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The so-calledsW approximationlGWA) based on an all-electron full-potential projector-augmented-wave
method (PAW) has been implemented. For the screening of the Coulomb interadficthree different
plasmon-pole model dielectric function models have been tested, and it is shown that the accuracy of the
quasiparticle energies is not sensitive to the details of these models. For the decoupling of the valence and core
electronstwo different schemes produced quasiparticle energies that differ on average by less than 0.1 eV for
Si. This method has been used to study the quasiparticle band structure of some small, medium, and wide-
band-gap semiconductors: Si, GaAs, AlAs, InP,,8ig diamond, and the insulator LiCl. Special attention was
devoted to the convergence of the self-energy with respect to bothpbts in the Brillouin zone and to the
number of reciprocal-space vectors. The most important and surprising result is that although the all-electron
GWA improves considerably the local-density approximation electronic structure of semiconductors, it does
notalways provide the correct energy band gaps for small- and medium-band-gap semiconductors as originally
inferred from pseudopotential GWA calculations. The discrepancy between the all-electron and pseudopoten-
tial quasiparticle band gaps is mainly traced back to differences between the exchange-correlation matrix
elements obtained by the two methods.

I. INTRODUCTION and on the pseudopotential approach which makes an analy-
sis in terms of chemically relevant orbitals difficult. An ad-
The most successful approach for predicting the quasipaditional difficulty with a pure plane wave basis set is that the
ticle (QP) properties of solids from first principles is the computational effort for studying systems with localizedr
so-calledGW approximation(GWA) of Hedin®? This re- f electrons is enormous. In this paper, we propose an imple-
markable development in the theoretical study of the electnentation of the GWA based on an all-electron method us-
tronic structure of materials is due to the inclusion of many-"d the recently developed all-electron projector-augmented-
body effects in the calculation, principally through the Wave (PAW) method" The knowledge of the all-electron

computation of the QP self-energy and the results are aff'€€N's fup]ction prol\f/ided by thghEA\:]V methOd_aHO‘r’]V,S#Shto
adjustment of the energy splittings obtained within the local-CONStruct the QP self-energy within the GWA, in which the

density approximatiolLDA ).3"® Thus this method included g?/irs]:;mfiilm Sgrele;sl?ngono-f Otlzemilggrrgglzlgtﬂéopun'&ﬁ%(?mgt'on
efficiently the correlation effects without omitting the P P

subtlety of the chemical bonding unlike the |Oarametrizeo{.Or which the parameters are adjusted to the dielectric func-
ion calculated in the random-phase approximatidRPA).
Hubbard ”_‘0‘?'6.': . To check the accuracy of our method we have used three
After this initial success the_ GWA has been extenswelytypes of plasmon-pole models to describe approximately the
used to study physical properties of different types of mategcreening of the Coulomb interaction, and two different
rials ranging from(1) the bandwidth narrowing in alkali met-  schemes for decoupling the core and valence electrons. This
als and their cluster§;*" (2) the surface states of semicon- |atter point is important because the accuracy of the calcu-
ductors, i.e., improving the energy positions of surfacejated quasiparticle energies depends on the correct subtrac-
states’” looking for dimer buckling in Si surfaces;(3) the  tion of the LDA valence-electron exchange-correlation ma-
effects of correlation on the valence off-set between differentrix elements from the self-energy.
bulk semiconductors? (4) the character of the band gaps of ~ Our paper is organized as follows: In Sec. Il we introduce
superlattices and anisotropy of optical matrix elemént§)  the projector-augmented-wave method which is used to solve
the orientational disorder and photoemission spectra of solithe Kohn-Sham equations and provides the all-electron
Ceo; 1° (6) the electronic properties of bulk Ni and its energy- Green’s function and the RPA dielectric function which are
loss spectrd® (7) the electronic properties of atoms using the basic ingredients for the computation of the self-energy.
various GWAZ?® (8) the Schottky barrier between a metal We then describe our GWA implementation and discuss in
and a semiconductdf; and (9) the inclusion of excitonic some details the difficult points of this method. In particular,
effects in the calculation of the dielectric function of we discuss the difficulty related to the decoupling of the core
semiconductor$®=3° All these different studies in a very and valence electrons. The usage of the point-group symme-
short time established the GWA as a good “first-principles” try to reduce the computational cost of the self-energy and
method for computations of QP propertiesrefl materials.  the dielectric function is discussed in the Appendix. In Sec.
Unfortunately, most of the GWA implementations are lll we apply our method to compute the electronic structure
based on a plane-wave expansion of the Bloch wave functioof two distinct semiconductor groups: some small- and
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medium-band-gap semiconductors: Si, GaAs, AlAs, InPample, the expectation value of an operafqr) between
Mg,Si, and some wide-band-gap semiconductorsulato):  two Bloch wave function®,, and¥,,, can be expressed as
C and (LiCl). We then compare our results with available g sum of three contributions
GWA calculations and experiments.
Ank,mk:<\I’kn|A|\Pmk>:Ank,mk+Aﬁk,mk_Aﬁk,mkv 4
II. METHOD OF CALCULATION - ~ ~
where the contributio = (W n|A| ¥ is evaluated in

A. A brief overview of the PAW method the plane-wave basis set. The last two contributions
In the density-functional theory implemented in the
framework of the LDA3* an electronic structure calculation AL =S (TP PAAI DD P T ) (B)
requires the solution of Kohn-Sham type of equations in a ’ ij.a S

self-consistent way. The computation of materials ban

structure consists of finding the Bloch wave functions

Yn(r), wheren and k denote a band index and a wave 1 ~ o o~ ~ o~ o~

vector in the Brillouin zone(BZ), respectively. In the Amcmkc= 2 (Wil PP A D W ) (6)
projector-augmented-wave formalisthall calculations are b

performed using a smooth pseudo-wave-functﬁmn(r) are computed in the augmentation regions. Minimizing the

which is expressed as a linear combination of plane wavesotal energy with respect to th#,, (variational principle
The passage from the smooth pseudo-wave-function to thieads to a generalized eigenvalue problem which is solved in

all-electron wave function exhibiting the correct nodal be-, <.t consistent way, giving the pseudo-wave-functi@%
haV|or_ In the_ augmentation regm(sphere_s centered on e"_’mh from which the all-electron wave functiong,,, are easily
atom is achieved by defining three atomic types of functlonsdeduced by means of E(R) "

in each augmentation regioft) the all-electron basis func-
tions ®f(r), (2) the pseudo-basis-functiond(r), and (3) B. The all-electron GW approximation

the projector function?(r). Herei=I;,m;,n;, wherel;
and m; denote the orbital and magnetic quantum numbers,

respectively. The inder; is introduced for a possible choice N the QP approximation, the excitation energies of the
of more than one function per angular momentum channefyStém are obtained by solving a Satirmer-like equation

