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All-electron projector-augmented-waveGW approximation: Application to the electronic
properties of semiconductors
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The so-calledGW approximation~GWA! based on an all-electron full-potential projector-augmented-wave
method ~PAW! has been implemented. For the screening of the Coulomb interactionW three different
plasmon-pole model dielectric function models have been tested, and it is shown that the accuracy of the
quasiparticle energies is not sensitive to the details of these models. For the decoupling of the valence and core
electronstwo different schemes produced quasiparticle energies that differ on average by less than 0.1 eV for
Si. This method has been used to study the quasiparticle band structure of some small, medium, and wide-
band-gap semiconductors: Si, GaAs, AlAs, InP, Mg2Si, diamond, and the insulator LiCl. Special attention was
devoted to the convergence of the self-energy with respect to both thek points in the Brillouin zone and to the
number of reciprocal-spaceG vectors. The most important and surprising result is that although the all-electron
GWA improves considerably the local-density approximation electronic structure of semiconductors, it does
not always provide the correct energy band gaps for small- and medium-band-gap semiconductors as originally
inferred from pseudopotential GWA calculations. The discrepancy between the all-electron and pseudopoten-
tial quasiparticle band gaps is mainly traced back to differences between the exchange-correlation matrix
elements obtained by the two methods.
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I. INTRODUCTION

The most successful approach for predicting the quasi
ticle ~QP! properties of solids from first principles is th
so-calledGW approximation~GWA! of Hedin.1,2 This re-
markable development in the theoretical study of the e
tronic structure of materials is due to the inclusion of man
body effects in the calculation, principally through th
computation of the QP self-energy and the results are
adjustment of the energy splittings obtained within the loc
density approximation~LDA !.3–19Thus this method included
efficiently the correlation effects without omitting th
subtlety of the chemical bonding unlike the parametriz
Hubbard model.

After this initial success the GWA has been extensiv
used to study physical properties of different types of ma
rials ranging from~1! the bandwidth narrowing in alkali met
als and their clusters;20,21 ~2! the surface states of semico
ductors, i.e., improving the energy positions of surfa
states,22 looking for dimer buckling in Si surfaces;23 ~3! the
effects of correlation on the valence off-set between differ
bulk semiconductors;24 ~4! the character of the band gaps
superlattices and anisotropy of optical matrix elements;25 ~5!
the orientational disorder and photoemission spectra of s
C60;15 ~6! the electronic properties of bulk Ni and its energ
loss spectra;14 ~7! the electronic properties of atoms usin
various GWA;26 ~8! the Schottky barrier between a met
and a semiconductor;27 and ~9! the inclusion of excitonic
effects in the calculation of the dielectric function
semiconductors.28–30 All these different studies in a ver
short time established the GWA as a good ‘‘first-principle
method for computations of QP properties ofreal materials.

Unfortunately, most of the GWA implementations a
based on a plane-wave expansion of the Bloch wave func
PRB 620163-1829/2000/62~7!/4464~13!/$15.00
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and on the pseudopotential approach which makes an an
sis in terms of chemically relevant orbitals difficult. An ad
ditional difficulty with a pure plane wave basis set is that t
computational effort for studying systems with localizedd or
f electrons is enormous. In this paper, we propose an im
mentation of the GWA based on an all-electron method
ing the recently developed all-electron projector-augment
wave ~PAW! method.31 The knowledge of the all-electron
Green’s function provided by the PAW method allows us
construct the QP self-energy within the GWA, in which th
dynamical screening of the electron-electron interact
arises from a plasmon-pole model dielectric function9,12,32

for which the parameters are adjusted to the dielectric fu
tion calculated in the random-phase approximation33 ~RPA!.
To check the accuracy of our method we have used th
types of plasmon-pole models to describe approximately
screening of the Coulomb interaction, and two differe
schemes for decoupling the core and valence electrons.
latter point is important because the accuracy of the ca
lated quasiparticle energies depends on the correct sub
tion of the LDA valence-electron exchange-correlation m
trix elements from the self-energy.

Our paper is organized as follows: In Sec. II we introdu
the projector-augmented-wave method which is used to s
the Kohn-Sham equations and provides the all-elect
Green’s function and the RPA dielectric function which a
the basic ingredients for the computation of the self-ener
We then describe our GWA implementation and discuss
some details the difficult points of this method. In particul
we discuss the difficulty related to the decoupling of the c
and valence electrons. The usage of the point-group sym
try to reduce the computational cost of the self-energy a
the dielectric function is discussed in the Appendix. In S
III we apply our method to compute the electronic structu
of two distinct semiconductor groups: some small- a
4464 ©2000 The American Physical Society
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medium-band-gap semiconductors: Si, GaAs, AlAs, In
Mg2Si, and some wide-band-gap semiconductors~insulator!:
C and ~LiCl !. We then compare our results with availab
GWA calculations and experiments.

II. METHOD OF CALCULATION

A. A brief overview of the PAW method

In the density-functional theory implemented in th
framework of the LDA,34 an electronic structure calculatio
requires the solution of Kohn-Sham type of equations i
self-consistent way. The computation of materials ba
structure consists of finding the Bloch wave functio
Ckn(r ), where n and k denote a band index and a wav
vector in the Brillouin zone~BZ!, respectively. In the
projector-augmented-wave formalism,31 all calculations are

performed using a smooth pseudo-wave-functionC̃kn(r )
which is expressed as a linear combination of plane wa
The passage from the smooth pseudo-wave-function to
all-electron wave function exhibiting the correct nodal b
havior in the augmentation regions~spheres centered on eac
atom! is achieved by defining three atomic types of functio
in each augmentation region:~1! the all-electron basis func

tions F i
a(r ), ~2! the pseudo-basis-functionsF̃i

a(r ), and ~3!

the projector functionsp̃i
a(r ). Here i 5 l i ,mi ,ni , where l i

and mi denote the orbital and magnetic quantum numbe
respectively. The indexni is introduced for a possible choic
of more than one function per angular momentum chan
( l i ,mi). These functions are defined so that

F̃ i
a~r !5F i

a~r ! for r>r c
a , ~1!

wherer c
a are the radii of nonoverlapping spheres centered

each atomic sitea. The projector functions vanish forr
>r c

a and satisfy the orthogonality property:

^ p̃i
auF̃ j

a&5d i j . ~2!

