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Theory of electron-positron interaction in simple metals: Application to lithium
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In spite of many efforts devoted to this phenomenon, the electron-positron interaction in metals remains an
unsolved problem. The development of the partial density amplitude approach to the electronic structure of
simple metals offers the possibility to perform direct many-body calculations of the electron-positron interac-
tion in these materials. A theory of this interaction based on the hypernetted-chain approach of Gondzik and
Stachowiak is proposed and applied to lithium. It leads to a nonlinear three-dimensional integro-differential
equation for the enhancement amplitude. This equation is solved for two cases in which it reduces to one
dimension and also for a model. The relation between the results obtained in this way for the annihilation rate
and the predictions of the local density approximation and other approaches is studied. The role of core
electrons in the interaction is commented.

[. INTRODUCTION electron distribution around the positron. The generalization
of this approximation to anisotropic electron distributions
Theoretical investigations of the electron-positron interacwould be affected by the nodes occurring in the density am-
tion in metals have a long histohﬁﬂowever, the complexity plitude for conduction electrons. These nodes lead to singu-
of the problem prohibited direct calculations for a metal lat-larities in the equation for the enhancement amplitude. Since
tice (investigations in this direction have been performed insuch equations have never been solved, and they describe a
Refs. 2—9. On the other hand, puzzles connected with thephenomenon occurring in all real metals except possibly me-
e"-e” interaction in an electron gas have gradually beerallic hydrogen or metallic deuteriufthough they are absent
solved (though major controversies still remain concerningin the case of a positron in an electron gage devoted Sec.
the possibility of observing the Daniel-Vosko type distribu- IV to the solution of the equation for the enhancement am-
tion in the angular correlation experim&ht®12}, The re-  plitude for the case of the positron on the nucleus in a form
sults obtained for jellium could be applied to real metalswhich includes the singularities. This case has a nearly
after introducing some oversimplifying approximations for spherical symmetry, and, on the other hand, e.g., Stott and
e"-e~ correlations in metal lattices, like the local density Kubica®® and recently Boraski and Jarlborg have shown
approximation(LDA) and its generalizations such as the that in lithium the positron density on the nucleus is appre-
generalized gradient expansion and the weighted densit§iable.
approximation® "8 and the references quoted there, also
Refs. 18 and 19. Many-body approaches started by Cafbotte Il. DERIVATION OF THE BASIC EQUATION
used an assumption that can be called constant density po- _ . . .
tential approximation. In this last case it is assumed that the ThiS work is based consequently on the formalism elabo-
screened Coulomb potential of thes -~ interaction does rated for single |mpu;|t2|8es in an electron gas by Kallio, Pi-
not depend on the coordinates of the positron in the lattic&tilanen and LanttE)" (KPL) and modified later by
and is equal to that occurring in jellium of density equal to Gondzik and Stachowidk (see also Refs. 1 and 2228 is

the average density of conduction electrons in the metal. Ré22S€d on applying the variational principle to the Jastrow-
cently Sormanhiresigned from this approximation, develop- YPe trial function:

ing the so-called optimized Bloch-modified ladder theory. In
the present work an approach is elaborated that allows us to

N N
compute effectively annihilation parameters from first prin- Yrpirs, ... ’rN):kHl R(|ri—rp|)1i_j[ fri=riD

ciples. Calculations performed for a modsingle spherical i<i

inhomogeneity in an electron gaBave already shown that XD(r...1y), (1)

the local density approximation for a@*-e~ interaction

poorly describes the behavior of the annihilation Fite. wherer; andr, denote the electron and positron coordinates,

