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Induced charge in a Fröhlich polaron: Sum rule and spatial extent
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Within the path-integral formalism, we derive exact expressions for correlation functions measuring the
lattice charge induced by an electron and associated polarization in the Fro¨hlich polaron problem. We prove
that a sum rule for the total induced charge, already obtained with approximate approaches, is indeed exact. As
a consequence the total induced charge is shown rigorously to be temperature independent. In addition, we
perform path integral Monte Carlo calculations of the correlation functions and compare them to variational
results based on the Feynman method. As the temperature increases the polaron radius decreases. On the other
hand, at high temperatures the electron motion is not hindered by the lattice. These apparently contradictory
results are discussed.
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I. INTRODUCTION

An electron added to an insulating polar crystal forms
quasiparticle called dielectric polaron after Fro¨hlich.1,2 This
has been recognized as a fundamental field theore
problem.3 More recently a variety of materials have emerg
that present interesting properties when doped away from
insulating phase, like colossal magnetoresistent manga
and high-temperature superconducting cuprates. The fact
these are polar crystals has produced a renewed intere
Fröhlich polaron problems.4–7

Roughly speaking a dielectric polaron is composed of
electron and the~opposite! charge that it induces in the la
tice. The electron and induced charge attract each othe
that for the electron to move it has to drag the induc
charge resulting in an increase of the quasiparticle mass
this paper we study correlation functions that measure
magnitude and spatial extent of the induced charge and
sociated polarization field.

We derive a rigorous sum rule that states that the t
induced charge equals the charge induced by a clas
~static! electron and it is independent of temperature. T
result, well known within perturbative8 and variational
approaches,9 is proven here to be exact. The large distan
behavior of the electric field is determined by this sum ru
In addition we discuss the short distance and the hi
temperature asymptotic limit of these quantities. These
sults provide constraints to approximations on the pola
problem.

The real-space path-integral Monte Carlo~PIMC! method
is used to evaluate correlation functions. These are comp
with Feynman’s variational approximation~FVA!10,9 and
analytical results in weak and strong coupling. We find t
the polaron radius is determined at low temperatures by
electron-phonon couplinga alone while at high temperature
it is proportional to the de Broglie thermal wavelength (lT

5\A2pb/m with b the inverse temperature! and becomes
independent of coupling. We define a polaron crossover t
peratureT* (a). Although the electron induces a temperatu
independent charge in the lattice the induced charge hin
the electron motion only belowT* (a). At high temperatures
PRB 620163-1829/2000/62~7!/4426~5!/$15.00
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thermal effects wash out the hindering effect of the induc
charge but, we remark again, not the induced charge its

II. ANALYTICAL RESULTS

Our starting point is the effective action for the Fro¨hlich
polaron problem, after the phonons have been elimina
with the usual path integral techniques,3 S5S01SI with

S0@x#5E
0

\b

dt
1

2
mẋ2, ~1!

SI@x#52
a

2A2

~\vL!3/2

m1/2 E
0

\b

dt1E
0

\b

dt2

D~t12t2!

ux~t1!2x~t2!u
,

herem is the electron mass,a5e2m1/2/\ē(2\vL)1/2 is the
coupling constant withvL the phonon frequency, 1/ē
51/e`21/e0 and e` (e0) is the high-~zero-! frequency di-
electric constant.

D~t!5
exp~vLutu!1 exp@~\b2utu!vL#

exp~\bvL!21
~2!

is the phonon propagator.
We are interested in the correlation function between

electron charge density2eñ(r ) and the charge induced i
the latticeeñi(r ) normalized to the probability density t
find an electron at a given point, i.e., the inverse of the v
umeV. Dropping the charges this is defined as,

^ñ~0!ñi~r !&/V21[g~r !/ ē ~3!

Averages are defined as path integrals weighted byS

^ . . . &5

E Dxe2S/\~ . . . !

E Dxe2S/\

~4!

where the paths entering in Eq.~4! depart and arrive at the
same point. Further integration over such a point is not p
4426 ©2000 The American Physical Society
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formed and this assigns to Eq.~4! the meaning of a con
strained average withx(0)5x(b)50. Those averages ar
however equivalent to the unconstrained ones becaus
translational invariance. We used the spherical symmetr
the problem to defineg(r ), and we divided byē on the
right-hand side of Eq.~3! for later convenience. Anothe
quantity of interest is the induced lattice polarization

P~r ![^ñ~0!P̃~r !&/V21 ~5!

