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Induced charge in a Frahlich polaron: Sum rule and spatial extent
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Within the path-integral formalism, we derive exact expressions for correlation functions measuring the
lattice charge induced by an electron and associated polarization in thiécRrpolaron problem. We prove
that a sum rule for the total induced charge, already obtained with approximate approaches, is indeed exact. As
a consequence the total induced charge is shown rigorously to be temperature independent. In addition, we
perform path integral Monte Carlo calculations of the correlation functions and compare them to variational
results based on the Feynman method. As the temperature increases the polaron radius decreases. On the other
hand, at high temperatures the electron motion is not hindered by the lattice. These apparently contradictory
results are discussed.

[. INTRODUCTION thermal effects wash out the hindering effect of the induced
charge but, we remark again, not the induced charge itself.
An electron added to an insulating polar crystal forms a
quasiparticle called dielectric polaron after Riioh.>2 This [l. ANALYTICAL RESULTS
has been recognized as a fundamental field theoretical ) o ) ) .
problem3 More recently a variety of materials have emerged OUr starting point is the effective action for the Alich
that present interesting properties when doped away from apolaron problem, after the phonons have been eliminated
insulating phase, like colossal magnetoresistent manganitééth the usual path integral techniquéS=Sy+$; with
and high-temperature superconducting cuprates. The fact that o1
these are polar crystals has produced a renewed interest in SO[X]ZJ dr=m, (1)
Frohlich polaron problem&:’ o 2
Roughly speaking a dielectric polaron is composed of an
electron and théopposité charge that it induces in the lat- a (hw)¥? (18 hp D(71— )
tice. The electron and induced charge attract each other soSi[X]=— 7= TJ dTlf dry—~—— 7
) . 22 m 0 0 X(71) = X(72)
that for the electron to move it has to drag the induced

charge resulting in an increase of the quasiparticle mass. |Rerem is the electron massx=e2m1’2/h:(2ﬁwL)l’2 is the

this paper we study correlation functions that measure th%ou ling constant withew: the phonon frequency. d/
magnitude and spatial extent of the induced charge and as- ping L p q y, &

- SR =1/e,,—1leg and €., (€p) is the high¢zeroJ frequency di-
sociated polarization field.

We derive a rigorous sum rule that states that the tota‘f)IECtrIC constant.

induced charge equals the charge induced by a classical explw,| 7))+ exd (A B8—| ) ]
(statig electron and it is independent of temperature. This D(n)= 7 1 (2
result, well known within perturbatife and variational expf fw)

approaches$,is proven here to be exact. The large distanceis the phonon propagator.
behavior of the electric field is determined by this sum rule. \We are interested in the correlation function between the

In addition we discuss the short distance and the highg|eciron charge density en(r) and the charge induced in
temperature asymptotic limit of these quantities. These re;

. : S he latticeen(r) normalized to the probability density to
sultsl provide constraints to approximations on the polaroriind an electrlcgn) at a given point, i.e pthe inve?/se of th)é vol-
problem. ; s

The real-space path-integral Monte Ca{ffiMC) method umeV. Dropping the charges this is defined as,
is used to evaluate correlation functions. These are compared ~ L~ 1 —
with Feynman’s variational approximatiotFVA)!*° and (n(O)mi(n)/V="=g(r)/e ®)
analytical results in weak and strong coupling. We find thatAverages are defined as path integrals weighte® by
the polaron radius is determined at low temperatures by the

electron-phonon coupling alone while at high temperatures _gn

it is proportional to the de Broglie thermal wavelengtty ( f Dxe™™%(...)

=h+27B/m with B the inverse temperatyrand becomes (..0)= 4
independent of coupling. We define a polaron crossover tem- f Dxe” 5t

peratureT* («). Although the electron induces a temperature
independent charge in the lattice the induced charge hindexghere the paths entering in E@l) depart and arrive at the
the electron motion only beloW* («). At high temperatures same point. Further integration over such a point is not per-
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formed and this assigns to E¢) the meaning of a con- which completes the proof of the sum rule. The total induced
strained average witk(0)=x(B8)=0. Those averages are charge amounts to the charge the electron would induce if it
however equivalent to the unconstrained ones because wfhere a static classical particle. In other words there are no
translational invariance. We used the spherical symmetry ofjluantum corrections to the total induced charge.