1. Quasiparticle energies

(I;,m;). These functions are defined so that of the form
DXr)=¥r) for r=rd, 1 (T+Vext+vh)q,kn(r)+f d®r/ 2,1 En(k)JWin(r”)
whererZ are the radii of nonoverlapping spheres centered at _
S : . . =En(K)Win(r), )
each atomic sitea. The projector functions vanish far
=rg and satisfy the orthogonality property: instead of locating the poles of the Green’s function. Heére,
is the kinetic energy operator(3 V2 in atomic unit$, Ve, is
<5?|(“I;?>: 5 - (2)  the externalionic) potential,Vy, is the Hartree potential due

to the average Coulomb repulsion of the electrons, and
Using these functions, the all-electron wave functibg,(r) the self-energy operator that summarizes the many-body ef-

can be obtained from the pseudo-wave-functibg,(r) ac- fECtS) arzd is de;ic?ed a§h(r,r’,w) =h(i/27-r)fe|'5“"G(r,r’,w
: . _x 1 T +o" )W(r,r',0')do’, whereG is the one-electron Green’s
Sv?trﬁmg to the refationtVyn(r) =W kn(r) +Wia(r) = Wien(r) function andW the screened int_eraction. Becausg it was
showr? that the LDA wave function and the quasiparticle
~ _ o wave function have almost 99% overlap it is a good approxi-
Wi (N =W (r)=2, [®3(r—RH)— DX r—RY(p?W¥,,),  mation to treal — VL2 as a perturbation\>* is the LDA
al valence exchange-correlation potentialhe QP energies
) E,(k) can be written as

where R? denotes the atomic position of the atarin the
En(k):en(k)+<wkn|2[En(k)]|\Pkn>

unit cell. It is useful to point out thaP' — ¥ vanishes in
the interstitial region and defines the quantity necessary to — (V| VEPA(N) [P k), (8)

describe the true wave function in the augmentation regions . . o
9 g wheree, (k) is the LDA eigenvalue for band. In principle,

while ¥, describes the true wave function in the interstitial the solution to this equation should be obtained via an itera-

pseudopotential method, the initial setups for producing theyround e,(k) yields accurate numerical results of the QP
partial waves and the projector functions have to be optippergies

mized to obtain accurate LDA eigenvalues and eigenvectors
(for more details see Ref. 31 En(K) ~ €n(K) = Znd (V| 2Len(K)]| W)
The PAW formalism is designed to easily calculate the
expectation value of a local or a semilocal operator. For ex- ~(Wnl Vig A0 W i)} C)
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TABLE I. The renormalization constan&for the hole state at 28
the valence-band maximurfVBM) and the electron state at the
conduction- band maximut€BM) for C, Si, GaAs, AlAs, InP, and 26 |
SiMgs. -
>
- . . L 24 T
Diamond Si GaAs AlAs InP  MgSi - 1
1=
Z vam 0.85 080 080 081 079 0.76 % oo |
Z cam 0.87 081 081 082 082 079 o
©
o 20 r
5
where the QP renormalization factdy, is = 18 |
o
L= 1_<qjkn|£2(w)|w=en(k)|q,kn> . (10 16 |
Since @/dw)2 <0, we have 8<Z,,<1 with typical values 14 s
of 0.8 for bands close to the band gap and for all materials L r X
considered heréee Table)l Values ofZ,, about 0.8 imply wave vector

that we still have well-defined QP in the system but that 20%
of the spectral weight is now distributed over a range o
frequencies.

FIG. 1. PAW calculated Engel-Farid plasmon-pole model band
fstructure of Si alond-I' and I'X high-symmetry directions. For
small k wave vectors the lowest plasmon band shows a quadratic
_ _ dispersion(up-triangle curvgwy(K) = wo(0) + a|k|?, with a dimen-

2. Computation of the matrix elements df sionless direction-dependent dispersion coefficierilsing a least-

within the PAW formalism squares fit we findu(0)=15.7 eV andx=0.33. These values are
As can be seen from Eq9), the central problem of this in good agreement with the corresponding Engel and Faif.

scheme consists of evaluating the diagonal matrix elemeng?) PP values of 15.91 eV and 0.34 as well as the experimental
of the self-energy between the LDA orbitals. The quantities/alues(Ref. 36 of 16.7 eV and 0.41.
that enter the self-energy are functionef two locationsr three types of plasmon-pole models to describe approxi-

and r’. These functions have the translational symmetry ~e1
oroperty f(r + Rir’ +R)=f(r.r') whereR is a Bravais lat- mately the dependence ef () on the frequencw. These

. Th fix the Fouri ¢ different models were proposed by von der Linden and
t!ce vector. en, _We can fix the Fourier transform Conven'Horsch? Engel and Fari ,zand by Hamadat all?
tion for such functions

To test our implementation of the plasmon-pole model,
1 we have plotted in Fig. 1 the Engel-Farid plasmon-pole
f(r,r' w)=— 2 ei(q+G)rfGG/(q,w)efi(q+G’)r’, model band_ structure of Si along the I', and X high- _
4.G.G' symmetry directions. We have found that our results are in
(11)  excellent agreement with the results of Engel and Paedd
h . tor in the first BZ . | Aulbur®® Indeed, for smalk wave vectors, the lowest plas-
whereq is a wave vector in the first BZG a reciprocal |, \0 band shows a quadratic dispersian(K) = wo(0)

lattice vector, and) the crystal volume. , +alk|?, with a dimensionless direction-dependent disper-
Using this convention, the dynamically screened interacsign coefficienta (see the fitted up-triangle curve in Fig. 1