Using these functions, the all-electron wave functionCkn(r )

can be obtained from the pseudo-wave-functionC̃kn(r ) ac-

cording to the relationCkn(r )5C̃kn(r )1Ckn
1 (r )2C̃kn

1 (r )
with

Ckn
1 ~r !2C̃kn

1 ~r !5(
a,i

@F i
a~r2Ra!2F̃ i

a~r2Ra!#^ p̃i
auC̃kn&,

~3!

whereRa denotes the atomic position of the atoma in the

unit cell. It is useful to point out thatCkn
1 2C̃kn

1 vanishes in
the interstitial region and defines the quantity necessar
describe the true wave function in the augmentation regi

while C̃kn describes the true wave function in the interstit
region. It is, however, interesting to point out that, like in t
pseudopotential method, the initial setups for producing
partial waves and the projector functions have to be o
mized to obtain accurate LDA eigenvalues and eigenvec
~for more details see Ref. 31!.

The PAW formalism is designed to easily calculate t
expectation value of a local or a semilocal operator. For
,
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ample, the expectation value of an operatorA(r ) between
two Bloch wave functionsCkn andCkm can be expressed a
a sum of three contributions

Ank,mk5^CknuAuCmk&5Ãnk,mk1Ank,mk
1 2Ãnk,mk

1 , ~4!

where the contributionÃnk,mk5^C̃knuAuC̃km& is evaluated in
the plane-wave basis set. The last two contributions

Ank,mk
1 5 (

i , j ,a
^C̃knu p̃i

a&^F i
auAuF j

a&^ p̃ j
auC̃km& ~5!

and

Ãnk,mk
1 5 (

i , j ,a
^C̃knu p̃i

a&^F̃ i
auAuF̃ j

a&^ p̃ j
auC̃km& ~6!

are computed in the augmentation regions. Minimizing

total energy with respect to theC̃kn ~variational principle!
leads to a generalized eigenvalue problem which is solve

a self-consistent way, giving the pseudo-wave-functionsC̃kn
from which the all-electron wave functionsCkn are easily
deduced by means of Eq.~3!.

B. The all-electron GW approximation

1. Quasiparticle energies

In the QP approximation, the excitation energies of t
system are obtained by solving a Schro¨dinger-like equation
of the form

~T1Vext1Vh!Ckn~r !1E d3r 8S@r ,r 8,En~k!#Ckn~r 8!

5En~k!Ckn~r !, ~7!

instead of locating the poles of the Green’s function. HereT
is the kinetic energy operator (2 1

2 ¹2 in atomic units!, Vext is
the external~ionic! potential,Vh is the Hartree potential due
to the average Coulomb repulsion of the electrons, andS is
the self-energy operator that summarizes the many-body
fects and is defined asS(r ,r 8,v)5( i /2p)*eidv8G(r ,r 8,v
1v8)W(r ,r 8,v8)dv8, whereG is the one-electron Green’
function and W the screened interaction. Because it w
shown3 that the LDA wave function and the quasipartic
wave function have almost 99% overlap it is a good appro
mation to treatS2Vxc

LDA as a perturbation (Vxc
LDA is the LDA

valence exchange-correlation potential!. The QP energies
En(k) can be written as

En~k!5en~k!1^CknuS@En~k!#uCkn&

2^CknuVxc
LDA~nv!uCkn&, ~8!

whereen(k) is the LDA eigenvalue for bandn. In principle,
the solution to this equation should be obtained via an ite
tive method, but expanding Eq.~8! to first order in energy
around en(k) yields accurate numerical results of the Q
energies

En~k!2en~k!5Znk$^CknuS@en~k!#uCkn&

2^CknuVxc
LDA~nv!uCkn&%, ~9!
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where the QP renormalization factorZnk is

Znk5F12^Cknu
]

]v
S~v!uv5en(k)uCkn&G21

. ~10!

Since (]/]v)S,0, we have 0,Znk,1 with typical values
of 0.8 for bands close to the band gap and for all mater
considered here~see Table I!. Values ofZnk about 0.8 imply
that we still have well-defined QP in the system but that 2
of the spectral weight is now distributed over a range
frequencies.

2. Computation of the matrix elements ofS
within the PAW formalism

As can be seen from Eq.~9!, the central problem of this
scheme consists of evaluating the diagonal matrix elem
of the self-energy between the LDA orbitals. The quantit
that enter the self-energy are functionsf of two locationsr
and r 8. These functions have the translational symme
property f (r1R,r 81R)5 f (r ,r 8) whereR is a Bravais lat-
tice vector. Then, we can fix the Fourier transform conv
tion for such functions

f ~r ,r 8,v!5
1

V (
q,G,G8

ei (q1G)r f GG8~q,v!e2 i (q1G8)r8,

~11!

where q is a wave vector in the first BZ,G a reciprocal
lattice vector, andV the crystal volume.

Using this convention, the dynamically screened inter
tion W that enters the expression of the self-energy is defi
as

WGG8~q,v!5
4p

V

1

uq1Gu
ẽGG8

21
~q,v!

1

uq1G8u
. ~12!

To compute this screened interaction and hence the
energy, the symmetrized dielectric matricesẽGG8(q,v) ob-
tained within the RPA have to be calculated and inverted
many values ofv. This is computationally time consuming
Nevertheless, it has been carried out by some authors5,14 who
choose to evaluate the frequency integral by using a Ga
ian integration scheme along the imaginary axis to circu
vent the problem of the pole structure of the screened in
action along the real frequency axis.5 An alternative
approach is the use of a plasmon-pole model3,9,12,32 to de-
scribe the frequency dependence of the dielectric ma
These models give a good description of the low-freque
behavior of the dynamically-screened interaction and al
the determination of an analytic expression for the freque
integral appearing in the self-energy formula. We have u

TABLE I. The renormalization constantsZ for the hole state at
the valence-band maximum~VBM ! and the electron state at th
conduction- band maximum~CBM! for C, Si, GaAs, AlAs, InP, and
SiMg2.