the problem to defingy(r), and we divided bye on the An alternative derivation can be worked out following
right-hand side of Eq(3) for later convenience. Another Queamerais™® From the time derivativéﬁﬁ:['ﬁ,ﬁ] one ob-

guantity of interest is the induced lattice polarization tains
P(r)=(n(0)P(r))/V"* (5) .
5P
4re

VP(r)=—en(r) is the density of polarization operator. The P= wf(
correlation function in Eq(5) is related to the induced elec-
trostatic potential[ V2V(r)=—4meqg(r)/e] considered in - o o
Ref. 11, which will not be discussed here. We stress thatiere H is the Hamiltonian,D is the electric displacement
these quantities have the meaningagirrelation functions operator due to the electronV(D=—4men), and iAP
measuring average induced charge, polarization, and induced| B f]. Taking the divergence we obtain a relation for the
potential at a distancefrom the electron position. charge operators:

The charge-density operator for the phonon¥is,

(11)

en(r)=— ﬁwL_E KO e'k. (6) V-ﬁ(r)=wfe( —L—r)ﬁh(r)) (12)
47Ve k €

whereQ is the dimensionless displacement for momentumye can integrate this expression in all space and take the
k phonons. Inserting E@6) in Eq. (3) we obtain an equation ermodynamic average. The left-hand side is proportional to
for g(r) as a function of the density displacement correlationihe ayerage of the net force felt by the lattice at the boundary
function (n(0)Qy). The phonon variables can be traced outof the system, which should vanish at equilibrium. The right-
by standard methods. We have found that it is possible thand side gives Eq10).

give an exact expression for the correlation functions in  Equation(10) shows that the induced charge is indepen-
terms of path integrals weighted by the effective electroniadent of temperature. This contradicts the naive argument that
action of Eq.(1). We find for the density-induced-density all polaron effects should disappear at high temperatures. To

correlation function understand this behavior one can do an analogy with the
" behavior of an harmonic oscillator in an external field. In that

g(r)= f drU(r)([r—x(7)]) (7) case, because of harmonicity, one gets a displacement which

is temperature independent. Here roughly speaking the har-

monic oscillator represents the phonon coordinates and the
external field is the field produced by the electron on the
e (1B ; _phonons. The induced pharge is a measure of _h_ow m_uch the
p(r):___J dru(r)|{ ——), (8)  ions displace from their bare equilibrium positions in the
4melo [r—x(7)|? presence of the electron. As for the single harmonic oscilla-
- tor, this “displacement” is independent of temperature. Only
wherer=r/r and anharmonicities can make the induced charge temperature

and for the polarization field

. . dependent.
U(n=h sinf(w, 7) + sinf{w, (25— 7)] 9 Using the sum rule it is easy to see that at distances much
tant{ ff w /12)sinh( o ) larger than the polaron radius, as defined below, the polar-

Within FVA, the variational quadratic action can be ex- ization field goes aB(r) = —er/(4mer?). Clearly the distor-
ploited in Egs.(7) and(8) to analytically perform the aver- tion produced by the electron is long range, a fact that is not
ages and to recover the results of Refs. 10 and 11. always recognized in the literatuté The total electric field
Equations(7) and (8) have a simple physical interpreta- (@lways in the sense of a correlation functias given by
tion. The induced charge can be seen as “distributed” along==D—4m(P|P..), where the electric displacement is given
the electron path with weight/(7). The polarization is the by D= —er/r? and the high-frequency polarization s, =
superposition of polarizations associated with those elemen-g(1—1/¢_)r/(47r2). At long distances we have(r) =
tary induced charges.
Equation(7) can be integrated in the whole space using
the properties of the Dirac’é function. Sincefd7U(7)=1,
we conclude thag(r) is normalized to one. The total in-
duced chargeq is computed by integrating the density-
induced density correlation function in E):

—er/(egr?) which means that the electric field generated by
the electron gets screened by the static dielectric constant.
This is generally expected, but to the best of our knowledge,
has never been proven for all coupling and temperatures.
Now we discuss the short-distance behavior. At distances
much smaller than the polaron radius, we expect that the
effect of the interaction becomes irrelevant in the functional
(10)  integrals. This is because the latter are dominated by electron

qzef dramr2g(r)/e= : : ated by e
0 paths with short wavelength or equivalently high-kinetic en-

m ]l o
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ergy. We can then replace the total action by the free- 2 - - - - T - T -
electron action in Eqg7) and(8). We obtain the asymptotic 18F /y12
result 16 ;“:
14F 4 "
| e : /-
lim P(r)=— — r. (13 253
r—0 8el? tanh Bhw 12)

4rl rzg(r)

wherel = JA/2mw, is the harmonic-oscillator characteristic
length. Using the same argument we obtain tat)ocr —*

for r—0 and the proportionality coefficient can also be ob-
tained with the same method. The latter behavior has beel
obtained in Ref. 9 within the FVA. These results coincide
with lowest-order perturbation theory.

