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Theory of electron-positron interaction in simple metals: Application to lithium

H. Stachowiak, E. Boron´ski, and G. Banach
Polish Academy of Sciences, W. Trzebiatowski Institute for Low Temperature and Structure Research, P.O. Box 1410,

50-950 Wrocław 2, Poland
~Received 9 November 1999; revised manuscript received 18 February 2000!

In spite of many efforts devoted to this phenomenon, the electron-positron interaction in metals remains an
unsolved problem. The development of the partial density amplitude approach to the electronic structure of
simple metals offers the possibility to perform direct many-body calculations of the electron-positron interac-
tion in these materials. A theory of this interaction based on the hypernetted-chain approach of Gondzik and
Stachowiak is proposed and applied to lithium. It leads to a nonlinear three-dimensional integro-differential
equation for the enhancement amplitude. This equation is solved for two cases in which it reduces to one
dimension and also for a model. The relation between the results obtained in this way for the annihilation rate
and the predictions of the local density approximation and other approaches is studied. The role of core
electrons in the interaction is commented.
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I. INTRODUCTION

Theoretical investigations of the electron-positron inter
tion in metals have a long history.1 However, the complexity
of the problem prohibited direct calculations for a metal l
tice ~investigations in this direction have been performed
Refs. 2–9!. On the other hand, puzzles connected with
e1-e2 interaction in an electron gas have gradually be
solved ~though major controversies still remain concerni
the possibility of observing the Daniel-Vosko type distrib
tion in the angular correlation experiment10,11,6,12,1!. The re-
sults obtained for jellium could be applied to real met
after introducing some oversimplifying approximations f
e1-e2 correlations in metal lattices, like the local dens
approximation~LDA ! and its generalizations such as t
generalized gradient expansion and the weighted den
approximation13–17,8 and the references quoted there, a
Refs. 18 and 19. Many-body approaches started by Carb2

used an assumption that can be called constant density
tential approximation. In this last case it is assumed that
screened Coulomb potential of thee1-e2 interaction does
not depend on the coordinates of the positron in the lat
and is equal to that occurring in jellium of density equal
the average density of conduction electrons in the metal.
cently Sormann5 resigned from this approximation, develo
ing the so-called optimized Bloch-modified ladder theory.
the present work an approach is elaborated that allows u
compute effectively annihilation parameters from first pr
ciples. Calculations performed for a model~single spherical
inhomogeneity in an electron gas! have already shown tha
the local density approximation for ane1-e2 interaction
poorly describes the behavior of the annihilation rate.20

We will express the influence of the positron on the de
sity of conduction electrons in terms of the enhancem
amplitude using an approach, which in the case of an e
tron gas, proved to be particularly simple and efficient.21–25

An equation for this quantity is derived in Sec. II. This equ
tion has the form of a three-dimensional nonlinear integ
differential equation. In Sec. III this equation is solved in
approximation that neglects the angular dependence of
PRB 620163-1829/2000/62~7!/4431~9!/$15.00
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electron distribution around the positron. The generalizat
of this approximation to anisotropic electron distributio
would be affected by the nodes occurring in the density a
plitude for conduction electrons. These nodes lead to sin
larities in the equation for the enhancement amplitude. Si
such equations have never been solved, and they descr
phenomenon occurring in all real metals except possibly m
tallic hydrogen or metallic deuterium~though they are absen
in the case of a positron in an electron gas!, we devoted Sec
IV to the solution of the equation for the enhancement a
plitude for the case of the positron on the nucleus in a fo
which includes the singularities. This case has a nea
spherical symmetry, and, on the other hand, e.g., Stott
Kubica26 and recently Boron´ski and Jarlborg7 have shown
that in lithium the positron density on the nucleus is app
ciable.