tion Wthat enters the expression of the self-energy is defineg,, the X direction our least-squares fit produceg(0)
as =15.7 eV anda=0.33 in good agreement with the corre-
sponding Engel and Farid’s values of 15.91 eV and 0.34
R 1 (Ref. 32 as well as the experimental values of 16.7 eV and
Wee(9,0) = O lq+ G|6GG’(q’w)|q+Gr| - (12 0.41% To also check the validity of the plasmon-pole model
as a substitute for the dielectric function of real materials we
To compute this screened interaction and hence the selhave compared the plasmon-pole model of Hameital '?
energy, the symmetrized dielectric matricess (q,») ob- ~ With our directab initio computation of the dielectric func-
tained within the RPA have to be calculated and inverted fofion within the RPA, including the so-called local-field ef-
many values ofv. This is computationally time consuming. fects (see Fig. 2 and with available experimental resdfts
Nevertheless, it has been carried out by some autfibngho for the energy-loss spectrum. We notice th_at the_ model re-
choose to evaluate the frequency integral by using a Gausgroduces correctly ouab initio calculated dielectric func-
ian integration scheme along the imaginary axis to circum1On. . o
vent the problem of the pole structure of the screened inter- The matrix elements of the self-energy could be divided
action along the real frequency axisAn alternative Nt an energy-independent contributiff™ and an energy-
approach is the use of a plasmon-pole md&&t32to de-  dependent contrlbutloﬁ(w). The first term corresponds to
scribe the frequency dependence of the dielectric matrixthe Hartree-Fock contribution and is given by
;I)'Qre];\e/i(;?ooc;etlsegg/e a g_ood descrlptlon_of the I_ow-frequency 4o IMT"(K,q)|2
ynamically-screened interaction and allow (W | SHF W) = — — 2 G
the determination of an analytic expression for the frequency Q G mocc@ lq+G|?
integral appearing in the self-energy formula. We have used (13
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0.4 tric function EGVG,(q,aFO). It should be emphasized that
the summation ovem is not restricted to occupied states as
in the expression of the Hartree-Fock contribution. Both the

0.2}

poles of the Green'’s function and of the screened interaction
contribute to this expression. The expression of the energy-
dependent contribution af using the other two plasmon-
pole models can be found elsewhéfe!®we emphasize that
the QP energies are not too sensitive to the type of the
plasmon-pole model used.

=0,0)],,

Rele (g

3. Numerical details

One of the central problems within the realization of the
GWA is the calculation of matrix elemeni8"(k,q). Using

the PAW formalism, the smooth pseudo-wave-funct\i’)m1

10 @ (eV) associated with an “all-electron” LDA wave functio#r,,, is
defined as
9 L
;
i i! ~ 1 |
7t i Win(1) = —= 2 An(G)e!+O, (16)
2 : \ \/v G
= 6t il
! I
E St ! ! where the sum runs over the reciprocal-lattice vectors. As
T4t | illustrated in the part dedicated to the PAW formalism, the
E 4| expectation value ot (978" can be divided into three
parts,
2+
1 ~ _ ~
0 M?Bm(kaQ):<\Pk7qn|e7|(q+G)r|\Pkm>
0 1 —i 1
o (eV) +<\Pqun|e I(qu(B)rlllfkm)
FIG. 2. Ab initio calculated real and imaginary parts of the in- _<‘I’|an|efi(q+e)r|\l’&m>- (17)

verse dielectric functiondashed curvyeof Si compared with the
plasmon-pole model of Hamadzt al. (Ref. 12 (solid line) and
with experiment(open circleg (Ref. 3. The long dashed curve is
without the local-field effect.

The first term, which involves plane waves, is defined as

*
where the summation runs only over the occupied states, and g A qn(G)Am(G+G). (18)
where Mg™(k,q) =(Wy_qale '@ W, ). Using the von
der Linden—Horsch plasmon-pole model, - the energy—ln this expression the summation over the reciprocal-lattice
dependent contribution can be expressed as vectors is limited to all vector&’ such that both the abso-
(W inl S (@) W) lute values ofG" andG+G' are smaller than a cutoff pa-
rameter. In general 3@ vectors were included in the sum-

_Am mation for the systems studied here, except for,$gand
QO g diamond where the convergence is achieved only when 645
and 40@’ vectors were used, respectively. The two remain-
« Z,(Q)wp(q)/2 ing terms that involve localized contributions can be ex-
0= €n(K=q)+[wp(q)—i5]sgiu—en(k—a)] pressed as
x| Bp"(k, ), (14 ~
wherew, andz, are the frequency and the force of the pole, ;j (Vi qn[PD( D 1@ O D)
respectively. Hergg;'" is given by "
$oe(O) —(@fle” @) PV m). (19

ﬁ[?“(k,q)=§ [M3"(k,q)]* (15)

la+6| Since the overlap between the pseudo-wave-functions and
wherem andn are energy band indexgsjs a plasmon-band the projectors is known, we have to calculate quantities like
index, andq is a vector in the BZ. Thep,y(G) are the (®fe '@ C)"|df). By expanding a plane wave on spheri-
Fourier components of the eigenvectors of the static dieleceal Bessel function§;, we obtain
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<¢?|e—i(q+G)r|<pia> renormalization factors are summarized in Table | for the
different materials studied here. Thedevalues are roughly
B (gt . —— _m the same for the electron and hole states, and for all the
=4me G)Ra% (_I)lYlm(q+G)G|imi Lm; materials studied in this paper. The deviation from unity of
the Z values indicates that their correct determination is cru-
cial for obtaining accurate QP energies. It is worth noticing
that values ofZ closer to unity imply that the quasiparticles
are well defined and that the GWA is a reasonable approxi-
XPyp(r), (200 mation.

where the Gaunt coefficients are given by

x | ¥ -+ Gl by (1)

4. The decoupling of the core and valence electrons

- A - The last point to be discussed is the decoupling of the
G:?;’i Ijm; = \/Ef dQY'ﬁmi(r) rm(r)Yljmj(r)' @) core and va?ence electrons so that when compSting the QP
energies using Eq(8) the appropriate valence-electron