We will express the influence of the positron on the den+espectivelyR andf are variational functions-parameters and
sity of conduction electrons in terms of the enhancement® is the Slater determinant of plane waves.
amplitude using an approach, which in the case of an elec- Following KPL we label this formalism HNC
tron gas, proved to be particularly simple and efficnt®  (hypernetted-chajnin spite of its rather distant relation to
An equation for this quantity is derived in Sec. Il. This equa-the HNC equation derived in the theory of liquigditional
tion has the form of a three-dimensional nonlinear integro-details are given in Ref.)1lts most characteristic feature is
differential equation. In Sec. Il this equation is solved in anto solve a many-body problem in terms of a single density
approximation that neglects the angular dependence of themplitude.
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Because of its low mass a positron impurity in a metalcharge in vicinity of the positron leads to a higher accumu-
differs from heavy impurities in two respects: by being de-lation of electrons on the positron and hence to an increase of
localized and by experiencing recoil while interacting with the annihilation rate. Omitting this term one gets only half of
the electrons. According to KPL this last effect can be acthe spin-averaged positronium value of the annihilation rate
counted for in the Euler-Lagrange type equation for the denin the limit of low electron densities.
sity amplitude of electrons around the positron by replacing The annihilation rates of Refs. 32, 33, and 31 are very
the electron mass by the reduced mass of the electrortlose to each other. The approaches they use are very differ-
positron system. Routine methods exist of computing theent, but they are similar in using three basic physical ingre-
wave function of a positron in a lattice, and one can believalients: momentum dependence of electron-positron scatter-
that they are approximately correct. As concerns electroing, self-consistency, and exchange-correlation correction.
wave functions, the problem is exceptionally complicated for Somewhat higher values of the annihilation rate follow
two reasons: from Egs.(2)—(6). The reason is the Jastrow-type trial func-

(1) The effective electron-positron potential is unknowntion that underlies them and that forces all the electronic
and likely to be different for each position of the positron in states to scatter on the positron in the same way. However,
the lattice. the exchange-correlation term goes beyond the Jastrow-type

(2) The scattering of the electrons on the positron is fortrial function since it means that"-e~ correlations depend
this reason complicated, the more so that the effective poteren the positron coordinates. This guarantees the right behav-
tial must be self-consistent. ior of the annihilation rate at high values of. Omitting

According to Ref. 21, the screening of a positron in anWw,. leads to underestimation of the annihilation rate.
electron gas can be computed from the Euler-Lagrange equa- The optimal trial function of the Jastrow type is obtained
tion for the enhancement amplituade(r) (in atomic units, from the appropriate Euler-Lagrange equation derived by
which will be used throughout the paper unless stated differKPL. However, as we mentioned already, this trial function
ently) poorly includes electron-electron correlations. This is why

5 Gondzik and Stachowiak replaced the very complicated
[=Vo+W(r)]w(r)=0, (2 functional W(r) of KPL by the Kohn-Sham potentidht)—
where the electron density at distanrcom the positron is  (6). This assumption greatly simplified the calculations and
led to physically reasonable results. Its most spectacular con-
p(r)=w?(r)pg. ©)] firmation has been provided by orfiZwho calculated the
§nergy of electron-positron correlation in the Jastrow state
using the variational Monte Carlo approatif® The results
of the approach of Eq$2)—(6) and of Ortiz are identical as
concerns the energy of tled -e~ correlation. This does not
1 mean, of course, that these approaches are accurate. The ap-
W(r)=— T +Wp(r) +W,(r), (4) proximations involved in using Eq&)—(6) can be estimated
owing to the formalism proposed in Ref. 22ee also Refs.
where W (r) is the Coulomb potential of the electronic 23 and 2% and called perturbed HNGPHNC) where the

po is the density of the electron gas into consideration an
w(r)—1 at an infinite distance from the positrow/(r) is
the screened electron-positron potential,

cloud screening the positron wave function of the system is described by a Slater deter-
minant and the particular electronic states are allowed to

,wz(r’)—l scatter on the positron according to equations of the Kohn-

Wp(l')=pof dr W (5) Sham type. PHNC is, of course, free of all the approxima-

tions performed in HNC calculations. The annihilation rates

andW,(r) is the exchange-correlation correction to the po-following from PHNC are a little lower than those of Refs.

tential 32, 33, and 31. This is probably due to allowing for nonor-

thogonality of one-electron wave functiorifollowing the

Wyee(1) =V {W?(r) po} — Vi {po} - (6)  objections of Lowy and Jacks#f. They remain, however,

Vi {p} is the exchange-correlation term in the potential inigher than those of the Borski and Nieminen formulé_"?

an electron gas of densiy. The potentialVy, {p} is as- In the.presenF work an EuIer—Lagrange type gqu'atl'on for

sumed in the form proposed by Hedin and Lundg®ist. the density amplitudg(r) of conduction electrons in lithium