“P̃(r )52eñi(r ) is the density of polarization operator. Th
correlation function in Eq.~5! is related to the induced elec
trostatic potential@¹2V(r )524peg(r )/ ē # considered in
Ref. 11, which will not be discussed here. We stress t
these quantities have the meaning ofcorrelation functions
measuring average induced charge, polarization, and ind
potential at a distancer from the electron position.

The charge-density operator for the phonons is,12

eñi~r !52A \vL

4pVē
(

k
kQ̃ke

ik.r. ~6!

whereQ̃k is the dimensionless displacement for moment
k phonons. Inserting Eq.~6! in Eq. ~3! we obtain an equation
for g(r ) as a function of the density displacement correlat
function ^ñ(0)Q̃k&. The phonon variables can be traced o
by standard methods. We have found that it is possible
give an exact expression for the correlation functions
terms of path integrals weighted by the effective electro
action of Eq.~1!. We find for the density-induced-densit
correlation function

g~r !5E
0

\b

dtU~t!^d@r2x~t!#& ~7!

and for the polarization field

P~r !52
e

4pē
E

0

\b

dtU~t!K r̂

ur2x~t!u2L , ~8!

where r̂[r /r and

U~t!5\vL

sinh~vLt!1 sinh@vL~\b2t!#

2tanh~b\vL/2!sinh~b\vL!
. ~9!

Within FVA, the variational quadratic action can be e
ploited in Eqs.~7! and ~8! to analytically perform the aver
ages and to recover the results of Refs. 10 and 11.

Equations~7! and ~8! have a simple physical interpreta
tion. The induced charge can be seen as ‘‘distributed’’ alo
the electron path with weightU(t). The polarization is the
superposition of polarizations associated with those elem
tary induced charges.

Equation~7! can be integrated in the whole space us
the properties of the Dirac’sd function. Since*dtU(t)51,
we conclude thatg(r ) is normalized to one. The total in
duced chargeq is computed by integrating the densit
induced density correlation function in Eq.~3!:

q5eE
0

`

dr4pr 2g~r !/ ē5
e

ē
, ~10!
of
of

at

ed

n
t
to

c

g

n-

which completes the proof of the sum rule. The total induc
charge amounts to the charge the electron would induce
where a static classical particle. In other words there are
quantum corrections to the total induced charge.

An alternative derivation can be worked out followin

Quémerais.13 From the time derivativei\ P̈̃5@ Ṗ̃,H̃# one ob-
tains

P̈̃5vL
2S 1

4pē
D̃2P̃D ~11!

Here H̃ is the Hamiltonian,D̃ is the electric displacemen

operator due to the electron (“•D̃524peñ), and i\ Ṗ̃
5@P̃,H̃#. Taking the divergence we obtain a relation for t
charge operators:

“• P̈̃~r !5vL
2eS 2

ñ~r !

ē
1ñi~r !D ~12!

We can integrate this expression in all space and take
thermodynamic average. The left-hand side is proportiona
the average of the net force felt by the lattice at the bound
of the system, which should vanish at equilibrium. The rig
hand side gives Eq.~10!.

Equation~10! shows that the induced charge is indepe
dent of temperature. This contradicts the naive argument
all polaron effects should disappear at high temperatures
understand this behavior one can do an analogy with
behavior of an harmonic oscillator in an external field. In th
case, because of harmonicity, one gets a displacement w
is temperature independent. Here roughly speaking the
monic oscillator represents the phonon coordinates and
external field is the field produced by the electron on
phonons. The induced charge is a measure of how much
ions displace from their bare equilibrium positions in t
presence of the electron. As for the single harmonic osci
tor, this ‘‘displacement’’ is independent of temperature. On
anharmonicities can make the induced charge tempera
dependent.