Diamond Si GaAs AlAs InP Mg2Si

Z VBM 0.85 0.80 0.80 0.81 0.79 0.76
Z CBM 0.87 0.81 0.81 0.82 0.82 0.79
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three types of plasmon-pole models to describe appr
mately the dependence ofẽ21(v) on the frequencyv. These
different models were proposed by von der Linden a
Horsch,9 Engel and Farid,32 and by Hamadaet al.12

To test our implementation of the plasmon-pole mod
we have plotted in Fig. 1 the Engel-Farid plasmon-po
model band structure of Si along theL, G, and X high-
symmetry directions. We have found that our results are
excellent agreement with the results of Engel and Farid32 and
Aulbur.35 Indeed, for smallk wave vectors, the lowest plas
mon band shows a quadratic dispersionv0(k)5v0(0)
1auku2, with a dimensionless direction-dependent disp
sion coefficienta ~see the fitted up-triangle curve in Fig. 1!.
For the GX direction our least-squares fit producedv0(0)
515.7 eV anda50.33 in good agreement with the corre
sponding Engel and Farid’s values of 15.91 eV and 0
~Ref. 32! as well as the experimental values of 16.7 eV a
0.41.36 To also check the validity of the plasmon-pole mod
as a substitute for the dielectric function of real materials
have compared the plasmon-pole model of Hamadaet al.12

with our directab initio computation of the dielectric func
tion within the RPA, including the so-called local-field e
fects ~see Fig. 2! and with available experimental results36

for the energy-loss spectrum. We notice that the model
produces correctly ourab initio calculated dielectric func-
tion.

The matrix elements of the self-energy could be divid
into an energy-independent contributionSHF and an energy-
dependent contributionS(v). The first term corresponds t
the Hartree-Fock contribution and is given by

^CknuSHFuCkn&52
4p

V (
q

(
m occ

(
G

uMG
mn~k,q!u2

uq1Gu2
,

~13!

FIG. 1. PAW calculated Engel-Farid plasmon-pole model ba
structure of Si alongLG and GX high-symmetry directions. For
small k wave vectors the lowest plasmon band shows a quadr
dispersion~up-triangle curve! v0(k)5v0(0)1auku2, with a dimen-
sionless direction-dependent dispersion coefficienta. Using a least-
squares fit we findv0(0)515.7 eV anda50.33. These values ar
in good agreement with the corresponding Engel and Farid~Ref.
32! PP values of 15.91 eV and 0.34 as well as the experime
values~Ref. 36! of 16.7 eV and 0.41.
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where the summation runs only over the occupied states,
whereMG

nm(k,q)5^Ck2qnue2 i (q1G)•ruCkm&. Using the von
der Linden–Horsch plasmon-pole model, the ener
dependent contribution can be expressed as

^CknuS~v!uCkn&

5
4p

V (
q,m,p

3
zp~q!vp~q!/2

v2em~k2q!1@vp~q!2 id#sgn@m2em~k2q!#

3ubp
mn~k,q!u2, ~14!

wherevp andzp are the frequency and the force of the po
respectively. Herebp

mn is given by

bp
mn~k,q!5(

G
@MG

mn~k,q!#*
fpq~G!

uq1Gu
, ~15!

wherem andn are energy band indexes,p is a plasmon-band
index, andq is a vector in the BZ. Thefpq(G) are the
Fourier components of the eigenvectors of the static die

FIG. 2. Ab initio calculated real and imaginary parts of the i
verse dielectric function~dashed curve! of Si compared with the
plasmon-pole model of Hamadaet al. ~Ref. 12! ~solid line! and
with experiment~open circles! ~Ref. 36!. The long dashed curve i
without the local-field effect.
nd

-

,

c-

tric function ẽG,G8(q,v50). It should be emphasized tha
the summation overm is not restricted to occupied states
in the expression of the Hartree-Fock contribution. Both
poles of the Green’s function and of the screened interac
contribute to this expression. The expression of the ene
dependent contribution ofS using the other two plasmon
pole models can be found elsewhere.17–19We emphasize tha
the QP energies are not too sensitive to the type of
plasmon-pole model used.

3. Numerical details

One of the central problems within the realization of t
GWA is the calculation of matrix elementsMG

nm(k,q). Using

the PAW formalism, the smooth pseudo-wave-functionC̃kn
associated with an ‘‘all-electron’’ LDA wave functionCkn is
defined as

C̃kn~r !5
1

AV
(
G

Akn~G!ei (k1G)r, ~16!

where the sum runs over the reciprocal-lattice vectors.
illustrated in the part dedicated to the PAW formalism, t
expectation value ofe2 i (q1G)•r can be divided into three
parts,

MG
nm~k,q!5^C̃k2qnue2 i (q1G)ruC̃km&

1^Ck2qn
1 ue2 i (q1G)ruCkm

1 &

2^C̃k2qn
1 ue2 i (q1G)ruC̃km

1 &. ~17!

The first term, which involves plane waves, is defined as

(
G8

Ak2qn* ~G8!Akm~G1G8!. ~18!

In this expression the summation over the reciprocal-lat
vectors is limited to all vectorsG8 such that both the abso
lute values ofG8 and G1G8 are smaller than a cutoff pa
rameter. In general 300G8 vectors were included in the sum
mation for the systems studied here, except for Mg2Si and
diamond where the convergence is achieved only when
and 400G8 vectors were used, respectively. The two rema
ing terms that involve localized contributions can be e
pressed as

(
a,i , j

^C̃k2qnu p̃ j
a&@^F j

aue2 i (q1G)ruF i
a&

2^F̃ j
aue2 i (q1G)ruF̃ i

a&#^ p̃i
auC̃mk&. ~19!

Since the overlap between the pseudo-wave-functions
the projectors is known, we have to calculate quantities l
^F j

aue2 i (q1G)•ruF i
a&. By expanding a plane wave on sphe

cal Bessel functionsj l , we obtain
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^F j
aue2 i (q1G)ruF i

a&

54pe2 i ~q1G!Ra(
lm

~2 i ! lYlm~q1Ĝ!Gl imi l jmj

lm

3E
0

r c
a

dr r 2 j l~ uq1Guur u!F l j nj
~r !

3F l i ni
~r !, ~20!

where the Gaunt coefficients are given by

Gl imi l jmj

lm 5A4pE dVYl imi
* ~ r̂ !Ylm* ~ r̂ !Yl jmj

~ r̂ !. ~21!

The symmetrized dielectric matrix as well as the mat
elements of the self-energy defined by Eqs.~13! and~14! are
obtained by an integration over the BZ using the spe
points’ technique.37 The summation overq points in the ex-
pectation value of the self-energy has to be carried out c
fully, since the integrands have an integrable singularity
1/q2 for q→0. This can be readily seen in the expectati
value ofSHF defined by Eq.~13! where the divergence oc
curs whenG50. To integrate out the singularity we fo
lowed a procedure developed by Gygi and Balderesch38

This procedure consists of adding and removing a smo
function F(q) which reflects the translational symmetry
the Bravais lattice and which diverges as 1/q2 asq vanishes.
For example, the Hartree-Fock contribution can be written

^CknuSHFuCkn&

52
4p

V (
q

(
m occ

F(
G

uMG
mn~k,q!u2

uq1Gu2
2F~q!dmnG

2
4p

V (
m occ

dmn(
q

F~q!. ~22!