At high temperatures we also expect that the effect of the
interaction becomes irrelevant and so we can replace again
the total action by the free-electron action in the functional
integrals. The high-temperature asymptotic resultgfr) is

FIG. 1. 4mr2g(r) as a function of for different couplings and
approximations. From left to right bold curvéBVA after the for-
malism of Ref. 9 and points(PIMC) corresponds tax=12,6,1,
5 respectively, angs o = 20. Thin-solid line is perturbation theory,
47Trzg(r)= 2r ex —f )ﬁﬁwL<1- (14) thin-dashed line the Landau-Pekar strong-coupling approximation
128t w, 12Bfhw, both atBfiw =c°.

This result has also been obtained in Ref. 9 within FVA. We ) o )
remark that although the density-induced-density correlatioi® Polaron shrinks indicating the progressively more local-
function does not vanish for large temperatures the polarofzed nature. In Fig. 2 we show the temperature dependence

effective mass tends to the bare electron mass. of 4mr?g(r) at intermediate coupling. In Figs. 1 and 2 we
see that, apart from a small overestimate of the polaron ra-
Ill. NUMERICAL RESULTS dius, FVA reproduces fairly well the PIMC data. We can

then safely use the FVA to discuss the spatial properties of
Now we discuss the spatial extent of the induced charge ahe polaron. Notice that the good agreement found between
general couplings and temperatures. We have evaluated api{MC and FVA is not obvious since in principle only the
erages in Eq(7) using PIMC. Equation$7) and(8), being  free energy is expected to be accurate for the latter.
expressed in real Space rather than in Fourier Components are Contrary to the naive expectation, the effect of tempera_
more suitable for this purpose. We have performed Metropog e is to shrink the polarofFig. 2). Our physical explana-
lis PIMC calculations within the imaginary time discretiza- tjon, is the following: At low temperatures, phonons relax

tion scheme. In order to regularize the attractive divergencgpjnking the spatial extent of the electron until the increase
of the retarded action at short distance, and to improve the. . |actron kinetic energy balances the gain in electron-

convergence with the number of the imaginary t_ime discreti, honon interaction energy. At high temperatures, however, a
zation points, we have developed a preaveraging procedunpe ' —

similar to the one used for local actiofs® Details of the ~ tyPical electron has energf=3/28 and momentumik
method and more extensive results will be given in a sepa= v3M/B. One can construct a wave packet of widtk in
rate publicatiort” Here we just say that the results for the momentum space using plane waves with higher and smaller
g(r) are well converged as checked by doubling the number
of imaginary time slices. Previous MC studies of the lFro
lich polaron were limited to small{<4) (Ref. 18 or inter-
mediate @<7) (Ref. 19 couplings and were focused to the
calculation of the ground-state enet§y® and effective
mass:®

Following Ref. 9 we have also computag(r) in the
FVA, i.e., using Feynman’s quadratic action to evaluate the
average appearing in E¢7).%°

In Fig. 1 we show 4rr?g(r) for weak, intermediate, and
strong coupling. We also show the weak-coupling result ob-
tained by perturbation theory af=0 and the strong-
coupling result in the Landau-Pekar approximation. For all
couplings the correlation function decays exponentially with
distance as expected for a polaron. The area under the curve
is one according to the sum rulé&g. (10)]. The short-
distance asymptotic behavior E@.3) is exactly satisfied in
FVA and is also satisfied in the PIMC within the numerical FIG. 2. 4{n-rzg(r) as a function of at «=6. From left to right
error. We define the polaron radiug, as the distance at curves(FVA after the formalism of Ref. 9and points(PIMC)
which 4zr2g(r) is a maximum. As the coupling increases refers tog% w, =0.1,1.0,20, respectively.
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12 ; T - - - - v the usual Feynman variational paramétéor a—0, T*
goes to a constant of order of 8.5, , whereas for larger it
] increases quadratically with.