Note that some well-known approaches to electron!S @ssumed in the form
positron interaction in jellium neglect the exchange-
correlation term in the potential due to the screening cloud 1
around the positron. Such is the case of the well-known ap- [— —V2+V°(r)}x(r)= nx(r), )
proach of Kahan® in which thee™-e~ screened Coulomb 2
potential is assumed in the static random phase approxima-
tion (RPA). This leads to the famous low density divergencewhere x(r) is related to the electron density of conduction
of the annihilation rate caused by lack of self-consistencyelectronsp,(r) by the relation
But self-consistency alone cannot lead to the correct behav-
ior of the annihilation rate at low electron densities. This is 5
possible, as shown by Rubaszek and Stachottiakly after pw(r)=x=(r). (8)
introducing the exchange-correlation correction. In general,
exchange-correlation by decreasing the effective electroni@he potentiaV°(r) is defined as a functional of:
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04 of ions. Adding a positron to the metal will disturb the func-
tion x(r). Taking into account the presence of the positron at
r, we write the equation for the disturbed density amplitude
of conduction electrong in the form

1 2 0 1 —
S VIV + W) 14(rp.r) = n4(rp.r),

(13
where
1
W(rpar):_m+wp(rpyr)+wxc(rpar)r (14)
T T T T T T T T T T p
0‘2, ) o2 ) o4 0s 08 o7 the Coulomb potential of the screening cloud
r (in units of lattice constant)
FIG. 1. The comparison of?(r) (solid line) with pg apw(r) Wo(ro.r)= dr,gz(rp,r’)—)(z(r’) (15
(dashed lingin Li for the (110 direction. The inset presents the piip:» |r—r’| !
magnified part ofxg(r) andpgapwdr).
the exchange-correlation contribution
21
VO{X;r}:VC(r)Jrf |X r )|dr'+vHL{pc(r)+X2(r)}, ch(rp,r)=VHL{pc(r)+éz(rp,r)}—VHL{pC(erz(rﬁé)
r'—r
©) The r, parameter in Eqs(13)—(16) simply means that the
V¢(r) is the Coulomb potential of the core screening of the positron depends on its coordinates in the
elementary cell. Note that for a homogeneous electron gas,
—pa(r")+pc(r’) | Eqg. (13) takes the forn{2), while in the absence of the pos-
Ve(r)= f T dr’, (100 tron it takes the forn(7). In Egs.(13)—(16) the screening of

the positron is described by one only functigrdepending
pc(r) is the density of core electrons apg(r) the density of ~on the positron coordinatesg as on a parameter. This makes
the nuclear charge. The self-consistent potentffly;r} is  achievement of self-consistency in the screening particularly
marked by a zero in order to indicate that it is self-consisteneasy. This formalism is likely to describe reality adequately
only in the meaning of the present approximationis the = when each conduction electron state gives approximately a
Lagrange multipliery(r) has the same symmetry as the lat- Similar contribution to the whole electron density and is scat-
tice. tered approximately in the same way by the positron. Alkali
Equation(7) is a nonlinear integrodifferential equation for metals are the first candidates for applying such an approach.
x(r) that we solve by linearization, assuming as approximatd he experience of applying a similar formalism for screening

solution yo(r) the superposition of free atoms as done usuthe positron in an electron gds**?°and computing the dis-
ally in band structure calculations, setting tribution of conduction electrons in lithiurtFig. 1) shows
both the reliability and the efficiency of such an approach.
x(r)=xo(r)+dx(r). (11 Let us remark that in Eq.2) the coefficient 1 in the ki-

. . _ netic term is due to the reduced mass of the electron inter-
The correctiondy is found to be small, presenting no need 4¢ting with the positron. If we divide Eq2) by 2, the effect
for additional linearization. It is computed as a Fourier seriegy reducing the mass is replaced by a corresponding decrease

over reciprocal lattice vectoiS: of the effective charge of the bare positron. However, the
effective charge of the electronic cloud screening the posi-

Sx(r=> 7€', (120 tron is also reduced. So, while in EqL3) the effective

G charge of the bare positron is equal 1/2, its screening still

needs one electronic charge which enters @&) with a

coefficient 1/2.

N Let us remark at this point that both in EJ) and in Eq.

(13) it is assumed that core states are not disturbed, neither
by the lattice nor by the positron. While the first assumption
is generally considered as a good approximation, the positron
interaction with the core needs further studies and will be in
the following the subject of additional comments.