The function in square brackets does not contain any di
gence due to the fact that limq→0M0

mn(k,q)5dmn , and it is
easily integrated using the special points method while
integral ofF(q) over the BZ is performed analytically.

The development ofubp
mn(k,q)u2 in Eq. ~14! shows two

types of divergence, see Eq.~15!. The first is of 1/q2 type
and is treated using a method similar to that given by
~22!, while the second one is of 1/uqu type and can be solve
using another type of analytical function which diverges
1/uqu whenq→0. Nevertheless, we have found that this l
ter divergence is less severe than the former and does
require a special treatment since the accuracy of the num
cal results is not affected if it is neglected. It should be no
that the treatment of the singularity in Eq.~14! requires the
evaluation of the symmetrized dielectric matrix forq→0. As
the convergence of the head element of this matrix as a fu
tion of the number ofk points is slow, the calculation is
performed separately. All other BZ integrations are carr
out using ten specialk points in the final calculations pro
ducing well converged results~see Sec. III!.

The computation of the QP energies requires the dete
nation of the renormalization factor defined by Eq.~10!. The
derivative of the self-energy is then calculated using a fin
difference scheme with a step of 1 eV. The values of
l

e-
n

th
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e
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ot
ri-
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d
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e
e

renormalization factors are summarized in Table I for t
different materials studied here. TheseZ values are roughly
the same for the electron and hole states, and for all
materials studied in this paper. The deviation from unity
the Z values indicates that their correct determination is c
cial for obtaining accurate QP energies. It is worth notici
that values ofZ closer to unity imply that the quasiparticle
are well defined and that the GWA is a reasonable appr
mation.

4. The decoupling of the core and valence electrons

The last point to be discussed is the decoupling of
core and valence electrons so that when computing the
energies using Eq.~8! the appropriate valence-electro
exchange-correlation matrix elements are subtracted out.
clear that this subtracting procedure may be a source of
accuracy due to the nonlinearity of the exchange-correla
potentialVxc

LDA@n(r )#5Vxc
LDA@nc(r )1nv(r )# with respect to

the total charge densityn, wherenc andnv are the core and
the valence densities, respectively. For this reason we h
tested two different schemes for decoupling the core
valence electrons. In the first scheme we assumed tha
core-valence exchange-correlation and core-polarization c
tributions to the energy of a valence state are given by3

^CknuVxc core2valuCkn&5^CknuVxc@nv1nc#uCkn&

2^CknuVxc@nv#uCkn&. ~23!

Such a procedure is somewhat hidden when pseudopoten
are used since such an operation is performed in the
screening of the pseudopotential by subtractingVxc@nv#. The
shortcoming of this approach is that the ionic pseudopot
tial is dependent on the valence configuration, reducing
transferability of the potential. In addition, it has been sho
that including core corrections to the exchange and corr
tion is necessary for the correct description of the structu
properties of solids.39 The PAW does not suffer from this
shortcoming but it seems that justifying Eq.~23! is not an
easy task. Assuming that the argument mentioned abov
approximatively correct, the quantity which must be su
tracted is then defined by

^CknuVxc
LDA@nv~r !#uCkn&

5^C̃knuVxc
LDA@ ñv~r !#uC̃kn&1 (

i , j ,a
^C̃nku p̃i

a&

3$^F i
auVxc

LDA@nv
1~r !#uF j

a&2^F̃ i
auVxc

LDA@ ñv
1~r !#

3uF̃ j
a&%^ p̃ j

auC̃nk&. ~24!

The other scheme for decoupling the core and vale
electrons consists of computing directly the core-valence
change interaction within the Hartree-Foc
approximation.2,40 The density matrixrc(r ,r 8) of the core
state is defined as

rc~r ,r 8!5 (
a,nc ,l c ,mc

Cncl cmc

a ~r !Cncl cmc

a!
~r 8!, ~25!
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TABLE II. Matrix elements of the exchange-correlation potential of the valence st
^CknuVxc

LDA@nv#uCkn& compared with exchange-correlation of the total charge minus the core exch
potential within the Hartree-Fock approximation^CknuVxc

LDA@nv1nc#uCkn&2^CknuVX
c uCkn& for Si ~in eV!.

The resulting QP energies at the high-symmetry points are also compared. HereEQP
(1) is obtained using

^CknuVxc
LDA@nv1nc#uCkn&2^CknuVX

c uCkn& instead of̂ CknuVxc
LDA@nv(r )#uCkn& in Eq. ~8! while EQP

(2) is ob-
tained using the standard procedure defined in Eq.~8!. The average deviation of the two types of Q
calculations is less than 0.1 eV suggesting that the LDA exchange and correlation of the valence elec
well subtracted out from the GWA self-energy.

VX
c Vxc@nv1nc# Vxc@nv1nc#2VX

c Vxc@nv# EQP
(1) EQP

(2)

G1v 21.40 212.01 210.61 210.57 212.05 211.96
G258v 21.85 213.45 211.60 211.45 0.0 0.0
G15c 21.40 211.74 210.34 210.19 3.15 3.15
G28c 24.15 215.41 211.26 211.16 4.15 4.19

X1v 21.79 212.81 211.02 210.95 27.99 27.92
X4v 21.52 212.37 210.85 210.74 23.05 23.01
X1c 20.92 210.17 29.25 29.15 1.10 1.15
X3c 22.81 213.90 211.09 210.84 10.81 10.75

L28v 21.70 212.71 211.01 210.95 29.76 29.61
L1v 21.40 211.81 210.41 210.33 27.24 27.17
L38v 21.78 213.11 211.33 211.20 21.28 21.26
L1c 22.26 212.65 210.39 210.28 2.12 2.16
L3c 20.97 210.89 29.92 29.78 3.94 3.95
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where Cncl cmc

a (r )5Fncl c
(ur2Rau)Yl cmc

(r2Ra)ˆ is a core

state centered at siteRa of principal quantum numbernc ,
angular quantum numberl c , and magnetic numbermc .

The exchange operator of the core state is defined as

VX
c ~r ,r 8!52

rc~r ,r 8!

ur2r 8u
. ~26!

It is then possible to calculate accurately the core-vale
exchange if we assume that the LDA core wave function
the Hartree-Fock one are similar. In fact, the core states,
in particular the partial wave and pseudo-partial-wav
which are the basic ingredients of the PAW method,
obtained from an atomic all-electron calculation within t
LDA. The matrix elements of the core-valence exchange
then defined as

^CmkuVX
c uCnk&52 (

a,nc ,l c ,mc

E
Sa

d3rd3r 8

3
Cmk

! ~r !Cncl cmc

a ~r !Cncl cmc

a!
~r 8!Cnk~r 8!

ur2r 8u
.