II. DERIVATION OF THE BASIC EQUATION

This work is based consequently on the formalism ela
rated for single impurities in an electron gas by Kallio, P
etiläinen and Lantto27,28 ~KPL! and modified later by
Gondzik and Stachowiak21 ~see also Refs. 1 and 22–25!. It is
based on applying the variational principle to the Jastro
type trial function:

C~r p ;r1 , . . . ,rN!5)
k51

N

R~ ur i2r pu!)
i j

i , j

N

f ~ ur i2r j u!

3F~r i . . . rN!, ~1!

wherer i andr p denote the electron and positron coordinat
respectively.R andf are variational functions-parameters a
F is the Slater determinant of plane waves.

Following KPL we label this formalism HNC
~hypernetted-chain! in spite of its rather distant relation t
the HNC equation derived in the theory of liquids~additional
details are given in Ref. 1!. Its most characteristic feature i
to solve a many-body problem in terms of a single dens
amplitude.
4431 ©2000 The American Physical Society
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4432 PRB 62H. STACHOWIAK, E. BOROŃSKI, AND G. BANACH
Because of its low mass a positron impurity in a me
differs from heavy impurities in two respects: by being d
localized and by experiencing recoil while interacting w
the electrons. According to KPL this last effect can be
counted for in the Euler-Lagrange type equation for the d
sity amplitude of electrons around the positron by replac
the electron mass by the reduced mass of the elect
positron system. Routine methods exist of computing
wave function of a positron in a lattice, and one can belie
that they are approximately correct. As concerns elect
wave functions, the problem is exceptionally complicated
two reasons:

~1! The effective electron-positron potential is unknow
and likely to be different for each position of the positron
the lattice.

~2! The scattering of the electrons on the positron is
this reason complicated, the more so that the effective po
tial must be self-consistent.

According to Ref. 21, the screening of a positron in
electron gas can be computed from the Euler-Lagrange e
tion for the enhancement amplitudew(r ) ~in atomic units,
which will be used throughout the paper unless stated dif
ently!

@2¹21W~r !#w~r !50, ~2!

where the electron density at distancer from the positron is

r~r !5w2~r !r0 . ~3!

r0 is the density of the electron gas into consideration a
w(r )→1 at an infinite distance from the positron.W(r ) is
the screened electron-positron potential,

W~r !52
1

r
1Wp~r !1Wxc~r !, ~4!

where Wp(r ) is the Coulomb potential of the electron
cloud screening the positron

Wp~r !5r0E dr 8
w2~r 8!21

ur 82r u
~5!

andWxc(r ) is the exchange-correlation correction to the p
tential

Wxc~r !5VHL$w2~r !r0%2VHL$r0%. ~6!

VHL$r% is the exchange-correlation term in the potential
an electron gas of densityr. The potentialVHL$r% is as-
sumed in the form proposed by Hedin and Lundqvist.29

Note that some well-known approaches to electr
positron interaction in jellium neglect the exchang
correlation term in the potential due to the screening clo
around the positron. Such is the case of the well-known
proach of Kahana30 in which thee1-e2 screened Coulomb
potential is assumed in the static random phase approx
tion ~RPA!. This leads to the famous low density divergen
of the annihilation rate caused by lack of self-consisten
But self-consistency alone cannot lead to the correct beh
ior of the annihilation rate at low electron densities. This
possible, as shown by Rubaszek and Stachowiak,31 only after
introducing the exchange-correlation correction. In gene
exchange-correlation by decreasing the effective electro
l
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charge in vicinity of the positron leads to a higher accum
lation of electrons on the positron and hence to an increas
the annihilation rate. Omitting this term one gets only half
the spin-averaged positronium value of the annihilation r
in the limit of low electron densities.

The annihilation rates of Refs. 32, 33, and 31 are v
close to each other. The approaches they use are very d
ent, but they are similar in using three basic physical ing
dients: momentum dependence of electron-positron sca
ing, self-consistency, and exchange-correlation correctio

Somewhat higher values of the annihilation rate follo
from Eqs.~2!–~6!. The reason is the Jastrow-type trial fun
tion that underlies them and that forces all the electro
states to scatter on the positron in the same way. Howe
the exchange-correlation term goes beyond the Jastrow-
trial function since it means thate1-e2 correlations depend
on the positron coordinates. This guarantees the right be
ior of the annihilation rate at high values ofr s . Omitting
Wxc leads to underestimation of the annihilation rate.