Let us assume the density amplitudig,,r) in the form

A self-consistent solution of Eq7) is obtained by solving a
set of algebraic equations fag's.

The comparison of the density of conduction electrons i
Li obtained in this way with the results of full potential lin-
earized augmented plane waleLAPW) calculations(per-
formed according to theIENgs cod€®) is shown in Fig. 1.
The solution of Eq(7) reproduces the main features of the
distribution of conduction electrons.

The simplicity of the HNC approach to electron-positron
mtgracnon in jellium foIIc_)ws from the fact that Eq2) de- {(rp, ) =W(ry,r—r)x(r), 17)
scribes a single electronic wave of momentkmO scatter-
ing on the positron. In Ed.7) a single electronic wavg(r) wherew(r,,r—ry,) will be called the enhancement ampli-
describing conduction electrons scatters on a periodic arratpde. In the following we shall mostly use, for convenience,
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the shortened notatiow(r —r), indicating instead its de-

pendence on the distance between the electron and the pos

tron.
Introducing Eq.(17) into Eqg.(13) we have, owing to Eq.
(),

x[—VZ+W(r,,r)]w—2VxVw=0. (18
We will also use Eq(18) in the form
X[ —V2+W(r,,r]w—Vx*Yw=0, (19

which is appropriate ify(r)#0.

Replacing the Eq(13) for the density amplitudé by Eq.
(18) for the enhancement amplitude has several advan-
tages:

(1) We got rid of the lattice potential, which contains an
infinite array of singularities.

(2) The region in which the enhancement amplituelgs)
differs from unity is very limited unlike that for the density
amplitude {(r) (otherwise we would have to refer to the
supercell formalism

(3) The success of the substituti¢ti7) provides by itself
information on the density amplitude One can expect that
the functionw(s) is smooth enough, so the density of the
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screening cloud around the positron at a given distance fron

it is roughly proportional to the electron density in the ab-
sence of the positron, being modulated by the lattice.

Equation(18) is a nonlinear three-dimensional integrodiffer-
ential equation forw. We will solve it in some particular
cases when it becomes one-dimensional.

Ill. ISOTROPIC APPROXIMATION

We will compute the functiomw(r,,r—
of

rp) as a function

S=r—rp. (20

s (a. u.)

FIG. 2. The average electron distributidis) for Li for the
positron coordinatega) (0.38,0,0),(b) (0.68,0,0).

assuming thatvy(s) is a known function close to the exact
solution of EQ.(22) and Sw(s) is small, so terms of higher
order in w can be omitted.

The equation fow is solved by assuming that the func-
tions present in it(as well as their derivativesare suffi-
ciently well described by their values at a finite set of points
s;. This allows us to transform the equation into a set of
linear algebraic equations for the valuéa(s;). These are

In general the anisotropy of the distribution of conductioneasily solved. By repeated linearizations we get an exact so-

eIectronsXZ(rp+ s) as a function of will enforce an anisot-
ropy of the functionw(s). We will limit ourselves in this
section to an isotropic solution of E¢L9). We will replace

lution of Eg. (22), independent of the starting function
Wo(s). An additional test for the reliability of the solution is
provided by controlling its stability with regard to increasing

in this last equation the unperturbed density of conductiorthe density of points; .

eIectronsXZ(errs) by its average over directions ef

f(8)=(x*(rp+9))di- (21

Of course,f(s) depends on the vectoy,, but here and be-
low we will not indicate this dependence in the notation.
Examples of the behavior of the functidif{s) for Li are
shown in Fig. 2 for two values afj,.

As far asf(s) is nodeless we can write EqL9) in the
form
2 N f!
s f

"

—-W (22

)W’+W(s)w=0,

where the derivatives are taken with regardstdEquation

Equation(22) was solved for Li for 35 values af;, along
each of the principal axes. For positron positions not very
close to the nucleus the solution is stable, i.e., it depends
negligibly on the set of points; and does not depend on the
choice of the starting functiowy(s) (provided this choice is
reasonable

The values of the enhancement amplitwdg ,,0) on the
positron forr, along the principal axes are shown in Fig. 3.
One general observation is that the valug) varies rela-
tively smoothly throughout the elementary cédixcept for
the enigmatic region close to the nuclgubhis is due to the
fact that the functiorw(s) is characterized by some "rigid-
ity.” It is unable to follow small scale variations of the elec-
tron density, quite the contrary, to some extent, its behavior