~27!

We take advantage of the fact that the core states are
described as closed shells and that in the augmentation
gion the Bloch wave functionCnk(r ) is correctly described
using an atomic wave-function expansion

Cnk~r !5(
a,i

F i
a~r2Ra!^ p̃i

auC̃nk& for ur2Rau<r c
a

~28!
e
d
nd
,

e
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re-

to rewrite the core-valence exchange matrix elements as

^CmkuVX
c uCnk&5(

K
F ~2l c11!~2l 11!

4p~2l i11! G1/2

3Cl 0 l c0
l i0 ^ p̃ni l imi

a uC̃mk&* ^ p̃nj l imi

a uC̃nk&

3I a~ni ,nj ,nc ,l c ,l !, ~29!

whereK5(a,ni ,nj ,nc ,l c ,l i ,mi ,l ) and the radial integrals
I a(ni ,nj ,nc ,l c ,l ) are defined by

I a~ni ,nj ,nc ,l c ,l !

5E
0

Ra

r 2drE
0

Ra

r 82dr8Fncl c
a ~r !Fni l i

a ~r !Gl~r ,r 8!

3Fncl c
a ~r 8!Fnj l i

a ~r 8!, ~30!

whereGl is given by

Gl~r ,r 8!5
4p

2l 11

r ,
l

r .
l 11

. ~31!

Here r , (r .) is the smaller~greater! of r and r 8.
In Table II we compare the matrix elements of the valen

exchange-correlation matrix elements^CknuVxc
LDA@nv#uCkn&

with that of the total density minus that of the core-valen
exchangê CknuVxc

LDA@nv1nc#uCkn&2^CknuVX
c uCkn& for Si.

It is surprising that the two types of exchange-correlat
matrix elements are found to be in good agreement to wit
0.1 eV on average, and the resulting QP energies differ
less than 0.1 eV on average.
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TABLE IV. Calculated differences of the LDA matrix elements of the exchange-correlation potentialD^CknuVxc
LDA@nv#uCkn&, the

self-energyDS(Eqp), as well as its Hartree-Fock contributionDSHF of silicon compared with the LAPW of Hamadaet al. ~Ref. 12! and PP
results of Olevano~Ref. 41! and Shirley~Ref. 42! ~in parentheses!. Concerning theDVxc our results are in good agreement with the LAP
results~Ref. 12! and disagree with the PP calculations at theX point. This discrepancy of about 0.17 eV makes the PP-GWA indirect b
gap at least 0.17 eV larger than the ours explaining the difference between the PP-GWA and PAW-GWA indirect band gaps. For tDSHF

andDS our data agree nicely with the PP calculations of Olevano~Ref. 41! and somewhat less with that of Shirley~Ref. 42! and even less
with the LAPW results~Ref. 12!.

DVxc DSHF DS(Eqp)
Present LAPWa PPb Present LAPWa PPb Present LAPWa PPb

G25v8 →G15c 1.26 1.22 1.20~1.20! 6.70 7.59 6.66~6.92! 1.87 1.97 1.89~2.03!
G25v8 →X1c 2.30 2.24 2.13~2.14! 7.22 8.07 7.17~7.48! 2.77 2.73 2.85~2.92!
G25v8 →L1c 1.17 1.11 1.13~1.15! 6.42 7.34 6.41~6.70! 1.79 1.84 1.80~1.96!

aReference 12.
bReference 41.
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III. QUASIPARTICLE RESULTS AND DISCUSSION

A. Quasiparticle results of small- and medium-band-gap
semiconductors: Si, GaAs, AlAs, InP, and Mg2Si

In this section we present the electronic structure of s
eral small- and medium-band-gap semiconductors which
used to test our implementation of the all-electron PA
GWA method. As mentioned earlier we have implemen
three different types of plasmon-pole models available in
literature9,12,32 and compared in Table III the resulting Q
energies of Si at theG, L, andX high-symmetry points of the
BZ. This table shows that the Si QP energies are not se
tive to the type of plasmon-pole model used to describe
frequency dependence of the screened interaction. We
obtained similar results for the other semiconductors stud
in this paper~see Tables V and VII!. This behavior was also
observed by Hedin2 using a jellium model.

To test further our method we have made a detailed c
parison with the only available full-potential GWA calcula
tion of Si based on the linearized augmented-plane-w
method12 ~LAPW! and with various pseudopotential~PP!
results.41,42 To make this comparison with the LAPW rel
able, we have used the plasmon-pole model of Ham
et al.12 Table IV compares different key ingredients nece
sary to determine the QP energies of Si in the GWA.
particular, our calculated valence exchange-correlation
tential matrix elements are compared with the LAPW-GW
~Ref. 12! and PP-GWA results.41,42 The agreement betwee
our exchange-correlation matrix elements and those of
madaet al.12 is remarkably good even though these resu
are based on different methods and that different param
zation of the exchange-correlation potential is used. Ho
ever, concerning the comparison with PP results41,42 we ob-
serve a significant discrepancy of about 0.17 eV at theX
high-symmetry point. This discrepancy will be used later
explain the differences between the PP and PAW-GWA
direct band gap of Si which occurs at the vicinity of theX
point. Concerning the Hartree-Fock contribution to the se
energy the agreement with the results of Hamadaet al.12 is
less satisfactory. However, we found it surprising that o
Hartree-Fock contribution to the self-energy is closer to
results of Olevano41 and to some extent to these of Shirley42

even though their calculations are of pseudopotential ty
The successful comparison of the PP results makes us
-
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fident with our PAW-GWA results, and confirms the fa
that the detailed structure of the screened interaction is
crucial for the correct determination of the QP energies. I
also surprising that the values ofS obtained using the PAW
or the LAPW implementation are close despite that
Hartree-Fock term did not agree.

To calculate the QP energies it is important to correc
determine the QP renormalization factorZnk @see Eq.~10!#.
Table I presentsZnk calculated for the top valence state
the G point and for the lowest conduction state of all sem
conductors studied in this paper. These values are in g
agreement with the results of Hybertsen and Louie3 and they
seem to be material and state independent and are abou

Tables V and VI show the calculated PAW-LDA an
PAW-GWA band energies43 for the high-symmetry points
G, X, and L for small- and medium-band-gap semicondu

TABLE III. Quasiparticle~QP! energies of Si for several state
~in eV! and for three different types of plasmon-pole models. W
notice that the QP energies are less sensitive to the type of plas
pole model used.Eg is the indirect band gap.