The optimal trial function of the Jastrow type is obtain
from the appropriate Euler-Lagrange equation derived
KPL. However, as we mentioned already, this trial functi
poorly includes electron-electron correlations. This is w
Gondzik and Stachowiak replaced the very complica
functional W(r ) of KPL by the Kohn-Sham potential~4!–
~6!. This assumption greatly simplified the calculations a
led to physically reasonable results. Its most spectacular c
firmation has been provided by Ortiz,34 who calculated the
energy of electron-positron correlation in the Jastrow st
using the variational Monte Carlo approach.34,25 The results
of the approach of Eqs.~2!–~6! and of Ortiz are identical as
concerns the energy of thee1-e2 correlation. This does no
mean, of course, that these approaches are accurate. Th
proximations involved in using Eqs.~2!–~6! can be estimated
owing to the formalism proposed in Ref. 22~see also Refs.
23 and 25! and called perturbed HNC~PHNC! where the
wave function of the system is described by a Slater de
minant and the particular electronic states are allowed
scatter on the positron according to equations of the Ko
Sham type. PHNC is, of course, free of all the approxim
tions performed in HNC calculations. The annihilation rat
following from PHNC are a little lower than those of Ref
32, 33, and 31. This is probably due to allowing for nono
thogonality of one-electron wave functions~following the
objections of Lowy and Jackson32!. They remain, however
higher than those of the Boron´ski and Nieminen formula.35

In the present work an Euler-Lagrange type equation
the density amplitudex(r ) of conduction electrons in lithium
is assumed in the form

F2
1

2
¹21V0~r !Gx~r !5hx~r !, ~7!

wherex(r ) is related to the electron density of conductio
electronsrw(r ) by the relation

rw~r !5x2~r !. ~8!

The potentialV0(r ) is defined as a functional ofx:
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PRB 62 4433THEORY OF ELECTRON-POSITRON INTERACTION IN . . .
V0$x;r%5VC~r !1E x2~r 8!

ur 82r u
dr 81VHL$rc~r !1x2~r !%,

~9!

Vc(r ) is the Coulomb potential of the core

Vc~r !5E 2rn~r 8!1rc~r 8!

ur 82r u
dr 8, ~10!

rc(r ) is the density of core electrons andrn(r ) the density of
the nuclear charge. The self-consistent potentialV0$x;r% is
marked by a zero in order to indicate that it is self-consist
only in the meaning of the present approximation.h is the
Lagrange multiplier.x(r ) has the same symmetry as the la
tice.

Equation~7! is a nonlinear integrodifferential equation fo
x(r ) that we solve by linearization, assuming as approxim
solutionx0(r ) the superposition of free atoms as done u
ally in band structure calculations, setting

x~r !5x0~r !1dx~r !. ~11!

The correctiondx is found to be small, presenting no nee
for additional linearization. It is computed as a Fourier ser
over reciprocal lattice vectorsG:

dx~r !5(
G

tGeiG•r. ~12!

A self-consistent solution of Eq.~7! is obtained by solving a
set of algebraic equations fortG’s.

The comparison of the density of conduction electrons
Li obtained in this way with the results of full potential lin
earized augmented plane wave~FLAPW! calculations~per-
formed according to theWIEN95 code36! is shown in Fig. 1.
The solution of Eq.~7! reproduces the main features of th
distribution of conduction electrons.