The symmetrized dielectric matrix as well as the matrixexchange-correlation matrix elements are subtracted out. It is

elements of the self-energy defined by EGS) and(14) are  clear that this subtracting procedure may be a source of in-

obtained by an integration over the BZ using the speciahccuracy due to the nonlinearity of the exchange-correlation
points’ techniqué’ The summation oveq points in the ex- potential VL2 n(r) 1= VL2A ne(r) + n,(r)] with respect to
pectation value of the self-energy has to be carried out carghe total charge density, wheren, and n, are the core and

fully, since the integrands have an integrable singularity inthe valence densities, respectively. For this reason we have

1/q* for g—0. This can be readily seen in the expectationtested two different schemes for decoupling the core and

value of 2" defined by Eq(13) where the divergence oc- valence electrons. In the first scheme we assumed that the

curs whenG=0. To integrate out the singularity we fol- core-valence exchange-correlation and core-polarization con-

lowed a procedure developed by Gygi and Baldere¥thi. tributions to the energy of a valence state are giveh by
This procedure consists of adding and removing a smooth

function F(q) which reflects the translatignal symmetry of (P nl Ve core-val Pkn) = (¥ knl Vi Ny + N[ P in)
the Bravais lattice and which diverges ag“lasq vanishes.
For example, the Hartree-Fock contribution can be written as — (Vi Ved N, 1| W) (23
(V| ZHF W) Such a procedure is somewhat hidden when pseudopotentials
- 5 are used since such an operation is performed in the un-
_ A D IMg"(k,q)| _F(Q) screening of the pseudopotential by subtraciigg n,]. The
Q G S| T |g+G2 ) omn shortcoming of this approach is that the ionic pseudopoten-

tial is dependent on the valence configuration, reducing the
A transferability of the potential. In addition, it has been shown
0 mzocc 5mn§ F(a). 22 that including core corrections to the exchange and correla-
tion is necessary for the correct description of the structural
The function in square brackets does not contain any diverproperties of solid$® The PAW does not suffer from this
gence due to the fact that ljmoMg"(k,q) = 8mn, and itis  shortcoming but it seems that justifying E@3) is not an
easily integrated using the special points method while theasy task. Assuming that the argument mentioned above is
integral of F(q) over the BZ is performed analytically. approximatively correct, the quantity which must be sub-
The development o|f,6’[)“”(k,q)|2 in Eq. (14) shows two tracted is then defined by
types of divergence, see E(L5). The first is of 1¢? type

and is treated using a method similar to that given by Eq. (¥ o VEPAI N, (1) ]| W )

(22), while the second one is of|ty| type and can be solved

using another type of analytical function which diverges as /T LDAr W, )+ T =a
1//q] wheng— 0. Nevertheless, we have found that this lat- (WinlVie [Ny (N1[Wn) i;a (Wl PF)

ter divergence is less severe than the former and does not

require a special treatment since the accuracy of the numeri- x{(cIDf‘|V)';CDA[ng(r)]|<bjf">—(&)?Nl;?’*[ﬁi(r)]
cal results is not affected if it is neglected. It should be noted g ~
that the treatment of the singularity in E@.4) requires the X[ DY W ). (24)

evaluation of the symmetrized dielectric matrix fpr0. As
the convergence of the head element of this matrix as a func- The other scheme for decoupling the core and valence

tion of the number ofk points is slow, the calculation is glectrons consists of computing directly the core-valence ex-

performed separately. All other BZ integrations are carrieq;hange interaction within the Hartree-Fock
out using ten speciak points in the final calculations pro-  gpproximatior?® The density matrixp.(r,r’) of the core
ducing well converged resultsee Sec. Il state is defined as

The computation of the QP energies requires the determi-
nation of the renormalization factor defined by Et0). The
derivative of the self-energy is then calculated using a finite pe(r,r’)= 2 e, (r)\pg*l m(r'), (25)
difference scheme with a step of 1 eV. The values of the anglg.mg CC° cee
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TABLE 1l. Matrix elements of the exchange-correlation potential of the valence states
(W] VLA N, ]| W) compared with exchange-correlation of the total charge minus the core exchange
potential within the Hartree-Fock approximatiof | V22 n, + n]| W yn) — (¥ el VS P ) fOr Si (in eV).

The resulting QP energies at the high-symmetry points are also comparedE@ér’s obtained using

(Wen V& [N, + N W) = (Wi VS| W o) instead of(W o Vg [0, (1)][ W) in Eq. (8) while E} is ob-

tained using the standard procedure defined in Bj. The average deviation of the two types of QP
calculations is less than 0.1 eV suggesting that the LDA exchange and correlation of the valence electrons is
well subtracted out from the GWA self-energy.

V():( ch[nv +nc] Vi Ny +Ne]— V;:( ch[nu] Eggl% Eg%
Iy, —1.40 —12.01 —10.61 —10.57 —12.05 —11.96
Iy,  —1.85 —13.45 —11.60 ~11.45 0.0 0.0
M5 —1.40 —11.74 —10.34 —10.19 3.15 3.15
| [P —4.15 —15.41 —11.26 —11.16 4.15 4.19
X1y —-1.79 —12.81 —11.02 —10.95 —7.99 —7.92
X4p —1.52 —12.37 —10.85 —10.74 —3.05 —-3.01
X1e —-0.92 —10.17 —9.25 —9.15 1.10 1.15
Xae -2.81 —13.90 —11.09 -10.84 10.81 10.75
Ly, —1.70 —-12.71 —11.01 —10.95 —9.76 —9.61
L, —1.40 —11.81 —10.41 —10.33 —7.24 —-7.17
Lar, —-1.78 —13.11 —11.33 —11.20 —1.28 —1.26
Lic —2.26 —12.65 —10.39 —10.28 2.12 2.16
L3¢ —-0.97 —10.89 —9.92 —-9.78 3.94 3.95

where ¥, (nN=®,, (r—R¥)Y, » (T—R?® is a core to rewrite the core-valence exchange matrix elements as
neleme ncle leme

state centered at site® of principal quantum numben,,
angular quantum numbég, and magnetic numben,. (‘I’mk|V§<|‘1’nk)=E

(2l+1)(21+1)]¥2

The exchange operator of the core state is defined as 4m(21;+1)
’ 1;0 ~a - * /~a i~
V;’((r,r’):—pC(r'r, ) (26) ><C|0|Co<pnilimi|‘ymk> <pnjlimi|q,nk>
r=r’| X18(n;,nj,ng,lel), (29