Plasmon-pole model
von der Linden and Horscha Hamadaet al.b Engel-Faridc

G1v 211.96 211.95 211.84
G258v 0.00 0.00 0.00
G15c 3.15 3.13 3.17
G28c 4.19 4.17 4.16

X1v 27.92 27.91 27.85
X4v 23.01 23.01 22.97
X1c 1.15 1.12 1.20

L28v 29.67 29.67 29.59
L1v 27.17 27.17 27.08
L38v 21.26 21.27 21.25
L1c 2.16 2.14 2.17
L3c 3.95 3.93 3.98
Eg 1.00 0.98 1.05

aReference 9.
bReference 12.
cReference 32.
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TABLE V. Quasiparticle band gaps of Si, GaAs, AlAs, and InP atG,L, and X points ~in eV!. The calculation of the self-energy i
performed using ten specialk points in the BZ and 200 bands. The size of the polarizability matrix is 1373137 for Si, 1693169 for the other
semiconductors. The number of reciprocal-lattice vectors is 283 for Si, 307 for GaAs and AlAs, and 331 for InP. The QP GWA re
obtained using the plasmon-pole model of von der Linden and Horsch~Ref. 9! or that of Engel-Farid~results are in parentheses!. HereEg

is the indirect band gap of Si; all band gaps are underlined. Our results are compared with the LAPW, PP, and experimental res

LDA GWA Expt.c

Present LAPWa PPb Present LAPWa PPb

Si
G25v8 →G1c 2.53 2.55 2.57d; 2.57e 3.15 ~3.17! 3.30 3.35d; 3.25e 3.40; 3.05j

G25v8 →X1c 0.65 0.65 0.6d; 0.62e 1.15 ~1.20! 1.14 1.44d; 1.33e 1.25j

G25v8 →L1c 1.52 1.43 1.51d; 1.63e 2.16 ~2.17! 2.15 2.27d; 2.28e 2.1 f, 2.460.15
Eg 0.50 0.52 0.52 1.00(1.05) 1.01 1.29d 1.17
GaAs
G25v8 →G1c 0.38 0.40 1.09(1.10) 1.29 1.52
G25v8 →X1c 1.29 1.18 1.64~1.74! 2.05 1.90
G25v8 →L1c 0.89 0.83 1.45~1.50! 1.69 1.73
AlAs
G25v8 →G1c 1.95 1.77 2.83~2.85! 2.75 3.11g

G25v8 →X1c 1.26 1.20 1.81(1.93) 2.08 2.24
G25v8 →L1c 2.07 1.89 2.83~2.90! 2.79 2.49g; 2.54h

InP
G25v8 →G1c 0.77 0.50 1.54(1.57) 1.23k 1.46i

G25v8 →X1c 1.66 1.64 2.13~2.27! 2.60k 2.42i

G25v8 →L1c 1.57 1.30 2.28~2.36! 1.97k 2.32i

aReference 12.
bUnless noted, Ref. 16.
cUnless noted, Ref. 44.
dReference 3.
eReferences 41.
fReference 49.

gReference 51.
hReference 52.
iReference 53.
jReference 45.
kReference 13.
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tors: Si, GaAs, AlAs, InP, and Mg2Si, respectively. We have
presented only the conduction states since the valence
energies are in good agreement with previous GW
calculations.3,7,13,16,41,42,60These results are compared wi
other GWA calculations obtained using LAPW~for Si! or PP
for the other systems and to available experimen
results.44–55 Notice that the experimental results of Ref. 4
are based on inverse photoemission and seem to unde
mate the direct band gap of Si at theG point.

The discrepancy between our GWA values and other
traced back mainly to differences between the LD
exchange-correlation matrix elements and to difference
the LDA eigenvalues. To support our claim we write t
indirect band gapEg of Si as roughly the difference betwee
the conduction QP energy of the stateX1c and the valence
QP of the stateG25v8 . Using Eq.~8! this band gap can be
expressed as the difference between the eigenvalues plu
difference between the self-energies minus the difference
tween the exchange-correlation matrix elements atX andG:

Eg5e~X1c!2e~G25v8 !1S@E~X1c!#2S@E~G25v8 !#

2@Vxc
LDA~X1c!2Vxc

LDA~G25v8 !#. ~32!

In fact this formula applies to all the direct and indirect ba
gaps. To determine quantitatively the effect of the LD
exchange-correlation matrix elements and the LDA eigen
ues we have determined the three band gaps of Si using
ate

l

sti-

is

in

the
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ur

calculated self-energy and the PP-LDA eigenvalues
exchange-correlation matrix elements of Olevano41 from
Tables IV and V. The resulting band gaps are 3.24, 1.26,
2.29 eV atG, X, andL, respectively, in good agreement wit
the PP calculations. This led us to the conclusion that
exchange-correlation matrix elements and the eigenva
obtained using the PP method have a tendency to incr
the band gaps by as much as 10% compared with the P
results. This is nevertheless only true for small-band-g
semiconductors. For wide-band-gap semiconductors the
viation between the PAW-GWA and the PP-GWA is foun
not to exceed 3%. It was shown that for small- and mediu
band-gap semiconductors having semicore states, like G
and AlAs, the addition of the core-polarization interactio
improves their energy band gaps.16 However, this formalism
is computationally involved, and has been implemented o
by Shirley and co-workers.16

Figure 3 presents the band structure of Si, GaAs, AlA
InP, and Mg2Si along theLG andGX high-symmetry direc-
tions calculated using the LDA and GWA. We notice a
overall improvement of the excited-state QP energies co
pared with those obtained in the LDA, whereas the LD
valence state eigenvalues are in general in good agree
with experiment and the GWA results do not change t
agreement. In all these small- and medium-band-gap se
conductors we observe, as in previous PP-GWA calculatio
that there is an almost rigid energy shift of the conduct
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states towards higher energies with respect to the co
sponding LDA values. This energy shift is about the sa
for Si and GaAs and is about 0.6 eV, and increases to a
0.8 eV for AlAs and InP.