The simplicity of the HNC approach to electron-positr
interaction in jellium follows from the fact that Eq.~2! de-
scribes a single electronic wave of momentumk50 scatter-
ing on the positron. In Eq.~ 7! a single electronic wavex(r )
describing conduction electrons scatters on a periodic a

FIG. 1. The comparison ofx2(r ) ~solid line! with rFLAPW(r )
~dashed line! in Li for the ~110! direction. The inset presents th
magnified part ofx0

2(r ) andrFLAPW(r ).
t
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of ions. Adding a positron to the metal will disturb the fun
tion x(r ). Taking into account the presence of the positron
r p we write the equation for the disturbed density amplitu
of conduction electronsz in the form

F2
1

2
¹21V0~r !1

1

2
W~r p ,r !Gz~r p ,r !5hz~r p ,r !,

~13!

where

W~r p ,r !52
1

ur2r pu
1Wp~r p ,r !1Wxc~r p ,r !, ~14!

the Coulomb potential of the screening cloud

Wp~r p ,r !5E dr 8
z2~r p ,r 8!2x2~r 8!

ur2r 8u
, ~15!

the exchange-correlation contribution

Wxc~r p ,r !5VHL$rc~r !1z2~r p ,r !%2VHL$rc~r !1x2~r !%.
~16!

The r p parameter in Eqs.~13!–~16! simply means that the
screening of the positron depends on its coordinates in
elementary cell. Note that for a homogeneous electron
Eq. ~13! takes the form~2!, while in the absence of the pos
itron it takes the form~7!. In Eqs.~13!–~16! the screening of
the positron is described by one only functionz depending
on the positron coordinatesr p as on a parameter. This make
achievement of self-consistency in the screening particul
easy. This formalism is likely to describe reality adequat
when each conduction electron state gives approximate
similar contribution to the whole electron density and is sc
tered approximately in the same way by the positron. Alk
metals are the first candidates for applying such an appro
The experience of applying a similar formalism for screen
the positron in an electron gas21–23,25and computing the dis-
tribution of conduction electrons in lithium~Fig. 1! shows
both the reliability and the efficiency of such an approach

Let us remark that in Eq.~2! the coefficient 1 in the ki-
netic term is due to the reduced mass of the electron in
acting with the positron. If we divide Eq.~2! by 2, the effect
of reducing the mass is replaced by a corresponding decr
of the effective charge of the bare positron. However,
effective charge of the electronic cloud screening the po
tron is also reduced. So, while in Eq.~13! the effective
charge of the bare positron is equal 1/2, its screening
needs one electronic charge which enters Eq.~13! with a
coefficient 1/2.

Let us remark at this point that both in Eq.~7! and in Eq.
~13! it is assumed that core states are not disturbed, nei
by the lattice nor by the positron. While the first assumpti
is generally considered as a good approximation, the posi
interaction with the core needs further studies and will be
the following the subject of additional comments.

Let us assume the density amplitudez(r p ,r ) in the form

z~r p ,r !5w~r p ,r2r p!x~r !, ~17!

where w(r p ,r2r p) will be called the enhancement ampl
tude. In the following we shall mostly use, for convenienc
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4434 PRB 62H. STACHOWIAK, E. BOROŃSKI, AND G. BANACH
the shortened notationw(r2r p), indicating instead its de
pendence on the distance between the electron and the
tron.

Introducing Eq.~17! into Eq. ~13! we have, owing to Eq.
~7!,

x@2¹21W~r p ,r !#w22¹x¹w50. ~18!

We will also use Eq.~18! in the form

x2@2¹21W~r p ,r !#w2¹x2¹w50, ~19!

which is appropriate ifx(r )Þ0.
Replacing the Eq.~13! for the density amplitudez by Eq.

~18! for the enhancement amplitudew has several advan
tages:

~1! We got rid of the lattice potential, which contains a
infinite array of singularities.

~2! The region in which the enhancement amplitudew(s)
differs from unity is very limited unlike that for the densit
amplitude z(r ) ~otherwise we would have to refer to th
supercell formalism!.

~3! The success of the substitution~17! provides by itself
information on the density amplitudez. One can expect tha
the functionw(s) is smooth enough, so the density of th
screening cloud around the positron at a given distance f
it is roughly proportional to the electron density in the a
sence of the positron, being modulated by the lattice.