It is then possible to calculate accurately the core-valencgpere k = (a,n;,
exchange if we assume that the LDA core wave function anclia(n_ n
the Hartree-Fock one are similar. In fact, the core states, and "~ '’
in particular the partial wave and pseudo-partial-waves,
which are the basic ingredients of the PAW method, are
obtained from an atomic all-electron calculation within the JRa

n;,ne,lc,li,m;,I) and the radial integrals
j:Ne.lc,l) are defined by

Ia(nl ln] 1nC1IC1I)

LDA. The matrix elements of the core-valence exchange are =

rzdrfR r'ﬂr’(l)ﬁc|c(r) ﬁi,i(r)G|(r,r’)
then defined as 0

0

XPR (1Y (1), (30)
Wil =— 3 [ drar »
ane.lc.me Js, whereG, is given by
WhOWE | o (W) ()W (1) 4 o
8 : G(r ) =5 (31)
r=r'| ()= 50
>

(27) :
Herer_ (r-) is the smaller(greatey of r andr’.
We take advantage of the fact that the core states are well |n Table Il we compare the matrix elements of the valence

described as closed shells and that in the augmentation rexchange-correlation matrix e|ememgkn|\/)L(CDA[nv]|q;kn>
gion the Bloch wave functiof', (r) is correctly described jth that of the total density minus that of the core-valence

using an atomic wave-function expansion exchange W x| Ve [N, + Nl | i) = (Win| V| W n) for Si.
It is surprising that the two types of exchange-correlation
V(= (1 — Ra)<5ia|€,nk> for |r—R3=<r2 matrix elements are found to be in good agreement to within
al 0.1 eV on average, and the resulting QP energies differ by

(28 less than 0.1 eV on average.



4470 B. ARNAUD AND M. ALOUANI PRB 62

TABLE IV. Calculated differences of the LDA matrix elements of the exchange-correlation poter{tia,| V5o [n, 1|V .), the
self-energyAZ (E, ), as well as its Hartree-Fock contributia'®"F of silicon compared with the LAPW of Hamae al. (Ref. 12 and PP
results of OlevandRef. 41 and Shirley(Ref. 42 (in parenthesgsConcerning thé\V, . our results are in good agreement with the LAPW
results(Ref. 12 and disagree with the PP calculations at ¥hpoint. This discrepancy of about 0.17 eV makes the PP-GWA indirect band
gap at least 0.17 eV larger than the ours explaining the difference between the PP-GWA and PAW-GWA indirect band gaps3ithr the
andAZ our data agree nicely with the PP calculations of Olevdef. 41 and somewhat less with that of Shirléef. 42 and even less
with the LAPW resultgRef. 12.

AV, ASHF A3(Eqp)
Present  LAPW PP Present LAPW PpP Present LAPW PpP

Féa)—)rl&: 1.26 1.22 1.201.20 6.70 7.59 6.666.92 1.87 1.97 1.892.03
FéSU—>ch 2.30 2.24 2.132.19 7.22 8.07 7.1717.48 2.77 2.73 2.852.92
I‘éa)HLlC 1.17 1.11 1.131.15 6.42 7.34 6.416.70 1.79 1.84 1.801.96
%Reference 12.

bReference 41.

Ill. QUASIPARTICLE RESULTS AND DISCUSSION fident with our PAW-GWA results, and confirms the fact

that the detailed structure of the screened interaction is not
crucial for the correct determination of the QP energies. It is
also surprising that the values Bf obtained using the PAW

In this section we present the electronic structure of sevor the LAPW implementation are close despite that the
eral small- and medium-band-gap semiconductors which arglartree-Fock term did not agree.
used to test our implementation of the all-electron PAW-  To calculate the QP energies it is important to correctly
GWA method. As mentioned earlier we have implementedjetermine the QP renormalization fact@y, [see Eq.(10)].
three different types of plasmon-pole models available in theraple | present&,,, calculated for the top valence state at
literature”**** and compared in Table Il the resulting QP the I" point and for the lowest conduction state of all semi-
energies of Si at thE, L, andX high-symmetry points of the  conductors studied in this paper. These values are in good
BZ. This table shows that the Si QP energies are not sensggreement with the results of Hybertsen and Ldaied they
tive to the type of plasmon-pole model used to describe thgeem to be material and state independent and are about 0.8.
frequency dependence of the screened interaction. We have Taples V and VI show the calculated PAW-LDA and
obtained similar results for the other semiconductors studiep AW-GWA band energiés for the high-symmetry points

in this paper(see Tables V and V)l This behavior was also 1", X, andL for small- and medium-band-gap semiconduc-
observed by Hedfusing a jellium model.

To test further our method we have made a detailed com- TABLE IIl. Quasiparticle(QP) energies of Si for several states
parison with the only available full-potential GWA calcula- (in eV) and for three different types of plasmon-pole models. We
tion of Si based on the linearized augmented-plane-waveotice that the QP energies are less sensitive to the type of plasmon-
method? (LAPW) and with various pseudopotenti&PP) pole model usedE, is the indirect band gap.
results**? To make this comparison with the LAPW reli-
able, we have used the plasmon-pole model of Hamada Plasmon-pole model
et al}? Table IV compares different key ingredients neces- von der Linden and Horséh Hamadaet al® Engel-Farid
sary to determine the QP energies of Si in the GWA. In

A. Quasiparticle results of small- and medium-band-gap
semiconductors: Si, GaAs, AlAs, InP, and MgSi

particular, our calculated valence exchange-correlation po-* —11.96 —11.95 —11.84
tential matrix elements are compared with the LAPW-GWA _ 25'v 0.00 0.00 0.00
(Ref. 12 and PP-GWA result&-“2 The agreement between ! 1% 3.15 3.13 3.17
our exchange-correlation matrix elements and those of Hal2c 4.19 4.17 4.16
madaet al? is remarkably good even though these results

are based on different methods and that different parametri1 —7.92 —7.91 —7.85
zation of the exchange-correlation potential is used. HowXa, -3.01 —-3.01 -2.97
ever, concerning the comparison with PP reétftswe ob-  Xic 115 112 1.20
serve a significant discrepancy of about 0.17 eV at Xhe

high-symmetry point. This discrepancy will be used later toL,, —9.67 —9.67 —9.59
explain the differences between the PP and PAW-GWA ini,, -7.17 -7.17 —-7.08
direct band gap of Si which occurs at the vicinity of tke Lj/, -1.26 -1.27 -1.25
point. Concerning the Hartree-Fock contribution to the self-L_,, 2.16 2.14 2.17
energy the agreement with the results of Hametal? is Lge 3.95 3.93 3.98
less satisfactory. However, we found it surprising that OUrE, 1.00 0.98 1.05