Using the sum rule it is easy to see that at distances m
larger than the polaron radius, as defined below, the po
ization field goes asP(r )52er̂ /(4pēr 2). Clearly the distor-
tion produced by the electron is long range, a fact that is
always recognized in the literature.14 The total electric field
~always in the sense of a correlation function! is given by
E5D24p(PuP`), where the electric displacement is give
by D52er̂ /r 2 and the high-frequency polarization isP`5

2e(121/e`) r̂ /(4pr 2). At long distances we haveE(r )5

2er̂ /(e0r 2) which means that the electric field generated
the electron gets screened by the static dielectric cons
This is generally expected, but to the best of our knowled
has never been proven for all coupling and temperatures

Now we discuss the short-distance behavior. At distan
much smaller than the polaron radius, we expect that
effect of the interaction becomes irrelevant in the functio
integrals. This is because the latter are dominated by elec
paths with short wavelength or equivalently high-kinetic e
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ergy. We can then replace the total action by the fr
electron action in Eqs.~7! and~8!. We obtain the asymptotic
result

lim
r→0

P~r !52
e

8pē l 2 tanh~b\vL/2!
r̂ . ~13!

where l 5A\/2mvL is the harmonic-oscillator characterist
length. Using the same argument we obtain thatg(r )}r 21

for r→0 and the proportionality coefficient can also be o
tained with the same method. The latter behavior has b
obtained in Ref. 9 within the FVA. These results coinci
with lowest-order perturbation theory.

At high temperatures we also expect that the effect of
interaction becomes irrelevant and so we can replace a
the total action by the free-electron action in the functio
integrals. The high-temperature asymptotic result forg(r ) is

4pr 2g~r !5
2r

l 2b\vL

expS 2r 2

l 2b\vL
D b\vL!1. ~14!

This result has also been obtained in Ref. 9 within FVA. W
remark that although the density-induced-density correla
function does not vanish for large temperatures the pola
effective mass tends to the bare electron mass.

III. NUMERICAL RESULTS

Now we discuss the spatial extent of the induced charg
general couplings and temperatures. We have evaluated
erages in Eq.~7! using PIMC. Equations~7! and ~8!, being
expressed in real space rather than in Fourier component
more suitable for this purpose. We have performed Metro
lis PIMC calculations within the imaginary time discretiz
tion scheme. In order to regularize the attractive diverge
of the retarded action at short distance, and to improve
convergence with the number of the imaginary time discr
zation points, we have developed a preaveraging proce
similar to the one used for local actions.15,16 Details of the
method and more extensive results will be given in a se
rate publication.17 Here we just say that the results for th
g(r ) are well converged as checked by doubling the num
of imaginary time slices. Previous MC studies of the Fro¨h-
lich polaron were limited to small (a<4) ~Ref. 18! or inter-
mediate (a<7) ~Ref. 19! couplings and were focused to th
calculation of the ground-state energy18,19 and effective
mass.19

Following Ref. 9 we have also computedg(r ) in the
FVA, i.e., using Feynman’s quadratic action to evaluate
average appearing in Eq.~7!.20

In Fig. 1 we show 4pr 2g(r ) for weak, intermediate, and
strong coupling. We also show the weak-coupling result
tained by perturbation theory atT50 and the strong-
coupling result in the Landau-Pekar approximation. For
couplings the correlation function decays exponentially w
distance as expected for a polaron. The area under the cu
is one according to the sum rule@Eq. ~10!#. The short-
distance asymptotic behavior Eq.~13! is exactly satisfied in
FVA and is also satisfied in the PIMC within the numeric
error. We define the polaron radiusr m as the distance a
which 4pr 2g(r ) is a maximum. As the coupling increase
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the polaron shrinks indicating the progressively more loc
ized nature. In Fig. 2 we show the temperature depende
of 4pr 2g(r ) at intermediate coupling. In Figs. 1 and 2 w
see that, apart from a small overestimate of the polaron
dius, FVA reproduces fairly well the PIMC data. We ca
then safely use the FVA to discuss the spatial properties
the polaron. Notice that the good agreement found betw
PIMC and FVA is not obvious since in principle only th
free energy is expected to be accurate for the latter.

Contrary to the naive expectation, the effect of tempe
ture is to shrink the polaron~Fig. 2!. Our physical explana-
tion is the following: At low temperatures, phonons rela
shrinking the spatial extent of the electron until the increa
in electron kinetic energy balances the gain in electr
phonon interaction energy. At high temperatures, howeve

typical electron has energyĒ53/2b and momentum\ k̄
5A3m/b. One can construct a wave packet of widthDk in
momentum space using plane waves with higher and sm

FIG. 1. 4pr 2g(r ) as a function ofr for different couplings and
approximations. From left to right bold curves~FVA after the for-
malism of Ref. 9! and points~PIMC! corresponds toa512,6,1,
respectively, andb\vL520. Thin-solid line is perturbation theory
thin-dashed line the Landau-Pekar strong-coupling approxima
both atb\vL5`.