In the low-temperature regimel € T*) the polaron ra-
dius becomes almost temperature independent and is deter-
mined by the coupling? The high-temperature regime
>T* is characterized by a polaron radius that is independent
i of the coupling and is determined by the temperature alone

(rm=0.2n7).

/1

02T A 1 IV. CONCLUSIONS

0 : : : : : : : We have studied the charge induced in the lattice by an

0 24 6 8 10 12 4 electron in Filich polaron problem and the associated po-

« larization field. We have derived relations that express the

FIG. 3. The polaron radius as a function of coupling for differ- charge-induced density correlation function in terms of path

ent inverse temperatures. Results from FVA are shown as dastotegral involving only the electronic degrees of freedom that
dotted (Bhw, =0.1), dashed @#w, =1.0), thick-solid Bfw, are suitable to be evaluated by PIMC method. A rigorous
=20), and thin-solid lines §%w,_=). Dotted line is the Landau- sum rule was derived that determines the total induced
Pekar approximation. Results from PIMC calculations are shown asharge and the long-distance behavior of the polarization

triangles (3% w, =0.1), circles Bhw, =1.0), and squaresffiw,  field. We give also the asymptotic limits of these quantities
=20). The horizontal arrows indicate the value ):2l for  at short distances and at high temperatures. We have com-
Bhriw, =1 (upped and Bhw, =0.1 (lower). The arrows forBhw, pared results obtained using FVA through the lines of Refs.
=20y~ are out of scale. 9-11 and those obtained by PIMC method. To the best of

our knowledge, this is the first PIMC computation of real-

energy without affecting the electron internal energy. Thespace correlation functions in a flich model. From the

biggestAk, which will not affect the electron internal en- spatial dependence of the induced charge we obtained a po-

ergy, is of order ok itself. One can then achieve a localiza- laron radius. The polaron radius is determined by the cou-
tion of the electron of order k/~%/ 3m/B~\. It follows pling at low temperatures and by the thermal wavelength at

that the phonons can relax at practically no cost until thd!9n témperatures with a crossover temperature that we
polaron radius stabilizes at a value of this order. In fact agvaluated in FVA. _ ,
At high temperature, a polaron with small radius and

high temperatures, the asymptotic value of the polaron radius

can be obtained from Ea(14): lim r =1JBho ]2 small effe_ctive mass is achieved. These rgsults are not in
—0.2\. This scaling has bqe(en)foundﬁgg getleiagl g#or contradiction because the small radius at high temperatures
the.meTe.m-square displacement of the electron in.imaginar. a thermal effect of the electron and it is not related to the

time. Notice that the polaron radius becomes independent fittice response. Th? Ia_ttlce acts only as a probe_ of the in-
the coupling. trinsic electron localization radius, namelyy. Obviously

To characterize the temperature and coupling dependené@is small radius polaron has nothing_ to do with the Holstein
of the polaron size we plot in Fig. 3 the polaron radius as ero-temperature small polaron that induces almost local lat-

function of coupling for different inverse temperatures. Wet!Ce displacements and moves coherently with a large effec-
see that when the temperature is such thah 2 (low IVé Mass.

_ The PIMC polaron radius is always smaller than the FVA
temperatures, see the curves féff w, =20:), the polaron ialculation in the range of coupling and temperature studied.

radius exhibits little temperature dependence at all coupling his effect is more pronounced at intermediate couplings

and simply interpolates between the weak-coupling polaro . o
'mply Interp W W upiing p he overall temperature dependence agrees with the findings

radius r,=1 and the Landau-Pekar polaron radiug, o S
—31\/m/2/a. When 0.2;<I, two different regimes occur. of Refs. 9—11, however, our physical interpretation is differ

At small coupling the polaron radius tends to saturate a?m'
0.2\t (horizontal arrow whereas at high couplings one re-
covers the low-temperature polaron radiyg«, T=0). We

can define a crossover line when these two lengths are of We acknowledge useful discussions and suggestions from
equal magnitude so that the crossover temperature as a fun®: Fratini and J. T. Titantah. J. L. thanks P. Calvani’s group
tion of « is given by the equation,(a, T=0)=0.2\¢(T*).  for hospitality during this work. We acknowledge partial
In the FVA approximatioh’ we find the crossover tempera- support from the MURST 1997 matching funds Program No.
ture in energy units to b&* (a)=0.1%w,v(a,T=0) with  9702265437.
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