Hartree-Fock contribution to the self-energy is closer to the
results of Olevanth and to some extent to these of Shiffey “Reference 9.

even though their calculations are of pseudopotential type’Reference 12.
The successful comparison of the PP results makes us cofReference 32.
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TABLE V. Quasiparticle band gaps of Si, GaAs, AlAs, and InPl'ak, and X points (in eV). The calculation of the self-energy is
performed using ten speciklpoints in the BZ and 200 bands. The size of the polarizability matrix is<i337 for Si, 16 169 for the other
semiconductors. The number of reciprocal-lattice vectors is 283 for Si, 307 for GaAs and AlAs, and 331 for InP. The QP GWA results are
obtained using the plasmon-pole model of von der Linden and HdReh 9 or that of Engel-Faridresults are in parenthegesiereE,
is the indirect band gap of Si; all band gaps are underlined. Our results are compared with the LAPW, PP, and experimental results.

LDA GWA Expt.©
Present LAPW pPpP Present LAPW? pPpP

Si
The,—T e 2.53 2.55 257 257¢ 3.15(3.19 3.30 3.35% 3.25¢ 3.40; 3.05
e, —Xie 0.65 0.65 0.6 0.62° 1.15(1.20 1.14 1.44% 1.33° 1.25/
[hs,—Lc 1.52 1.43 1.5%: 1.63¢ 2.16(2.17) 2.15 2.27% 2.28¢ 217 2.4+0.15
E, 0.50 0.52 0.52 1.00(105) 101 1.20¢ 1.17
GaAs
s, —T e 0.38 0.40 1.09(1.10) 1.29 1.52
[hs,— X1c 1.29 1.18 1.641.74 2.05 1.90
s, —Lac 0.89 0.83 1.451.50 1.69 1.73
AlAs
s, —T1e 1.95 1.77 2.832.85 2.75 3.1%
s, — X1c 1.26 1.20 1.81(1.93) 2.08 2.24
s, —Lic 2.07 1.89 2.832.90 2.79 2.49%F; 254N
InP
| A 0.77 0.50 1.54(1.57) 1.2% 1.46'
s, — X1c 1.66 1.64 2.132.27) 2.60* 2.42'
R 1.57 1.30 2.282.36 1.97% 2.32
8Reference 12. 9Reference 51.
bUnless noted, Ref. 16. "Reference 52.
“Unless noted, Ref. 44. 'Reference 53.
dreference 3. IReference 45.
®References 41. “Reference 13.

fReference 49.

tors: Si, GaAs, AlAs, InP, and Mi, respectively. We have calculated self-energy and the PP-LDA eigenvalues and
presented only the conduction states since the valence sta&change-correlation matrix elements of Olevénfrom
energies are in good agreement with previous GWATables IV and V. The resulting band gaps are 3.24, 1.26, and
calculations>”1316414280These results are compared with 2.29 eV afl’, X, andL, respectively, in good agreement with
other GWA calculations obtained using LAP{ér Si) or PP the PP calculations. This led us to the conclusion that the
for the other systems and to available experimentabxchange-correlation matrix elements and the eigenvalues
results*~>° Notice that the experimental results of Ref. 45 obtained using the PP method have a tendency to increase
are based on inverse photoemission and seem to underestie band gaps by as much as 10% compared with the PAW
mate the direct band gap of Si at thepoint. results. This is nevertheless only true for small-band-gap

The discrepancy between our GWA values and others igemjconductors. For wide-band-gap semiconductors the de-
traced back mainly to differences between the LDAyjation between the PAW-GWA and the PP-GWA is found
exchange-correlation matrix elements and to differences it 10 exceed 3%. It was shown that for small- and medium-
the LDA eigenvalues. To support our claim we write the p,n4 oan semiconductors having semicore states, like GaAs
indirect band gajke, of Si as roughly the difference between ;4 Ajas; the addition of the core-polarization interaction
the conduction QP energy of the sta(g; and the valence iy nroves their energy band gaffsHowever, this formalism

QP of the statd’ss, . Using Eq.(8) this band gap can be s computationally involved, and has been implemented only
expressed as the difference between the eigenvalues plus ¢ shirley and co-worker

difference between the self-energies minus the difference be- Figyre’ 3 presents the band structure of Si, GaAs, AlAs,

tween the exchange-correlation matrix elementS andI’:  |np, and MgSi along theLT andI"X high-symmetry direc-
, , tions calculated using the LDA and GWA. We notice an
Eq=e(X1c) — €(I'z5) + Z[E(X10) ] - 2 [E(I'2s,)] overall improvement of the excited-state QP energies com-
—[VLPA(X, )_VLDA(FéSU)] (32) pared with those obtained in the LDA, whereas the LDA
XC C XC "

valence state eigenvalues are in general in good agreement
In fact this formula applies to all the direct and indirect bandwith experiment and the GWA results do not change this
gaps. To determine quantitatively the effect of the LDA agreement. In all these small- and medium-band-gap semi-
exchange-correlation matrix elements and the LDA eigenvaleonductors we observe, as in previous PP-GWA calculations,
ues we have determined the three band gaps of Si using otlmat there is an almost rigid energy shift of the conduction
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TABLE VI. Quasiparticle energies of M&i at some high- TABLE VII. Quasiparticle band gaps of diamond and LiCllat
symmetry points. The calculation of the self-energy is performed., and X (in eV). The calculation of the self-energy is performed
using two speciak points, 200 bands, and 645 reciprocal-lattice using ten specidt points in the BZ and 200 bands. The size of the
vectors. The size of the polarizability matrix is 24313 and the polarizability matrix is 16% 169 for diamond and 259259 for
plasmon-pole model of von der Linden and Hor¢Blef. 9 is used.  LiCl. The number of reciprocal lattice vectors is 387 for diamond
and 331 for LiCl. The plasmon-pole model of von der Linden and

LDA GW approximation ExpP® Horsch(Ref. 9 is used. HereE, is the indirect band gap of dia-

mond, all the other minimum band gaps are underlined. Our results

ll:lv _09(')%)9 _08'0802 0.00 are compared with the LAPW, PP, and experimental results.