Equation~18! is a nonlinear three-dimensional integrodiffe
ential equation forw. We will solve it in some particular
cases when it becomes one-dimensional.

III. ISOTROPIC APPROXIMATION

We will compute the functionw(r p ,r2r p) as a function
of

s5r2r p. ~20!

In general the anisotropy of the distribution of conducti
electronsx2(r p1s) as a function ofs will enforce an anisot-
ropy of the functionw(s). We will limit ourselves in this
section to an isotropic solution of Eq.~19!. We will replace
in this last equation the unperturbed density of conduct
electronsx2(r p1s) by its average over directions ofs:

f ~s!5^x2~r p1s!&dir . ~21!

Of course,f (s) depends on the vectorr p , but here and be-
low we will not indicate this dependence in the notatio
Examples of the behavior of the functionf (s) for Li are
shown in Fig. 2 for two values ofr p .

As far as f (s) is nodeless we can write Eq.~19! in the
form

2w92S 2

s
1

f 8

f Dw81W~s!w50, ~22!

where the derivatives are taken with regard tos. Equation
~22! is solved by linearization. We introduce as usual t
substitution

w~s!5w0~s!1dw~s!, ~23!
si-

m
-

n

.

e

assuming thatw0(s) is a known function close to the exac
solution of Eq.~22! anddw(s) is small, so terms of highe
order indw can be omitted.

The equation fordw is solved by assuming that the func
tions present in it~as well as their derivatives! are suffi-
ciently well described by their values at a finite set of poin
si . This allows us to transform the equation into a set
linear algebraic equations for the valuesdw(si). These are
easily solved. By repeated linearizations we get an exact
lution of Eq. ~22!, independent of the starting functio
w0(s). An additional test for the reliability of the solution i
provided by controlling its stability with regard to increasin
the density of pointssi .

Equation~22! was solved for Li for 35 values ofr p along
each of the principal axes. For positron positions not v
close to the nucleus the solution is stable, i.e., it depe
negligibly on the set of pointssi and does not depend on th
choice of the starting functionw0(s) ~provided this choice is
reasonable!.

The values of the enhancement amplitudew(r p,0) on the
positron forr p along the principal axes are shown in Fig.
One general observation is that the valuew(0) varies rela-
tively smoothly throughout the elementary cell~except for
the enigmatic region close to the nucleus!. This is due to the
fact that the functionw(s) is characterized by some ’’rigid
ity.’’ It is unable to follow small scale variations of the elec
tron density, quite the contrary, to some extent, its behav
is opposite to what one could expect from the local dens
approximation as will be shown below. It samples rathe
considerable region of the lattice enclosed within the scre
ing radius. The crucial point is the size of the screen

FIG. 2. The average electron distributionf (s) for Li for the
positron coordinates:~a! (0.38,0,0),~b! (0.68,0,0).
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PRB 62 4435THEORY OF ELECTRON-POSITRON INTERACTION IN . . .
cloud. This size is shown in Fig. 9 for the positron on t
nucleus. It is visible that even in this extreme case the siz
the screening cloud is comparable to the size of the at
For this reason the amplitude of variation of the avera
electron density within the screening radius as a function
r p cannot be very big. As a result the local annihilation ra
l in surprisingly many cases is roughly proportional to t
local electron density in absence of the positron. We sho
remember, however, that this behavior ofl results from the
fact that the function 12/r s

3 dominates the functionw2(r p,0)
in the following formula for the annihilation rate:

l~r p!5
12

r s
3~r p!

w2~r p,0!, ~24!

wherer s(r p) is the local value of ther s parameter computed
according to the formula

r s~r p!5S 3

4px2~r p!
D 1/3

. ~25!

The function

l IPM~r p!5
12

r s
2~r p!