(22) is solved by linearization. We introduce as usual theis opposite to what one could expect from the local density

substitution

W(S)=Wq(S)+ ow(s), (23

approximation as will be shown below. It samples rather a
considerable region of the lattice enclosed within the screen-
ing radius. The crucial point is the size of the screening
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FIG. 3. The values of the enhancement amplitwde,,0) on o )
the positron forr, along the main crystallographic directions as EIG. 4. Loc_:al annihilation rates_ for_conductlon electrons and
computed from Eq(22). The lines are not smooth because we hagPositron coordinates along 200 direction: as follows from Eq.
to limit ourselves(for technical reasongo 69x 69x 69 points in (22 (full curve) and from formula(27) (dashed curve
the elementary cell.

which consists in replacing the IPM annihilation rd&6)

cloud. This size is shown in Fig. 9 for the positron on thel®-9., Ref. 33, relatiori6.8)] by the formula
nucleus. It is visible that even in this extreme case the size of
the screening cloud is comparable to the size of the atom. _ 12 2
E . . L Acea(rp)= —5——wj(0), (27)

or this reason the amplitude of variation of the average rs(rp)
electron density within the screening radius as a function of o )
r, cannot be very big. As a result the local annihilation ratePresented by the dashed curve in Fig.w(0) is :t;he en-
\ in surprisingly many cases is roughly proportional to thehancement amplitude for jellium of densipy=2/a* com-
local electron density in absence of the positron. We shoul@uted from Eq.(2), wherea is the lattice constant. The an-

remember, however, that this behavionofesults from the Nihilation rates are expressed as usual in units 8fsl0The
fact that the function 12 dominates the functiow?(r ,,0) local density approximation for the annihilation rate is diffi-
in the following formula for the annihilation rate: P cult to present on Fig. 4 since it concerns the whole electron

population(core included, however note that it never falls
12 belqw 2 \1/vhich is the value for spin-averaged free
Nrp)=— W2(rp,0), (24) positronium. o '
s(rp In the constant enhancement approximation the spatial de-
pendence of the enhancement does not distort the wave func-
wherer (rp) is the local value of thes parameter computed tions of conduction electrongas observed by positrons

according to the formula since the enhancement factor is constant throughout the lat-
3 tice. If one neglects the momentum dependence of the en-
3 hancement, which is not considered in the present work this
rs(rp)Z(m) (25 approximation is similar as concerns the angular correlation
P

experiment to theindependent particle moddllPM). Of

The function course, the predictions of these approximations concerning
the positron lifetime would be quite different, but who ap-
plies IPM while interpreting the positron lifetime?

- (26) Calculations have also been performed for the positron at

rs(rp) the center of a model inhomogeneity in which the electron

density is given by the formula

Nipm(rp)=

is the independent particle moddPM) annihilation rate.
For details concerning the independent particle model see _ _ 2

Ref. 37. The functiorwz(rp,O) exhibits properties that up to 1(S)=pol 1+ o exil —(s/so)]h 28)

now were not investigated so carefully and are in some casegherepg is the density of the electrons for infinite Here
even contradictory to the local density approximation. Thewe will assume it to be equal to the average density of con-
local annihilation rate for conduction electrons according toduction electrons in lithiumo determines the amplitude of
Eq. (24) is presentedby the full curve in Fig. 4 and com- the inhomogeneity and can be positive or negative, provided
pared to the analogical quantity under an assumption whiclt is bigger than—1. The parametes, determines the width
we shall callconstant enhancement approximati@EA), of the inhomogeneity. Note that the nodexdfr) in lithium
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FIG. 5. The enhancement amplitud€0) (for the positron at FIG. 7. The functiorf (s) for r,=0 (dashed curvecompared to
the center of the inhomogeneity characterized by parametarsd the function}z(s) (full curve).
sg) as a function of the parametsy for several negative values of
o (case of a hole in jellium distribution of the screening charge resembles the one calcu-