FIG. 2. 4pr 2g(r ) as a function ofr at a56. From left to right
curves ~FVA after the formalism of Ref. 9! and points~PIMC!
refers tob\vL50.1,1.0,20, respectively.
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energy without affecting the electron internal energy. T
biggestDk, which will not affect the electron internal en
ergy, is of order ofk̄ itself. One can then achieve a localiz
tion of the electron of order 1/k̄;\/A3m/b;lT . It follows
that the phonons can relax at practically no cost until
polaron radius stabilizes at a value of this order. In fact
high temperatures, the asymptotic value of the polaron ra
can be obtained from Eq.~14!: limb→0r m5 lAb\vL/2
50.2lT . This scaling has been found by Sethiaet al.21 for
the mean-square displacement of the electron in imagin
time. Notice that the polaron radius becomes independen
the coupling.

To characterize the temperature and coupling depend
of the polaron size we plot in Fig. 3 the polaron radius a
function of coupling for different inverse temperatures. W
see that when the temperature is such that 0.2lT. l ~low
temperatures, see the curves forb\vL520,̀ ), the polaron
radius exhibits little temperature dependence at all coupli
and simply interpolates between the weak-coupling pola
radius r m5 l and the Landau-Pekar polaron radiusr m

53lAp/2/a. When 0.2lT, l , two different regimes occur
At small coupling the polaron radius tends to saturate
0.2lT ~horizontal arrow! whereas at high couplings one r
covers the low-temperature polaron radiusr m(a,T50). We
can define a crossover line when these two lengths ar
equal magnitude so that the crossover temperature as a
tion of a is given by the equationr m(a,T50)50.2lT(T* ).
In the FVA approximation17 we find the crossover tempera
ture in energy units to beT* (a)50.15\vLv(a,T50) with

FIG. 3. The polaron radius as a function of coupling for diffe
ent inverse temperatures. Results from FVA are shown as d
dotted (b\vL50.1), dashed (b\vL51.0), thick-solid (b\vL

520), and thin-solid lines (b\vL5`). Dotted line is the Landau-
Pekar approximation. Results from PIMC calculations are show
triangles (b\vL50.1), circles (b\vL51.0), and squares (b\vL

520). The horizontal arrows indicate the value 0.2lT / l for
b\vL51 ~upper! and b\vL50.1 ~lower!. The arrows forb\vL

520,̀ are out of scale.
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v the usual Feynman variational parameter.3 For a→0, T*
goes to a constant of order of 0.5\vL , whereas for largea it
increases quadratically witha.

In the low-temperature regime (T,T* ) the polaron ra-
dius becomes almost temperature independent and is d
mined by the coupling.22 The high-temperature regimeT
.T* is characterized by a polaron radius that is independ
of the coupling and is determined by the temperature al
(r m50.2lT).

IV. CONCLUSIONS

We have studied the charge induced in the lattice by
electron in Fro¨hlich polaron problem and the associated p
larization field. We have derived relations that express
charge-induced density correlation function in terms of p
integral involving only the electronic degrees of freedom th
are suitable to be evaluated by PIMC method. A rigoro
sum rule was derived that determines the total indu
charge and the long-distance behavior of the polariza
field. We give also the asymptotic limits of these quantit
at short distances and at high temperatures. We have c
pared results obtained using FVA through the lines of Re
9–11 and those obtained by PIMC method. To the bes
our knowledge, this is the first PIMC computation of rea
space correlation functions in a Fro¨hlich model. From the
spatial dependence of the induced charge we obtained a
laron radius. The polaron radius is determined by the c
pling at low temperatures and by the thermal wavelength
high temperatures with a crossover temperature that
evaluated in FVA.

At high temperature, a polaron with small radius a
small effective mass is achieved. These results are no
contradiction because the small radius at high temperat
is a thermal effect of the electron and it is not related to
lattice response. The lattice acts only as a probe of the
trinsic electron localization radius, namely,lT . Obviously
this small radius polaron has nothing to do with the Holst
zero-temperature small polaron that induces almost local
tice displacements and moves coherently with a large ef
tive mass.

The PIMC polaron radius is always smaller than the FV
calculation in the range of coupling and temperature stud
This effect is more pronounced at intermediate couplin
The overall temperature dependence agrees with the find
of Refs. 9–11, however, our physical interpretation is diffe
ent.
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