~26!

is the independent particle model~IPM! annihilation rate.
For details concerning the independent particle model
Ref. 37. The functionw2(r p,0) exhibits properties that up t
now were not investigated so carefully and are in some ca
even contradictory to the local density approximation. T
local annihilation rate for conduction electrons according
Eq. ~24! is presented~by the full curve! in Fig. 4 and com-
pared to the analogical quantity under an assumption wh
we shall callconstant enhancement approximation~CEA!,

FIG. 3. The values of the enhancement amplitudew(r p,0) on
the positron forr p along the main crystallographic directions
computed from Eq.~22!. The lines are not smooth because we h
to limit ourselves~for technical reasons! to 69369369 points in
the elementary cell.
of
.

e
f

e

ld

e
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which consists in replacing the IPM annihilation rate~26!
@e.g., Ref. 33, relation~6.8!# by the formula

lCEA~r p!5
12

r s
3~r p!

wj
2~0!, ~27!

presented by the dashed curve in Fig. 4.wj (0) is the en-
hancement amplitude for jellium of densityr052/a3 com-
puted from Eq.~2!, wherea is the lattice constant. The an
nihilation rates are expressed as usual in units of 109/s. The
local density approximation for the annihilation rate is dif
cult to present on Fig. 4 since it concerns the whole elect
population~core included!, however note that it never falls
below 2, which is the value for spin-averaged fr
positronium.1

In the constant enhancement approximation the spatial
pendence of the enhancement does not distort the wave f
tions of conduction electrons~as observed by positrons!
since the enhancement factor is constant throughout the
tice. If one neglects the momentum dependence of the
hancement, which is not considered in the present work
approximation is similar as concerns the angular correla
experiment to theindependent particle model~IPM!. Of
course, the predictions of these approximations concern
the positron lifetime would be quite different, but who a
plies IPM while interpreting the positron lifetime?

Calculations have also been performed for the positron
the center of a model inhomogeneity in which the electr
density is given by the formula

f ~s!5r0$11s exp@2~s/s0!2#%, ~28!

wherer0 is the density of the electrons for infinites. Here
we will assume it to be equal to the average density of c
duction electrons in lithium.s determines the amplitude o
the inhomogeneity and can be positive or negative, provi
it is bigger than21. The parameters0 determines the width
of the inhomogeneity. Note that the node ofx(r ) in lithium

FIG. 4. Local annihilation rates for conduction electrons a
positron coordinates along the~100! direction: as follows from Eq.
~22! ~full curve! and from formula~27! ~dashed curve!.



b
s
hi
o

ap
tio
n
t
lu

-

lcu-
is

ity.
arge
ty is
on
di-
he
en-

his
f the
A.

n

n
we

lei

f

4436 PRB 62H. STACHOWIAK, E. BOROŃSKI, AND G. BANACH
occurs at about 0.9 a.u. from the nucleus, the distance
tween nearest neighbors is equal to 5.713 a.u. This give
idea about the typical size of the inhomogeneities in t
metal. The results are shown in Fig. 5 and Fig. 6. The m
striking observation~Fig. 4 for s,0 and Fig. 5 fors.0) is
that our enhancement amplitudes as functions ofs0 are not
monotonic. This feature is characteristic for all values ofs.
The difference between figures corresponding to our
proach and the predictions of the local density approxima
increases withs0 for small values of this parameter, with a
extremum at abouts051. Then, fors0.1 the enhancemen
amplitudes start to bend towards the appropriate LDA va
approaching it asymptotically.

Such a behavior ofw(s) can be explained in the follow
ing way for s,0: Since for very narrow holes (s0→0) the

FIG. 5. The enhancement amplitudew(0) ~for the positron at
the center of the inhomogeneity characterized by parameterss and
s0) as a function of the parameters0 for several negative values o
s ~case of a hole in jellium!.