lated for =0, the enhancement amplitude for this case is

occurs at about 0.9 a.u. from the nucleus, the distance b@nly weakly affected by the presence of the inhomogeneity.
tween nearest neighbors is equal to 5.713 a.u. This gives ai¥hen the hole in the density increases, the screening charge
idea about the typical size of the inhomogeneities in thisconcentrates on the edge of the hole. The inhomogeneity is
metal. The results are shown in Fig. 5 and Fig. 6. The mosstill too narrow for the screening cloud around the positron
striking observatioriFig. 4 for <0 and Fig. 5 fore>0) is o build up inside of it and the correlation keeps the addi-
that our enhancement amplitudes as functionsyofre not ~ tional charge within the region of higher density—at the
monotonic. This feature is characteristic for all valuesrof ~€dge in case of a hole. However, for a wider hole the screen-
The difference between figures Corresponding to our apl.ng charge can find a place inside and can fit into it. In this
proach and the predictions of the local density approximatior¢ase the screening charge distribution near the center of the
increases witts, for small values of this parameter, with an hole starts to rise conforming to the expectations of LDA.
extremum at abous,=1. Then, fors,>1 the enhancement The same kind of arguments holds for-0.
amplitudes start to bend towards the appropriate LDA value,
approaching it asymptotically. IV. INTERACTION IN THE PRESENCE OF NODES

Such a behavior ofv(s) can be explained in the follow-

ing way for c<0: Since for very narrow holess§—0) the Let us write Eq.(18) in the form

[—V2+W(r I’)]W—ZV—XVWZO (29

3.8 — =0 p X .
37k N ——=— 0=0.1

e 6=05 The density amplitudg/(r) got one nearly spherical node in
et - 0=0.9 each elementary cell, which leads to singularities in [26).
35 7-";"*.:“,‘ Let us note that singularities of this kind, unlike in an
sali electron gas, will occur in each metal. For this reason we
as fé-',_ kY consider as a necessary step forward in the theog/ o€~
' SN interaction in metals to solve ER9) at least in one case in

% s2p N Tmee—e which singularities are accounted for.

a1l A Let us consider the positron on the lithium nucleug:
ol N\ =0. Calculations for this casée.g. Refs. 26 and)7have
! N e shown that in metallic lithium the positron density on nuclei
29 - X e is appreciable. Equatiof29) takes the form
2.8 | e

Foo T e L 2 ')}r
27T —w'—| =+ 2% |w' +W(s)w=0, (30
2.8 . ' . ' : ' : ' S X

0 2 4 5, (a) 10

where differentiation is oves=|r—r|. We approximated

FIG. 6. The enhancement amplitudé0) as a function of the for simplicity the dfnsity amplitude(s) by a function of
parametess, for different positive values ofr. spherical symmetry(s) shown in Fig. 7, neglecting in this
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FIG. 8. Density amplitude of conduction electrons for the posi- FIG. 9. Electron densities multiplied by=42. The full curve

tron on the nucleug(s) (full curve) and in the absence of the Shows the density of the electronic cloud screening the positron, the
dashed curve the density of core electrons and the dotted curve the

positrony(s) (dashed curje _ _ _ :
density of electrons in the core polarized by the positron on the

way its angular dependence which is small for small value§Ucleus:

of sand not very important for high valu¢for larges, (s) the polarized core was estimated by solving the problem of

an atom with a nucleus of charge 3.5 and 4 electi@me

approaches/2/a].
The functiony(s) has a node atr, while it should be electron corresponding to the screening charge around the
expected that the node of ! positron. Calculations were performed with the help of the
commonly used Desclaux program for atoms. The density of
~ ~ the polarized core is shown in Fig.(By the dotted ling
¢(s)=w(s)x(s) (32) From the above results it is visible that the computations