To study the range of applicability of the so-calle
scissors-operator shift, which consists of rigidly shifting t
conduction bands upwards, we calculated the energy dis
sion of the difference between the LDA and the GWA dire
band gaps across the BZ. For the scissors-operator shift t
valid, the difference between the GWA and LDA band ga
should be independent ofk. However, our calculation show
that the scissor operator is accurate to about 0.06 and
for Si and Mg2Si, respectively, and to about 0.16, 0.15, a
0.13 eV for GaAs, AlAs, and InP, respectively. These sm
deviations indicate that the GWA does not change much
LDA dispersion across the BZ, justifying the use of t
scissors-operator shift for the calculation of the dielec
function for small- and medium-band-ga
semiconductors.56–58 In Sec. III B we show that these devia
tions are much larger for wide-band-gap semiconductors

As for Mg2Si we believe that it is the first time that th
compound is studied within the GWA. The PAW-LDA an
PAW-GWA QP energies for the high-symmetry pointsG, X,
andL are shown in Table VI. Due to the lack of photoem
sion experiments, the GWA results are compared with o
cal measurements, making the assumption that excitonic
fects are negligible. The GWA results are in good agreem
with the experimental results and compare well with the e
pirical PP calculation of Au-Yanget al.59 Figure 3 presents
the corresponding band structure along theLG andGX high-
symmetry directions within the LDA and GWA.

TABLE VI. Quasiparticle energies of Mg2Si at some high-
symmetry points. The calculation of the self-energy is perform
using two specialk points, 200 bands, and 645 reciprocal-latti
vectors. The size of the polarizability matrix is 1133113 and the
plasmon-pole model of von der Linden and Horsch~Ref. 9! is used.

LDA GW approximation Expt.55

G1v 29.19 28.82
G15v 0.00 0.00 0.00
G1c 1.55 2.15 2.1
G25c8 2.41 2.84

X1v 27.17 26.91
X4v8 24.46 24.67
X5v8 21.99 22.14
X3c 0.12 0.45
X1c 0.20 0.62

L1v 27.71 27.45
L2v8 24.79 25.02
L3v8 20.73 20.78
L1c 0.98 1.50
L3c 2.44 2.84

L3v8 →L3c 3.17 3.62 3.7
X5v8 →X1c 2.19 2.76 2.5
Eg 0.12 0.45 0.720.80
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Figure 4 shows the LDA and GWA calculated minimu
band gaps for all studied semiconductors, and are comp
with the corresponding PP and experimental results. A p
fect agreement with experiment is achieved when the ca
lated value falls on the dashed line. We notice that for m
of the small- and medium-band-gap semiconductors GW
does not account for the whole correction of the band g
The disagreement with the experiment is most probably
to the neglect of the core-polarization interaction,16 and to
effects beyond the GWA.10 In fact, it is interesting to men-
tion that a first-order vertex and self-consistent correction
the RPA polarizability and to the self-energy within th
GWA increase the direct energy band gaps of Si at theG, L,
and X points by about 0.36, 0.44, and 0.39 e
respectively.10 These corrections seem to be large but
indicative of an upwards correction. If this is true then
seems then that there is no compensation between the v
correction and the self-consistency as for the jellium mod
An improvement for these calculations is to start from t
self-consistent Green’s function as suggested by Hedin1 in-
stead of the noninteracting Green’s function. At the pres
time it looks like the question of the band gaps of small- a
medium-band-gap semiconductors is not fully solved.

B. Quasiparticle results of wide-band-gap semiconductors
and insulators: Diamond and LiCl

It is of interest to compare our all-electron GWA calcul
tions for wide-band-gap semiconductors and insulators w
existing PP calculations. Wide-band-gap semiconductors
somehow puzzling in contrast to small- and medium-ba
gap semiconductors: While the LDA band gaps of these m
terials are significantly underestimated compared with

d
TABLE VII. Quasiparticle band gaps of diamond and LiCl atG,

L, andX ~in eV!. The calculation of the self-energy is performe
using ten specialk points in the BZ and 200 bands. The size of t
polarizability matrix is 1693169 for diamond and 2593259 for
LiCl. The number of reciprocal lattice vectors is 387 for diamo
and 331 for LiCl. The plasmon-pole model of von der Linden a
Horsch ~Ref. 9! is used. HereEg is the indirect band gap of dia
mond, all the other minimum band gaps are underlined. Our res
are compared with the LAPW, PP, and experimental results.

LDA GWA Expt. b

Present PPa Present PPa

Diamond
G25v8 →G1c 5.53 5.58 7.39~7.41! 7.5; 7.63c 7.3
G25v8 →X1c 4.61 4.63 6.19~6.27! 6.30c

G25v8 →L1c 8.38 8.39 10.36~10.38! 10.23c

Eg 4.01 4.01 5.60 5.6; 5.67c 5.48
LiCl
G15v8 →G1c 5.86 6.0 8.75(8.66) 9.1 9.4d

G15v8 →X1c 7.54 7.5 10.50~10.45! 10.7
G15v8 →L1c 6.50 6.4 9.36~9.32! 9.7

aUnless noted, Ref. 3.
bUnless noted, Ref. 44.
cReference 60.
dReference 63.
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FIG. 3. Calculated electronic
band structures along high
symmetry directions for some
small- and medium-band-ga
semiconductors: Si, GaAs, AlAs
InP, and SiMg2 ~in eV!. The
dashed lines display the LDA re
sults calculated with an energ
cutoff of 15 Ry ~cf. Tables V and
VI, column 2!. The solid lines
with dots show the GWA results
based on these LDA results~cf.
Tables V and VI, column 3!. The
energy scale is relative to the to
of the valence-band maximum
~VBM !.
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periment, the LDA static dielectric functions are usually
good agreement with the experimental results, see for
ample Refs. 56 and 58.

Table VII shows the calculated PAW-LDA and PAW
GWA band energies for the high-symmetry pointsG, X, and
L for wide-band-gap semiconductors: diamond and LiCl,
spectively. These results are compared with other PP-G
calculations3,60 and with experimental data whenev
available.44,61–63 Figure 5 presents the corresponding ba
structures along theLG andGX high-symmetry directions.64

For diamond the calculated QP eigenvalues are in g
agreement with experiment and PP calculations. For L
only the experimental band gap is available and is sligh
larger than our GWA value. It is worth mentioning that w
did not update the Green’s function to get our GWA valu
as in the PP calculation of Hybertsen and Louie.3 Such a
procedure increases the GWA band gap by about 0.3 eV
leads to a better agreement with PP results of Hybertsen
Louie.3 For these wide-band-gap materials we investiga
also the applicability of the scissors-operator shift and fou
that it is accurate only to within 0.32 and 0.28 eV for di
x-
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FIG. 4. Calculated LDA and GWA energy band gaps compa
with experimental and PP-GWA results of Ref. 16. The fill
circles represent the LDA values, the open circles the PAW-GW
values, and the up-triangles the PP GWA. A perfect agreement
experiment is achieved when a calculated value is on the da
line.
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mond and LiCl, respectively. These energy deviations
somewhat larger in absolute values~about twice the value
found for GaAs! than for small- and medium-band-gap sem
conductors. These large energy deviations question the
of the scissors-operator shift for the computation of opti
properties. However, if we compare these energy deviat
with the size of the band gap, the largest ratio occurs
diamond and is only 5% compared to the 10% ratio fo
medium-band-gap semiconductor such as GaAs.