FIG. 6. The enhancement amplitudew(0) as a function of the
parameters0 for different positive values ofs.
e-
an
s
st

-
n

e,

distribution of the screening charge resembles the one ca
lated for s50, the enhancement amplitude for this case
only weakly affected by the presence of the inhomogene
When the hole in the density increases, the screening ch
concentrates on the edge of the hole. The inhomogenei
still too narrow for the screening cloud around the positr
to build up inside of it and the correlation keeps the ad
tional charge within the region of higher density—at t
edge in case of a hole. However, for a wider hole the scre
ing charge can find a place inside and can fit into it. In t
case the screening charge distribution near the center o
hole starts to rise conforming to the expectations of LD
The same kind of arguments holds fors.0.

IV. INTERACTION IN THE PRESENCE OF NODES

Let us write Eq.~18! in the form

@2¹21W~r p ,r !#w22
¹x

x
¹w50. ~29!

The density amplitudex(r ) got one nearly spherical node i
each elementary cell, which leads to singularities in Eq.~29!.

Let us note that singularities of this kind, unlike in a
electron gas, will occur in each metal. For this reason
consider as a necessary step forward in the theory ofe1-e2

interaction in metals to solve Eq.~29! at least in one case in
which singularities are accounted for.

Let us consider the positron on the lithium nucleus:r p
50. Calculations for this case~e.g. Refs. 26 and 7! have
shown that in metallic lithium the positron density on nuc
is appreciable. Equation~29! takes the form

2w92S 2

s
12

x̃8

x̃
D w81W~s!w50, ~30!

where differentiation is overs5ur2r pu. We approximated
for simplicity the density amplitudex(s) by a function of
spherical symmetryx̃(s) shown in Fig. 7, neglecting in this

FIG. 7. The functionf (s) for r p50 ~dashed curve! compared to

the functionx̃2(s) ~full curve!.
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way its angular dependence which is small for small val
of s and not very important for high values@for larges,x̃(s)
approachesA2/a3].

The function x̃(s) has a node ats1 while it should be
expected that the node of

z̃~s!5w~s!x̃~s! ~31!

occurs at a different value ofs equals0. In order to satisfy
Eq. ~31! the enhancement amplitudew(s) must have a sin-
gularity at s1. We assume the solution of Eq.~30! in the
form

w~s!5
v21

s2s1
1t~s!. ~32!

This allows to solve Eq.~30! exactly.
z̃(s) is obtained by introducing the solution forw(s) into

formula ~31!. The results are shown in Fig. 8. The enhan
ment amplitudew(0) is equal 1.50. Since the density
conduction electrons on the nucleus is equal in this form
ism to 0.389,w(0) for jellium of this density should be
equal 1.51~in perfect agreement with the local density a
proximation, provided the density of core electrons is om
ted!.

The density of the electronic cloud screening the posit
is shown in Fig. 9 by the full curve. The density of co
electrons is also shown~by the dashed curve!. We have also
calculated the density of the core polarized by the posit
on the nucleus. Note that in our formalism the effecti
charge of the bare positron is equal to 0.5 electronic cha
@Eqs.~13! and ~14!#, according to the result obtained withi
the theory of liquids by KLP. For this reason, in order
estimate the polarization of the core by the positron, we
sumed that for positron coordinates coinciding with the
nucleus the effective charge at the nucleus becomes equ
3.5 @this result can be obtained if one substitutes 0 instea
r p in Eqs.~13! and~14!#. In such an approach the density

FIG. 8. Density amplitude of conduction electrons for the po

tron on the nucleusz̃(s) ~full curve! and in the absence of th

positronx̃(s) ~dashed curve!.
s

-

l-

-

n

n

e

s-
i
l to
of

the polarized core was estimated by solving the problem
an atom with a nucleus of charge 3.5 and 4 electrons~one
electron corresponding to the screening charge around
positron!. Calculations were performed with the help of th
commonly used Desclaux program for atoms. The density
the polarized core is shown in Fig. 9~by the dotted line!.