occurs at a different value afequaloy. In order to satisfy Performed in Sec. Il are approximate. Indeed, electron-
Eq. (31) the enhancement amplituae(s) must have a sin- positron interaction displaces the nodes.of the den$|ty ampli-
gularity at o,. We assume the solution of E(B0) in the tude for conduction electrons. For positron coordinates on
form the nucleus the node surfa_ce approat_:hes the nucle_u_s. Also
for other values of the positron coordinates the position of
the nodes will be affected. In order to describe the displace-
ment of the node in terms of enhancement amplitude it is
necessary to allow in this last function for a singularity as in
. Eqg. (32). Though this problem needs deeper investigations,
Tth allgws to.solve 59(30) exgctly. i . Ie(t:1 us supposeg that wﬁen the positron cogrdinates gpproach
{(s) is obtained by introducing the solution fai(s) into  the nucleusfrom infinity) the node will first withdraw be-
formula (31). The results are shown in Fig. 8. The enhance<ore this particle, but finally the positron coordinates will
ment amplitudew(0) is equal 1.50. Since the density of cross the node. In the absence of the positron the node is
conduction electrons on the nucleus is equal in this formalsjtuated at a distanae, from the nucleus. In presence of the
ism to 0.389,w(0) for jellium of this density should be positron the node surface cuts the straight line connecting the
equal 1.51(in perfect agreement with the local density ap-nucleus and the positron at(r ). The positron coordinate
proximation, provided the density of core electrons is omit-reaches the node surface at some valuepofrgzao(rg)
ted). <o,. The enhancement amplitusgr ,,0) has a singularity
The density of the electronic cloud screening the positroron both sides of the node at;, and equals zero at,=r,.
is shown in Fig. 9 by the full curve. The density of core This is not at all the behavior of the enhancement amplitude
electrons is also showy the dashed curyeWe have also shown in Fig. 3. Indeed, the amplitudes obtained in Sec. Il
calculated the density of the core polarized by the positroave a shallow minimum right aty, i.e., in lithium at a
on the nucleus. Note that in our formalism the effectivedistance 0.13 of the lattice constant from the nucleus.
charge of the bare positron is equal to 0.5 electronic charge This shows that it is necessary to perform calculations for

[Egs.(13) and(14)], according to the result obtained within @ positron in an anisotropic surrounding. This, of course, will
the theory of liquids by KLP. For this reason, in order to Make the problem infinitely more complicated mathemati-

estimate the polarization of the core by the positron, we as¢ally:

sumed that for positron coordinates coinciding with the Li V. CONCLUSIONS

nucleus the effective charge at the nucleus becomes equal to
3.5[this result can be obtained if one substitutes 0 instead of Presentation of the electronic structure of simple metals

rp in Egs.(13) and(14)]. In such an approach the density of by means of partial density amplitudes introduces simplifi-

w(s)= S“i‘gll +(s). (32
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cations that make feasible computations of the effect of théron in an anisotropic surrounding cannot be avoided if one
electron-positron interaction in metal from first principles, needs an adequate description of #ie-e™ interaction in
without using approximations that reduce this problem tometals. Its solution could not be a simple generalization of
that of thee*-e™ interaction in an electron gas like the local the calculations performed in Sec. Ill. Research in this direc-
density, the generalized gradiénor the weighted density tion is in progress.
approximations or very complicated and controversial many- The main results of the calculations are the following. For
body approaches® Of course, the validity of our results a positron on the nucleus the node surface in the density
depends on the possibility to represent the distribution ofmplitude approaches the nucleus in comparison to its posi-
conduction electrons in metals by means of a density amplition in the absence of this particle. The screening cloud is
tude. There is no reason to suppose that this cannot be dos#uated mainly outside the core region. So it is a quite good
for all alkali metals® approximation to assume that the core is polarized by a bare
In this paper the results of appropriate calculations fompositron. The local annihilation rate agrees with the local
lithium are presented. Note that the possibility of describingdensity approximation provided only the density of conduc-
conduction electrons by means of a single function dependson electrons is accounted for. For a positron outside the
on whether such an assumption is close indeed to reality. Ifiucleus as well as for models our results agree with the pre-
the contribution of higher orbital momentum statesafdd) dictions of the local density approximation only for very
to the density of conduction electrons is too high, one carextended inhomogeneities.
wonder if the approach to the electronic structure presented Arguments are found in favor of the constant enhance-
in this paper can be applied to such materials. Anyway, evement approximation for conduction electrons, which as con-
lithium is infinitely more complicated than the electron gas,cerns angular correlation is equivalent to the independent
so studies of the@"-e™~ interaction in this metal are worth- particle model. These last results need confirmation by cal-
while. culations that would allow for anisotropic solutions of the
The appropriate equatiqi8) for the enhancement ampli- e*-e~ interaction problem.
tude was solved in several cases in which it reduces to one
dimension. For definitive conclusions it is necessary to get a
more general solution of E418), which would take account
of the anisotropy of the electron distribution around the pos- This work benefitted from Grant No. 2 PO3B 099 12 of
itron. Note, however, that the problem of screening the posthe Polish Committee for Scientific Research.
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