1% : . :

1T 1.55 2.15 21 LDA GWA Expt.°

| S 2.41 2.84 Present PP Present PP

X1, ~7.17 ~6.91 Diamond

X4, —4.46 — 467 I')s,—I';c 553 558 7.397.41) 75;7.63¢ 7.3

XL, _199 _214 I)s,—X;e 461 463 6.196.27) 6.30°

X 0.12 0.45 I')s,—Lic 8.38 8.39 10.3610.38 10.23°¢

Xye 0.20 0.62 Eq 4.01 401 560  5.6;567° 548
LiCl

Ly 7 745 I'is,—I. 586 60  8758.66) 9.1  9.4¢

L), —4.79 ~5.02 I'ig—Xye 7.54 7.5 10.5010.45 10.7

Lic 0.98 1.50 4Unless noted, Ref. 3.

Lsc 2.44 2.84 bUnless noted, Ref. 44.
‘Reference 60.

La,—Lsc 3.17 3.62 3.7 dReference 63.

X&,—X1e 2.19 2.76 25

Eq 0.12 0.45 0.70.80

Figure 4 shows the LDA and GWA calculated minimum
band gaps for all studied semiconductors, and are compared
with the corresponding PP and experimental results. A per-

states towards higher energies with respect to the CoM&act agreement with experiment is achieved when the calcu-
sponding LDA values. This energy shift is about the same

for Si and GaAs and is about 0.6 eV, and increases to aboﬁte;j valueI:‘aIIs gn thz'dasr;ed (;me. We nc_)t|cedthat forénvt\)/s'&t
0.8 eV for AlAs and InP. of the small- and medium-band-gap semiconductors

To study the range of applicability of the so-called does not account for the whole correction of the band gap.
scissors-operator shift, which consists of rigidly shifting the € disagreement with the experiment is most}grobably due
conduction bands upwards, we calculated the energy dispel2 the neglect of the core-polarization interactidrand to
sion of the difference between the LDA and the GWA directeffects beyond the GWA' In fact, it is interesting to men-
band gaps across the BZ. For the scissors-operator shift to gion that a first-order vertex and self-consistent corrections to
valid, the difference between the GWA and LDA band gapsn€ RPA polarizability and to the self-energy within the
should be independent &f However, our calculation shows GWA increase the direct energy band gaps of Si aithe,
that the scissor operator is accurate to about 0.06 and 0.@d X points by about 0.36, 0.44, and 0.39 eV,
for Si and MgSi, respectively, and to about 0.16, 0.15, andrespectlvel)}. These corrections seem to be large but are
0.13 eV for GaAs, AlAs, and InP, respectively. These smayindicative of an upwards correction. If this is true then it
deviations indicate that the GWA does not change much th&€eMmS then that there is no compensation between the vertex
LDA dispersion across the BZ, justifying the use of the correction and the self-consistency as for the jellium model.

scissors-operator shift for the calculation of the dielectricAN improvement for these calculations is to start from the
function for small- and medium-band-gap self-consistent Green’s function as suggested by Heidin

semiconductor&-581n Sec. Ill B we show that these devia- Stead of the noninteracting Green’s function. At the present
tions are much larger for wide-band-gap semiconductors. time it looks like the question of the band gaps of small- and

As for Mg,Si we believe that it is the first time that this Medium-band-gap semiconductors is not fully solved.
compound is studied within the GWA. The PAW-LDA and
PAW-GWA QP energies for the high-symmetry poihtsX,
andL are shown in Table VI. Due to the lack of photoemis-
sion experiments, the GWA results are compared with opti-
cal measurements, making the assumption that excitonic ef- It is of interest to compare our all-electron GWA calcula-
fects are negligible. The GWA results are in good agreemertions for wide-band-gap semiconductors and insulators with
with the experimental results and compare well with the em-existing PP calculations. Wide-band-gap semiconductors are
pirical PP calculation of Au-Yangt al®® Figure 3 presents somehow puzzling in contrast to small- and medium-band-
the corresponding band structure alongltheandI’X high-  gap semiconductors: While the LDA band gaps of these ma-
symmetry directions within the LDA and GWA. terials are significantly underestimated compared with ex-

B. Quasiparticle results of wide-band-gap semiconductors
and insulators: Diamond and LiCl
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periment, the LDA static dielectric functions are usually in
good agreement with the experimental results, see for ex-
ample Refs. 56 and 58.

Table VII shows the calculated PAW-LDA and PAW-
GWA band energies for the high-symmetry poihtsX, and
L for wide-band-gap semiconductors: diamond and LiCl, re-
spectively. These results are compared with other PP-GWA
calculationd® and with experimental data whenever
available?*®1=%3Figure 5 presents the corresponding band
structures along thel’ andI"'X high-symmetry direction®!
For diamond the calculated QP eigenvalues are in good
agreement with experiment and PP calculations. For LiCl
only the experimental band gap is available and is slightly
larger than our GWA value. It is worth mentioning that we
did not update the Green’s function to get our GWA values
as in the PP calculation of Hybertsen and Lotiguch a

Wave vector

Calculated Band gap (eV)

—
o

o =

4473

FIG. 3. Calculated electronic
band structures along high-
symmetry directions for some
small- and medium-band-gap
semiconductors: Si, GaAs, AlAs,
InP, and SiMg (in eV). The
dashed lines display the LDA re-
sults calculated with an energy
cutoff of 15 Ry(cf. Tables V and
VI, column 2. The solid lines
with dots show the GWA results
based on these LDA result&f.
Tables V and VI, column 8 The

N WA OO N 0 ©

X energy scale is relative to the top
of the valence-band maximum
(VBM).
® PAW LDA
OPAW GWA #5
APPGWA I
n/'/ e
Licl |
AAs o C
Mg,Si
i
8
2 .
[y e InP
Q0o - GaAs

2 3

4

5 6 7 8 9 10

Experimental Band gap (eV)

FIG. 4. Calculated LDA and GWA energy band gaps compared

procedure increases the GWA band gap by about 0.3 eV angith experimental and PP-GWA results of Ref. 16. The filled
leads tO a better agreement with PP results of Hybertsen angkcles represent the LDA values, the open circles the PAW-GWA
Louie? For these wide-band-gap materials we investigatedalues, and the up-triangles the PP GWA. A perfect agreement with
also the applicability of the scissors-operator shift and foundxperiment is achieved when a calculated value is on the dashed

that it is accurate only to within 0.32 and 0.28 eV for dia- line.
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tried various plasmon-pole model dielectric functions for the
screening of the Coulomb interaction and showed that the
QP energies are not sensitive to the type of the model used.