From the above results it is visible that the computatio
performed in Sec. III are approximate. Indeed, electro
positron interaction displaces the nodes of the density am
tude for conduction electrons. For positron coordinates
the nucleus the node surface approaches the nucleus.
for other values of the positron coordinates the position
the nodes will be affected. In order to describe the displa
ment of the node in terms of enhancement amplitude i
necessary to allow in this last function for a singularity as
Eq. ~32!. Though this problem needs deeper investigatio
let us suppose that when the positron coordinates appro
the nucleus~from infinity! the node will first withdraw be-
fore this particle, but finally the positron coordinates w
cross the node. In the absence of the positron the nod
situated at a distances1 from the nucleus. In presence of th
positron the node surface cuts the straight line connecting
nucleus and the positron ats0(r p). The positron coordinate
reaches the node surface at some value ofr p , r p

05s0(r p
0)

,s1. The enhancement amplitudew(r p,0) has a singularity
on both sides of the node ats1 and equals zero atr p5r p

0 .
This is not at all the behavior of the enhancement amplitu
shown in Fig. 3. Indeed, the amplitudes obtained in Sec.
have a shallow minimum right ats1, i.e., in lithium at a
distance 0.13 of the lattice constant from the nucleus.

This shows that it is necessary to perform calculations
a positron in an anisotropic surrounding. This, of course, w
make the problem infinitely more complicated mathema
cally.

V. CONCLUSIONS

Presentation of the electronic structure of simple me
by means of partial density amplitudes introduces simp

- FIG. 9. Electron densities multiplied by 4pr 2. The full curve
shows the density of the electronic cloud screening the positron
dashed curve the density of core electrons and the dotted curv
density of electrons in the core polarized by the positron on
nucleus.
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cations that make feasible computations of the effect of
electron-positron interaction in metal from first principle
without using approximations that reduce this problem
that of thee1-e2 interaction in an electron gas like the loc
density, the generalized gradient,8 or the weighted density9

approximations or very complicated and controversial ma
body approaches.2–5 Of course, the validity of our result
depends on the possibility to represent the distribution
conduction electrons in metals by means of a density am
tude. There is no reason to suppose that this cannot be
for all alkali metals.38

In this paper the results of appropriate calculations
lithium are presented. Note that the possibility of describ
conduction electrons by means of a single function depe
on whether such an assumption is close indeed to realit
the contribution of higher orbital momentum states (p andd)
to the density of conduction electrons is too high, one c
wonder if the approach to the electronic structure presen
in this paper can be applied to such materials. Anyway, e
lithium is infinitely more complicated than the electron ga
so studies of thee1-e2 interaction in this metal are worth
while.

The appropriate equation~18! for the enhancement ampl
tude was solved in several cases in which it reduces to
dimension. For definitive conclusions it is necessary to g
more general solution of Eq.~18!, which would take accoun
of the anisotropy of the electron distribution around the p
itron. Note, however, that the problem of screening the p
r-

n,
u
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s.

.

ti,
on

c

e
,
o
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f
li-
ne

r
g
ds
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n
d
n
,

ne
a

-
s-

itron in an anisotropic surrounding cannot be avoided if o
needs an adequate description of thee1-e2 interaction in
metals. Its solution could not be a simple generalization
the calculations performed in Sec. III. Research in this dir
tion is in progress.

The main results of the calculations are the following. F
a positron on the nucleus the node surface in the den
amplitude approaches the nucleus in comparison to its p
tion in the absence of this particle. The screening cloud
situated mainly outside the core region. So it is a quite go
approximation to assume that the core is polarized by a b
positron. The local annihilation rate agrees with the lo
density approximation provided only the density of condu
tion electrons is accounted for. For a positron outside
nucleus as well as for models our results agree with the
dictions of the local density approximation only for ve
extended inhomogeneities.

Arguments are found in favor of the constant enhan
ment approximation for conduction electrons, which as c
cerns angular correlation is equivalent to the independ
particle model. These last results need confirmation by
culations that would allow for anisotropic solutions of th
e1-e2 interaction problem.
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