The constantN condition has
been crucial in our analysis. This condition is realize
within a bulk 2D conductor, by the long-range Coulomb i
teraction which strongly keeps electrical neutrality. Th
even if a sample is grounded, this condition holds in
bulk. This implicitly incorporated Coulomb interaction an
the Pauli exclusion principle make things complicated a
interesting, whereas our model is only a one-body proble

The spin effect can be investigated most systematically
the angular dependence of the oscillation amplitudes,
causeg}(cosu)21. However, in the real strongly 2D sub
stances, not only the spin effect, but also the Yamaji eff
affects the angular dependence.10,18,19 Hence, we must be
careful to be aware of both effects in practical analyses.~The
Yamaji effect is an effect caused by the very weak but fin
three dimensionality of the systems.20! With this care, our
results enable us to obtain theg value of the quantized ban
by analyzing the angular dependence of the spin factors

The origin of finiteG can be not only the coexisting ope
bands, but also the coexisting closed bands whose masse
much heavier than that of the lightest band. Let us denote
temperature and lifetime byT and t. If \/t and kBT are
much less than the Landau level spacing of the lightest b
but are much greater than those of the other bands, then
possible that 1/t and T are small enough for them to b
,

,
e

d
.
y
e-

t

e

are
he

d
is

approximated by zero for the lightest band, but are la
enough to wipe out the quantized structure in the DOS of
heavier bands. Therefore, the results of this work can
applied to the interpretation of many of the dHvA expe
ments on strongly 2D conductors at appropriate tempe
tures, and enable us to determine theg value of the lightest
band.

In future studies, however, we must incorporateT and t
legitimately. It is certain that we cannot factorize th
effect of spin and temperature as in the LK formula li
RS

n(g,B)•RT
n(T,B), but that we can only obtain a single fac

tor Rn(g,T,B).
Finally, whereas no electronic correlation is incorporat

in our model, what is pointed out in this work is of gre
significance also in the study of correlated systems. For
investigation of correlated systems can be performed o
after a complete understanding of uncorrelated systems.

In conclusion, we have obtained an exact analytical f
mula for the spin factorsRn(g) for an arbitrary background
density of statesrBG at T50. Our results indicate that, in
analyzing the experimental results, one must always
close attention to the fact that the spin factors in the
systems are completely different from those in the LK fo
mula and complicatedly and sensitively depend on the va
of rBG andg}g/cosu.
the
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