Using this GWA method, we have determined the GWA
QP electronic structure of M&i. Our LDA results are in
good agreement with the empirical pseudopotential, and the
GWA shifts almost rigidly the empty states by about 0.32 eV
towards higher energies.

Concerning the other semiconductors studied here, we
have found an overall agreement of our calculated electronic
structure of various semiconductors with existing
GWA pseudopotential  calculations performed by
different groups;’131641.4260 and with experimental
results**~°561-63Nevertheless, for a detailed comparison,
Wave vector most of the all-electron GWA small- and medium-band-gap
semiconductors are slightly smaller that the PP results and
most of this difference is attributed to the discrepancy in the
exchange-correlation matrix elements. On the other-hand,
the first order vertex and self-consistent corrections to the
RPA polarizability and to the self-energy within the GWA
are shown to increase the direct energy band gaps of Si at the
I', L, and X points by a few tenths of an electron vdit,
showing that there is some room for an upward correction.

To our knowledge this is the first full-potential all-
electron GWA calculation that has corrected the LDA eigen-
values for three type of semiconductors, small- medium-,
and wide-band-gap semiconductors, and that has questioned

Energy relative to VBM (eV)

Energy relative to VBM (eV)

_10 | | the accuracy of the energy band gaps of semiconductors ob-
tained by means of the PP-GWMithout core-polarization
_15 - interaction.
L r X

Wave vector
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mond and LiCl, respectively. These energy deviations aréJo. gem110Q IPCMS is a UMR CNRS-ULP 7504.
somewhat larger in absolute valuésbout twice the value

found for GaAs than for small- and medium-band-gap semi- _
conductors. These large energy deviations question the usd‘PPENDIX: USE OF SYMMETRY TO REDUCE THE
of the scissors-operator shift for the computation of optical COMPUTATIONAL COST OF THE GWA

properties. However, if we compare these energy deviations The transformation of a Bloch wave functidin,, under a

diamond and is only 5% compared to the 10% ratio for By

medium-band-gap semiconductor such as GaAs.

IV. CONCLUSION ‘I’kn(R’lr)=§ D(R)nm¥ rim(r), (A1)

We have implemented an all-electron GWA using the re-

cently developed projector-augmented-wave meftiothe  whereD(R),, denote the unitary transformation associated
knowledge of the one-electron Green'’s function of the PAWwith the symmetry operatioR. If the stateV,, is nondegen-
Hamiltonian allows us to construct the QP self-energy withinerate, the transformation rule of the wave function simplifies
the GWA, in which the dynamical screening of the electron-greatly sinceD (R),n= 8,m- We suppose now that the states
electron interaction arises from a plasmon-pole model dieleceonsidered here are nondegenerate to simplify the discus-
tric functior?232for which the parameters are adjusted tosion. Using such a relation it can be shown that the matrix
the dielectric function calculated using the RPA. We haveelements defined by Eq1l7) satisfy the following relation:
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ME"(k,Rg) =Mz 15(k,q)  for Rk=k. (A2)

This relation is valid for all the symmetry operations belong-

ing to the little groupGy of the point groupG. Then, it can

be shown that the integrand appearing in the Hartree-Fock

contribution defined by Eq13) is invariant under the sym-
metry operations belonging 16, . Such a symmetry prop-
erty reduces the number gfpoints for which the integrand
has to be calculated. IndeedBf denotes the irreducible BZ
defined by the elements &, , the Hartree-Fock contribu-
tion can be rewritten as

4 IME"(k,q)?

Win HF |\ === _
< K |2 | k> Q qgsk W(q)mzocc% |q+G|2

(A3)

wherew(q) denotes the weight of the point. In the case
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The relationship between the matrix elementseg§, also
reduces the computational cost. Using the symmetry prop-
erty of the symmetrized dielectric functione(r,r’)
‘e(Rr,Rr’), it can be shown that

;GGI(Rq,ﬁ)zO)ZERflGRfler(q,O):O). (A6)

So both the Hermiticity of and the relationship between the
matrix elements which results from the symmetry operations
leavingq invariant are used to reduce the number of matrix
elements to be computed. Now, we have to remember that
the plasmon-pole parameters in the von der Linden—Horsch
model are obtained by solving an eigenvalue problem

fdr' €(r,r)¢P(a,r ) =Ny pP(q,r). (A7)

By analogy with the resolution of the Scldinger-type equa-

where the stateV,, happens to be degenerate, we shouldion in a crystal, it can be shown that

sum the matrix elements over all degenerate states to get an
invariant integrand. The same type of symmetry reduction

P_(RA) =R 15(q) and M,(Rg)=\,(q). (A8)

holds for the calculation of the symmetrized static dielectricThese symmetry properties can be used to show the invari-

matrix using the fact tha¢,(Rk) = €,(k) and

ME"(Rk,q) =My 15(k,0)  for Rg=aq. (A4)
We obtain
- ( 0=s 167
€ce'(Q,0=V)=0cer — ——— 7
Q[gq+Gllg+ G|

Mia(K, [ Mg, (k,a)]*
€,(k—0)— ec(k)
(A5)

x 2

kEBq v,C REGq

ance of the force and the frequency of the pole,

Zp(Rq):Zp(q) and wp( RQ)pr(Q)- (A9)

If the point groupG of the crystal does not contain the in-
version symmetry, the time-reversal symmetry could be
implemented. Because of these symmetry relations, the
eigenvectors and eigenvalues of the symmetrized dielectric
matrix are only computed for irreduciblg points with re-
spect to the point group of the crystal. Now it can be shown
that the integrand appearing in the contribution to the self-
energy given by Eq(14) is invariant under symmetry opera-
tions belonging to the little group & denotedG, as in the
case of the Hartree-Fock contribution.
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