IV. CONCLUSION

We have implemented an all-electron GWA using the
cently developed projector-augmented-wave method.31 The
knowledge of the one-electron Green’s function of the PA
Hamiltonian allows us to construct the QP self-energy wit
the GWA, in which the dynamical screening of the electro
electron interaction arises from a plasmon-pole model die
tric function9,12,32 for which the parameters are adjusted
the dielectric function calculated using the RPA. We ha

FIG. 5. Calculated electronic band structures alongGX andGL
high-symmetry lines of some wide-band-gap semiconductors:
mond and LiCl~in eV!. The dashed lines display the LDA resul
calculated with an energy cutoff of 45 Ry for diamond and 20
for LiCl ~cf. Table VII, column 2!. The solid lines with dots show
the GWA results based on these LDA results~cf. Tables VII, col-
umn 3!. The energy scale is relative to the top of the valence-b
maximum~VBM !.
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tried various plasmon-pole model dielectric functions for t
screening of the Coulomb interaction and showed that
QP energies are not sensitive to the type of the model u

Using this GWA method, we have determined the GW
QP electronic structure of Mg2Si. Our LDA results are in
good agreement with the empirical pseudopotential, and
GWA shifts almost rigidly the empty states by about 0.32
towards higher energies.

Concerning the other semiconductors studied here,
have found an overall agreement of our calculated electro
structure of various semiconductors with existin
GWA pseudopotential calculations performed
different groups,3,7,13,16,41,42,60 and with experimental
results.44–55,61–63 Nevertheless, for a detailed compariso
most of the all-electron GWA small- and medium-band-g
semiconductors are slightly smaller that the PP results
most of this difference is attributed to the discrepancy in
exchange-correlation matrix elements. On the other-ha
the first order vertex and self-consistent corrections to
RPA polarizability and to the self-energy within the GW
are shown to increase the direct energy band gaps of Si a
G, L, and X points by a few tenths of an electron volt,10

showing that there is some room for an upward correctio
To our knowledge this is the first full-potential al

electron GWA calculation that has corrected the LDA eige
values for three type of semiconductors, small- mediu
and wide-band-gap semiconductors, and that has questi
the accuracy of the energy band gaps of semiconductors
tained by means of the PP-GWAwithout core-polarization
interaction.
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APPENDIX: USE OF SYMMETRY TO REDUCE THE
COMPUTATIONAL COST OF THE GWA

The transformation of a Bloch wave functionCkn under a
symmetry operationR of a symmorphic point group is given
by

Ckn~R21r !5(
m

D~R!nmCRkm~r !, ~A1!

whereD(R)nm denote the unitary transformation associat
with the symmetry operationR. If the stateCkn is nondegen-
erate, the transformation rule of the wave function simplifi
greatly sinceD(R)nm5dnm . We suppose now that the state
considered here are nondegenerate to simplify the dis
sion. Using such a relation it can be shown that the ma
elements defined by Eq.~17! satisfy the following relation:
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MG
nm~k,Rq!5MR21G

nm
~k,q! for Rk5k. ~A2!

This relation is valid for all the symmetry operations belon
ing to the little groupGk of the point groupG. Then, it can
be shown that the integrand appearing in the Hartree-F
contribution defined by Eq.~13! is invariant under the sym
metry operations belonging toGk . Such a symmetry prop
erty reduces the number ofq points for which the integrand
has to be calculated. Indeed, ifBk denotes the irreducible BZ
defined by the elements ofGk , the Hartree-Fock contribu
tion can be rewritten as

^CknuSHFuCkn&52
4p

V (
qPBk

w~q! (
m occ

(
G

uMG
mn~k,q!u2

uq1Gu2
~A3!

wherew(q) denotes the weight of theq point. In the case
where the stateCkn happens to be degenerate, we sho
sum the matrix elements over all degenerate states to ge
invariant integrand. The same type of symmetry reduct
holds for the calculation of the symmetrized static dielec
matrix using the fact thaten(Rk)5en(k) and

MG
nm~Rk,q!5MR21G

nm
~k,q! for Rq5q. ~A4!

We obtain

ẽGG8~q,v50!5dGG82
16p

Vuq1Guuq1G8u

3 (
kPBq

(
v,c

(
RPGq

MRG
vc ~k,q!@MRG8

vc
~k,q!#*

ev~k2q!2ec~k!
.

~A5!
.

-

ck

d
an
n
c

The relationship between the matrix elements ofẽGG8 also
reduces the computational cost. Using the symmetry pr
erty of the symmetrized dielectric functionẽ(r ,r 8)
5 ẽ(Rr ,Rr 8), it can be shown that

ẽGG8~Rq,v50!5 ẽR21GR21G8~q,v50!. ~A6!

So both the Hermiticity ofẽ and the relationship between th
matrix elements which results from the symmetry operatio
leavingq invariant are used to reduce the number of mat
elements to be computed. Now, we have to remember
the plasmon-pole parameters in the von der Linden–Hor
model are obtained by solving an eigenvalue problem

E dr 8 ẽ~r ,r 8!fp~q,r 8!5lp~q!fp~q,r !. ~A7!

By analogy with the resolution of the Schro¨dinger-type equa-
tion in a crystal, it can be shown that

fG
p ~Rq!5fR21G

p
~q! and lp~Rq!5lp~q!. ~A8!

These symmetry properties can be used to show the inv
ance of the force and the frequency of the pole,

zp~Rq!5zp~q! and vp~Rq!5vp~q!. ~A9!

If the point groupG of the crystal does not contain the in
version symmetry, the time-reversal symmetry could
implemented. Because of these symmetry relations,
eigenvectors and eigenvalues of the symmetrized dielec
matrix are only computed for irreducibleq points with re-
spect to the point group of the crystal. Now it can be sho
that the integrand appearing in the contribution to the s
energy given by Eq.~14! is invariant under symmetry opera
tions belonging to the little group ofk denotedGk as in the
case of the Hartree-Fock contribution.
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